US20060107791A1 - Silver powder and method for producing same - Google Patents

Silver powder and method for producing same Download PDF

Info

Publication number
US20060107791A1
US20060107791A1 US11/285,140 US28514005A US2006107791A1 US 20060107791 A1 US20060107791 A1 US 20060107791A1 US 28514005 A US28514005 A US 28514005A US 2006107791 A1 US2006107791 A1 US 2006107791A1
Authority
US
United States
Prior art keywords
silver powder
silver
powder
acid
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/285,140
Other versions
US8282702B2 (en
Inventor
Takatoshi Fujino
Kozo Ogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Assigned to DOWA MINING CO., LTD. reassignment DOWA MINING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJINO, TAKATOSHI, OGI, KOZO
Publication of US20060107791A1 publication Critical patent/US20060107791A1/en
Assigned to DOWA HOLDINGS CO., LTD. reassignment DOWA HOLDINGS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DOWA MINING CO., LTD.
Assigned to DOWA ELECTRONICS MATERIALS CO., LTD. reassignment DOWA ELECTRONICS MATERIALS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOWA HOLDINGS CO., LTD.
Priority to US13/468,468 priority Critical patent/US8992701B2/en
Application granted granted Critical
Publication of US8282702B2 publication Critical patent/US8282702B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention generally relates to a silver powder and a method for producing the same. More specifically, the invention relates to a silver powder for a conductive paste for use in electronic parts, such as internal electrodes of multilayer capacitors, and conductive patterns of circuit boards, and a method for producing the same.
  • cermet type conductive pastes In order to form electrodes of hybrid ICs, multilayer ceramic capacitors, chip resistors and so forth, cermet type conductive pastes (or conductive pastes of a type to be fired) have been used.
  • a typical cermet type paste includes a silver powder, a vehicle containing ethyl cellulose or acrylic resin dissolved in an organic solvent, a glass frit, an inorganic oxide, an organic solvent, a dispersing agent and so forth as components.
  • the cermet type paste is formed by dipping or printing so as to have a predetermined pattern, and then, fired to form a conductor.
  • the inventors have diligently studied and found that, if a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction to obtain a silver powder by drying and if the silver powder thus obtained is heat-treated at a temperature of higher than 100° C. and lower than 400° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150 to 250° C., to be used for forming a paste which is fired to form a conductor, it is possible to obtain a conductor having no bulging and broken portions.
  • the inventors have made the present invention.
  • a method for producing a silver powder comprising the steps of: preparing a water reaction system containing silver ions; adding a reducing agent to the water reaction system containing silver ions to deposit silver particles by reduction; drying the silver particles to produce a silver powder; and heat-treating the silver powder at a temperature which is higher than 100° C. and which is lower than400° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150 to 250° C.
  • a dispersing agent is preferably added to a slurry-like reaction system before or after the deposition of the silver particles.
  • the dispersing agent is preferably at least one selected from the group consisting of fatty acids, fatty acid salts, surface active agents, organic metals, chelating agents and protective colloids.
  • the reducing agent is preferably at least one selected from the group consisting of ascorbic acid, alkanol amine, hydroquinone, hydrazine and formalin.
  • the reducing agent is preferably added at a rate of not lower than 1 equivalent/minute with respect to the content of silver in the water reaction system containing silver ions.
  • a silver powder which has a maximum coefficient of thermal expansion of not greater than 1.5%, preferably not greater than 1.0% and more preferably not greater than 0.5%, at a temperature of 50° C. to 800° C., and an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C.
  • the silver powder preferably has no heating peak when the silver powder is heated from 50° C. to 800° C.
  • the silver powder has a tap density of not less than 2 g/cm 3 , and a BET specific surface area of not greater than 5 m 2 /g.
  • FIGURE is a graph showing the variations in heating value as DTA curves with respect to temperature in Example 1 and Comparative Example 1.
  • a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction
  • the silver particles are dried to obtain a silver powder
  • the silver powder thus obtained is heat-treated at a temperature of higher than 100° C. and lower than 400 ° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150to 250° C. If the heat treatment is not carried out or if the heat treating temperature is not higher than 100° C., the coefficient of thermal expansion of the silver powder increases, so that the silver powder has a heating peak.
  • a paste containing such a silver powder is used for forming a conductor, volatilization of gas components and so forth are caused during firing, so that the conductor is bulged and/or broken.
  • the heat treating temperature is not lower than 400° C., an agglomerate silver powder is obtained, so that there is a problem in that a foil is formed during the preparation of a paste or the like.
  • the heat treatment can be carried out in the atmosphere, or in vacuum, or in an atmosphere of an inert gas such as nitrogen or argon gas. It is required to control the heat treating time in accordance with the heat treating temperature and characteristics of the silver powder.
  • an aqueous solution or slurry containing silver nitrate a silver salt complex or a silver intermediate may be used.
  • the silver salt complex may be produced by adding aqueous ammonia, an ammonium salt, a chelate compound or the like.
  • the silver intermediate may be produced by adding sodium hydroxide, sodium chloride, sodium carbonate or the like.
  • an ammine complex obtained by adding aqueous ammonia to an aqueous silver nitrate solution is preferably used so that the silver powder has an appropriate particle diameter and a spherical shape. Since the coordination number of the ammine complex is 2, 2 mol or more of ammonia per 1 mol of silver is added.
  • the reducing agent maybe selected from ascorbic acid, sulfites, alkanolamine, aqueous hydrogen peroxide, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, sodium borohydride, hydrazine, hydrazine compounds, hydroquinone, pyrogallol, glucose, gallate, formalin, exsiccated sodium sulfate, and rongalite.
  • the reducing agent is preferably one or more selected from the group consisting of ascorbic acid, alkanol amine, hydroquinone, hydrazine and formalin. If these reducing agents are used, it is possible to obtain silver particles having appropriate particle diameters.
  • the reducing agent is preferably added at a rate of 1 equivalent/minute or more in order to prevent the aggregation of the silver powder.
  • the time to add the reducing agent is preferably shorter.
  • the solution to be reacted is preferably agitated so as to complete the reaction in a shorter time.
  • a dispersing agent is preferably added to a slurry-like reaction system before or after the deposition of silver particles.
  • the dispersing agent is preferably one or more selected from the group consisting of fatty acids, fatty acid salts, surface active agents, organic metals, chelating agents and protective colloids.
  • fatty acids examples include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linolic acid, and arachidonic acid.
  • fatty acid salts include salts formed by fatty acids and metals, such as lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver and copper.
  • surface active agents include: anionic surface active agents, such as alkyl benzene sulfonates and polyoxyethylene alkyl ether phosphates; cationic surface active agents, such as aliphatic quaternary ammonium salts; amphoteric surface active agents, such as imidazolinium betaine; and nonionic surface active agents, such as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters.
