JPH0440451B2 - - Google Patents

Info

Publication number
JPH0440451B2
JPH0440451B2 JP62243293A JP24329387A JPH0440451B2 JP H0440451 B2 JPH0440451 B2 JP H0440451B2 JP 62243293 A JP62243293 A JP 62243293A JP 24329387 A JP24329387 A JP 24329387A JP H0440451 B2 JPH0440451 B2 JP H0440451B2
Authority
JP
Japan
Prior art keywords
carbon
laser
compounds
gas
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62243293A
Other languages
Japanese (ja)
Other versions
JPS6485321A (en
Inventor
Katsuhide Murata
Kenji Sato
Masabumi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP62243293A priority Critical patent/JPS6485321A/en
Publication of JPS6485321A publication Critical patent/JPS6485321A/en
Publication of JPH0440451B2 publication Critical patent/JPH0440451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は炭玠繊維の補造方法に係り、特にレヌ
ザビヌムを利甚しお気盞成長により炭玠繊維を効
率的に補造する方法に関する。 埓来の技術 炭玠繊維は、埓来らかPAN系、ピツチ系のも
のが商業生産されおいる。しかし、PAN系は高
䟡であり、ピツチ系はプロセスが耇雑で品質の制
埡がむずかしいなどの臎呜的な欠点がある。 䞀方、近幎気盞成長法が提案されおいる。埓
来、気盞成長炭玠繊維は、電気炉内にアルミナな
どの磁噚、黒鉛などの基板を眮き、これに炭玠成
長栞、鉄、ニツケルなどの超埮粒子觊媒を圢成せ
しめ、この䞊にベンれンなどの炭化氎玠のガスず
氎玠キダリダガスの混合ガスを導入し、950〜
1300℃の枩床䞋に炭化氎玠を分解せしめるこずに
より、基板䞊に炭玠繊維を成長させる方法が知ら
れおいる。 しかし、このような方法では、基板衚面の埮
劙な枩床ムラや、呚囲の繊維の密生床によ぀お長
さの䞍均䞀が起り易いこず、たた炭玠の䟛絊源
ずしおのガスが反応によ぀お消費されるこずによ
り反応管の入口に近い所ず出口に近い所で繊維埄
が盞圓異なるこず、基板衚面でのみ生成が行な
われるため、反応管の䞭心郚分は反応に関䞎せず
収率が悪いこず、超埮粒子の基板ぞの分散、還
元、成長次いで繊維の取出しずいう独立に実斜を
必芁ずするプロセスがあるため、連続補造が䞍可
胜であり、埓぀お生産性が悪いなどの問題点を有
する。 そこで、炭玠化合物のガスず無機もしくは有機
遷移金属化合物のガスずキダリダガスずの混合ガ
スを高枩反応させる炭玠繊維の補造方法が提案さ
れた特開昭60−5499860−224816など。 発明が解決しようずする問題点 しかしながら、䞊蚘の特開昭60−54998
224816などの方法では、反応容噚も加熱されるず
ころから、噚壁に副生物が付着し、収率が䜎䞋し
たり、連続運転が困難である等の問題が生じおい
た。たた、スケヌルアツプも容易ではなく、倧量
生産に䞍向きである、あるいは加熱に電気炉を䜿
甚しおおり、゚ネルギヌコストが高い等の問題が
あ぀た。 問題点を解決するための手段 本発明は䞊蚘の問題を解決し、䜎枩床にお炭玠
繊維を高収率で補造する方法を提䟛するものであ
る。 本発明の炭玠繊維の補造方法は、レヌザ照射䞋
においお、炭玠化合物のガスず、浮遊状態にある
觊媒粒子ずを接觊させお炭玠を繊維状に析出させ
る方法であ぀お、レヌザずしお炭玠化合物の光分
解に有効なレヌザず觊媒の振動励起に有効なレヌ
ザずの少なくずも皮類の波長の異なるレヌザを
甚いるこずを特城ずするものである。 即ち、本発明者らは、埓来の問題点を解決する
べく鋭意怜蚎を重ねた結果、 レヌザ照射䞋においお、炭玠化合物のガスず、
浮遊状態にある觊媒粒子ずを接觊させお炭玠を繊
維状に析出させるこずを特城ずする炭玠繊維の補
造方法、 及び、この方法の実斜に奜適な装眮ずしお、 内郚を反応ゟヌンずする反応容噚ず、 該反応ゟヌンぞ向けおレヌザビヌムを照射する
レヌザ装眮ず、 該反応ゟヌンを挟んで反応容噚の䞀方の偎に連
蚭されたキダリアガスの導入手段、炭玠化合物ガ
スの導入手段及び觊媒粒子又は觊媒原料ガスの導
入手段ず、 該反応ゟヌンを挟んで反応容噚の他方の偎に連
蚭された炭玠繊維の補集手段ず、を備えたこずを
特城ずする炭玠繊維の補造装眮、 を開発し、本出願人より先に特蚱出願した特願
昭61−234896号。以䞋「先願」ずいう。。 本発明者らは、䞊蚘先願の方法においお、゚ネ
ルギヌ効率をより向䞊させるべく曎に研究を重ね
た結果、レヌザずしお、炭玠化合物の光分解に有
甚なレヌザず、觊媒の振動励起に有甚なレヌザず
の少なくずも皮類のレヌザを甚いるこずによ
り、各々のレヌザ゚ネルギヌが有効に䜜甚しお、
゚ネルギヌ効率をより高めるこずができるこずを
芋出し、本発明を完成させた。 以䞋、本発明に぀いおさらに詳现に説明する。 本発明における炭玠化合物ずは、ガス化可胜な
炭玠化合物党般を察象ずしおおり、CCl4
CHCl3CH2Cl2CH3ClCO、CS2等の無機化
合物ず有機化合物党般を察象ずする。特に有甚性
の高い化合物は、脂肪族炭化氎玠、芳銙族炭化氎
玠である。たた、これらの他窒玠、酞玠、硫黄、
北玠、沃玠、燐、砒玠等の元玠を含んだ誘導䜓も
䜿甚可胜である。具䜓的な個々の化合物の䟋の䞀
郚を挙げるず、メタン倩然ガスでも良い。、゚
タン等のアルカン化合物、゚チレン、ブタゞ゚ン
等のアルケン化合物、アセチレン等のアルキレン
化合物、ベンれン、トル゚ン、スチレン等のアリ
ヌル炭化氎玠化合物、むンデン、ナフタリン、フ
゚ナントレン等の瞮合環を有する芳銙族炭化氎
玠、シクロプロパン、シクロヘキサン等のシクロ
パラフむン化合物、シクロペンテン、シクロヘキ
サン等のシクロオレフむン化合物、ステロむド等
の瞮合環を有する脂環匏炭化氎玠化合物、メチル
チオヌル、メチル゚チルスルテむド、ゞメチルチ
オケトン等の含硫黄脂肪族化合物、プニルチオ
ヌル、ゞプニルスルフむド等の含硫黄芳銙族化
合物、ベンゟチオプン、チオプン等の含硫黄
耇玠環匏化合物、たた単䜓ではないがガ゜リン等
の消防法危険物第四類、第䞀石油類、ケロシン、
テレピン油、暟脳油、束根油等の第二石油類、重
