JP3255958B2 - Magnetic fluid or magnetic particle manufacturing equipment - Google Patents

Magnetic fluid or magnetic particle manufacturing equipment

Info

Publication number
JP3255958B2
JP3255958B2 JP09112392A JP9112392A JP3255958B2 JP 3255958 B2 JP3255958 B2 JP 3255958B2 JP 09112392 A JP09112392 A JP 09112392A JP 9112392 A JP9112392 A JP 9112392A JP 3255958 B2 JP3255958 B2 JP 3255958B2
Authority
JP
Japan
Prior art keywords
iron
reaction tank
magnetic
carbonyl
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09112392A
Other languages
Japanese (ja)
Other versions
JPH05286704A (en
Inventor
功 中谷
貴史 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
National Institute for Materials Science
Original Assignee
Nittetsu Mining Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd, National Institute for Materials Science filed Critical Nittetsu Mining Co Ltd
Priority to JP09112392A priority Critical patent/JP3255958B2/en
Publication of JPH05286704A publication Critical patent/JPH05286704A/en
Application granted granted Critical
Publication of JP3255958B2 publication Critical patent/JP3255958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塗料又はトナー若しく
はキャリア等の粉末磁性材料に適する磁性流体又は磁性
粒子を、簡便に且つ高効率で製造する装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for easily and efficiently producing magnetic fluids or magnetic particles suitable for powdered magnetic materials such as paints, toners and carriers.

【0002】[0002]

【従来の技術】磁性塗料、あるいは画像形成装置用の磁
性トナーや磁性キャリア等、粉末磁性材料としては、磁
化の値が大きく、等方的な形状を有し、且つ均一なサイ
ズ、特に20nm〜100μm程度の微粒子が必要とさ
れる。ここで、等方的な形状とは、針状、棒状、板状、
扁平状等、異方的形状以外の形状のことであり、長径と
短径があまり違わない回転楕円体、長辺と短辺があまり
違わない直方体や多面体、又はそれに類する不定形等を
指す。
2. Description of the Related Art As a powder magnetic material such as a magnetic paint or a magnetic toner or a magnetic carrier for an image forming apparatus, it has a large value of magnetization, has an isotropic shape, and has a uniform size, particularly 20 nm or more. Fine particles of about 100 μm are required. Here, the isotropic shape is a needle shape, a bar shape, a plate shape,
A shape other than an anisotropic shape, such as a flat shape, refers to a spheroid whose major axis and minor axis do not differ so much, a rectangular parallelepiped or a polyhedron whose major and minor sides do not differ so much, or an irregular shape similar thereto.

【0003】そのため従来は、球状に焼結させたフェラ
イト粒子、あるいはカルボニル鉄粉が用いられていた。
For this reason, conventionally, spherically sintered ferrite particles or carbonyl iron powder has been used.

【0004】しかしながら、フェライトは磁化が小さ
く、画像形成装置用としてはあまり適さない。
[0004] However, ferrite has a small magnetization and is not very suitable for an image forming apparatus.

【0005】一方、カルボニル鉄粉は、そのままで球状
性がよく、その磁化も大きいが、酸化に対して安定でな
く燃焼しやすくて危険であり、しかも画像形成装置用に
好適な1μm以下のサイズの粉体を得にくい等の欠点を
有している。
On the other hand, carbonyl iron powder has a good spherical shape as it is and its magnetization is large, but it is not stable against oxidation and easily burns, which is dangerous, and a size of 1 μm or less suitable for an image forming apparatus. Has the drawback that it is difficult to obtain a powder.

【0006】そのため、化学的に安定で大きな磁化を有
する磁性材料として、窒化鉄が注目されている。
[0006] Therefore, iron nitride has attracted attention as a magnetic material that is chemically stable and has a large magnetization.

