JP3363938B2 - Method for producing spherical iron nitride fine particles by sintering method - Google Patents

Method for producing spherical iron nitride fine particles by sintering method

Info

Publication number
JP3363938B2
JP3363938B2 JP07042893A JP7042893A JP3363938B2 JP 3363938 B2 JP3363938 B2 JP 3363938B2 JP 07042893 A JP07042893 A JP 07042893A JP 7042893 A JP7042893 A JP 7042893A JP 3363938 B2 JP3363938 B2 JP 3363938B2
Authority
JP
Japan
Prior art keywords
iron nitride
fine particles
particles
iron
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07042893A
Other languages
Japanese (ja)
Other versions
JPH06279008A (en
Inventor
貴史 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP07042893A priority Critical patent/JP3363938B2/en
Publication of JPH06279008A publication Critical patent/JPH06279008A/en
Application granted granted Critical
Publication of JP3363938B2 publication Critical patent/JP3363938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、例えば、磁性塗料や、
磁性トナー或いは磁性キャリア等の粉末磁性材料に利用
可能な窒化鉄微粒子を製造する方法に関するものであ
る。 【0002】 【従来の技術】従来より、新しい機能性材料としての磁
性流体が注目されてきている。 【0003】例えば、磁性塗料、或いは画像形成装置用
の磁性トナー或いは磁性キャリア等、粉末磁性材料とし
ては、磁化の値が大きく、等方的な形状(針状、棒状、
板状、偏平状等、異方的形状以外の形状を指し、長径と
短径があまり違わない回転楕円体、長辺と短辺があまり
違わない直方体や多面体、又はそれに類する不定形等)
を有し、且つ均一なサイズ、特に、粒径が20nm〜1
00μm程度の微粒子が必要とされる。 【0004】そのため、従来は、球状に焼結させたフェ
ライト粒子、あるいはカルボニル鉄粉が用いられてい
た。 【0005】しかしながら、フェライトは磁化が小さ
く、画像形成装置に用いられる磁性トナー等としてはあ
まり適さない。 【0006】一方、カルボニル鉄粉は、そのままで球状
性がよく、その磁化も大きいが、酸化に対して安定でな
い。しかも磁性トナーや磁性キャリアとして好適な1μ
m以下のサイズの粉体を得にくい等の欠点を有してい
る。 【0007】そのため、化学的に安定で大きな磁化を有
する磁性材料として、窒化鉄が注目されている。 【0008】現在、窒化鉄微粒子の製造方法としては、
次のものが公知である。即ち、 特公昭59−34125号公報等で開示されている、
アンモニアガス雰囲気中で鉄粉末を500℃以上の温度
で加熱窒化する方法(アンモニア窒化法)、 特開平2−164443号公報等で開示されている、
鉄カルボニルFe(CO)5 と窒素N2 ガスを原料とし
て、グロー放電プラズマ中で分解反応させる方法(プラ
ズマCVD法)、 特開平3−187907号公報で開示されている、鉄
カルボニルの炭化水素の油溶液とアンモニアガスとを約
200℃で反応させる方法(気相- 液相反応法)、及び 減圧したアンモニアガス雰囲気中で鉄を加熱蒸発させ
る方法(ガス中蒸発法)が知られている。 【0009】アンモニア窒化法では、形成させる窒化鉄
粒子の大きさが、原料となる鉄粒子の大きさによって決
まり、現在のところ、最低粒径は1μmであって、それ
以下にできない。ガス中蒸発法では、いくつかの粒子が
鎖状に連結しているので、単一の粒子を得ることは困難
であり、更に製造過程でのエネルギー効率も悪く、また
生産性において乏しい。プラズマCVD法や気相−液相
反応法は、窒化鉄磁性流体の製造のために開発された方
法であり、磁性流体に最適な10nm程度の超微粒子が
得られる。 【0010】しかしながら、過去においてこれらの方法
から、20nm以上の粒子は得られておらず、また、プ
ラズマCVD法は、広い適用範囲を有する方法ではある
ものの、当該方法を行なうための反応装置は複雑で高価
なものであり、且つその操業には高度なテクニックが要
求されるため、技術的経済的に必ずしも効率の良い方法
とはいえない。そのため気相−液相反応法を基礎とし、
これから、所望粒径の窒化鉄粒子を合成することが期待
される。 【0011】 【発明が解決しようとする課題】既に述べたように、磁
性塗料、あるいは画像形成装置用の磁性トナーや磁性キ
ャリア等、粉末磁性材料としては、20nm〜100μ
m程度の微粒子が必要とされるのに対して、従来の気相
−液相反応法では、20nm以上の粒径で等方的形状の
窒化鉄粒子を製造することができなかった。 【0012】そこで本発明者らが、窒化鉄微粒子形成過
程を鋭意研究した結果、鉄カルボニルとアンモニアガス
との反応による当該窒化鉄の前駆物質である鉄アンミン
カルボニル錯体Fe2 (CO) 5(NH2 2、Fe3
(CO) 9(NH)2 がその臨界濃度以上の濃度を維持
するように継続される限り、窒化鉄の形成が、窒化鉄の
微粒子核の表面において、優先的に且つ、以前よりも容
易に成されることをつかみ、一旦生成した窒化鉄の微粒
子核を消滅させることなく、その表面において一層ずつ
増大させ、当該窒化鉄を成長させることに成功した(特
願平4−91124号)。 【0013】このように新しい製造方法によって、従
来、特にアンモニア窒化法を用いても製造することので
きなかった20nm〜1μm程度の粒径で等方的形状の
窒化鉄粒子を製造することが可能になったが、このよう
な方法では、一旦生成した窒化鉄の微粒子核の表面にお
いて一層ずつ増大させるので、成長速度がその層厚みに
制限を受けるという宿命を伴っている。 【0014】したがって、磁性塗料や画像形成装置用の
磁性トナーや磁性キャリア等として必要とされる微粒子
に成長させるために、更に一段と効率の良い方法が求め
られる。 【0015】特願平4−91124号に開示された製造
方法では、一旦生成した窒化鉄の微粒子の表面において
徐々に窒化鉄粒子を成長させるとしているので、この成
長段階を飛躍的に早めるか、その代替措置を講じること
が考えられる。 【0016】そこで発明者は種々検討した結果、例え
ば、等方状の型枠のようなものに微粒子を詰め込んで焼
き固めることで等方状粒子を所望の粒子径で得ることが
できるが、この考え方を応用して造粒することに着目し
た。 【0017】本発明は、磁性材料としても優れた特性を
有する20nm〜100μm程度の粒径で等方的形状の
窒化鉄粒子を効率良く製造する新しい方法を提供するこ
とを課題としている。 【0018】 【課題を解決するための手段】本発明は上記課題を、窒
化鉄コロイドの形成段階を経て窒化鉄微粒子を製造する
方法において、窒化鉄コロイドを所定程度に希釈化した
上で、噴霧乾燥し、得られた窒化鉄の乾燥粉末をアンモ
ニアガス、窒素ガス又は不活性ガス雰囲気中において2
00〜300℃の熱処理温度で焼結させることによっ
て、解決した。 【0019】噴霧乾燥することで、液滴の表面張力が粒
子を球状とし、更に窒化鉄コロイドは窒化鉄超微粒子が
均一に分散しているので均一の粒径を有する窒化鉄乾燥
粉末を得ることができる。 【0020】磁性塗料、あるいは磁性トナーや磁性キャ
