JPH05286704A - Device for producing magnetic fluid or grain - Google Patents

Device for producing magnetic fluid or grain

Info

Publication number
JPH05286704A
JPH05286704A JP4091123A JP9112392A JPH05286704A JP H05286704 A JPH05286704 A JP H05286704A JP 4091123 A JP4091123 A JP 4091123A JP 9112392 A JP9112392 A JP 9112392A JP H05286704 A JPH05286704 A JP H05286704A
Authority
JP
Japan
Prior art keywords
iron
carbonyl
reaction tank
reaction vessel
main reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4091123A
Other languages
Japanese (ja)
Other versions
JP3255958B2 (en
Inventor
Isao Nakatani
功 中谷
Takashi Shinko
貴史 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Nittetsu Mining Co Ltd
Original Assignee
National Research Institute for Metals
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nittetsu Mining Co Ltd filed Critical National Research Institute for Metals
Priority to JP09112392A priority Critical patent/JP3255958B2/en
Publication of JPH05286704A publication Critical patent/JPH05286704A/en
Application granted granted Critical
Publication of JP3255958B2 publication Critical patent/JP3255958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an isotropic magnetic grain having a specified diameter by forming a precursor in an auxiliary reaction vessel, immediately supplying the precursor to a main reaction vessel to simultaneously conduct heat treatment in two stages and reducing the time required to increase the grain diameter. CONSTITUTION:Gaseous argon is introduced into a main reaction vessel 100 from an inlet pipe 114 to remove the oxygen in the vessel, and then a soln. 104 of the weighed and mixed iron carbonyl, org. solvent (e.g. kerosine) and surfactant is charged into the vessel. Gaseous ammonia is introduced through an inlet pipe 112, and the soln. is heated to about 110 deg.C by a heater 102. Consequently, the iron carbonyl is vaporized, transferred to an auxiliary reaction vessel 126 and heated to about 90 deg.C by a heater 128 to form an iron ammine carbonyl complex of the precursor. A definite amt. of the complex is then dripped into the main reaction vessel 100 by adjusting a cock 130. The complex is heated to about 185 deg.C and converted to iron nitride. The iron carbonyl remaining in the soln. 104 is totally converted to iron nitride in this way. The obtained magnetic grains have 20nm to 100um diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗料又はトナー若しく
はキャリア等の粉末磁性材料に適する磁性流体又は磁性
粒子を、簡便に且つ高効率で製造する装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for easily and highly efficiently producing magnetic fluid or magnetic particles suitable for powder magnetic materials such as paint or toner or carrier.

【0002】[0002]

【従来の技術】磁性塗料、あるいは画像形成装置用の磁
性トナーや磁性キャリア等、粉末磁性材料としては、磁
化の値が大きく、等方的な形状を有し、且つ均一なサイ
ズ、特に20nm〜100μm程度の微粒子が必要とさ
れる。ここで、等方的な形状とは、針状、棒状、板状、
扁平状等、異方的形状以外の形状のことであり、長径と
短径があまり違わない回転楕円体、長辺と短辺があまり
違わない直方体や多面体、又はそれに類する不定形等を
指す。
2. Description of the Related Art As a powder magnetic material such as a magnetic paint, a magnetic toner or a magnetic carrier for an image forming apparatus, the magnetic material has a large magnetization value, has an isotropic shape, and has a uniform size, particularly 20 nm or less. Fine particles of about 100 μm are required. Here, the isotropic shape means a needle shape, a rod shape, a plate shape,
It refers to a shape other than an anisotropic shape such as a flat shape, and refers to a spheroid whose major axis and minor axis do not differ much, a rectangular parallelepiped or polyhedron whose major side and minor side do not differ much, or an irregular shape similar to this.

【0003】そのため従来は、球状に焼結させたフェラ
イト粒子、あるいはカルボニル鉄粉が用いられていた。
Therefore, conventionally, spherically sintered ferrite particles or carbonyl iron powder has been used.

【0004】しかしながら、フェライトは磁化が小さ
く、画像形成装置用としてはあまり適さない。
However, since ferrite has a small magnetization, it is not suitable for an image forming apparatus.