【0007】現在、窒化鉄微粒子の製造法としては、次
のものが公知である。即ち、 特公昭59−34125号公報等で開示されている、
アンモニアガス雰囲気中で鉄粉末を500℃以上の温度
で加熱窒化する方法(アンモニア窒化法)、 特開平2−164443号公報等で開示されている、
鉄カルボニルFe(CO)5蒸気を、N2ガスのグロー放電
プラズマ中で分解反応させる方法(プラズマCVD
法)、 鉄カルボニルの炭化水素油溶液とアンモニアガスとを
約200℃で反応させる方法(気相−液相反応法)、及
び 減圧したアンモニアガス雰囲気中で鉄を加熱蒸発させ
る方法(ガス中蒸発法)が知られている。
At present, the following is known as a method for producing iron nitride fine particles. That is, disclosed in JP-B-59-34125 and the like,
A method of heating and nitriding iron powder at a temperature of 500 ° C. or more in an ammonia gas atmosphere (ammonia nitriding method), which is disclosed in JP-A-2-164443 and the like;
Method of decomposing iron carbonyl Fe (CO) 5 vapor in glow discharge plasma of N 2 gas (plasma CVD)
Method), a method of reacting a hydrocarbon oil solution of iron carbonyl with ammonia gas at about 200 ° C. (gas-liquid phase reaction method), and a method of heating and evaporating iron in a reduced-pressure ammonia gas atmosphere (evaporation in gas) Law) is known.

【0008】アンモニア窒化法では、形成される窒化鉄
粒子の大きさは、原料となる鉄粒子の大きさによって決
まり、現在のところ、最低粒径は1μmである。ガス中
蒸発法では、いくつかの粒子が鎖状に連結していて、単
一の粒子を得ることが困難であり、更に製造過程でのエ
ネルギー効率も悪く、また生産性において乏しい。プラ
ズマCVD法や気相−液相反応法は、窒化鉄磁性流体の
製造のために開発された方法であり、磁性流体に最適な
10nm程度の超微粒子が得られる。現在のところ、こ
れらの方法から、20nm以上の粒子は得られておら
ず、また、プラズマCVD法は、広い適用範囲を有する
方法ではあるものの、当該方法を行なうための反応装置
は複雑で高価なものであり、且つその操業には高度なテ
クニックが要求されるため、技術的経済的に必ずしも効
率の良い方法でなく、したがって気相−液相反応法か
ら、所望粒径の窒化鉄粒子を合成することが期待され
る。
In the ammonia nitriding method, the size of the formed iron nitride particles is determined by the size of the iron particles used as a raw material. At present, the minimum particle size is 1 μm. In the gas evaporation method, several particles are linked in a chain, so that it is difficult to obtain a single particle, energy efficiency in the production process is low, and productivity is poor. The plasma CVD method and the gas-liquid phase reaction method have been developed for the production of iron nitride magnetic fluid, and ultrafine particles of about 10 nm, which are optimal for the magnetic fluid, can be obtained. At present, particles of 20 nm or more have not been obtained from these methods, and the plasma CVD method has a wide range of application, but a reaction apparatus for performing the method is complicated and expensive. And it requires advanced techniques for its operation, so it is not always technically and economically efficient. Therefore, it is possible to synthesize iron nitride particles having a desired particle size from a gas-liquid reaction method. It is expected to be.

【0009】気相−液相反応法により窒化鉄等の磁性流
体を合成する装置は、特開平3−187907号公報で
開示されている。
An apparatus for synthesizing a magnetic fluid such as iron nitride by a gas-liquid reaction method is disclosed in Japanese Patent Application Laid-Open No. 3-187907.