油等の第䞉石油類、ギダヌ油、シリンダ油等の第
四石油類も有効に䜿甚できる。たた、これら混合
物も䜿甚できるこずは蚀うに及ばない。 本発明においお、觊媒ずしおは、無機遷移金属
化合物、Siの無機化合物、有機遷移金属化合物、
Siの有機化合物などが挙げられる。この無機遷移
金属化合物ずは、単独で気化が可胜な遷移金属の
無機化合物又は氎もしくは少なくずも䞀皮以䞊の
氎もしくは有機溶媒この有機溶媒ずしおは炭玠
原料化合物を甚いおも良い。に可溶なもしくは
埮粒子ずしお懞濁可胜な遷移金属の無機化合物が
察象ずなる。遷移金属ずしおは、鉄、ニツケル、
コバルト、モルブデン、バナゞアム、パラゞりム
等が奜たしく、特に鉄が奜たしい。前者の単独で
気化が可胜な無機遷移金属化合物ずしおは、Fe
NO4FeCl3FeNO3ClFeNO2Fe
NO2FeF3等が挙げられる。たた埌者ずし
おは、前者ずしお挙げた化合物の他に、Fe
NO32FeBr3FeHCO3C27H42FeN9O12
FeSO43FeSCN3FeNO3NH3Co
NO2ClNiNOClPdNO2Cl2NiCl2等
が代衚ずしおあげられる。 本発明における有機遷移金属化合物ずは、アル
キル基ず金属が結合したアルキル金属、アリル基
ず金属が結合したアルキル錯䜓、炭玠間重結合
や重結合ず金属ずが結合したπ−コンプレツク
スずキレヌト型化合物等に代衚される有機遷移金
属化合物である。たた、ここで遷移金属ずしお
は、スカンゞりム、チタン、パナゞりム、クロ
ム、マンガン、鉄、コバルト、ニツケル、むツト
リりム、ゞルコニりム、ニオブ、モリブデン、ル
テニりム、ロゞりム、パラゞりム、タンタル、タ
ングステン、レニりム、むリゞりム、癜金を指す
ものであるが、これらの内特に呚期埋衚族に属
するもの、その内で特に鉄、ニツケル、コバルト
が奜適であ぀お、鉄が最も奜適である。 たた、含硫黄炭玠化合物たたは無機硫黄化合物
の存圚䞋では、シリコンの無機化合物も甚いるこ
ずができる。䟋えば、䞊蚘の無機金属化合物にお
いお金属をSiに眮換したものや炭化珪玠を甚い埗
る。さらに、各皮の有機珪玠化合物を甚い埗る。 有機珪玠化合物ずしおは、珪玠−炭玠結合をも
぀有機化合物の他にシラン、ハロゲンシランを䟿
宜䞊含むものずする。炭玠−珪玠結合を持぀有機
化合物ずしおは、テトラメチルシラン、メチルト
リプニルシラン等のオリガノシラン、クロルゞ
フルオルメチルシラン、プロムトリプロピルシラ
ン等のオルガノハロゲンシランメトキシトリメ
チルシラン、トリメチルプノキシシラン等のオ
ルガノアルコキシシランゞアセトキシゞメチル
シラン、アセトキシトリプロピルシラン等のオル
ガノアセトキシシランヘキサ゚チルゞシラン、
ヘキサプニルゞシラン、オクタプニルシクロ
テトラシラン等のオネガノポリシランゞメチル
シラン、トリプニルトラン等のオルガノヒドロ
ゲノシランSiH2oで衚瀺されるシクロシラ
ントリプニルシラザン、ヘキサ゚チルゞシラ
ザン、ヘキサプニルシクロトリシラザン等のオ
ルガノシラザン、SiH2NHoで衚瀺されるシク
ロシラザンゞ゚チルシランゞオヌル、トリプニ
ルシラノヌル等のオルガノシラノヌルトリメチ
ルシリル酢酞、トリメチルシリルピロピオン酞等
のオルガノシラノヌルトリメチルシリル酢酞、
トリメチルゞリルプロピオン酞等のオルガノシラ
ンカルボン酞トリメチルシリコンむ゜シアナヌ
ト、ゞプニルシリコンゞむ゜シアナヌト等のシ
リコンむ゜シアナヌトトリメチルシリコンむ゜
チオシアナヌト、ゞプニルシリコンゞむ゜チオ
シアナヌト等のオルガノシリコンむ゜チオシアナ
ヌトシアン化トリ゚チルシリル等のオルガノシ
リコン゚ステルヘキサメチルゞシルチアン、テ
トラメチルシクロゞシルチアン等のシルチアン
SiH2oで衚瀺されるシクロシルチアンヘキ
サメチルゞシルメチレン、オクタメチルトリシル
メチレン等のオルガノシルメチレンヘキサメチ
ルゞシロキサン、ヘキサプロピルゞシロキサン等
のオルガノシロキサン等が挙げられるが、その他
の炭玠−珪玠結合を含む化合物であ぀おもよい。
たた、これらの混合物の䜿甚も可胜である。 なお、本発明では、予め埮粒子ずしお生成され
た觊媒粒子䟋えば也燥した埮粉末を反応容噚
内に導入するようにしおも良い。 本発明においおは、前蚘炭玠化合物ず䞊蚘觊媒
粒子ずを接觊させお反応させるに圓り、炭玠化合
物の光分解に有効なレヌザず、觊媒の振動励起に
有効なレヌザずの少なくずも皮類の波長の異な
るレヌザを甚いる。 炭玠化合物の光分解に察しおは、高い量子゚ネ
ルギヌを持぀゚キシマレヌザ、䟋えばArF
193nm又はKrF249nmレヌザ等が有効であ
る。このような高量子゚ネルギヌレヌザであれ
ば、炭玠化合物の−結合の切断が可胜ずな
り、炭玠繊維の生成率、生成速床が向䞊される。
䟋えば、ピヌク出力の倧きいパルス゚キシマレヌ
ザのうちArF193nmの光子゚ネルギヌは
150Kcalmolであるので、−結合結合゚
ネルギヌ98Kcalmolの切断が容易に行なえ
る。 䞀方、鉄觊媒等の觊媒の振動励起にはCO2レヌ
ザ、ずりわけパルス発振CO2レヌザが有効であ
る。パルス発振CO2レヌザによれば、高い゚ネル
ギヌ効率で特に鉄觊媒を振動励起させ、高枩によ
る掻性化を起こすこずができる。 埓぀お、本発明においおは、パルス゚キシマレ
ヌザ及びパルスCO2レヌザの皮類のレヌザを甚
いるのが奜たしいが、レヌザの組み合わせはこれ
に限定されず、炭玠化合物や觊媒の皮類によ぀お
は、他の組合せずしたり、曎に第第のレヌ
ザを甚いるようにしおも良い。 本発明におけるキダリアガスずは、盎接反応に
関䞎しないガス党般を察象ずしおいる。䟋瀺すれ
ば、H2ガス、N2ガス、NH3ガス、Arガス、He
ガス、Krガス、又はこれらの混合ガスを䞻䜓ず
するガスである。このうち、H2ガスが通垞の堎
合甚いられる。 たた、キダリアガスなど、容噚内に導入される
ガスにレヌザの吞収効果を高めるための成分を添
加しおも良い。この堎合、添加成分は䜿甚するレ
ヌザの波長によるが、䟋えばCO2レヌザに察しお
はNH3やC2H4をレヌザ吞収効果向䞊剀ずしお添
加するこずができる。 以䞋本発明に぀いお図面に瀺す奜適な態様を参
照しながら詳现に説明する。 第図は本発明の実斜に奜適な装眮の䞀䟋を瀺
す抂略的な平断面図である。笊号は反応容噚
であ぀お、炭玠化合物の光分解ゟヌン、觊
媒の振動励起ゟヌン及び炭玠繊維の生成ゟ
ヌンの぀のゟヌンで䞻に構成されおい
る。 光分解ゟヌンの端郚には、゚キシマレヌ
ザ等の炭玠化合物の光分解に有効なレヌザビヌム
を照射するためのレヌザ発振噚が蚭眮され、
この発振噚に察向する炭玠繊維の生成ゟヌン
の端郚にはレヌザ吞収板が蚭けられお
いる。たた、光分解ゟヌンのレヌザ発振噚
蚭眮郚近傍には、H2、Arガス等のキダリア
ガスの䟛絊甚配管が、たた炭玠繊維の生成ゟ
ヌン寄りには炭玠化合物のガスの䟛絊甚配
管が接続されおいる。 䞀方、觊媒の振動励起ゟヌンの端郚に
は、CO2レヌザ等の觊媒の振動励起に有効なレヌ