リア等に必要とされる20nm〜100μm程度の粒径
を得るにあたっては、コロイド形成段階で窒化鉄コロイ
ドの濃度を調整したり、焼結段階でその条件を制御する
ことによっって、所定粒径の窒化鉄を得ることができ
る。 【0021】本発明においては、窒化鉄の原料物質とし
て鉄カルボニルを、原料ガスとしてアンモニアを用いる
が、アンモニアに代えて、アミン類等の液状あるいは固
体として反応系に導入できる任意の窒素化合物を用いる
こともできる。有機溶媒としては、例えば、炭化水素
類、あるいはその混合物、ケトン類、エーテル類、エス
テル類、アミン類等が好適で、当該溶媒に添加される界
面活性剤としては、アミン類が好適であるが、これらに
限定されない。 【0022】種結晶として得られた窒化鉄コロイドを、
有機溶媒用クローズドタイプの公知の噴霧乾燥機等を用
いて、乾燥粉末とする。噴霧乾燥機で使用するにあた
り、適切な程度に希釈化するため、ケロシン等の有機溶
媒を用いる。噴霧乾燥は、窒素、アンモニア、不活性ガ
スあるいはこれらの混合ガス雰囲気中で行う。 【0023】得られた乾燥窒化鉄粉末は、そのままでは
微粒子が集合した多結晶体であり、空隙が多い。そこで
単結晶の球状微粒子を得るために、加熱処理を施すこと
により、当該粉末を焼結させる。乾燥段階と同じく、窒
素、アンモニア、不活性ガスあるいはこれらの混合ガス
雰囲気で焼結する。焼結温度は、200〜300℃であ
る。 【0024】得られた単結晶の窒化鉄粒子の表面に付着
している界面活性剤が不必要な場合には、アセトン、キ
シレン、ベンゼン、石油ベンジン、シクロヘキサン等の
溶媒を用いて取り除けばよい。 【0025】 【実施例】以下に、本発明の実施例を挙げて更に具体的
に説明する。 【0026】(1)コロイド形成段階 図1に示される窒化金属磁性流体の合成装置は、底部に
加熱装置2を取り付けた耐熱性熱分解反応槽1に、複数
の気密性導入フランジを有する蓋3を気密に接続するこ
とで形成されている。反応槽1内の溶液4を攪拌できる
ように、一つの導入フランジ5に攪拌装置6が取り付け
られている。導入管7を通して、原料気体が溶液4に導
入されるようになっている。別の導入フランジ8に設け
られた管路を介して原料物質9が、導入口10を介し
て、例えば界面活性剤11が導入される。別の導入口1
2に配置された管路が分岐され、一方には、窒化金属微
粒子の生成反応を行う際の還流冷却装置13が接続さ
れ、他方の管路には、蒸留冷却装置としてのコンデンサ
ー14が接続されている。 【0027】原料としてアルドリッヒ(Aldrich) 社製で
純度96.5%の鉄カルボニルを、溶媒として和光純薬
製のケロシン(軽油等でもよい)を、界面活性剤として
花王製のN- ジエチレンイソブテニルサクシンイミド
(アミン)を、並びに日本酸素製で純度99.99%の
アンモニアガスを用いた。 【0028】先ず、図1の合成装置の反応槽1におい
て、鉄カルボニル200g、アミン11.3g、ケロシ
ン53.1gからなる混合溶液4中に、導入管7を介し
てアンモニアガスを流量390ml/minでバブリン
グしながら十分混合し、加熱装置2によって90℃まで
加熱し、当該温度で混合溶液4を1時間保持し、その
後、更に185℃に昇温し、再び1時間保持する。この
2段階の加熱操作を、反応槽1中の鉄カルボニルが全て
消費されるまで周期的に繰り返した。結局、当該合成操
作を10回繰り返し、種結晶として、窒化鉄コロイド
0.6リットルを得た。得られた磁性窒化鉄粒子の平均
粒径を透過型電子顕微鏡の高倍率写真から求めた平均粒
径は10.4nmであった。 【0029】(2)噴霧乾燥段階 このようにして得られた窒化鉄コロイドに希釈用のベン
ジンを、重量比で窒化鉄コロイド:ベンジン=1:30
の割合で添加し、攪拌した後、当該溶液を有機溶媒用ク
ローズドタイプの噴霧乾燥機(スプレードライヤ)を用
いて乾燥した。乾燥には坂本技研DA−1600型を用
い、2流体ノズルで窒素雰囲気中に窒素ガスと希釈原料
溶液を噴霧した。乾燥温度は出口温度60℃であった。
噴霧乾燥した窒化鉄粒子は多孔質の球状であり、平均粒
径は2.9ミクロンであった。窒化鉄乾燥粉末63gを
得た。 【0030】(3)乾燥粉末焼結段階 次に得られた乾燥粉末を不活性ガス雰囲気中で220℃
で1時間加熱し、焼結粒子を得た。 【0031】得られた窒化鉄粒子の諸物性は表1のとお
りであった。 【0032】 【表1】 【0033】 【発明の効果】本発明の製造方法によって、磁化の値が
大きく且つ粒径の揃った等方的形状の窒化鉄粒子が得ら
れ、このようにして得られた窒化鉄粒子は、粒子表面を
親油性にも親水性にも適宜に変えることができる。得ら
れた粒子は空気中でも安定であるが、更に、水性溶媒
中、又は油溶媒中にそれぞれ懸濁させて、保存、輸送並
びにその他の取り扱いを行なうにあたり、当該粒子が燃
焼することもなく安全で、また取り扱い作業も容易とな
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic paint,
The present invention relates to a method for producing iron nitride fine particles usable for a powder magnetic material such as a magnetic toner or a magnetic carrier. 2. Description of the Related Art Magnetic fluids have been attracting attention as new functional materials. [0003] For example, as a powder magnetic material such as a magnetic paint or a magnetic toner or a magnetic carrier for an image forming apparatus, the value of magnetization is large and an isotropic shape (needle, rod,
Refers to shapes other than anisotropic shapes such as plate shape, flat shape, etc., spheroids whose major axis and minor axis do not differ so much, cuboids and polyhedrons whose major and minor sides do not differ significantly, or irregular shapes similar to them)
Having a uniform size, in particular, a particle size of 20 nm to 1
Fine particles of about 00 μm are required. [0004] Therefore, conventionally, spherically sintered ferrite particles or carbonyl iron powder has been used. However, ferrite has a small magnetization and is not very suitable as a magnetic toner or the like used in an image forming apparatus. On the other hand, carbonyl iron powder has good spherical shape as it is and its magnetization is large, but is not stable against oxidation. Moreover, 1 μm suitable for magnetic toner and magnetic carrier