【0005】一方、カルボニル鉄粉は、そのままで球状
性がよく、その磁化も大きいが、酸化に対して安定でな
く燃焼しやすくて危険であり、しかも画像形成装置用に
好適な1μm以下のサイズの粉体を得にくい等の欠点を
有している。
On the other hand, carbonyl iron powder has good spherical shape as it is, and its magnetization is large, but it is dangerous because it is not stable against oxidation and easily burns, and the size of 1 μm or less suitable for image forming apparatus. It has drawbacks such as difficulty in obtaining powder of

【0006】そのため、化学的に安定で大きな磁化を有
する磁性材料として、窒化鉄が注目されている。
Therefore, iron nitride is attracting attention as a magnetic material that is chemically stable and has a large magnetization.

【0007】現在、窒化鉄微粒子の製造法としては、次
のものが公知である。即ち、 特公昭59−34125号公報等で開示されている、
アンモニアガス雰囲気中で鉄粉末を500℃以上の温度
で加熱窒化する方法(アンモニア窒化法)、 特開平2−164443号公報等で開示されている、
鉄カルボニルFe(CO)5蒸気を、N2ガスのグロー放電
プラズマ中で分解反応させる方法(プラズマCVD
法)、 鉄カルボニルの炭化水素油溶液とアンモニアガスとを
約200℃で反応させる方法(気相−液相反応法)、及
び 減圧したアンモニアガス雰囲気中で鉄を加熱蒸発させ
る方法(ガス中蒸発法)が知られている。
At present, the following are known methods for producing iron nitride fine particles. That is, as disclosed in Japanese Patent Publication No. 59-34125,
A method of heating and nitriding iron powder at a temperature of 500 ° C. or higher in an ammonia gas atmosphere (ammonia nitriding method) is disclosed in JP-A-2-164443.
Method of decomposing iron carbonyl Fe (CO) 5 vapor in glow discharge plasma of N 2 gas (plasma CVD
Method), a method of reacting a hydrocarbon oil solution of iron carbonyl with ammonia gas at about 200 ° C. (gas phase-liquid phase reaction method), and a method of heating and evaporating iron in a decompressed ammonia gas atmosphere (evaporation in gas). Law) is known.

【0008】アンモニア窒化法では、形成される窒化鉄
粒子の大きさは、原料となる鉄粒子の大きさによって決
まり、現在のところ、最低粒径は1μmである。ガス中
蒸発法では、いくつかの粒子が鎖状に連結していて、単
一の粒子を得ることが困難であり、更に製造過程でのエ
ネルギー効率も悪く、また生産性において乏しい。プラ
ズマCVD法や気相−液相反応法は、窒化鉄磁性流体の
製造のために開発された方法であり、磁性流体に最適な
10nm程度の超微粒子が得られる。現在のところ、こ
れらの方法から、20nm以上の粒子は得られておら
ず、また、プラズマCVD法は、広い適用範囲を有する
方法ではあるものの、当該方法を行なうための反応装置
は複雑で高価なものであり、且つその操業には高度なテ
クニックが要求されるため、技術的経済的に必ずしも効
率の良い方法でなく、したがって気相−液相反応法か
ら、所望粒径の窒化鉄粒子を合成することが期待され
る。
In the ammonia nitriding method, the size of the iron nitride particles formed is determined by the size of the iron particles used as the raw material, and the minimum particle size is 1 μm at present. In the gas evaporation method, it is difficult to obtain a single particle because several particles are connected in a chain, and further, the energy efficiency in the manufacturing process is poor and the productivity is poor. The plasma CVD method and the gas phase-liquid phase reaction method are methods developed for producing iron nitride magnetic fluid, and ultrafine particles of about 10 nm, which are optimal for magnetic fluid, can be obtained. At present, particles of 20 nm or more have not been obtained from these methods, and although the plasma CVD method has a wide range of application, the reaction apparatus for carrying out the method is complicated and expensive. However, it is not always an efficient method in terms of technology and economy because it requires high technique for its operation. Therefore, iron nitride particles having a desired particle size can be synthesized from the gas phase-liquid phase reaction method. Expected to do.