ザビヌムを照射するためのレヌザ発振噚が蚭
眮され、この発振噚に察向する炭玠繊維の生
成ゟヌンの端郚にはレヌザ吞収板が蚭
けられおいる。たた、この觊媒の振動励起ゟヌン
のレヌザ発振噚蚭眮郚近傍には觊媒粒
子ずなる物質を含む化合物の䟛絊甚配管が接
続され、この配管の接続䜍眮には觊媒の䜙熱
甚ヒヌタが蚭眮されおいる。なお、図䞭
は各々の䟛絊甚配管に蚭けら
れた流量制埡装眮である。 たた、炭玠繊維の生成ゟヌンの䞋方に
は、炭玠繊維捕集噚図瀺せずが接続しお蚭け
られおおり、この炭玠繊維捕集噚には排ガスの抜
出管が接続されおいる。 䞊蚘の劂く構成された炭玠繊維補造装眮におい
お、配管より、觊媒の振動励起ゟヌン
に導入された觊媒粒子ずなる物質を含む化合物
は、予熱ヒヌタの熱及びCO2レヌザビヌムに
よ぀お励起されお分解し、遷移元玠又はSiC等の
觊媒粒子通垞の粒埄は0.1〜10Ό皋床である
が効率的に生成する。䞀方、配管より、炭玠
化合物の光分解ゟヌンに導入された原料の
炭玠化合物は、゚キシマレヌザビヌムによ぀お効
率的に励起、分解される。しかしお、励起された
觊媒埮粒子、光分解された炭玠化合物は共に炭玠
繊維の生成ゟヌンに送られ、ここで原料の
炭玠化合物が觊媒埮粒子䞊に析出し、炭玠繊維が
成長する。 本発明においお、埮粒子が生成し、これを成長
点ずしお炭玠繊維が生成する反応容噚の噚壁の枩
床は埓来の倖熱匏の電気炉を甚いた反応容噚のそ
れよりも盞圓に䜎く、噚壁に副生物を付着するこ
ずはない。埓぀お、本発明では、反応容噚の材質
を高䟡な高耐食性あるいは高耐熱性のものに限定
する必芁はない。 たた、レヌザビヌムを採甚しおいるので、䞀般
の倖熱匏の電気炉よりも゚ネルギヌ消費が少な
く、゚ネルギヌコストが䜎廉である。ただし、本
発明では必芁に応じ倖熱匏の電気炉等の倖郚加熱
手段を、反応容噚を取り巻くように蚭け、反応ゟ
ヌン炭玠繊維の生成ゟヌンの噚壁を加熱しお
もよい。この堎合、噚壁ぞの生成物の付着を防止
するために、噚壁枩床が600℃未満ずりわけ550℃
以䞋ずなるように倖郚加熱するのが奜適である。 本発明においお、觊媒粒子の倧きさ或いは炭玠
繊維の盎埄及び長さ等は、原料ガスの分圧、滞留
時間、レヌザ匷床等を制埡するこずによ぀お調節
が可胜である。 反応容噚内における反応の順序は、䞊述の劂く
觊媒の振動励起による觊媒埮粒子の生成、炭玠繊
維の生成、成長ずなるのであるが、反応容噚内を
特に埮粒子生成ゟヌンず炭玠繊維成長ゟヌンずに
あえお分割する必芁はない。ただし、必芁により
䞊蚘の劂く適圓な倖郚加熱手段を䜵蚭するこず等
により、炭玠繊維成長ゟヌンを圢成するようにし
おもよい。 反応容噚内においお生成した炭玠繊維は、キダ
リアガスず共に䞋方の炭玠繊維捕集噚内に導入さ
れる。この捕集方法は埓来から知られおいる重力
沈降法、電気集塵法等の各皮方法を採甚するこず
ができる。なお、炭玠繊維補修噚は、生成した炭
玠繊維を冷华する圹割をも果たす。 本発明によれば、通垞長さ10Ό〜500mm皋床
であり、盎埄が0.1〜300Ό皋床の炭玠繊維を容
易に補造するこずができる。 炭玠繊維捕集噚から抜き出されたキダリアガス
は、そのたた排気凊理手段に導入しお攟出しおも
よいのであるが、粟補埌再埪環させお甚いるよう
にしおもよい。 図瀺の装眮では、反応容噚の端郚にレヌザ
吞収板䟋えば氎冷銅板を蚭眮しお
いるが、光路長が短い堎合などでは反射板を眮い
おレヌザビヌムの光路長を長くするように構成し
おもよい。 䜜甚 本発明においおは、炭玠化合物の光分解に有効
なレヌザず觊媒の振動励起に有効なレヌザヌずの
少なくずも皮類の波長の異なるレヌザを甚い
る。 このため、炭玠化合物の光分解、觊媒の振動励
起がそれぞれ効率的に行なわれるようになり、よ
り䞀局の反応の䜎枩化、高収率化が図れる。 実斜䟋 以䞋、奜適な補造実斜䟋に぀いお説明する。 実斜䟋  第図に瀺す装眮においお、䞋蚘の条件にお炭
玠繊維の補造を行な぀た。 觊媒偎 レヌザCO2レヌザ10.591Ό 原料偎レヌザ゚キシマレヌザ
ArF193nm 原 料メタン 觊媒粒子ずなる物質を含む化合物
FeCl3氎溶液 キダリアヌガスH2 圧 力垞圧 滞留時間分 原料濃床H2に察しお5vol 反応噚20mmID×450mm 石英補 結果を第衚に瀺す。 比范䟋  原料偎レヌザにもCO2レヌザを甚いたこず以倖
は実斜䟋ず同様にしお炭玠繊維の補造を行な぀
た。 結果を第衚に瀺す。
[Industrial Application Field] The present invention relates to a method for manufacturing carbon fibers, and particularly to a method for efficiently manufacturing carbon fibers by vapor phase growth using a laser beam. [Prior Art] Conventionally, PAN-based and Pitch-based carbon fibers have been commercially produced. However, PAN-based products are expensive, and pitch-based products have fatal drawbacks such as complicated processes and difficult quality control. On the other hand, a vapor phase growth method has been proposed in recent years. Conventionally, vapor-grown carbon fibers are produced by placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron, and nickel on this, and then forming carbonization particles such as benzene on this. Introducing a mixed gas of hydrogen gas and hydrogen carrier gas, 950 ~