It has drawbacks such as difficulty in obtaining powder having a size of m or less. Therefore, iron nitride has attracted attention as a magnetic material that is chemically stable and has a large magnetization. [0008] At present, methods for producing iron nitride fine particles include:
The following are known: That is, disclosed in JP-B-59-34125 and the like,
A method of heating and nitriding iron powder at a temperature of 500 ° C. or more in an ammonia gas atmosphere (ammonia nitriding method), which is disclosed in JP-A-2-164443 and the like;
A method of performing a decomposition reaction in a glow discharge plasma using iron carbonyl Fe (CO) 5 and nitrogen N 2 gas as a raw material (plasma CVD method); and a method for producing a hydrocarbon of iron carbonyl disclosed in Japanese Patent Application Laid-Open No. 3-187907. A method of reacting an oil solution with ammonia gas at about 200 ° C. (gas-liquid phase reaction method) and a method of heating and evaporating iron in a reduced-pressure ammonia gas atmosphere (gas evaporation method) are known. In the ammonia nitriding method, the size of the iron nitride particles to be formed is determined by the size of the iron particles used as a raw material. At present, the minimum particle size is 1 μm, and cannot be reduced below this value. In the gas evaporation method, since several particles are connected in a chain, it is difficult to obtain a single particle, the energy efficiency in the production process is low, and the productivity is poor. The plasma CVD method and the gas-liquid phase reaction method have been developed for the production of iron nitride magnetic fluid, and ultrafine particles of about 10 nm, which are optimal for the magnetic fluid, can be obtained. However, in the past, particles having a size of 20 nm or more have not been obtained from these methods, and the plasma CVD method has a wide application range, but the reaction apparatus for performing the method is complicated. It is expensive and expensive, and its operation requires advanced techniques, so it is not always technically and economically efficient. Therefore, based on the gas-liquid reaction method,
From this, it is expected that iron nitride particles having a desired particle size will be synthesized. As described above, as a powder magnetic material such as a magnetic paint or a magnetic toner or a magnetic carrier for an image forming apparatus, 20 nm to 100 μm is used.
In contrast to the necessity of fine particles of about m, the conventional gas-liquid reaction method could not produce isotropic iron nitride particles having a particle diameter of 20 nm or more. The inventors of the present invention have conducted intensive studies on the process of forming fine iron nitride particles. As a result, the iron ammine carbonyl complex Fe 2 (CO) 5 (NH 2 ) 2 , Fe 3
As long as (CO) 9 (NH) 2 is maintained to maintain a concentration above its critical concentration, the formation of iron nitride is preferentially and more easily at the surface of the fine particle nuclei of iron nitride. With the understanding that the iron nitride was formed, the fine particles of iron nitride once generated were not eliminated, but were gradually increased on the surface thereof, and the iron nitride was successfully grown (Japanese Patent Application No. 4-91124). As described above, according to the new production method, it is possible to produce isotropically shaped iron nitride particles having a particle size of about 20 nm to 1 μm, which could not be produced by the conventional ammonia nitriding method. However, such a method is accompanied by the fate that the growth rate is limited by the thickness of