  • anionic surface active agents such as alkyl benzene sulfonates and polyoxyethylene alkyl ether phosphates
  • cationic surface active agents such as aliphatic quaternary ammonium salts
  • amphoteric surface active agents such as imidazolinium betaine
  • nonionic surface active agents such as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters.
  • organic metals include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethyl indium, triethyl gallium, trimethyl indium, trimethyl gallium, monobutyl tin oxide, tetraisocyanate silane, tetramethyl silane, tetramethoxy silane, polymethoxy siloxane, monomethyl triisocyanate silane, silane coupling agent, titanate coupling agents, and aluminum coupling agents.
  • chelating agents include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4-triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H-1,2,3,4-tetrazole, 1,2,3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4-tetrazole, 1,2,3,5-oxatriazole, 1,2,3,5-thiatriazole, indazole, benzoimidazole, benzotrid
  • protective colloids examples include gelatin, albumin, gum arabic, protarbic acid and lysalbic acid.
  • a silver powder which has a maximum coefficient of thermal expansion of not greater than 1.5%, preferably not greater than 1.0% and more preferably not greater than 0.5%, at a temperature of 50° C. to 800° C., and which has no heating peak when the silver powder is heated from 50° C. to 800° C., the silver powder having an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C., and the silver powder having a tap density of not less than 2 g/cm 3 and a BET specific surface area of not greater than 5 m 2 /g.
  • the silver powder is used for forming a paste to be fired to form a conductor, it is possible to decrease the expansion of the conductor due to volatilization of volatile components, and it is possible to decrease the sudden heating due to heating components, so that it is possible to form a conductor having no bulging and/or broken portions.
  • the silver powder has a spherical shape, the silver powder can be suitably used for carrying out a photosensitive paste method.
  • the silver powder has an undecided shape or a flake shape, there is a disadvantage in that the photosensitive characteristics of the silver powder are not good since the irregular reflection and/or scattering of ultraviolet rays is caused.
  • the silver powder has a spherical shape
  • the silver powder is also suitably used for carrying out a printing or transferring method.
  • the tap density is less than 2 g/cm 3
  • the aggregation of particles of the silver powder is violently caused, so that it is difficult to form a fine line even if anyone of the above described methods is used.
  • the BET specific surface area is greater than 5 m 2 /g, the viscosity of the paste is too high, so that workability is not good.
  • the coefficient of thermal expansion, heating value, ignition loss, BET specific surface area and tap density of the silver powder thus obtained were measured.
  • the sintered body prepared using a paste containing the silver power was evaluated. Furthermore, it was confirmed by a scanning electron microscope (SEM) that the silver powders obtained in this example and in examples and comparative examples 1 and 2 described later were silver powders.
  • the measurement of the heating value of the silver powder was carried out by measuring a heating value when 20 ⁇ 1 mg of the sample of silver powder put on a pan (an alumina measuring pan produced by Rigaku Co., Ltd.) was heated from 50° C. to 800° C. at a temperature rising rate of 10° C./minute in the atmosphere (no ventilation). Furthermore, 20.0 mg of alumina was used as a standard sample, and the heating peak temperature was obtained by analysis using software attached to the measuring apparatus.
  • a heating value measuring apparatus TG-DTA 2000 Measuring Apparatus produced by MAC SCIENCE/BRUKER axs
  • the evaluation of the sintered body was carried out as follows. First, 84 parts by weight of the silver powder, 6 parts by weight of an acrylic resin (BR-105 commercially available from Mitsubishi Rayon Co., Ltd.), 9 parts by weight of an organic solvent (diethylene glycol monoethyl ether acetate (reagent)), and 1 part by weight of a glass frit of PbO—B 2 O 3 —SiO 2 were measured to be kneaded by a three-roll mill to prepare a paste.
  • an acrylic resin BR-105 commercially available from Mitsubishi Rayon Co., Ltd.
  • an organic solvent diethylene glycol monoethyl ether acetate (reagent)
  • a glass frit of PbO—B 2 O 3 —SiO 2 1 part by weight of a glass frit of PbO—B 2 O 3 —SiO 2
  • the paste was screen-printed on a green sheet, which contained a glass frit of B 2 O 3 —SiO 2 —Al 2 O 3 and alumina powder, by means of a plate having a line width of 150 ⁇ m, to be dried.
  • the same five screen-printed sheets were prepared to be stacked to be pressed while being heated. Thereafter, the pressed sheets were fired at 800° C. for 30 minutes.
  • the evaluation of a sintered body thus obtained was carried out by observing bulging and broken portions thereof.
  • the maximum coefficient of thermal expansion was 0.35% at 250° C., and no heating peak appeared as shown in FIGURE.
  • the ignition loss was 0.86%
  • the BET specific surface area was 0.26 m 2 /g
  • the tap density was 4.0 g/cm 3 .
  • the sintered body had no bulging and broken portions.
  • the axis of ordinates indicates the difference in temperature between a sample to be measured and a standard sample as a heating value by the electromotive force (pV) of thermocouple.
  • Example 1 With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 250° C. for two hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • the maximum coefficient of thermal expansion was 0.12% at 170° C., and no heating peak appeared.
  • the ignition loss was 0.53%
  • the BET specific surface area was 0.22 m 2 /g
  • the tap density was 5.1 g/cm 3 .
  • the sintered body had no bulging and broken portions.
  • aqueous silver ammine complex solution To 3600 ml of an aqueous solution containing 12 g/l silver nitrate as silver ions, 140 ml of industrial aqueous ammonia was added to form an aqueous silver ammine complex solution. To the aqueous silver ammine complex solution thus formed, 17 ml of a solution containing 60% of hydrazine serving as a reducing agent was added to the solution. Immediately thereafter, 0.2 g of oleic acid serving as a dispersing agent was added to the solution to obtain a silver slurry. Then, the silver slurry thus obtained was filtered, washed with water, and dried to obtain a silver powder. Then, the silver powder thus obtained was heat-treated at 150° C. for 6 hours in the atmosphere.
  • the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • the maximum coefficient of thermal expansion was 0.04% at 160° C., and no heating peak appeared.
  • the ignition loss was 0.21%
  • the BET specific surface area was 0.89 m 2 /g
  • the tap density was 2.5 g/cm 3 .
  • the sintered body had no bulging and broken portions.
  • the ignition loss was 0.68%
  • the BET specific surface area was 0.25 m 2 /g
  • the tap density was 5.4 g/cm 3 .
  • the maximum coefficient of thermal expansion reached 4.7% at 290° C.
  • a heating peak having a heating peak temperature of 218.4° C. appeared as shown in FIGURE.
  • the sintered body had bulging and broken portions.
  • Example 1 With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 100° C. for twenty hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • the ignition loss was 0.67%
  • the BET specific surface area was 0.27 m 2 /g
  • the tap density was 5.6 g/cm 3 .
  • the maximum coefficient of thermal expansion reached 3.8% at 290° C., and a heating peak having a heating peak temperature of 217.4° C. appeared.
  • the sintered body had bulging and broken portions.
  • Example 1 With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 450° C. for two hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • the maximum coefficient of thermal expansion was 0.01% at 150° C., and no heating peak appeared.
  • the ignition loss was 0.13%
  • the BET specific surface area was 0.06 m 2 /g
  • the tap density was 4.6 g/cm 3 .
  • the evaluation of the sintered body was not carried out.