【0009】気相−液相反応法により窒化鉄等の磁性流
体を合成する装置は、特開平3−187907号公報で
開示されている。
An apparatus for synthesizing a magnetic fluid such as iron nitride by a gas phase-liquid phase reaction method is disclosed in JP-A-3-187907.

【0010】当該装置は、図2に示されるように、底部
に加熱装置2を取り付けた耐熱性熱分解反応槽1に、複
数の気密性導入フランジを有する蓋3を気密に接続する
ことで形成されている。反応槽1内の溶液4を撹拌でき
るように、一つの導入フランジ5に撹拌装置6が取り付
けられている。導入管7を通して、例えばアンモニアガ
スが溶液4に導入されるようになっている。別の導入フ
ランジ8に設けられた管路を介して金属カルボニル9
が、導入口10を介して界面活性剤11が導入される。
別の導入口12に配置された管路が分岐され、一方に
は、窒化金属微粒子の生成反応を行なう際の還流冷却装
置13が接続され、他方の管路には、蒸留冷却装置とし
てのコンデンサー14が接続されている。
As shown in FIG. 2, the apparatus is formed by airtightly connecting a lid 3 having a plurality of airtight introduction flanges to a heat-resistant pyrolysis reaction tank 1 having a heating device 2 attached to the bottom thereof. Has been done. A stirring device 6 is attached to one introduction flange 5 so that the solution 4 in the reaction tank 1 can be stirred. Ammonia gas, for example, is introduced into the solution 4 through the introduction pipe 7. A metal carbonyl 9 is introduced through a pipe provided on another introduction flange 8.
However, the surfactant 11 is introduced through the inlet 10.
A pipe line arranged at another inlet 12 is branched, one side is connected to a reflux cooling device 13 for carrying out a reaction for producing metal nitride fine particles, and the other pipe line is connected to a condenser as a distillation cooling device. 14 is connected.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、既に述
べたように、この公知の装置では、20nm以上の粒径
で等方的形状の窒化金属粒子を製造することができな
い。
However, as described above, this known apparatus cannot produce isotropic metal nitride particles having a particle size of 20 nm or more.

【0012】本発明は、このような従来装置での限界に
鑑みてなされたもので、20nm〜100μm、なかん
ずく従来存在していなかった20nm〜1μm程度も含
める粒径で等方的形状の磁性粒子を、操作簡単に、効率
良く製造する安価な装置を提供することを課題としてい
る。
The present invention has been made in view of such a limit in the conventional apparatus, and isotropic magnetic particles having a particle size of 20 nm to 100 μm, especially 20 nm to 1 μm which did not exist in the past. It is an object of the present invention to provide an inexpensive device that can be manufactured easily and efficiently.

【0013】[0013]

【課題を解決するための手段】本発明は上記の課題を、
加熱装置付きの主反応槽と、これに接続された複数の原
料導入部と、当該主反応槽に直列に配設された加熱装置
付きの副反応槽と、更に当該副反応槽に接続された還流
用冷却塔とからなる磁性流体乃至磁性粒子製造装置によ
って、解決した。
The present invention solves the above problems by
A main reaction tank with a heating device, a plurality of raw material introducing parts connected thereto, a sub reaction tank with a heating device arranged in series with the main reaction tank, and further connected to the sub reaction tank The problem was solved by a magnetic fluid or magnetic particle production apparatus comprising a reflux cooling tower.

【0014】[0014]

【作用】例えば、窒化鉄磁性流体の製造のための気相−
液相反応法においては、最初に鉄カルボニルとアンモニ
アガスとを反応させて、窒化鉄の前駆物質である鉄アン
ミンカルボニル錯体Fe2(CO)5(NH2)2、Fe3(C
O)9(NH)2を反応溶液内に次々に形成し、蓄積された
当該鉄アンミンカルボニル錯体が、ある臨界濃度を越え
ると、当該鉄アンミンカルボニル錯体は分解し始め、窒
化鉄Fe3N微粒子核を形成する。
[Operation] For example, a gas phase for producing an iron nitride magnetic fluid
In the liquid phase reaction method, iron carbonyl and ammonia gas are first reacted to form an iron ammine carbonyl complex Fe 2 (CO) 5 (NH 2 ) 2 , Fe 3 (C
O) 9 (NH) 2 is successively formed in the reaction solution, and when the accumulated iron ammine carbonyl complex exceeds a certain critical concentration, the iron ammine carbonyl complex starts to decompose and iron nitride Fe 3 N fine particles are formed. Form a nucleus.