the layer since the growth rate is increased one by one on the surface of the iron nitride fine particle nuclei once generated. Therefore, a more efficient method is required to grow fine particles required as magnetic paints, magnetic toners and magnetic carriers for image forming apparatuses, and the like. In the manufacturing method disclosed in Japanese Patent Application No. 4-91124, the iron nitride particles are gradually grown on the surface of the once formed iron nitride fine particles. It is possible to take alternative measures. The inventors have made various studies and found that, for example, by packing fine particles into an isotropic mold and baking it, it is possible to obtain isotropic particles having a desired particle diameter. We focused on granulation by applying the idea. An object of the present invention is to provide a new method for efficiently producing isotropically shaped iron nitride particles having a particle size of about 20 nm to 100 μm having excellent properties as a magnetic material. According to the present invention, there is provided a method for producing iron nitride fine particles through a step of forming an iron nitride colloid, the method comprising the steps of: The dried iron nitride powder is dried and dried in an atmosphere of ammonia gas, nitrogen gas or an inert gas.
The problem was solved by sintering at a heat treatment temperature of 00 to 300 ° C. By spray-drying, the surface tension of the droplets makes the particles spherical, and the iron nitride colloid in which iron nitride ultrafine particles are uniformly dispersed to obtain iron nitride dry powder having a uniform particle size. Can be. In order to obtain a particle size of about 20 nm to 100 μm required for a magnetic paint, a magnetic toner, a magnetic carrier, or the like, the concentration of the iron nitride colloid is adjusted in the colloid formation step, or the conditions are adjusted in the sintering step. , It is possible to obtain iron nitride having a predetermined particle size. In the present invention, iron carbonyl is used as a raw material of iron nitride, and ammonia is used as a raw material gas. Instead of ammonia, an arbitrary nitrogen compound such as amines which can be introduced into the reaction system as a liquid or solid is used. You can also. As the organic solvent, for example, hydrocarbons, or mixtures thereof, ketones, ethers, esters, amines, and the like are preferable, and as the surfactant added to the solvent, amines are preferable. However, the present invention is not limited to these. The iron nitride colloid obtained as a seed crystal is
A dry powder is obtained using a known closed-type spray dryer for an organic solvent or the like. For use in a spray dryer, an organic solvent such as kerosene is used to dilute to an appropriate degree. The spray drying is performed in an atmosphere of nitrogen, ammonia, an inert gas, or a mixed gas thereof. The obtained dry iron nitride powder is a polycrystal in which fine particles are aggregated as it is, and has many voids. Then, in order to obtain single crystal spherical fine particles, the powder is sintered by performing a heat treatment. As in the drying step, sintering is performed in an atmosphere of nitrogen, ammonia, an inert gas, or a mixed gas thereof. The sintering temperature is 200-300 ° C. When a surfactant attached to the surface of the obtained single-crystal iron nitride particles is unnecessary, it may be removed using a solvent such as acetone, xylene, benzene, petroleum benzene, cyclohexane and the like. The present invention will be described