Abstract

After a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction, the silver particles are dried to obtain a silver powder which is heat-treated at a temperature of higher than 100° C. and lower than 400° C. The silver powder thus heat-treated has a maximum coefficient of thermal expansion of not greater than 1.5% at a temperature of 50° C. to 800° C., and has no heating peak when the silver powder is heated from 50° C. to 800° C. The silver powder has an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C. The silver powder has a tap density of not less than 2 g/cm3 and a BET specific surface area of not greater than 5 m2/g.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to a silver powder and a method for producing the same. More specifically, the invention relates to a silver powder for a conductive paste for use in electronic parts, such as internal electrodes of multilayer capacitors, and conductive patterns of circuit boards, and a method for producing the same.
  • 2. Description of the Prior Art
  • In order to form electrodes of hybrid ICs, multilayer ceramic capacitors, chip resistors and so forth, cermet type conductive pastes (or conductive pastes of a type to be fired) have been used. A typical cermet type paste includes a silver powder, a vehicle containing ethyl cellulose or acrylic resin dissolved in an organic solvent, a glass frit, an inorganic oxide, an organic solvent, a dispersing agent and so forth as components. The cermet type paste is formed by dipping or printing so as to have a predetermined pattern, and then, fired to form a conductor. As a method for producing such a silver powder for a conductive paste, there is known a wet reduction process for adding a reducing agent to a water reaction system, which contains silver ions, to deposit silver particles by reduction (see, e.g., Japanese Patent Laid-Open No. 8-176620).
  • However, there are some cases where a silver powder produced by a conventional wet reduction process contains impurities due to entrainment of reacting mother liquor during reduction. Therefore, if a paste containing such a silver powder is used for forming a conductor, there are some cases where the conductor is bulged and/or broken due to volatilization of gas components and so forth during firing.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to eliminate the aforementioned problems and to provide a silver powder used for forming a paste which is capable of being fired to form a conductor having no bulging and broken portions, and a method for producing the same.
  • In order to accomplish the aforementioned and other objects, the inventors have diligently studied and found that, if a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction to obtain a silver powder by drying and if the silver powder thus obtained is heat-treated at a temperature of higher than 100° C. and lower than 400° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150 to 250° C., to be used for forming a paste which is fired to form a conductor, it is possible to obtain a conductor having no bulging and broken portions. Thus, the inventors have made the present invention.
  • According one aspect of the present invention, there is provided a method for producing a silver powder, the method comprising the steps of: preparing a water reaction system containing silver ions; adding a reducing agent to the water reaction system containing silver ions to deposit silver particles by reduction; drying the silver particles to produce a silver powder; and heat-treating the silver powder at a temperature which is higher than 100° C. and which is lower than400° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150 to 250° C. In this method for producing a silver powder, a dispersing agent is preferably added to a slurry-like reaction system before or after the deposition of the silver particles. The dispersing agent is preferably at least one selected from the group consisting of fatty acids, fatty acid salts, surface active agents, organic metals, chelating agents and protective colloids. The reducing agent is preferably at least one selected from the group consisting of ascorbic acid, alkanol amine, hydroquinone, hydrazine and formalin. The reducing agent is preferably added at a rate of not lower than 1 equivalent/minute with respect to the content of silver in the water reaction system containing silver ions.
  • According to another aspect of the present invention, there is provided a silver powder which has a maximum coefficient of thermal expansion of not greater than 1.5%, preferably not greater than 1.0% and more preferably not greater than 0.5%, at a temperature of 50° C. to 800° C., and an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C. The silver powder preferably has no heating peak when the silver powder is heated from 50° C. to 800° C. Preferably, the silver powder has a tap density of not less than 2 g/cm3, and a BET specific surface area of not greater than 5 m2/g.
  • According to the present invention, it is possible to produce a silver powder used for forming a paste which is capable of being fired to form a conductor having no bulging and broken portions.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIGURE is a graph showing the variations in heating value as DTA curves with respect to temperature in Example 1 and Comparative Example 1.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In a preferred embodiment of a method for producing a silver powder according to the present invention, after a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction, the silver particles are dried to obtain a silver powder, and then, the silver powder thus obtained is heat-treated at a temperature of higher than 100° C. and lower than 400 ° C., preferably at a temperature of 120 to 300° C. and more preferably at a temperature of 150to 250° C. If the heat treatment is not carried out or if the heat treating temperature is not higher than 100° C., the coefficient of thermal expansion of the silver powder increases, so that the silver powder has a heating peak. If a paste containing such a silver powder is used for forming a conductor, volatilization of gas components and so forth are caused during firing, so that the conductor is bulged and/or broken. On the other hand, if the heat treating temperature is not lower than 400° C., an agglomerate silver powder is obtained, so that there is a problem in that a foil is formed during the preparation of a paste or the like. Furthermore, the heat treatment can be carried out in the atmosphere, or in vacuum, or in an atmosphere of an inert gas such as nitrogen or argon gas. It is required to control the heat treating time in accordance with the heat treating temperature and characteristics of the silver powder.