【0010】当該装置は、図2に示されるように、底部
に加熱装置2を取り付けた耐熱性熱分解反応槽1に、複
数の気密性導入フランジを有する蓋3を気密に接続する
ことで形成されている。反応槽1内の溶液4を撹拌でき
るように、一つの導入フランジ5に撹拌装置6が取り付
けられている。導入管7を通して、例えばアンモニアガ
スが溶液4に導入されるようになっている。別の導入フ
ランジ8に設けられた管路を介して金属カルボニル9
が、導入口10を介して界面活性剤11が導入される。
別の導入口12に配置された管路が分岐され、一方に
は、窒化金属微粒子の生成反応を行なう際の還流冷却装
置13が接続され、他方の管路には、蒸留冷却装置とし
てのコンデンサー14が接続されている。
As shown in FIG. 2, the apparatus is formed by airtightly connecting a lid 3 having a plurality of airtight introduction flanges to a heat resistant pyrolysis reaction tank 1 having a heating device 2 attached to the bottom. Have been. A stirring device 6 is attached to one introduction flange 5 so that the solution 4 in the reaction tank 1 can be stirred. For example, ammonia gas is introduced into the solution 4 through the introduction pipe 7. The metal carbonyl 9 is passed through a pipe provided on another introduction flange 8.
However, the surfactant 11 is introduced through the inlet 10.
A pipe disposed at another inlet 12 is branched, and one is connected to a reflux cooling device 13 for performing a reaction for producing metal nitride fine particles, and the other is connected to a condenser as a distillation cooling device. 14 are connected.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、既に述
べたように、この公知の装置では、20nm以上の粒径
で等方的形状の窒化金属粒子を製造することができな
い。
However, as described above, this known apparatus cannot produce isotropic metal nitride particles having a particle size of 20 nm or more.

【0012】本発明は、このような従来装置での限界に
鑑みてなされたもので、20nm〜100μm、なかん
ずく従来存在していなかった20nm〜1μm程度も含
める粒径で等方的形状の磁性粒子を、操作簡単に、効率
良く製造する安価な装置を提供することを課題としてい
る。
The present invention has been made in view of such limitations in the conventional apparatus, and isotropically shaped magnetic particles having a particle size of 20 nm to 100 μm, especially including about 20 nm to 1 μm which have not existed conventionally. It is an object of the present invention to provide an inexpensive device that can be manufactured easily and efficiently.

【0013】[0013]

【課題を解決するための手段】本発明は上記の課題を、
加熱装置付きの主反応槽と、これに接続された複数の原
料導入部と、当該主反応槽に直列に配設された加熱装置
付きの副反応槽と、更に当該副反応槽に接続された還流
用冷却塔とからなる磁性流体乃至磁性粒子製造装置によ
って、解決した。
The present invention solves the above problems,
A main reaction tank with a heating device, a plurality of raw material introduction sections connected thereto, a sub-reaction tank with a heating device arranged in series with the main reaction tank, and further connected to the sub-reaction tank The problem has been solved by a magnetic fluid or magnetic particle production apparatus comprising a reflux cooling tower.

【0014】[0014]

【作用】例えば、窒化鉄磁性流体の製造のための気相−
液相反応法においては、最初に鉄カルボニルとアンモニ
アガスとを反応させて、窒化鉄の前駆物質である鉄アン
ミンカルボニル錯体Fe2(CO)5(NH2)2、Fe3(C
O)9(NH)2を反応溶液内に次々に形成し、蓄積された
当該鉄アンミンカルボニル錯体が、ある臨界濃度を越え
ると、当該鉄アンミンカルボニル錯体は分解し始め、窒
化鉄Fe3N微粒子核を形成する。
For example, a gas phase for the production of iron nitride magnetic fluid
In the liquid phase reaction method, iron carbonyl and ammonia gas are first reacted to form iron ammine carbonyl complex Fe 2 (CO) 5 (NH 2 ) 2 , Fe 3 (C
O) 9 (NH) 2 is formed one after another in the reaction solution, and when the accumulated iron ammine carbonyl complex exceeds a certain critical concentration, the iron ammine carbonyl complex starts to decompose, and iron nitride Fe 3 N fine particles Form a nucleus.

【0015】そこで、特開平3−187907号公報に
開示された磁性流体合成装置を用いて窒化鉄磁性流体を
合成するにあたっては、磁性流体講演論文集(1991-1)に
記載されているように、上記2段階の反応を交互に、例
えば1時間程度づつ繰り返すことによって、窒化鉄コロ
イドを合成することが提案されている。
Therefore, when synthesizing an iron nitride ferrofluid using the ferrofluid synthesizing apparatus disclosed in Japanese Patent Application Laid-Open No. 3-187907, as described in the Proceedings of the Magnetic Fluid Lecture (1991-1), It has been proposed to synthesize an iron nitride colloid by repeating the above two-step reaction alternately, for example, about every hour.