【0015】そこで、特開平3−187907号公報に
開示された磁性流体合成装置を用いて窒化鉄磁性流体を
合成するにあたっては、磁性流体講演論文集(1991-1)に
記載されているように、上記2段階の反応を交互に、例
えば1時間程度づつ繰り返すことによって、窒化鉄コロ
イドを合成することが提案されている。
Therefore, in synthesizing the iron nitride magnetic fluid using the magnetic fluid synthesizing apparatus disclosed in Japanese Patent Laid-Open No. 3-187907, as described in Magnetic Fluid Lecture Collection (1991-1). It has been proposed to synthesize an iron nitride colloid by alternately repeating the above two-step reaction, for example, for about 1 hour each.

【0016】しかしながら、上記窒化鉄の微粒子核は不
安定であり、鉄アンミンカルボニル錯体の濃度が臨界濃
度を下回った状態で、当該微粒子核をそのままにしてお
くと、生成した窒化鉄微粒子核は、再び溶媒中に溶解さ
れたり、分解したりして、20nm以上の粒子を得るこ
とができない。
However, the iron nitride fine particle nuclei are unstable, and if the fine iron particle nuclei are left as they are when the concentration of the iron amminecarbonyl complex is below the critical concentration, the produced iron nitride fine particle nuclei are It is again dissolved in the solvent or decomposed, and particles of 20 nm or more cannot be obtained.

【0017】このように不安定な窒化鉄であるが、窒化
鉄微粒子形成過程を鋭意研究の結果、窒化鉄の形成は、
鉄カルボニルとアンモニアガスとの反応による鉄アンミ
ンカルボニル錯体が、その臨界濃度以上の濃度を維持す
る限り、窒化鉄の微粒子核の表面において、優先的に且
つ以前よりも容易になされることが認められた。その結
果、一旦生成した窒化鉄の微粒子核は消滅することな
く、その表面において一層ずつ増大し、当該微粒子は成
長を続ける。
As described above, although iron nitride is unstable, as a result of earnest research on the formation process of iron nitride fine particles, the formation of iron nitride is
It has been observed that the iron ammine carbonyl complex produced by the reaction of iron carbonyl with ammonia gas is preferentially and easier than before on the surface of the fine iron nucleus of iron nitride, as long as it maintains a concentration above its critical concentration. It was As a result, the iron nitride fine particle nuclei that have been generated do not disappear, but increase on the surface one by one, and the fine particles continue to grow.

【0018】以上の過程を経ることで、球状の窒化鉄粒
子が形成され、その直径は、ほぼ反応時間に依存し、鉄
カルボニルとアンモニアガスの供給量により所望のサイ
ズまで増大させることが可能である。
Through the above process, spherical iron nitride particles are formed, the diameter of which depends substantially on the reaction time and can be increased to a desired size by the supply amounts of iron carbonyl and ammonia gas. is there.

【0019】本発明の装置においては、主反応槽と副反
応槽の2槽の反応槽を備え、副反応槽で前駆体の形成を
行ない、形成された前駆体を直ちに主反応槽に供給する
ことにより、2段階の熱処理を同時に行ない、磁性流体
の成長速度を増大し、粒径増大に要する時間を著しく縮
めることに成功した。
The apparatus of the present invention comprises two reaction tanks, a main reaction tank and a sub-reaction tank, a precursor is formed in the sub-reaction tank, and the formed precursor is immediately supplied to the main reaction tank. As a result, the two-stage heat treatment was carried out simultaneously, the growth rate of the magnetic fluid was increased, and the time required for increasing the particle size was significantly shortened.