  • As the water reaction system containing silver ions, an aqueous solution or slurry containing silver nitrate, a silver salt complex or a silver intermediate may be used. The silver salt complex may be produced by adding aqueous ammonia, an ammonium salt, a chelate compound or the like. The silver intermediate may be produced by adding sodium hydroxide, sodium chloride, sodium carbonate or the like. Among them, an ammine complex obtained by adding aqueous ammonia to an aqueous silver nitrate solution is preferably used so that the silver powder has an appropriate particle diameter and a spherical shape. Since the coordination number of the ammine complex is 2, 2 mol or more of ammonia per 1 mol of silver is added.
  • The reducing agent maybe selected from ascorbic acid, sulfites, alkanolamine, aqueous hydrogen peroxide, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, sodium borohydride, hydrazine, hydrazine compounds, hydroquinone, pyrogallol, glucose, gallate, formalin, exsiccated sodium sulfate, and rongalite. Among them, the reducing agent is preferably one or more selected from the group consisting of ascorbic acid, alkanol amine, hydroquinone, hydrazine and formalin. If these reducing agents are used, it is possible to obtain silver particles having appropriate particle diameters.
  • The reducing agent is preferably added at a rate of 1 equivalent/minute or more in order to prevent the aggregation of the silver powder. Although the reason for this is not clear, it is considered that, if the reducing agent is added in a short time, the deposition of silver particles by reduction is caused all at once to complete reduction in a short time, so that it is difficult to cause the aggregation of produced nuclei, thereby improving dispersibility. Therefore, the time to add the reducing agent is preferably shorter. When reduction is carried out, the solution to be reacted is preferably agitated so as to complete the reaction in a shorter time.
  • In order to further improve dispersibility, a dispersing agent is preferably added to a slurry-like reaction system before or after the deposition of silver particles. The dispersing agent is preferably one or more selected from the group consisting of fatty acids, fatty acid salts, surface active agents, organic metals, chelating agents and protective colloids.
  • Examples of fatty acids include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linolic acid, and arachidonic acid.
  • Examples of fatty acid salts include salts formed by fatty acids and metals, such as lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver and copper.
  • Examples of surface active agents include: anionic surface active agents, such as alkyl benzene sulfonates and polyoxyethylene alkyl ether phosphates; cationic surface active agents, such as aliphatic quaternary ammonium salts; amphoteric surface active agents, such as imidazolinium betaine; and nonionic surface active agents, such as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters.
  • Examples of organic metals include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethyl indium, triethyl gallium, trimethyl indium, trimethyl gallium, monobutyl tin oxide, tetraisocyanate silane, tetramethyl silane, tetramethoxy silane, polymethoxy siloxane, monomethyl triisocyanate silane, silane coupling agent, titanate coupling agents, and aluminum coupling agents.
  • Examples of chelating agents include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4-triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H-1,2,3,4-tetrazole, 1,2,3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4-tetrazole, 1,2,3,5-oxatriazole, 1,2,3,5-thiatriazole, indazole, benzoimidazole, benzotriazole and salts thereof, and oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, didodecanoic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, glycolicacid, lacticacid, hydroxy butyric acid, glyceric acid, tartaric acid, malic acid, tartronic acid, hydracrylic acid, mandelic acid, citric acid and ascorbic acid.
  • Examples of protective colloids include gelatin, albumin, gum arabic, protarbic acid and lysalbic acid.
  • By the above described preferred embodiment of a method for producing a silver powder according to the present invention, it is possible to produce a silver powder which has a maximum coefficient of thermal expansion of not greater than 1.5%, preferably not greater than 1.0% and more preferably not greater than 0.5%, at a temperature of 50° C. to 800° C., and which has no heating peak when the silver powder is heated from 50° C. to 800° C., the silver powder having an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C., and the silver powder having a tap density of not less than 2 g/cm3 and a BET specific surface area of not greater than 5 m2/g.
  • If such a silver powder is used for forming a paste to be fired to form a conductor, it is possible to decrease the expansion of the conductor due to volatilization of volatile components, and it is possible to decrease the sudden heating due to heating components, so that it is possible to form a conductor having no bulging and/or broken portions. If the silver powder has a spherical shape, the silver powder can be suitably used for carrying out a photosensitive paste method. In addition, if the silver powder has an undecided shape or a flake shape, there is a disadvantage in that the photosensitive characteristics of the silver powder are not good since the irregular reflection and/or scattering of ultraviolet rays is caused. However, if the silver powder has a spherical shape, the silver powder is also suitably used for carrying out a printing or transferring method. Moreover, if the tap density is less than 2 g/cm3, the aggregation of particles of the silver powder is violently caused, so that it is difficult to form a fine line even if anyone of the above described methods is used. If the BET specific surface area is greater than 5 m2/g, the viscosity of the paste is too high, so that workability is not good.
  • Examples of a silver powder and a method for producing the same according to the present invention will be described below in detail.
  • EXAMPLE 1
  • To 3600 ml of an aqueous solution containing 12 g/l silver nitrate as silver ions, 180 ml of industrial aqueous ammonia was added to form an aqueous silver ammine complex solution. To the aqueous silver ammine complex solution thus formed, 1 g of sodium hydroxide was added to control the pH of the solution. Then, 192 ml of industrial formalin serving as a reducing agent was added to the solution in 5 seconds. Immediately thereafter, 0.1 g of stearic acid was added to the solution to obtain a silver slurry. Then, the silver slurry thus obtained was filtered, washed with water, and dried to obtain a silver powder. Then, the silver powder thus obtained was heat-treated at 150° C. for 6 hours in the atmosphere.
  • The coefficient of thermal expansion, heating value, ignition loss, BET specific surface area and tap density of the silver powder thus obtained were measured. In addition, the sintered body prepared using a paste containing the silver power was evaluated. Furthermore, it was confirmed by a scanning electron microscope (SEM) that the silver powders obtained in this example and in examples and comparative examples 1 and 2 described later were silver powders.
  • By means of a thermal expansion coefficient measuring apparatus (DILATO METAER 5000 produced by MAC SCIENCE/BRUKER axs), the coefficient of thermal expansion was obtained from the following expression on the basis of the length of a pellet-like sample of silver powder having a diameter of 5 mm, which was uniaxially formed by applying a pressure of 250 kg/cm2 to the silver powder in a die, when the sample was heated from 50° C. to 800° C. at a temperature rising rate of 10° C./minute:
    Coefficient (%) of Thermal Expansion at T° C.=(L T −L 50)/L 50×100
    wherein L50 and LT are lengths (mm) of the pellet-like sample of silver powder when the temperature of the sample is 50° C. and T° C., respectively.
  • By means of a heating value measuring apparatus (TG-DTA 2000 Measuring Apparatus produced by MAC SCIENCE/BRUKER axs), the measurement of the heating value of the silver powder was carried out by measuring a heating value when 20±1 mg of the sample of silver powder put on a pan (an alumina measuring pan produced by Rigaku Co., Ltd.) was heated from 50° C. to 800° C. at a temperature rising rate of 10° C./minute in the atmosphere (no ventilation). Furthermore, 20.0 mg of alumina was used as a standard sample, and the heating peak temperature was obtained by analysis using software attached to the measuring apparatus.
  • After 2 g of the sample of silver powder was weighted (w1) to be put in a ceramic melting pot to be ignited for 30 minutes until the weight of the sample was constant at 800  C., the sample was cooled to be weighted (w2). Then, the ignition loss was obtained from the following expression.
    Ignition Loss (%)=(w1−w2)/ 1 1×100
  • The evaluation of the sintered body was carried out as follows. First, 84 parts by weight of the silver powder, 6 parts by weight of an acrylic resin (BR-105 commercially available from Mitsubishi Rayon Co., Ltd.), 9 parts by weight of an organic solvent (diethylene glycol monoethyl ether acetate (reagent)), and 1 part by weight of a glass frit of PbO—B2O3—SiO2 were measured to be kneaded by a three-roll mill to prepare a paste. Then, the paste was screen-printed on a green sheet, which contained a glass frit of B2O3—SiO2—Al2O3 and alumina powder, by means of a plate having a line width of 150 μm, to be dried. The same five screen-printed sheets were prepared to be stacked to be pressed while being heated. Thereafter, the pressed sheets were fired at 800° C. for 30 minutes. The evaluation of a sintered body thus obtained was carried out by observing bulging and broken portions thereof.
  • As a result, the maximum coefficient of thermal expansion was 0.35% at 250° C., and no heating peak appeared as shown in FIGURE. The ignition loss was 0.86%, the BET specific surface area was 0.26 m2/g, and the tap density was 4.0 g/cm3. The sintered body had no bulging and broken portions. Furthermore, in FIGURE, the axis of ordinates indicates the difference in temperature between a sample to be measured and a standard sample as a heating value by the electromotive force (pV) of thermocouple.
  • EXAMPLE 2
  • With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 250° C. for two hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • As a result, the maximum coefficient of thermal expansion was 0.12% at 170° C., and no heating peak appeared. The ignition loss was 0.53%, the BET specific surface area was 0.22 m2/g, and the tap density was 5.1 g/cm3. The sintered body had no bulging and broken portions.
  • EXAMPLE 3
  • To 3600 ml of an aqueous solution containing 12 g/l silver nitrate as silver ions, 140 ml of industrial aqueous ammonia was added to form an aqueous silver ammine complex solution. To the aqueous silver ammine complex solution thus formed, 17 ml of a solution containing 60% of hydrazine serving as a reducing agent was added to the solution. Immediately thereafter, 0.2 g of oleic acid serving as a dispersing agent was added to the solution to obtain a silver slurry. Then, the silver slurry thus obtained was filtered, washed with water, and dried to obtain a silver powder. Then, the silver powder thus obtained was heat-treated at 150° C. for 6 hours in the atmosphere.
  • With respect to the silver powder thus obtained, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • As a result, the maximum coefficient of thermal expansion was 0.04% at 160° C., and no heating peak appeared. The ignition loss was 0.21%, the BET specific surface area was 0.89 m2/g, and the tap density was 2.5 g/cm3. The sintered body had no bulging and broken portions.
  • COMPARATIVE EXAMPLE 1
  • With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was not carried out, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • As a result, the ignition loss was 0.68%, the BET specific surface area was 0.25 m2/g, and the tap density was 5.4 g/cm3. However, the maximum coefficient of thermal expansion reached 4.7% at 290° C., and a heating peak having a heating peak temperature of 218.4° C. appeared as shown in FIGURE. In addition, the sintered body had bulging and broken portions.
  • COMPARATIVE EXAMPLE 2
  • With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 100° C. for twenty hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • As a result, the ignition loss was 0.67%, the BET specific surface area was 0.27 m2/g, and the tap density was 5.6 g/cm3. However, the maximum coefficient of thermal expansion reached 3.8% at 290° C., and a heating peak having a heating peak temperature of 217.4° C. appeared. In addition, the sintered body had bulging and broken portions.
  • COMPARATIVE EXAMPLE 3
  • With respect to a silver powder obtained by the same method as that in Example 1, except that the heat treatment was carried out at 450° C. for two hours, the coefficient of thermal expansion, ignition loss, heating value, BET specific surface area and tap density of the silver powder were measured by the same methods as those in Example 1, and the sintered body was evaluated by the same method as that in Example 1.
  • As a result, the maximum coefficient of thermal expansion was 0.01% at 150° C., and no heating peak appeared. The ignition loss was 0.13%, the BET specific surface area was 0.06 m2/g, and the tap density was 4.6 g/cm3. However, since a large amount of foil was produced during the kneading by a three-roll mill, the evaluation of the sintered body was not carried out.
  • Furthermore, it was confirmed by SEM that the heat-treated silver powder was a sintered body, so that it was not possible to confirm the shape of the silver powder.
  • These results are shown in Table.
    TABLE
    Maximum Spe-
    Coef of Heating Igni- cific Shape
    Thermal Peak tion Surface Tap of
    Expansion Temp. Loss Area Density Silver
    (%) (° C.) (%) (m2/g) (g/cm3) Powder
    Ex. 1 0.35 0.86 0.26 4.0 sphere
    Ex. 2 0.12 0.53 0.22 4.1 sphere
    Ex. 3 0.04 0.21 0.89 2.5 sphere
    Comp. 1 4.7 218.4 0.68 0.25 5.4 sphere
    Comp. 2 3.8 217.4 0.67 0.27 5.6 sphere
    Comp. 3 0.01 0.13 0.06 4.6 sintered