【0016】しかしながら、上記窒化鉄の微粒子核は不
安定であり、鉄アンミンカルボニル錯体の濃度が臨界濃
度を下回った状態で、当該微粒子核をそのままにしてお
くと、生成した窒化鉄微粒子核は、再び溶媒中に溶解さ
れたり、分解したりして、20nm以上の粒子を得るこ
とができない。
However, the iron nitride fine particle nuclei are unstable, and if the fine particle nuclei are left in a state where the concentration of the iron ammine carbonyl complex is lower than the critical concentration, the generated iron nitride fine particle nuclei are The particles are again dissolved or decomposed in the solvent, and particles having a size of 20 nm or more cannot be obtained.

【0017】このように不安定な窒化鉄であるが、窒化
鉄微粒子形成過程を鋭意研究の結果、窒化鉄の形成は、
鉄カルボニルとアンモニアガスとの反応による鉄アンミ
ンカルボニル錯体が、その臨界濃度以上の濃度を維持す
る限り、窒化鉄の微粒子核の表面において、優先的に且
つ以前よりも容易になされることが認められた。その結
果、一旦生成した窒化鉄の微粒子核は消滅することな
く、その表面において一層ずつ増大し、当該微粒子は成
長を続ける。
Although iron nitride is unstable as described above, as a result of intensive research on the process of forming iron nitride fine particles,
It is recognized that the iron ammine carbonyl complex formed by the reaction between iron carbonyl and ammonia gas can be preferentially and more easily formed on the surface of the iron nitride fine particle nucleus as long as the concentration is maintained at or above the critical concentration. Was. As a result, the fine particle nuclei of iron nitride once generated do not disappear, but increase one by one on the surface thereof, and the fine particles continue to grow.

【0018】以上の過程を経ることで、球状の窒化鉄粒
子が形成され、その直径は、ほぼ反応時間に依存し、鉄
カルボニルとアンモニアガスの供給量により所望のサイ
ズまで増大させることが可能である。
Through the above process, spherical iron nitride particles are formed, the diameter of which substantially depends on the reaction time, and can be increased to a desired size by supplying iron carbonyl and ammonia gas. is there.

【0019】本発明の装置においては、主反応槽と副反
応槽の2槽の反応槽を備え、副反応槽で前駆体の形成を
行ない、形成された前駆体を直ちに主反応槽に供給する
ことにより、2段階の熱処理を同時に行ない、磁性流体
の成長速度を増大し、粒径増大に要する時間を著しく縮
めることに成功した。
The apparatus of the present invention has two reaction tanks, a main reaction tank and a sub-reaction tank. A precursor is formed in the sub-reaction tank, and the formed precursor is immediately supplied to the main reaction tank. As a result, the two-stage heat treatment was performed simultaneously, the growth rate of the magnetic fluid was increased, and the time required for increasing the particle size was significantly reduced.

【0020】本発明の装置を用いて窒化鉄粒子を形成す
る場合には、窒化鉄の原料物質として、鉄カルボニル
を、原料ガスとしてアンモニアを用いるが、アンモニア
に代えて、アミン類等の液状或いは固体として反応系に
導入できる任意の窒素化合物を用いることもできる。溶
媒としては、例えば、炭化水素類、或いはその混合物、
ケトン類、エーテル類、エステル類、アミン類等が、当
該溶媒に添加される界面活性剤としては、アミン類が好
適であるが、これらに限定されない。
In the case of forming iron nitride particles using the apparatus of the present invention, iron carbonyl is used as a raw material of iron nitride and ammonia is used as a raw material gas. Any nitrogen compound that can be introduced into the reaction system as a solid can also be used. As the solvent, for example, hydrocarbons, or a mixture thereof,
As a surfactant to be added to the solvent, such as ketones, ethers, esters, and amines, amines are suitable, but not limited thereto.