【0020】本発明の装置を用いて窒化鉄粒子を形成す
る場合には、窒化鉄の原料物質として、鉄カルボニル
を、原料ガスとしてアンモニアを用いるが、アンモニア
に代えて、アミン類等の液状或いは固体として反応系に
導入できる任意の窒素化合物を用いることもできる。溶
媒としては、例えば、炭化水素類、或いはその混合物、
ケトン類、エーテル類、エステル類、アミン類等が、当
該溶媒に添加される界面活性剤としては、アミン類が好
適であるが、これらに限定されない。
When iron nitride particles are formed by using the apparatus of the present invention, iron carbonyl is used as a raw material of iron nitride and ammonia is used as a raw material gas. Instead of ammonia, liquid such as amines or the like is used. Any nitrogen compound that can be introduced into the reaction system as a solid can also be used. As the solvent, for example, hydrocarbons, or a mixture thereof,
Ketones, ethers, esters, amines and the like are preferable, but not limited to, amines as the surfactant added to the solvent.

【0021】[0021]

【実施例】以下に本発明の実施例をあげて、さらに具体
的に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0022】本発明の一実施例に係る窒化鉄の製造装置
を示す図1において、底部に加熱装置102を配設した耐
熱性の主反応槽100の上蓋部に、複数の気密性導入フラ
ンジが形成されている。主反応槽100内の溶液104を撹拌
できるように、一つの導入フランジ106には、撹拌装置1
08の回転軸が挿入されていて、当該回転軸の槽側先端に
は撹拌子110が取り付けられている。撹拌子110を回転す
るために、回転軸や導入フランジ106等を設けることに
代えて、磁気結合回転駆動装置を用いてもよい。導入管
112を通って、含窒素化合物、例えばアンモニアガス
が、導入管114を通って、アルゴン等の不活性ガスが、
それぞれ導入フランジ116を介して主反応槽100、溶液10
4に導入されるようになっている。反応温度を制御する
ために、熱電対118が同じ導入フランジ116を介して主反
応槽100に導入されている。予め秤量・混合された鉄カル
ボニルと有機溶媒と界面活性剤とからなる溶液120が、
管路122を介して主反応槽100に導入されるようになって
いる。別の導入フランジ124を介して、耐熱性の副反応
槽126が主反応槽100に接続されている。当該副反応槽12
6の周囲には、加熱装置128が配設されていて、主反応槽
100と副反応槽126との間には、副反応槽126から主反応
槽100へ落下する液滴量を調整するための流量調節用コ
ック130が取り付けられている。更に副反応槽128の上方
には、還流用の冷却塔132が取り付けられて、未反応の
鉄カルボニルを副反応槽126に戻すようになっている。
また当該冷却塔132を介して、反応で生じたガスや余剰
アンモニアが流れ、トラップでCOやNH3を除去され
た後、安全なガスのみ系外に放出される。
In FIG. 1 showing an iron nitride producing apparatus according to an embodiment of the present invention, a plurality of airtight introducing flanges are provided on an upper lid portion of a heat-resistant main reaction tank 100 having a heating device 102 at a bottom portion. Has been formed. In order to be able to stir the solution 104 in the main reaction tank 100, the stirring device 1 is provided on one introduction flange 106.
The rotating shaft of 08 is inserted, and the stirring bar 110 is attached to the tank-side end of the rotating shaft. In order to rotate the stirrer 110, a magnetic coupling rotary drive device may be used instead of providing the rotary shaft, the introduction flange 106 and the like. Introductory pipe
A nitrogen-containing compound such as ammonia gas is passed through 112, an inert gas such as argon is passed through an introduction pipe 114,
Each of the main reaction tank 100 and the solution 10 via the introduction flange 116.
It will be introduced in 4. A thermocouple 118 is introduced into the main reaction vessel 100 via the same introduction flange 116 to control the reaction temperature. A solution 120 consisting of iron carbonyl pre-weighed and mixed, an organic solvent and a surfactant,
It is adapted to be introduced into the main reaction tank 100 via a pipe 122. A heat-resistant side reaction tank 126 is connected to the main reaction tank 100 via another introduction flange 124. The side reaction tank 12
A heating device 128 is arranged around 6 and serves as a main reaction tank.
Between the 100 and the sub-reaction tank 126, a flow rate adjusting cock 130 for adjusting the amount of droplets falling from the sub-reaction tank 126 to the main reaction tank 100 is attached. Further, a cooling tower 132 for reflux is attached above the side reaction tank 128 to return unreacted iron carbonyl to the side reaction tank 126.
Further, the gas generated by the reaction and the excess ammonia flow through the cooling tower 132, CO and NH 3 are removed by the trap, and then only the safe gas is released to the outside of the system.