Claims (8)

1. A method for producing a silver powder, said method comprising the steps of:
preparing a water reaction system containing silver ions;
adding a reducing agent to said water reaction system containing silver ions to deposit silver particles by reduction;
drying said silver particles to produce a silver powder; and
heat-treating said silver powder at a temperature which is higher than 100° C. and which is lower than 400° C.
2. A method for producing a silver powder as set forth in claim 1, wherein a dispersing agent is added to a slurry-like reaction system before or after said silver particles are deposited.
3. A method for producing a silver powder as set forth in claim 2, wherein said dispersing agent is at least one selected from the group consisting of fatty acids, fatty acid salts, surface active agents, organic metals, chelating agents and protective colloids.
4. A method for producing a silver powder as set forth in claim 1, wherein said reducing agent is at least one selected from the group consisting of ascorbic acid, alkanol amine, hydroquinone, hydrazine and formalin.
5. A method for producing a silver powder as set forth in claim 1, wherein said reducing agent is added at a rate of not lower than 1 equivalent/minute with respect to the content of silver in said water reaction system containing silver ions.
6. A silver powder which has a maximum coefficient of thermal expansion of not greater than 1.5% at a temperature of 50° C. to 800° C., and an ignition loss of not greater than 1.0% when said silver powder is ignited until the weight of the silver powder is constant at 800° C.
7. A silver powder as set forth in claim 6, which has no heating peak when the silver powder is heated from 50° C. to 800° C.
8. A silver powder as set forth in claim 6, which has a tap density of not less than 2 g/cm3, and a BET specific surface area of not greater than 5 m2/g.
US11/285,140 2004-11-25 2005-11-21 Silver powder and method for producing same Active 2026-11-27 US8282702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/468,468 US8992701B2 (en) 2004-11-25 2012-05-10 Silver powder and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-340789 2004-11-25
JP2004340789A JP5028695B2 (en) 2004-11-25 2004-11-25 Silver powder and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/468,468 Division US8992701B2 (en) 2004-11-25 2012-05-10 Silver powder and method for producing same

Publications (2)

Publication Number Publication Date
US20060107791A1 true US20060107791A1 (en) 2006-05-25
US8282702B2 US8282702B2 (en) 2012-10-09

Family

ID=36127299

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/285,140 Active 2026-11-27 US8282702B2 (en) 2004-11-25 2005-11-21 Silver powder and method for producing same
US13/468,468 Active US8992701B2 (en) 2004-11-25 2012-05-10 Silver powder and method for producing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/468,468 Active US8992701B2 (en) 2004-11-25 2012-05-10 Silver powder and method for producing same

Country Status (8)