more specifically with reference to the following examples. (1) Step of forming colloid In the apparatus for synthesizing a metal nitride magnetic fluid shown in FIG. 1, a lid 3 having a plurality of airtight introduction flanges is provided in a heat-resistant pyrolysis reaction tank 1 having a heating device 2 attached to the bottom. Are formed by airtight connection. A stirring device 6 is attached to one introduction flange 5 so that the solution 4 in the reaction tank 1 can be stirred. The raw material gas is introduced into the solution 4 through the introduction pipe 7. Raw material 9 is introduced through a conduit provided in another introduction flange 8, and for example, a surfactant 11 is introduced through an introduction port 10. Another inlet 1
2 is branched, one is connected to a reflux cooling device 13 for performing a production reaction of metal nitride fine particles, and the other is connected to a condenser 14 as a distillation cooling device. ing. Iron carbonyl having a purity of 96.5% manufactured by Aldrich Co. as a raw material, kerosene manufactured by Wako Pure Chemical (may be light oil) may be used as a solvent, and N-diethylene isobut manufactured by Kao may be used as a surfactant. Tenyl succinimide (amine) and 99.99% pure ammonia gas manufactured by Nippon Sanso Corporation were used. First, in a reaction tank 1 of the synthesis apparatus shown in FIG. 1, ammonia gas was introduced at a flow rate of 390 ml / min into a mixed solution 4 comprising 200 g of iron carbonyl, 11.3 g of amine and 53.1 g of kerosene through an introduction pipe 7. Then, the mixture is heated to 90 ° C. by the heating device 2, the mixed solution 4 is kept at that temperature for 1 hour, and then further heated to 185 ° C. and kept again for 1 hour. This two-stage heating operation was periodically repeated until all of the iron carbonyl in the reaction tank 1 was consumed. Eventually, the synthesis operation was repeated 10 times to obtain 0.6 L of iron nitride colloid as a seed crystal. The average particle size of the obtained magnetic iron nitride particles was determined from a high magnification photograph of a transmission electron microscope and found to be 10.4 nm. (2) Spray drying step The iron nitride colloid thus obtained is mixed with benzine for dilution, in a weight ratio of iron nitride colloid: benzine = 1: 30.
And stirred, and then the solution was dried using a closed-type spray dryer for organic solvents (spray dryer). For drying, Sakamoto Giken DA-1600 type was used, and a nitrogen gas and a diluted raw material solution were sprayed into a nitrogen atmosphere with a two-fluid nozzle. The drying temperature was 60 ° C. at the outlet temperature.
The spray-dried iron nitride particles were porous and spherical, with an average particle size of 2.9 microns. 63 g of iron nitride dry powder was obtained. (3) Dry powder sintering step The dry powder obtained is then heated at 220 ° C. in an inert gas atmosphere.
For 1 hour to obtain sintered particles. The properties of the obtained iron nitride particles are as shown in Table 1. [Table 1] According to the production method of the present invention, isotropic iron nitride particles having a large magnetization value and a uniform particle size can be obtained. The surface of the particles can be appropriately changed to lipophilic or hydrophilic. The obtained particles are stable in the air, but are further suspended in an aqueous solvent or an oil solvent, and stored, transported, and other handling, and the particles are safe without burning. In addition, the handling work becomes easy.