【0021】[0021]

【実施例】以下に本発明の実施例をあげて、さらに具体
的に説明する。
The present invention will be described more specifically with reference to the following examples.

【0022】本発明の一実施例に係る窒化鉄の製造装置
を示す図1において、底部に加熱装置102を配設した耐
熱性の主反応槽100の上蓋部に、複数の気密性導入フラ
ンジが形成されている。主反応槽100内の溶液104を撹拌
できるように、一つの導入フランジ106には、撹拌装置1
08の回転軸が挿入されていて、当該回転軸の槽側先端に
は撹拌子110が取り付けられている。撹拌子110を回転す
るために、回転軸や導入フランジ106等を設けることに
代えて、磁気結合回転駆動装置を用いてもよい。導入管
112を通って、含窒素化合物、例えばアンモニアガス
が、導入管114を通って、アルゴン等の不活性ガスが、
それぞれ導入フランジ116を介して主反応槽100、溶液10
4に導入されるようになっている。反応温度を制御する
ために、熱電対118が同じ導入フランジ116を介して主反
応槽100に導入されている。予め秤量・混合された鉄カル
ボニルと有機溶媒と界面活性剤とからなる溶液120が、
管路122を介して主反応槽100に導入されるようになって
いる。別の導入フランジ124を介して、耐熱性の副反応
槽126が主反応槽100に接続されている。当該副反応槽12
6の周囲には、加熱装置128が配設されていて、主反応槽
100と副反応槽126との間には、副反応槽126から主反応
槽100へ落下する液滴量を調整するための流量調節用コ
ック130が取り付けられている。更に副反応槽128の上方
には、還流用の冷却塔132が取り付けられて、未反応の
鉄カルボニルを副反応槽126に戻すようになっている。
また当該冷却塔132を介して、反応で生じたガスや余剰
アンモニアが流れ、トラップでCOやNH3を除去され
た後、安全なガスのみ系外に放出される。
In FIG. 1 showing an apparatus for manufacturing iron nitride according to one embodiment of the present invention, a plurality of airtight introduction flanges are provided on the upper lid of a heat-resistant main reaction tank 100 having a heating device 102 disposed at the bottom. Is formed. One introduction flange 106 is provided with a stirrer 1 so that the solution 104 in the main reaction tank 100 can be stirred.
The rotation shaft 08 is inserted, and a stirrer 110 is attached to the tank-side tip of the rotation shaft. In order to rotate the stirrer 110, a magnetic coupling rotation driving device may be used instead of providing the rotation shaft, the introduction flange 106, and the like. Introductory pipe
Through 112, a nitrogen-containing compound, for example, ammonia gas, passes through an introduction pipe 114, and an inert gas such as argon is
The main reaction tank 100, the solution 10
4 has been introduced. In order to control the reaction temperature, a thermocouple 118 is introduced into the main reaction vessel 100 via the same introduction flange 116. A solution 120 consisting of iron carbonyl, an organic solvent, and a surfactant, which have been weighed and mixed in advance,
The gas is introduced into the main reaction tank 100 through a pipe 122. A heat-resistant secondary reaction tank 126 is connected to the main reaction tank 100 via another introduction flange 124. The secondary reaction tank 12
A heating device 128 is arranged around 6, and the main reaction tank
Between the sub-reaction tank 126 and the sub-reaction tank 126, a flow control cock 130 for adjusting the amount of liquid drops falling from the sub-reaction tank 126 to the main reaction tank 100 is attached. Further, a cooling tower 132 for reflux is attached above the sub-reaction tank 128 so that unreacted iron carbonyl is returned to the sub-reaction tank 126.
Further, the gas generated by the reaction and excess ammonia flows through the cooling tower 132, and after removing CO and NH 3 by the trap, only a safe gas is discharged out of the system.

【0023】先ず、導入管114を介して不活性ガスのア
ルゴンガスを、主反応槽100に導き、主反応槽100内の酸
素を除去する。
First, an argon gas, which is an inert gas, is introduced into the main reaction tank 100 through the introduction pipe 114, and oxygen in the main reaction tank 100 is removed.