Country Link
US (2) US8282702B2 (en)
EP (1) EP1666174B1 (en)
JP (1) JP5028695B2 (en)
KR (1) KR101141839B1 (en)
CN (2) CN1781630B (en)
AT (1) ATE480350T1 (en)
DE (1) DE602005023402D1 (en)
TW (1) TWI367137B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001328A1 (en) * 2006-02-02 2009-01-01 Takuya Konno Paste for Solar Cell Electrode and Solar Cell
US20100006002A1 (en) * 2007-01-09 2010-01-14 Kimitaka Sato Silver fine powder, process for producing the same, and ink
US20100038603A1 (en) * 2007-01-09 2010-02-18 Kimitaka Sato Silver particle dispersion liquid and process for producing the same
US20110171471A1 (en) * 2008-08-29 2011-07-14 Liles Donald T Metallized Particles Formed From A Dispersion
EP2610023A1 (en) * 2010-08-27 2013-07-03 DOWA Electronics Materials Co., Ltd. Low-temperature sinterable silver nanoparticle composition and electronic component formed using that composition
CN103350235A (en) * 2013-07-16 2013-10-16 宁波晶鑫电子材料有限公司 Method for preparing high-brightness silver powder for contact adhesion
CN104289726A (en) * 2014-09-25 2015-01-21 中国船舶重工集团公司第七一二研究所 Method for preparing high-specific-surface-area cotton-shaped super-fine silver powder and silver powder prepared with method
CN104885576A (en) * 2012-12-31 2015-09-02 阿莫绿色技术有限公司 Flexible printed circuit board and method for manufacturing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 High crystal silver powder and method for producing the high crystal silver powder
KR101061841B1 (en) 2009-01-13 2011-09-05 충남대학교산학협력단 Method for producing monodisperse spherical silver powder by chemical reduction method
JP5556561B2 (en) * 2010-10-06 2014-07-23 住友金属鉱山株式会社 Silver powder and method for producing the same
WO2012102304A1 (en) * 2011-01-26 2012-08-02 ナミックス株式会社 Electroconductive paste and method for manufacturing same
JP6174301B2 (en) * 2011-03-28 2017-08-02 Dowaエレクトロニクス株式会社 Silver powder and conductive paste
TWI525641B (en) * 2011-06-21 2016-03-11 Sumitomo Metal Mining Co Silver powder and its manufacturing method
JP5872440B2 (en) * 2012-02-13 2016-03-01 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
JP2012153979A (en) * 2012-04-02 2012-08-16 Dowa Holdings Co Ltd Silver powder and method for production thereof
KR101558462B1 (en) * 2012-10-30 2015-10-13 가켄 테크 가부시키가이샤 Conductive paste and die bonding method
JP6404554B2 (en) * 2013-10-03 2018-10-10 住友金属鉱山株式会社 Silver powder manufacturing method
WO2017110255A1 (en) * 2015-12-25 2017-06-29 株式会社ノリタケカンパニーリミテド Silver powder, silver paste, and use therefor
CN105869775A (en) * 2016-05-13 2016-08-17 浙江光达电子科技有限公司 Method for preparing spherical silver powder for silver paste on front of solar cell
CN105880626A (en) * 2016-05-13 2016-08-24 浙江光达电子科技有限公司 Preparation method of sphere-like shaped superfine silver powder for front silver paste of solar cell
CN107983946B (en) * 2016-10-26 2019-12-06 中国科学院苏州纳米技术与纳米仿生研究所 Method for reducing specific surface area of silver powder
CN107457411B (en) * 2017-06-15 2019-02-05 昆明理工大学 A method of preparing super fine silver powder
CN110364285B (en) * 2019-07-09 2021-02-12 湖南省国银新材料有限公司 RFID electronic paste capable of being rapidly cured at low temperature and preparation method thereof
CN111889695A (en) * 2020-07-15 2020-11-06 善日(嘉善)能源科技有限公司 Preparation method of micro-nano silver powder with controllable particle size