【図面の簡単な説明】 【図1】公知の窒化鉄粒子の合成装置の概略図である。 【符号の説明】 1 熱分解反応槽 2 加熱装置 6 攪拌装置 13 還流冷却装置 14 コンデンサー[Brief description of the drawings] FIG. 1 is a schematic view of a known apparatus for synthesizing iron nitride particles. [Explanation of symbols] 1 Pyrolysis reaction tank 2 Heating device 6 stirrer 13 Reflux cooling device 14 Condenser

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 21/06 B01J 19/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C01B 21/06 B01J 19/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 窒化鉄コロイドの形成段階を経て窒化鉄
微粒子を製造する方法において、窒化鉄コロイドを所定
程度に希釈化した上で、噴霧乾燥し、得られた窒化鉄乾
燥粉末をアンモニアガス、窒素ガス又は不活性ガス雰囲
気中において200〜300℃の熱処理温度で焼結させ
てなる窒化鉄微粒子の製造方法。
(57) [Claim 1] In a method for producing iron nitride fine particles through a step of forming an iron nitride colloid, the iron nitride colloid is diluted to a predetermined degree and then spray-dried. A method for producing iron nitride fine particles, wherein the dried iron nitride powder is sintered at a heat treatment temperature of 200 to 300 ° C. in an atmosphere of ammonia gas, nitrogen gas or an inert gas.
JP07042893A 1993-03-29 1993-03-29 Method for producing spherical iron nitride fine particles by sintering method Expired - Fee Related JP3363938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07042893A JP3363938B2 (en) 1993-03-29 1993-03-29 Method for producing spherical iron nitride fine particles by sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07042893A JP3363938B2 (en) 1993-03-29 1993-03-29 Method for producing spherical iron nitride fine particles by sintering method