【0023】先ず、導入管114を介して不活性ガスのア
ルゴンガスを、主反応槽100に導き、主反応槽100内の酸
素を除去する。
First, an inert gas, argon gas, is introduced into the main reaction tank 100 through the introduction pipe 114 to remove oxygen in the main reaction tank 100.

【0024】次いで、原料の鉄カルボニルと有機溶媒た
るケロシン及び界面活性剤たるアミンを秤量・混合して
なる溶液120を、主反応槽100に導入する。
Next, a solution 120 prepared by weighing and mixing iron carbonyl as a raw material, kerosene as an organic solvent and amine as a surfactant is introduced into the main reaction tank 100.

【0025】原料溶液の導入後、導入管112を介して含
窒素化合物であるアンモニアガスを導入しながら、加熱
装置102によって主反応槽100を加熱する。
After the introduction of the raw material solution, the main reactor 100 is heated by the heating device 102 while introducing the ammonia gas, which is a nitrogen-containing compound, through the introduction pipe 112.

【0026】原料溶液104が110℃ほどになると、鉄
カルボニルは蒸発を始め、副反応槽126に移る。一部の
鉄カルボニルは副反応槽126を越えて、冷却塔132に昇る
が、ここで冷却されて副反応槽126に戻る。
When the raw material solution 104 reaches about 110 ° C., iron carbonyl starts to evaporate and is transferred to the side reaction tank 126. A part of the iron carbonyl passes through the side reaction tank 126 and rises to the cooling tower 132, where it is cooled and returns to the side reaction tank 126.

【0027】副反応槽126に溜った鉄カルボニルをアン
モニアガス流通下に加熱装置128で約90℃に加熱・保
温することによって、前駆体たる鉄アンミンカルボニル
錯体が形成される。形成される鉄アンミンカルボニル錯
体の量は徐々に増加して、鉄カルボニルと鉄アンミンカ
ルボニル錯体の混合溶液が、副反応槽126に形成され
る。
By heating and keeping the iron carbonyl accumulated in the side reaction tank 126 at about 90 ° C. with the heating device 128 under the flow of ammonia gas, an iron ammine carbonyl complex as a precursor is formed. The amount of the iron ammine carbonyl complex formed is gradually increased, and a mixed solution of iron carbonyl and the iron ammine carbonyl complex is formed in the side reaction tank 126.

【0028】このように副反応槽に形成された混合溶液
を、流量調整コック130を調整して、主反応槽100に一定
量滴下する。
The mixed solution thus formed in the side reaction tank is dropped into the main reaction tank 100 in a fixed amount by adjusting the flow rate adjusting cock 130.

【0029】滴下された鉄アンミンカルボニル錯体は、
約180℃まで加温された主反応槽100中で窒化鉄に変
化する。この際、ケロシンとアミンとが適当量存在して
いることにより、最初に窒化鉄の数10〜数100個程
度の分子からなる核が形成される。
The dropped iron ammine carbonyl complex is
It changes into iron nitride in the main reaction tank 100 heated to about 180 ° C. At this time, due to the presence of appropriate amounts of kerosene and amine, nuclei consisting of several tens to several hundreds of iron nitride molecules are first formed.

【0030】一方、溶液104中に残存する鉄カルボニル
は、更に蒸発して冷却塔132まで上昇し、冷却後、副反
応槽126に運ばれる。したがって、鉄カルボニルはすべ
て鉄アンミンカルボニル錯体に変化し、窒化鉄になるま
で循環する。
On the other hand, the iron carbonyl remaining in the solution 104 further evaporates and rises to the cooling tower 132, and after cooling, is carried to the side reaction tank 126. Therefore, all iron carbonyls are converted to iron ammine carbonyl complexes and circulate until iron nitride is formed.

【0031】このように鉄カルボニルと鉄アンミンカル
ボニル錯体とは、流量調整コック130を通って、副反応
槽126と主反応槽100の間を循環しながら、蒸気圧の低い
鉄アンミンカルボニル錯体は主反応槽100に移行し、一
方蒸気圧の高い鉄カルボニルは副反応槽126に留まるこ
とが可能で、鉄カルボニルと鉄アンミンカルボニル錯体
とが分留状態を維持されながら、副反応槽126中の鉄カ
ルボニルがすべて消費される。
As described above, while the iron carbonyl and iron ammine carbonyl complex are circulated between the side reaction tank 126 and the main reaction tank 100 through the flow rate adjusting cock 130, the iron ammine carbonyl complex having a low vapor pressure is mainly Iron carbonyl having a high vapor pressure can be retained in the side reaction vessel 126 while moving to the reaction vessel 100, and the iron in the side reaction vessel 126 can be retained while the iron carbonyl and the iron ammine carbonyl complex are kept in a fractional state. All carbonyls are consumed.

【0032】主反応槽100では、形成された核を中心と
して、更に供給される鉄アンミンカルボニル錯体がその
表面に雪だるま式に結合して、粒子が大きく成長する。
In the main reaction vessel 100, the iron ammine carbonyl complex further supplied around the formed nuclei is bonded to the surface thereof in a snowball manner, and the particles grow large.

【0033】表1に、合成した窒化鉄磁性流体の合成条
件及び合成結果を示す。平均粒径の測定には、高倍率電
子顕微鏡写真上で300個の粒子について粒径を測定
し、算術平均値を求めた。また飽和磁化の測定には振動
試料磁力計を用いて、最大10kOeの磁界をかけ、磁
化曲線を測定し、飽和漸近則により磁界を無限大に外捜
して求めた。なお、スラリー中の窒化鉄粉末成分の飽和
磁化は、スラリーの比重と溶媒の比重を用いて算出し
た。
Table 1 shows the synthesis conditions and synthesis results of the synthesized iron nitride magnetic fluid. To measure the average particle size, the particle size was measured for 300 particles on a high-magnification electron micrograph, and the arithmetic mean value was obtained. A vibrating sample magnetometer was used to measure the saturation magnetization, a magnetic field of maximum 10 kOe was applied, the magnetization curve was measured, and the magnetic field was infinitely searched for by the saturation asymptotic rule. The saturation magnetization of the iron nitride powder component in the slurry was calculated using the specific gravity of the slurry and the specific gravity of the solvent.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】請求項1の磁性流体乃至磁性粒子製造装
置においては、加熱装置を有した主反応槽と、これに接
続された複数の原料導入部と、当該主反応槽に直列に配
設された加熱装置付きの副反応槽と、更に当該副反応槽
に接続された還流用冷却塔とからなっているので、2段
階の熱処理を同時に行なうことができ、連続的な原料供
給で、反応を継続させるので、従来の装置に比べて、極
めて速い速度で粒径を大きくすることが可能となった。
本装置を窒化鉄製造に用いれば、単分散性の良い窒化鉄
微粉体を供給することができ、ニッケルカルボニルやコ
バルトカルボニルを用いて、磁性金属粒子を製造するこ
ともでき、磁性塗料や磁性トナー用の磁性粉体を多量に
供給することができる。
According to the magnetic fluid or magnetic particle producing apparatus of the first aspect, the main reaction tank having the heating device, the plurality of raw material introducing parts connected thereto, and the main reaction tank are arranged in series. Since it comprises a side reaction tank with a heating device and a reflux cooling tower further connected to the side reaction tank, it is possible to perform two-step heat treatment at the same time, and to continuously react with the raw materials. As described above, the particle size can be increased at an extremely high speed as compared with the conventional apparatus.
If this device is used for iron nitride production, iron nitride fine powder with good monodispersity can be supplied, and magnetic metal particles can be produced using nickel carbonyl or cobalt carbonyl. It is possible to supply a large amount of magnetic powder for use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る窒化鉄微粒子の製造装
置の概略図である。
FIG. 1 is a schematic view of an apparatus for producing iron nitride fine particles according to an embodiment of the present invention.