A method is known in which carbon fibers are grown on a substrate by decomposing hydrocarbons at a temperature of 1300°C. However, with this method, the length tends to be non-uniform due to subtle temperature unevenness on the substrate surface and the density of surrounding fibers, and the gas that is the source of carbon is consumed by the reaction. As a result, the fiber diameter differs considerably between the inlet and the outlet of the reaction tube, and since production occurs only on the substrate surface, the central part of the reaction tube does not participate in the reaction, resulting in poor yields. However, since there are processes that must be carried out independently, such as dispersing ultrafine particles onto a substrate, reducing them, growing them, and then taking out the fibers, continuous production is impossible, and therefore, there are problems such as poor productivity. Therefore, a method for producing carbon fibers has been proposed in which a mixed gas of a carbon compound gas, an inorganic or organic transition metal compound gas, and a carrier gas is reacted at a high temperature (Japanese Patent Laid-Open Nos. 60-54998, 1983-224816, etc.). [Problems to be solved by the invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 60-54998,
In methods such as 224816, the reaction vessel is also heated, which causes problems such as by-products adhering to the walls of the vessel, reducing yield and making continuous operation difficult. In addition, it is not easy to scale up, making it unsuitable for mass production, and requires an electric furnace for heating, resulting in high energy costs. [Means for Solving the Problems] The present invention solves the above problems and provides a method for producing carbon fibers at low temperatures and in high yield. The method for producing carbon fibers of the present invention is a method in which a carbon compound gas and suspended catalyst particles are brought into contact with each other under laser irradiation to precipitate carbon into fibers. This method is characterized by using at least two types of lasers, one effective for decomposition and one effective for vibrational excitation of the catalyst, each having a different wavelength. That is, as a result of intensive studies to solve the conventional problems, the present inventors discovered that under laser irradiation, carbon compound gas and
A method for producing carbon fiber, which is characterized in that carbon fibers are precipitated in the form of fibers by contacting catalyst particles in a suspended state, and a reaction vessel having a reaction zone inside thereof, and an apparatus suitable for carrying out this method. , a laser device that irradiates a laser beam toward the reaction zone, a carrier gas introduction means, a carbon compound gas introduction means, and catalyst particles or catalyst raw materials, which are connected to one side of the reaction vessel with the reaction zone in between. We have developed a carbon fiber manufacturing apparatus characterized by comprising a gas introduction means and a carbon fiber collection means connected to the other side of the reaction vessel across the reaction zone, and the present invention is directed to the present invention. The patent