【0024】次いで、原料の鉄カルボニルと有機溶媒た
るケロシン及び界面活性剤たるアミンを秤量・混合して
なる溶液120を、主反応槽100に導入する。
Next, a solution 120 obtained by weighing and mixing iron carbonyl as a raw material, kerosene as an organic solvent and amine as a surfactant is introduced into the main reaction tank 100.

【0025】原料溶液の導入後、導入管112を介して含
窒素化合物であるアンモニアガスを導入しながら、加熱
装置102によって主反応槽100を加熱する。
After the introduction of the raw material solution, the main reaction tank 100 is heated by the heating device 102 while introducing ammonia gas as a nitrogen-containing compound through the introduction pipe 112.

【0026】原料溶液104が110℃ほどになると、鉄
カルボニルは蒸発を始め、副反応槽126に移る。一部の
鉄カルボニルは副反応槽126を越えて、冷却塔132に昇る
が、ここで冷却されて副反応槽126に戻る。
When the temperature of the raw material solution 104 reaches about 110 ° C., the iron carbonyl starts to evaporate and moves to the sub-reaction tank 126. Some of the iron carbonyl passes over the sub-reaction tank 126 and rises to the cooling tower 132, where it is cooled and returns to the sub-reaction tank 126.

【0027】副反応槽126に溜った鉄カルボニルをアン
モニアガス流通下に加熱装置128で約90℃に加熱・保
温することによって、前駆体たる鉄アンミンカルボニル
錯体が形成される。形成される鉄アンミンカルボニル錯
体の量は徐々に増加して、鉄カルボニルと鉄アンミンカ
ルボニル錯体の混合溶液が、副反応槽126に形成され
る。
The iron carbonyl accumulated in the sub-reaction tank 126 is heated and kept at about 90 ° C. by a heating device 128 under a flow of ammonia gas, whereby an iron ammine carbonyl complex as a precursor is formed. The amount of iron ammine carbonyl complex formed gradually increases, and a mixed solution of iron carbonyl and iron ammine carbonyl complex is formed in the secondary reaction tank 126.

【0028】このように副反応槽に形成された混合溶液
を、流量調整コック130を調整して、主反応槽100に一定
量滴下する。
The mixed solution thus formed in the sub-reaction tank is dropped into the main reaction tank 100 in a fixed amount by adjusting the flow control cock 130.

【0029】滴下された鉄アンミンカルボニル錯体は、
約180℃まで加温された主反応槽100中で窒化鉄に変
化する。この際、ケロシンとアミンとが適当量存在して
いることにより、最初に窒化鉄の数10〜数100個程
度の分子からなる核が形成される。
The dropped iron ammine carbonyl complex is
It changes to iron nitride in the main reactor 100 heated to about 180 ° C. At this time, the presence of appropriate amounts of kerosene and amine causes the formation of nuclei composed of several tens to several hundreds of iron nitride molecules at first.

【0030】一方、溶液104中に残存する鉄カルボニル
は、更に蒸発して冷却塔132まで上昇し、冷却後、副反
応槽126に運ばれる。したがって、鉄カルボニルはすべ
て鉄アンミンカルボニル錯体に変化し、窒化鉄になるま
で循環する。
On the other hand, the iron carbonyl remaining in the solution 104 further evaporates and rises to the cooling tower 132, and after being cooled, is transferred to the sub-reaction tank 126. Thus, all of the iron carbonyl is converted to an iron ammine carbonyl complex and circulates to iron nitride.

【0031】このように鉄カルボニルと鉄アンミンカル
ボニル錯体とは、流量調整コック130を通って、副反応
槽126と主反応槽100の間を循環しながら、蒸気圧の低い
鉄アンミンカルボニル錯体は主反応槽100に移行し、一
方蒸気圧の高い鉄カルボニルは副反応槽126に留まるこ
とが可能で、鉄カルボニルと鉄アンミンカルボニル錯体
とが分留状態を維持されながら、副反応槽126中の鉄カ
ルボニルがすべて消費される。
As described above, while the iron carbonyl and the iron ammine carbonyl complex are circulated between the sub-reaction tank 126 and the main reaction tank 100 through the flow control cock 130, the iron ammine carbonyl complex having a low vapor pressure is The reaction proceeds to the reaction tank 100, while the iron carbonyl having a high vapor pressure can remain in the sub-reaction tank 126, and while the iron carbonyl and the iron ammine carbonyl complex are maintained in a fractionated state, the iron carbonyl in the sub-reaction tank 126 is maintained. All the carbonyl is consumed.

【0032】主反応槽100では、形成された核を中心と
して、更に供給される鉄アンミンカルボニル錯体がその
表面に雪だるま式に結合して、粒子が大きく成長する。
In the main reaction vessel 100, the supplied iron ammine carbonyl complex is further bonded to the surface of the main reaction vessel 100 in a snowball manner, and the particles grow large.

【0033】表1に、合成した窒化鉄磁性流体の合成条
件及び合成結果を示す。平均粒径の測定には、高倍率電
子顕微鏡写真上で300個の粒子について粒径を測定
し、算術平均値を求めた。また飽和磁化の測定には振動
試料磁力計を用いて、最大10kOeの磁界をかけ、磁
化曲線を測定し、飽和漸近則により磁界を無限大に外捜
して求めた。なお、スラリー中の窒化鉄粉末成分の飽和
磁化は、スラリーの比重と溶媒の比重を用いて算出し
た。
Table 1 shows synthesis conditions and synthesis results of the synthesized iron nitride magnetic fluid. For the measurement of the average particle size, the particle size was measured for 300 particles on a high-magnification electron micrograph, and the arithmetic average value was determined. For the measurement of the saturation magnetization, a magnetic field of 10 kOe at the maximum was applied using a vibrating sample magnetometer, the magnetization curve was measured, and the magnetic field was determined to be infinite according to the asymptotic rule of saturation. The saturation magnetization of the iron nitride powder component in the slurry was calculated using the specific gravity of the slurry and the specific gravity of the solvent.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】請求項1の磁性流体乃至磁性粒子製造装
置においては、加熱装置を有した主反応槽と、これに接
続された複数の原料導入部と、当該主反応槽に直列に配
設された加熱装置付きの副反応槽と、更に当該副反応槽
に接続された還流用冷却塔とからなっているので、2段
階の熱処理を同時に行なうことができ、連続的な原料供
給で、反応を継続させるので、従来の装置に比べて、極
めて速い速度で粒径を大きくすることが可能となった。
本装置を窒化鉄製造に用いれば、単分散性の良い窒化鉄
微粉体を供給することができ、ニッケルカルボニルやコ
バルトカルボニルを用いて、磁性金属粒子を製造するこ
ともでき、磁性塗料や磁性トナー用の磁性粉体を多量に
供給することができる。
According to the magnetic fluid or magnetic particle producing apparatus of the first aspect, a main reaction tank having a heating device, a plurality of raw material introduction portions connected to the main reaction tank, and a plurality of raw material introduction sections are arranged in series with the main reaction tank. And a cooling tower for reflux connected to the sub-reaction tank, the two-stage heat treatment can be performed simultaneously, and the , The particle size can be increased at an extremely high speed as compared with the conventional apparatus.
If this apparatus is used for iron nitride production, it is possible to supply iron nitride fine powder with good monodispersibility, and it is also possible to produce magnetic metal particles using nickel carbonyl or cobalt carbonyl, and to use magnetic paints and magnetic toners. Can be supplied in large quantities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る窒化鉄微粒子の製造装
置の概略図である。
FIG. 1 is a schematic view of an apparatus for producing iron nitride fine particles according to one embodiment of the present invention.

【図2】従来の窒化鉄微粒子の製造装置の概略図であ
る。
FIG. 2 is a schematic view of a conventional apparatus for producing iron nitride fine particles.