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
US6110254A (en) * 1999-02-24 2000-08-29 The United States Of America As Represented By The Secretary Of Commerce Method for chemical precipitation of metallic silver powder via a two solution technique
US20050167640A1 (en) * 2004-02-03 2005-08-04 Dowa Mining Co., Ltd. Silver powder and method for producing same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280308A (en) 1986-05-30 1987-12-05 Mitsui Mining & Smelting Co Ltd Production of fine silver-palladium alloy power
US5045141A (en) * 1988-07-01 1991-09-03 Amoco Corporation Method of making solderable printed circuits formed without plating
JPH04269403A (en) 1991-02-25 1992-09-25 Nec Kagoshima Ltd Conductive paste
JPH05239502A (en) * 1992-02-28 1993-09-17 Daido Steel Co Ltd Treatment of metallic flake
JP4012960B2 (en) * 1996-09-12 2007-11-28 Dowaエレクトロニクス株式会社 Silver powder manufacturing method
JP4025839B2 (en) * 1996-09-12 2007-12-26 Dowaエレクトロニクス株式会社 Silver powder and method for producing silver powder
JPH10183209A (en) * 1996-12-25 1998-07-14 Sumitomo Metal Mining Co Ltd Production of scaly silver powder
JPH11177240A (en) * 1997-12-11 1999-07-02 Taiyo Yuden Co Ltd Manufacture of ceramic laminating body
JP3457879B2 (en) * 1998-02-25 2003-10-20 石福金属興業株式会社 Method for producing spherical platinum powder for use in platinum paste
JP3751154B2 (en) * 1998-10-22 2006-03-01 同和鉱業株式会社 Silver powder manufacturing method
JP2000160212A (en) * 1998-11-27 2000-06-13 Mitsuboshi Belting Ltd Production of metallic fine particle-titania composite body
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP4639395B2 (en) 2001-08-09 2011-02-23 Dowaエレクトロニクス株式会社 Method for producing silver particles
JP2003306701A (en) * 2002-04-19 2003-10-31 Mitsui Mining & Smelting Co Ltd Silver powder with heat resistant metal layer, silver paste using the silver powder, and wiring board obtained by using the silver paste
JP2004323866A (en) * 2003-04-21 2004-11-18 Murata Mfg Co Ltd Method for manufacturing nickel powder, and nickel powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
US6110254A (en) * 1999-02-24 2000-08-29 The United States Of America As Represented By The Secretary Of Commerce Method for chemical precipitation of metallic silver powder via a two solution technique
US20050167640A1 (en) * 2004-02-03 2005-08-04 Dowa Mining Co., Ltd. Silver powder and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648730B2 (en) * 2006-02-02 2010-01-19 E.I. Du Pont De Nemours And Company Paste for solar cell electrode and solar cell
US7767254B2 (en) 2006-02-02 2010-08-03 E. I. Du Pont De Nemours And Company Paste for solar cell electrode and solar cell
US20090001328A1 (en) * 2006-02-02 2009-01-01 Takuya Konno Paste for Solar Cell Electrode and Solar Cell
US20100006002A1 (en) * 2007-01-09 2010-01-14 Kimitaka Sato Silver fine powder, process for producing the same, and ink
US20100038603A1 (en) * 2007-01-09 2010-02-18 Kimitaka Sato Silver particle dispersion liquid and process for producing the same
US7981326B2 (en) * 2007-01-09 2011-07-19 Dowa Electronics Materials Co., Ltd. Silver fine powder, process for producing the same, and ink
US8003019B2 (en) * 2007-01-09 2011-08-23 Dowa Electronics Materials Co., Ltd. Silver particle dispersion ink
US8715828B2 (en) * 2008-08-29 2014-05-06 Dow Corning Corporation Emulsion of metallized particles comprising a compound having a pendant Si-H group
US20110171471A1 (en) * 2008-08-29 2011-07-14 Liles Donald T Metallized Particles Formed From A Dispersion
EP2610023A1 (en) * 2010-08-27 2013-07-03 DOWA Electronics Materials Co., Ltd. Low-temperature sinterable silver nanoparticle composition and electronic component formed using that composition
EP2610023A4 (en) * 2010-08-27 2015-07-22 Dowa Electronics Materials Co Low-temperature sinterable silver nanoparticle composition and electronic component formed using that composition
CN104885576A (en) * 2012-12-31 2015-09-02 阿莫绿色技术有限公司 Flexible printed circuit board and method for manufacturing same
US20150359106A1 (en) * 2012-12-31 2015-12-10 Amogreentech Flexible printed circuit board and method for manufacturing same
US9648753B2 (en) * 2012-12-31 2017-05-09 Amogreentech Co., Ltd. Flexible printed circuit board and method for manufacturing same
CN103350235A (en) * 2013-07-16 2013-10-16 宁波晶鑫电子材料有限公司 Method for preparing high-brightness silver powder for contact adhesion
CN104289726A (en) * 2014-09-25 2015-01-21 中国船舶重工集团公司第七一二研究所 Method for preparing high-specific-surface-area cotton-shaped super-fine silver powder and silver powder prepared with method

Also Published As

Publication number Publication date
ATE480350T1 (en) 2010-09-15
EP1666174A2 (en) 2006-06-07
EP1666174B1 (en) 2010-09-08
TW200626262A (en) 2006-08-01
CN101513671A (en) 2009-08-26
CN1781630B (en) 2010-08-04
TWI367137B (en) 2012-07-01
CN101513671B (en) 2010-12-08
US20120219453A1 (en) 2012-08-30
CN1781630A (en) 2006-06-07
JP5028695B2 (en) 2012-09-19
KR20060058655A (en) 2006-05-30
JP2006152327A (en) 2006-06-15
KR101141839B1 (en) 2012-05-07
US8282702B2 (en) 2012-10-09
US8992701B2 (en) 2015-03-31
EP1666174A3 (en) 2006-09-13
DE602005023402D1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US8282702B2 (en) Silver powder and method for producing same
KR101345441B1 (en) Spherical silver powder and method for producing same
US20050257643A1 (en) Spherical silver powder and method for producing same
CN1950162B (en) Flaky copper powder, process for producing the same, and conductive paste
JP5098098B2 (en) Silver powder and method for producing the same
JP5872440B2 (en) Spherical silver powder and method for producing the same
JP2007270334A (en) Silver powder and its manufacturing method
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
KR101554580B1 (en) Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
JP5633045B2 (en) Silver powder and method for producing the same
JP6129909B2 (en) Spherical silver powder and method for producing the same
JP2009231059A (en) Conductive ink for offset printing, and circuit pattern forming method using the same
JP2013206777A (en) Silver-coated flake-like glass powder and method of manufacturing the same
JP2012153979A (en) Silver powder and method for production thereof
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JP2018131666A (en) Tin coat copper powder, manufacturing method thereof and conductive paste

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOWA MINING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJINO, TAKATOSHI;OGI, KOZO;REEL/FRAME:017276/0544

Effective date: 20051111

AS Assignment

Owner name: DOWA HOLDINGS CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:DOWA MINING CO., LTD.;REEL/FRAME:020121/0161

Effective date: 20061002

Owner name: DOWA HOLDINGS CO., LTD.,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:DOWA MINING CO., LTD.;REEL/FRAME:020121/0161

Effective date: 20061002

AS Assignment

Owner name: DOWA ELECTRONICS MATERIALS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOWA HOLDINGS CO., LTD.;REEL/FRAME:020323/0715

Effective date: 20071210

Owner name: DOWA ELECTRONICS MATERIALS CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOWA HOLDINGS CO., LTD.;REEL/FRAME:020323/0715

Effective date: 20071210

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12