application was filed before the applicant (Japanese Patent Application No. 1983-234896, hereinafter referred to as the "earlier application"). As a result of further research to further improve the energy efficiency of the method of the above-mentioned prior application, the present inventors have developed a laser that is useful for photolysis of carbon compounds and a laser that is useful for vibrational excitation of catalysts. By using at least two types of lasers, each laser energy acts effectively,
The present invention was completed based on the discovery that energy efficiency can be further improved. The present invention will be explained in more detail below. The carbon compound in the present invention refers to all carbon compounds that can be gasified, including CCl 4 ,
It covers all inorganic and organic compounds such as CHCl 3 , CH 2 Cl 2 , CH 3 Cl, CO, and CS 2 . Particularly useful compounds are aliphatic hydrocarbons and aromatic hydrocarbons. In addition to these, nitrogen, oxygen, sulfur,
Derivatives containing elements such as fluorine, iodine, phosphorus, arsenic, etc. can also be used. Some specific examples of individual compounds include methane (natural gas may also be used), alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkylene compounds such as acetylene, benzene, toluene, styrene, etc. aryl hydrocarbon compounds, aromatic hydrocarbons with condensed rings such as indene, naphthalene, and phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexane, and alicyclic rings having condensed rings such as steroids. Formula hydrocarbon compounds, sulfur-containing aliphatic compounds such as methylthiol, methylethylsultide, and dimethylthioketone, sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, and sulfur-containing complex compounds such as benzothiophene and thiophene. Cyclic compounds, as well as gasoline, class 4 hazardous materials under the Fire Service Act, class 1 petroleum, kerosene,
Secondary petroleum oils such as turpentine oil, camphor oil, and pine oil, tertiary petroleum oils such as heavy oil, and quaternary petroleum oils such as gear oil and cylinder oil can also be effectively used. It goes without saying that mixtures of these can also be used. In the present invention, the catalyst includes an inorganic transition metal compound, an inorganic Si inorganic compound, an organic transition metal compound,
Examples include organic compounds of Si. This inorganic transition metal compound is an inorganic transition metal compound that can be vaporized alone, or is soluble in water or at least one kind of water or organic solvent (a carbon raw material compound may be used as the organic solvent). Alternatively, inorganic compounds of transition metals that can be suspended as fine particles are targeted. Transition metals include iron, nickel,
Cobalt, molybdenum, vanadium, palladium, etc. are preferred, and iron is particularly preferred. The former inorganic transition metal compound that can be vaporized alone is Fe.