Publications (2)

Publication Number Publication Date
JPH06279008A JPH06279008A (en) 1994-10-04
JP3363938B2 true JP3363938B2 (en) 2003-01-08

Family

ID=13431206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07042893A Expired - Fee Related JP3363938B2 (en) 1993-03-29 1993-03-29 Method for producing spherical iron nitride fine particles by sintering method

Country Status (1)

Country Link
JP (1) JP3363938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762517B2 (en) 2004-09-09 2011-08-31 株式会社オプトニクス精密 Method for producing toner for printer
JP4854240B2 (en) * 2005-09-09 2012-01-18 株式会社オプトニクス精密 Ultrafine particles by pressure vibration and spray granulation
CN113493895A (en) * 2020-03-19 2021-10-12 甘肃省科学院传感技术研究所 Gamma' -Fe4Preparation method and application of N-shaped magnetic porous membrane

Also Published As

Publication number Publication date
JPH06279008A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US8628747B2 (en) Carbon nanotube structures formed on large free floating substrates
JP5860957B2 (en) Method for producing graphene
CN108675300B (en) Core-shell structure nano composite particle, preparation method and preparation device thereof
JP6890187B2 (en) Catalyst for mass production of multiwalled carbon nanotubes
CN104787756A (en) Macroscopic preparation method for graphene quantum dots
TW200526824A (en) Manufacturing method of silicon nanowire
EP1565403B1 (en) Method for synthesis of carbon nanotubes
JP3363938B2 (en) Method for producing spherical iron nitride fine particles by sintering method
CN113044831A (en) Preparation method of nitrogen-doped carbon nanotube array
WO2005090234A1 (en) Silicon particle, silicon particle superlattice and method for production thereof
CN104475078A (en) Preparation method of nano rare-earth metal oxide/ carbon nano pipe composite catalyst
Chao et al. Synthesis of a supported metal catalyst using nanometer-size clusters
JP3412189B2 (en) Method for producing iron nitride particles
JP2004261630A (en) Catalyst for manufacturing carbon nanocoil, its manufacturing method, and method for manufacturing carbon nanocoil
Kutelia et al. Nucleation and growth of carbon nanoforms on the surface of metallic plate-substrates and the mechanism of their doping with the clusters of ferromagnetic atoms
JP3276390B2 (en) Iron nitride particles and method for producing the same
Zhang et al. Amino-ended hyperbranched polyamide as template for tuning the morphology of self-assembled ZnS particles
Zhao et al. Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials
Park et al. The growth behavior of GaN NWs on Si (1 1 1) by the dispersion of Au colloid catalyst using pulsed MOCVD
JP4528959B2 (en) Magnetic material and method for producing the same
JPH0557166A (en) Production of coated fine particle
JP3255958B2 (en) Magnetic fluid or magnetic particle manufacturing equipment
JP3764024B2 (en) Particle manufacturing method and particle manufacturing apparatus
JP2003096508A (en) Method and equipment for manufacturing fine particle
CN110124703B (en) Preparation method of iron phosphide-loaded graphene foam composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees