JPH0249390B2 - - Google Patents

Info

Publication number
JPH0249390B2
JPH0249390B2 JP59031389A JP3138984A JPH0249390B2 JP H0249390 B2 JPH0249390 B2 JP H0249390B2 JP 59031389 A JP59031389 A JP 59031389A JP 3138984 A JP3138984 A JP 3138984A JP H0249390 B2 JPH0249390 B2 JP H0249390B2
Authority
JP
Japan
Prior art keywords
plating
core material
electroless
solution
electroless nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59031389A
Other languages
Japanese (ja)
Other versions
JPS60177182A (en
Inventor
Hiroshi Kawakami
Shozo Takatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP3138984A priority Critical patent/JPS60177182A/en
Publication of JPS60177182A publication Critical patent/JPS60177182A/en
Publication of JPH0249390B2 publication Critical patent/JPH0249390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉粒状の芯材に無電解ニツケルメツキ
皮膜を形成させるに適した無電解ニツケルメツキ
液およびその液を用いた芯材に対する無電解ニツ
ケルメツキ方法に関する。 一般に、無電解メツキはその技術の進歩と用途
の開発によつて、今日では有機または無機の材質
を問わないことは勿論、その形状や大きさに関係
なく適用されている。とは云え多くの場合、基材
は板状または成型体が多く、粉末または粒状の芯
材についてはその用途開発が新しいだけに最近の
ことであつて、確立された製造方法はなく、僅か
に従来の一般的方法に従つて処理されているのが
現状である。 即ち、無電解メツキする場合通常、予め調製さ
れたメツキ液に被メツキ基材を浸漬して予め推測
により定められた時間反応させた後、反応を停止
させる方法がとられている。 被メツキ基材が粉末または粒状体についても、
上記と同様な方法が採られるが、この場合は速や
かにメツキ液に添加してメツキを施し、反応後は
メツキ液の過、急冷または希釈等の停止を行わ
なければならない。 基材が粉粒体(粉末または粒状体)である場合
は他の基材に比して著しく比表面積が大きいため
メツキ反応速度が異常に速い。 従つてメツキ液のPHや各成分の変動も激しいの
でPHの調節や各成分の補給によりメツキ液を安定
に保持することは極めて困難であるのみならず、
その度にメツキ速度も不定となる。 他方、粉粒体を一挙によくメツキ液に投入でき
れば問題はないが時間をかけて投入した場合始め
と終りとではメツキ皮膜の膜厚に差が生じ不均一
となる。 特に、粉粒体をメツキする場合に問題なのは凝
集した二次粒子にメツキ皮膜が施されるとその使
用に際して、二次粒子が壊われて未被覆面の露出
による被覆の欠陥が現われる。 従つて粉粒体をメツキする場合には可能な限
り、二次粒子の少ない状態によく分散したものに
メツキ皮膜を施すことが最も重要なことになる
が、従来の方法では全く期待できないものであつ
た。 このような粉粒体の微細粒子をメツキするに際
して上記の事実を鑑み、本発明者は、先に粉粒状
芯材に無電解メツキをする方法として該芯材を水
性懸濁体にして、これに無電解メツキ液を添加す
ることによりメツキ皮膜を付与させる方法を開発
し、既に特許出願している特開昭60−59070号公
報(特願昭58−166674号)。 他方、従来、無電解ニツケルメツキ液にはメツ
キ反応によつてNi++が水酸化物及び亜りん酸塩
を生成しないように錯化剤を液の必須薬剤として
使用しているが、このような錯化剤としてはクエ
ン酸、酒石酸、リンゴ酸、乳酸、グルコン酸また
はそれらの塩、エチレンジアミン、EDTA等の
カルボン酸またはその塩や代表的キレート剤を主
として用いている。また、他の薬剤、例えばPH調
整剤や反応促進剤としても酢酸、プロピオン酸、
酪酸、コハク酸あるいは硼酸等が使用されてい
る。 従つて、かかる薬剤を用いる無電解ニツケルメ
ツキ液においては次のような問題点: (1) メツキ老化液中のCODおよびBOD濃度が高
いため廃水処理が複雑、かつコストが増大す
る; (2) ニツケル1モルを還元するために還元剤とし
ての次亜リン酸アルカリを3モル消費する; (3) メツキ皮膜のニツケル中にリンを約4%以上
含有するため、電気抵抗が純ニツケルの3倍以
上となる 等があつた。 このようなことから、本発明者らは更にニツケ
ルメツキ方法を改善すべく鋭意研究していたとこ
ろ、芯材に対してメツキ液を添加方式で行う場合
には錯化剤は従来のような強力なものでなくとも
充分であり、むしろ弱い錯化剤の方が総合的にす
ぐれていることを知見するに到り、本発明を完成
した。 すなわち、本発明は少なくともニツケル塩、還
元剤、PH調整剤および錯化剤から組成される無電
解ニツケルメツキ液において、錯化剤としてアン
モニアを用いてなる無電解ニツケル液に関し、更
に、本発明は芯材に無電解メツキするに当り、芯
材を分散させた水性懸濁体に少なくともニツケル
塩、還元剤、PH調整剤および錯化剤としてアンモ
ニアからなる無電解メツキ液を制御して添加しな
がら、該芯材を無電解ニツケルメツキ処理するこ
とを特徴とするメツキ方法に関するものである。 本発明にかかる無電解ニツケルメツキ液は粉末
または粒状の芯材に対し専ら添加メツキ液として
使用しうるものであつて、建浴して従来のように
被メツキ基材を浸漬する場合のメツキ液には適さ
ない。 メツキ液を組成する各薬剤について説明する
と、ニツケル塩としては硫酸ニツケル、塩化ニツ
ケルなどであり、還元剤としては次亜リン酸ナト
リウム、次亜リン酸カリウムなどの次亜リン酸ア
ルカリを主として用い、他に硼酸水素アルカリ等
の還元剤であつてもよい。PH調整剤というのはメ
ツキ反応によつて反応系のPHが変化するのを予
め、または変化に応じて、メツキ反応系のPHを調
整する薬剤であり、水酸化ナトリウム、水酸化カ
リウム等の水酸化アルカリ、硫酸、塩酸の如き酸
性化剤を云い、更に本発明の特徴である錯化剤と
してアンモニアを用いることである。その他、必
要に応じてメツキ反応促進剤等の補助剤を用いて
も差支えない。また、ニツケルと合金を形成しう
る可溶性金属塩、例えば銅塩、コバルト塩、亜鉛
塩またはマンガン塩等を必要に応じ少量配合する
ことも差支えない。 このように、本発明にかかる無電解ニツケルメ
ツキ液は少なくともニツケル塩、次亜リン酸アル
カリの如き還元剤、PH調整剤およびアンモニア錯
化剤の各薬剤から組成される。 上記薬剤の配合割合は芯材の種類やメツキ反応
条件あるいはメツキ品の使用目的等によつて一様
ではないが、多くの場合、Ni:NH3:NaH2PO2
=1:1.5〜4:2.0〜2.5のモル比の割合でなけれ
ばならない。 この理由は、上記割合の範囲外の場合は還元力
が弱くなつてメツキ反応が不充分で沈殿物の発生
等が起つたり、経済的理由から不都合が生じるこ
とが多くなるからである。 なお、上記メツキ液濃度は従来のように建浴し
て使用するメツキ液ではないので、建浴の実用的
範囲にある必要はまつたくなく、上記配合割合に
あればメツキ液としての飽和濃度まで、あるいは
各薬剤の飽和濃度まで考慮されたもであつてもよ
く、濃度の限定は必要ではない。但し、薄い場合
は経済的ではないので、下限値は実用上の点から
自ずと限定されるべきである。 次に、本発明にかかる上記無電解ニツケルメツ
キ液を用いたメツキ方法について説明する。 本発明において、無電解メツキに供せられる基
材としての芯材というのは粉粒状を対象としその
粒子径は特に限定するのではなく、コロイド状微
粒子から数mm程度の粒子まで外観上粉末状態また
は粒状体のいずれでもよい。またその形状を顕微