【符号の説明】[Explanation of symbols]

100 主反応槽 108 撹拌装置 126 副反応槽 130 流量調整コック 132 冷却塔 Reference Signs List 100 Main reaction tank 108 Stirrer 126 Secondary reaction tank 130 Flow control cock 132 Cooling tower

フロントページの続き (51)Int.Cl.7 識別記号 FI G03G 9/107 G03G 9/10 311 (56)参考文献 特開 平4−188704(JP,A) 特開 平5−29123(JP,A) 特開 平3−187907(JP,A) 特開 平3−294398(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/34 C01B 21/06 B01J 19/00 301 Continuation of the front page (51) Int.Cl. 7 identification symbol FI G03G 9/107 G03G 9/10 311 (56) References JP-A-4-188704 (JP, A) JP-A-5-29123 (JP, A JP-A-3-187907 (JP, A) JP-A-3-294398 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/34 C01B 21/06 B01J 19 / 00 301

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱装置付きの主反応槽と、これに接続
された複数の原料導入部と、当該主反応槽に直列に配設
された加熱装置付きの副反応槽と、更に当該副反応槽に
接続された還流用冷却塔とからなる磁性流体乃至磁性粒
子製造装置。
1. A main reaction tank with a heating device, a plurality of raw material introduction sections connected thereto, a sub-reaction tank with a heating device disposed in series with the main reaction tank, and An apparatus for producing a magnetic fluid or magnetic particles, comprising a reflux cooling tower connected to a tank.
JP09112392A 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment Expired - Lifetime JP3255958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09112392A JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09112392A JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH05286704A JPH05286704A (en) 1993-11-02
JP3255958B2 true JP3255958B2 (en) 2002-02-12

Family

ID=14017753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09112392A Expired - Lifetime JP3255958B2 (en) 1992-04-10 1992-04-10 Magnetic fluid or magnetic particle manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3255958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319053B (en) * 2014-10-09 2017-01-18 大连大学 Device and method for preparing iron nitride magnetic liquid by barometric-pressure dielectric barrier discharge

Also Published As

Publication number Publication date
JPH05286704A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
US8287771B2 (en) Method for producing silver particle powder
Choi et al. Synthesis of cobalt boride nanoparticles using RF thermal plasma
JP2008095195A (en) Method for producing copper nanoparticle, and copper nanoparticle produced thereby
WO2005113433A1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
US9166170B1 (en) Apparatus for producing carbon-coated nanoparticles and carbon nanospheres
Douglas et al. A study of the role of the solvent during magnetite nanoparticle synthesis: tuning size, shape and self-assembly
JP2000327312A (en) Production of spherical boron nitride and its precursor substance, production facility and product
Stopić et al. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis
CN101728049A (en) Synthetic method and equipment of magnetic liquid taking carbon coated metal nano particles as magnetic carriers
JP5696999B2 (en) Method for producing metal nanoparticle colloid
Crouse et al. Reagent control over the size, uniformity, and composition of Co–Fe–O nanoparticles
JP3255958B2 (en) Magnetic fluid or magnetic particle manufacturing equipment
Da Silva et al. Nickel platinum (Ni x Pt 1− x) nanoalloy monodisperse particles without the core–shell structure by colloidal synthesis
JP3276390B2 (en) Iron nitride particles and method for producing the same
US5180512A (en) Method of manufacturing fine-particle colloid or magnetic fluid
KR100869547B1 (en) Method of synthesizing ordered FePt nano particles by ultrasonic gas phase process
JP2005139555A (en) Method of producing nanoiron powder by chemical vapor phase condensation method
JP3363938B2 (en) Method for producing spherical iron nitride fine particles by sintering method
JP4528959B2 (en) Magnetic material and method for producing the same
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
JP3412189B2 (en) Method for producing iron nitride particles
US20050207964A1 (en) Method for synthesizing carbon nanotubes
KR100593268B1 (en) A manufacturing process of Fe nano powder with carbide coating by Chemical Vapor Condensation
JP2007153662A (en) Metal nitride nanoparticles and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term