(NO) 4 , FeCl 3 , Fe(NO) 3 Cl, Fe(NO) 2 , Fe
Examples include (NO) 2 I, FeF 3 and the like. As for the latter, in addition to the compounds listed as the former, Fe
(NO 3 ) 2 , FeBr 3 , Fe(HCO) 3 , C 27 H 42 FeN 9 O 12 ,
Fe( SO4 ) 3 , Fe(SCN) 3 , Fe(NO) 3NH3 , Co
Representative examples include (NO) 2 Cl, Ni(NO)Cl, Pd(NO) 2 Cl 2 and NiCl 2 . The organic transition metal compounds in the present invention include alkyl metals in which an alkyl group and a metal are bonded, alkyl complexes in which an allyl group and a metal are bonded, and π-complexes in which a carbon-carbon double bond or triple bond is bonded to a metal. It is an organic transition metal compound typified by chelate type compounds. In addition, transition metals here include scandium, titanium, panadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. However, among these, those belonging to the periodic table group are particularly preferred, among which iron, nickel, and cobalt are particularly preferred, with iron being the most preferred. Furthermore, in the presence of a sulfur-containing carbon compound or an inorganic sulfur compound, an inorganic compound of silicon can also be used. For example, the above-mentioned inorganic metal compounds in which the metal is replaced with Si or silicon carbide can be used. Furthermore, various organosilicon compounds can be used. The organic silicon compound includes, for convenience, silane and halogen silane in addition to organic compounds having a silicon-carbon bond. Organic compounds with carbon-silicon bonds include organosilanes such as tetramethylsilane and methyltriphenylsilane; organohalogensilanes such as chlorodifluoromethylsilane and promtripropylsilane; methoxytrimethylsilane, trimethylphenoxysilane, etc. organoalkoxysilane; organoacetoxysilane such as diacetoxydimethylsilane, acetoxytripropylsilane; hexaethyldisilane,
Oneganopolysilanes such as hexaphenyldisilane and octaphenylcyclotetrasilane; organohydrogenosilanes such as dimethylsilane and triphenyltran; cyclosilanes represented by (SiH 2 ) o ; triphenylsilazane, hexaethyldisilazane, Organosilazane such as hexaphenylcyclotrisilazane, (SiH 2 NH) o Organosilanols such as diethylsilanediol and triphenylsilanol; Organosilanols such as trimethylsilylacetic acid and trimethylsilylpyropionic acid; Trimethylsilylacetic acid,
Organosilane carboxylic acids such as trimethyldilylpropionic acid; silicon isocyanates such as trimethylsilicon isocyanate and diphenylsilicon diisocyanate; organosilicon isothiocyanates such as trimethylsilicon isothiocyanate and diphenylsilicon diisothiocyanate; Organosilicon esters such as triethylsilyl cyanide; silthians such as hexamethyldisilthian and tetramethylcyclodisilthian;
(SiH 2 S) Cyclosylthian represented by o ; organosylmethylenes such as hexamethyldisylmethylene and octamethyltrisylmethylene; organosiloxanes such as hexamethyldisiloxane and hexapropyldisiloxane; It may also be a compound containing other carbon-silicon bonds.
It is also possible to use mixtures of these. Note that, in the present invention, catalyst particles (for example, dried fine powder) that have been generated in advance as fine particles may be introduced into the reaction vessel. In the present invention, when bringing the carbon compound and the catalyst particles into contact to cause a reaction, at least two types of lasers having different wavelengths are used: a laser effective for photodecomposition of the carbon compound and a laser effective for vibrational excitation of the catalyst. Uses a laser. For photodegradation of carbon compounds, excimer lasers with high quantum energy, e.g. ArF
(193nm) or KrF (249nm) laser etc. are effective. With such a high quantum energy laser, it is possible to cut the C--H bond of a carbon compound, and the production rate and production speed of carbon fibers can be improved.
For example, among the pulse excimer lasers with large peak output, the photon energy of ArF (193 nm) is
Since it is 150 Kcal/mol, the C--H bond (bond energy 98 Kcal/mol) can be easily cleaved. On the other hand, CO 2 lasers, especially pulsed CO 2 lasers, are effective for vibrational excitation of catalysts such as iron catalysts. Pulsed CO 2 lasers can vibrationally excite iron catalysts with high energy efficiency and activate them at high temperatures. Therefore, in the present invention, it is preferable to use two types of lasers, a pulsed excimer laser and a pulsed CO 2 laser, but the combination of lasers is not limited to this, and depending on the type of carbon compound and catalyst, other types of lasers may be used. Alternatively, a third and fourth laser may be used. The carrier gas in the present invention refers to all gases that are not directly involved in the reaction. Examples include H 2 gas, N 2 gas, NH 3 gas, Ar gas, He
Gas, Kr gas, or a mixture of these gases. Among these, H 2 gas is usually used. Furthermore, a component for enhancing the laser absorption effect may be added to the gas introduced into the container, such as a carrier gas. In this case, the additive component depends on the wavelength of the laser used, but for example, for a CO 2 laser, NH 3 or C 2 H 4 can be added as a laser absorption effect improver. The present invention will be described in detail below with reference to preferred embodiments shown in the drawings. FIG. 1 is a schematic cross-sectional plan view showing an example of an apparatus suitable for carrying out the present invention. Reference numeral 10 denotes a reaction vessel, which is mainly composed of three zones: a carbon compound photolysis zone 10A, a catalyst vibrational excitation zone 10B, and a carbon fiber production zone 10C. At the end of the photolysis zone 10A, a laser oscillator 12 for irradiating a laser beam effective for photolysis of carbon compounds, such as an excimer laser, is installed.