【図2】従来の窒化鉄微粒子の製造装置の概略図であ
る。
FIG. 2 is a schematic diagram of a conventional iron nitride fine particle manufacturing apparatus.

【符号の説明】[Explanation of symbols]

100 主反応槽 108 撹拌装置 126 副反応槽 130 流量調整コック 132 冷却塔 100 Main Reaction Tank 108 Stirrer 126 Side Reaction Tank 130 Flow Control Cock 132 Cooling Tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C09D 5/23 PQV 7211−4J G03G 9/083 9/107 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C09D 5/23 PQV 7211-4J G03G 9/083 9/107

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱装置付きの主反応槽と、これに接続
された複数の原料導入部と、当該主反応槽に直列に配設
された加熱装置付きの副反応槽と、更に当該副反応槽に
接続された還流用冷却塔とからなる磁性流体乃至磁性粒
子製造装置。
1. A main reaction tank with a heating device, a plurality of raw material introducing parts connected thereto, a side reaction tank with a heating device arranged in series with the main reaction tank, and further the side reaction. An apparatus for producing magnetic fluid or magnetic particles comprising a reflux cooling tower connected to a tank.
JP09112392A 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment Expired - Lifetime JP3255958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09112392A JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09112392A JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH05286704A true JPH05286704A (en) 1993-11-02
JP3255958B2 JP3255958B2 (en) 2002-02-12

Family

ID=14017753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09112392A Expired - Lifetime JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3255958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319053A (en) * 2014-10-09 2015-01-28 大连大学 Device and method for preparing iron nitride magnetic liquid by barometric-pressure dielectric barrier discharge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319053A (en) * 2014-10-09 2015-01-28 大连大学 Device and method for preparing iron nitride magnetic liquid by barometric-pressure dielectric barrier discharge
CN104319053B (en) * 2014-10-09 2017-01-18 大连大学 Device and method for preparing iron nitride magnetic liquid by barometric-pressure dielectric barrier discharge

Also Published As

Publication number Publication date
JP3255958B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
KR100808027B1 (en) Fabrication method of nickel nano-powder by gas phase reaction
Choi et al. Synthesis of cobalt boride nanoparticles using RF thermal plasma
JPH05508442A (en) Method of coating a substrate in a fluidized bed
US9166170B1 (en) Apparatus for producing carbon-coated nanoparticles and carbon nanospheres
JP2000327312A (en) Production of spherical boron nitride and its precursor substance, production facility and product
Stopić et al. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis
EP1565403B1 (en) Method for synthesis of carbon nanotubes
JP2009084678A (en) Method for producing copper-based nanoparticle
Crouse et al. Reagent control over the size, uniformity, and composition of Co–Fe–O nanoparticles
US20060216221A1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
Kudryashova et al. Synthesis of yttrium–aluminum garnet using a microreactor with impinging jets
Tajima et al. Synthesis and magnetic properties of Fe7C3 particles with high saturation magnetization
Yang et al. Synthesis of ultrafine WC‐Co composite powders under hydrogen atmosphere with in situ carbon via a one‐step reduction‐carbonization process
JPH05286704A (en) Device for producing magnetic fluid or grain
US5180512A (en) Method of manufacturing fine-particle colloid or magnetic fluid
KR20040082950A (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
JP2004315362A (en) Composite powder having matrix domain structure, method of manufacturing the same and use of the same
JP3276390B2 (en) Iron nitride particles and method for producing the same
JP4057948B2 (en) Method for producing nano-WC powder by atmospheric pressure gas phase reaction
JP2005139555A (en) Method of producing nanoiron powder by chemical vapor phase condensation method
KR100596676B1 (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
JP3363938B2 (en) Method for producing spherical iron nitride fine particles by sintering method
JP3412189B2 (en) Method for producing iron nitride particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term