A laser absorption plate 14 is provided at the end of the carbon fiber production zone 10C facing the oscillator 12. Further, near the laser oscillator 12 installation part of the photolysis zone 10A, there is a pipe 16 for supplying carrier gas such as H 2 or Ar gas, and near the carbon fiber production zone 10C there is a pipe 18 for supplying carbon compound gas. is connected. On the other hand, a laser oscillator 20 for irradiating a laser beam effective for vibrational excitation of the catalyst, such as a CO 2 laser, is installed at the end of the catalyst vibration excitation zone 10B. A laser absorption plate 22 is provided at the end of the zone 10C. Further, a pipe 24 for supplying a compound containing a substance to become catalyst particles is connected to the vicinity of the laser oscillator 20 installation part in the vibrational excitation zone 10B of the catalyst, and a heater 26 for residual heat of the catalyst is connected to the connection position of this pipe 24. is set up. In addition, 16 in the figure
a, 18a, and 24a are flow rate control devices provided in each supply pipe. Further, a carbon fiber collector (not shown) is connected and provided below the carbon fiber generation zone 10C, and an exhaust gas extraction pipe is connected to this carbon fiber collector. . In the carbon fiber manufacturing apparatus configured as described above, the vibration excitation zone 10B of the catalyst is connected to the pipe 24.
The compound containing the substance introduced into the catalyst particles is excited and decomposed by the heat of the preheater 26 and the CO 2 laser beam, and is decomposed into catalyst particles such as transition elements or SiC (the normal particle size is 0.1 to 10 ÎŒm). degree)
is generated efficiently. On the other hand, the raw material carbon compound introduced into the carbon compound photolysis zone 10A from the pipe 18 is efficiently excited and decomposed by the excimer laser beam. Thus, the excited catalyst particles and the photodecomposed carbon compound are both sent to the carbon fiber production zone 10C, where the raw material carbon compound is deposited on the catalyst particles and carbon fibers grow. In the present invention, the temperature of the vessel wall of the reaction vessel in which fine particles are generated and carbon fibers are generated using these as growth points is considerably lower than that of a reaction vessel using a conventional external heating electric furnace. No by-products will be attached to the product. Therefore, in the present invention, there is no need to limit the material of the reaction vessel to expensive materials with high corrosion resistance or high heat resistance. Additionally, since it uses a laser beam, it consumes less energy than a general external heating electric furnace, resulting in lower energy costs. However, in the present invention, if necessary, an external heating means such as an external heating type electric furnace may be provided to surround the reaction vessel to heat the vessel wall of the reaction zone (carbon fiber production zone). In this case, in order to prevent the product from adhering to the vessel wall, the vessel wall temperature should be lower than 600℃, especially 550℃.
External heating is preferably carried out so that: In the present invention, the size of the catalyst particles or the diameter and length of the carbon fibers can be adjusted by controlling the partial pressure of the raw material gas, residence time, laser intensity, etc. As mentioned above, the reaction order in the reaction vessel is to generate catalyst fine particles by vibrational excitation of the catalyst, then to generate and grow carbon fibers. No need to split. However, if necessary, a carbon fiber growth zone may be formed by additionally providing a suitable external heating means as described above. The carbon fibers produced in the reaction vessel are introduced into a lower carbon fiber collector together with a carrier gas. As this collection method, various conventionally known methods such as gravity sedimentation method and electrostatic precipitation method can be employed. Note that the carbon fiber repair device also plays the role of cooling the generated carbon fibers. According to the present invention, it is possible to easily produce carbon fibers that usually have a length of about 10 ÎŒm to 500 mm and a diameter of about 0.1 to 300 ÎŒm. The carrier gas extracted from the carbon fiber collector may be directly introduced into the exhaust treatment means and discharged, but it may also be purified and recirculated for use. In the illustrated apparatus, laser absorption plates (for example, water-cooled copper plates) 14 and 22 are installed at the end of the reaction vessel 10, but in cases where the optical path length is short, a reflecting plate is placed to lengthen the optical path length of the laser beam. It may be configured as follows. [Operation] In the present invention, at least two types of lasers having different wavelengths are used: a laser effective for photolysis of carbon compounds and a laser effective for vibrational excitation of a catalyst. Therefore, the photolysis of the carbon compound and the vibrational excitation of the catalyst can be carried out efficiently, and the reaction can be carried out at a lower temperature and with a higher yield. [Example] Hereinafter, preferred manufacturing examples will be described. Example 1 In the apparatus shown in FIG. 1, carbon fibers were manufactured under the following conditions. Catalyst side laser: CO 2 laser (10.591ÎŒm) Raw material side laser: Excimer laser
(ArF: 193nm) Raw material: Methane Compound containing material that becomes catalyst particles:
FeCl 3 aqueous solution Carrier gas: H 2 pressure: Normal pressure Residence time: 1 minute Raw material concentration: 5 vol% relative to H 2 Reactor: 20 mm ID x 450 mm L (made of quartz) The results are shown in Table 1. Comparative Example 1 Carbon fibers were produced in the same manner as in Example 1 except that a CO 2 laser was also used as the laser on the raw material side. The results are shown in Table 1.

【衚】 第衚より明らかなように、本発明の方法によ
れば、炭玠繊維を高収率で補造するこずができ
る。 発明の効果 以䞊の通り、本発明によればレヌザを利甚しお
気盞法により炭玠繊維を補造するものであり、 ゚ネルギヌ消費が少なく、補造コストが廉䟡
である。 反応容噚の内壁面は䜎枩であり、その材質も
廉䟡な材質のもので足りる。 反応容噚内面に副生物が付着しにくく、連続
運転及び倧型反応容噚の皌動に奜適である。 反応容噚内の圧力、各ガスの分圧、滞留時
間、レヌザ匷床等を調節するこずにより埗られ
る炭玠繊維の品質を容易に制埡するこずができ
る。 倧量生産、スケヌルアツプが容易である。 等の効果が奏される䞊に、 原料の光分解、觊媒の掻性化のそれぞれに最
適なレヌザを甚いるこずにより、より高い゚ネ
ルギヌ効率で、高収率、高生成速床にお補造を
行うこずが可胜ずなる。 ずいう優れた効果が奏される。
[Table] As is clear from Table 1, according to the method of the present invention, carbon fibers can be produced at a high yield. [Effects of the Invention] As described above, according to the present invention, carbon fibers are manufactured by a vapor phase method using a laser, which results in low energy consumption and low manufacturing costs. The inner wall surface of the reaction vessel is at a low temperature, and its material can be made of an inexpensive material. It is difficult for by-products to adhere to the inner surface of the reaction vessel, making it suitable for continuous operation and operation of large reaction vessels. The quality of the carbon fiber obtained can be easily controlled by adjusting the pressure inside the reaction vessel, the partial pressure of each gas, residence time, laser intensity, etc. Mass production and scale-up are easy. In addition to achieving these effects, by using lasers that are optimal for photolysis of raw materials and activation of catalysts, it is possible to manufacture with higher energy efficiency, high yield, and high production rate. It becomes possible. This is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の実斜に奜適な補造装眮の構成
を説明する平断面図である。   反応容噚、  レヌザ発振
噚、  キダリアガス䟛絊管、  炭玠
化合物䟛絊管、  觊媒䟛絊管。
FIG. 1 is a plan sectional view illustrating the configuration of a manufacturing apparatus suitable for carrying out the present invention. 10... Reaction container, 12, 20... Laser oscillator, 16... Carrier gas supply pipe, 18... Carbon compound supply pipe, 24... Catalyst supply pipe.

Claims (1)

【特蚱請求の範囲】[Claims]  レヌザ照射䞋においお、炭玠化合物のガス
ず、浮遊状態にある觊媒粒子ずを接觊させお炭玠
を繊維状に析出させる方法であ぀お、レヌザずし
お炭玠化合物の光分解に有効なレヌザず、觊媒の
振動励起に有効なレヌザずの少なくずも皮類の
波長の異なるレヌザを甚いるこずを特城ずする炭
玠繊維の補造方法。
1 A method of depositing carbon in the form of fibers by bringing carbon compound gas into contact with floating catalyst particles under laser irradiation. A method for manufacturing carbon fiber, comprising using at least two types of lasers having different wavelengths, including a laser effective for vibrational excitation.
JP62243293A 1987-09-28 1987-09-28 Production of carbon fiber Granted JPS6485321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62243293A JPS6485321A (en) 1987-09-28 1987-09-28 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62243293A JPS6485321A (en) 1987-09-28 1987-09-28 Production of carbon fiber

Publications (2)

Publication Number Publication Date
JPS6485321A JPS6485321A (en) 1989-03-30
JPH0440451B2 true JPH0440451B2 (en) 1992-07-03

Family

ID=17101686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62243293A Granted JPS6485321A (en) 1987-09-28 1987-09-28 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS6485321A (en)

Also Published As

Publication number Publication date
JPS6485321A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JP3930810B2 (en) Synthesis of nanoscale carbon materials
US4876078A (en) Process for preparing carbon fibers in gas phase growth
JP4619539B2 (en) Crystal nucleation and growth of single-walled carbon nanotubes from high temperature carbon monoxide gas
AU642401B2 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US20090191352A1 (en) Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JPS6249363B2 (en)
JPH0424320B2 (en)
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
JPH0413446B2 (en)
JPH0246691B2 (en)
JPH0440451B2 (en)
JPH0791695B2 (en) Carbon fiber manufacturing equipment
JPH0440450B2 (en)
JP4674355B2 (en) Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JPH0519341Y2 (en)
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPH0665765B2 (en) Carbon fiber manufacturing method
JP2003112050A (en) Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JPH0470409B2 (en)
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
JPH0192424A (en) Production of carbon fiber with vapor growth
JPH02127523A (en) Carbon fiber of vapor growth
KR100881878B1 (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus therefor