鏡的観察によつて球状、板状、棒状、針状、中空
状または繊維状のいずれの形状であつてもよい。
要するに被メツキ基材が外観上粒状または粉状と
して扱われているものを芯材として対象とするも
のである。また芯材の材質は、有機質または無機
質を問わず無電解メツキ可能な材質は全て包含す
る。尤も、芯材は当然のことながら、実質的に水
不溶性または水難溶性でなければならない。ま
た、芯材は化学的に均一な組成であることを要し
ないのはもちろんであるが、それが結晶質または
非晶質のいずれであつてもよい。重要なことは、
芯の表面が化学的にメツキ液と反応して皮膜の形
成能あることであり、外観上、粉状ないし粒状で
あるということである。 かかる芯材を例示的に列挙すれば、無機芯材と
しては、金属粉末(合金も含む)、金属または非
金属の酸化物(含水物も含む)、アルミノ珪酸塩
を含む金属珪酸塩、金属炭化物、金属窒化物、金
属炭酸塩、金属硫酸塩、金属燐酸塩、金属硫化
物、金属酸塩、金属ハロゲン化物または炭素など
であり、有機芯材としては天然繊維、天然樹脂、
ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリスチレン、ポリブテン、ポリアミド、ポ
リアクリル酸エステル、ポリアクリルニトリル、
ポリアセタール、アイオノマー、ポリエステルな
どの熱可塑性樹脂、アルキツド樹脂、フエノール
樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、
シリコーン樹脂またはジアリルフタレート樹脂の
如き熱硬化性樹脂などがあげられる。それらは、
一種または二種以上の混合物であつてもよい。こ
の混合物というのは化学的に組成が不均質のもの
から芯材として混合物であるいずれの場合も含む
ものである。 かかる芯材表面上に無電解メツキするに当りま
ず、よく分散された水性懸濁体を調製する。ここ
に水性懸濁体というのは媒体が水は勿論であるが
実質的に、無電解メツキが生じない濃度の薄い無
電解メツキ液のいずれかが適当である。 水懸濁体の分散性は芯材の物性によつて異なる
ので、分散方法は適宜所望の手段、例えば、通常
撹拌から高速撹拌、あるいはコロイドミルまたは
ホモジナイザーの如きセン断分散装置を通過させ
たセン断分散、その他超音波分散などを用い、芯
材のアグロメレートをできるだけ除去した一次粒
子に近い分散状態の水性懸濁体を調製することが
望ましい。なお芯材を分散させるに際し例えば、
苛性アルカリ、珪酸ソーダ等のアルカリ、ポリリ
ン酸アルカリ、または界面活性剤などの分散剤を
必要に応じて用いることができる。水性懸濁体の
濃度は、特に限定する理由はないが、スラリー濃
度が低いとメツキ濃度が低下するので処理容量が
大となるから経済的でなく、また、逆にその濃度
が濃くなると芯材の分散性が悪くなるので芯材の
物性に応じ適宜所望のスラリー濃度に設定すれば
よいが、多くの場合50g/〜700g/、好まし
くは100g/〜500g/の範囲にある。またこ
の懸濁体中の芯材をメツキするに当り、メツキが
効果的に実施されるべく懸濁体の温度をメツキ可
能温度に予め調節しておくことが望ましい。 なお、これら芯材をメツキ処理するに当り、予
め洗浄、エツチング、増感および活性化処理など
芯材の物性に応じた前処理を施すことは云うまで
もない。この前処理も前記の如く水性懸濁体にし
て行うことが好ましいが、その他の方法で行つて
も差支えない。 例えば洗浄処理はアルカリ剤で行い増感処理は
可溶性第1錫塩水溶液にて行い、更に活性化処理
は可溶性パラジウム塩水溶液にて、それぞれ芯材
と接触処理することにより前処理すればよいが、
これらは既に公知のことであり、本発明において
格別の前処理を行う必要はない。 従つて水性懸濁体は、前処理操作の一部または
全部の操作の過程で調製する場合、予め何らかの
手段で前処理したものを水性懸濁体として調製す
るかまたは調製した水性懸濁体について前処理操
作を施し、次いでその懸濁体をメツキ処理に移行
させる場合など、前処理と懸濁体の調製との兼ね
合いで、幾つかの態様があげられるが、それは、
実際の操作と芯材との関係において適合した合理
的な態様を適宜選択して行えばよい。 かくして調製された水性懸濁体に無電解ニツケ
ルメツキ液を制御しながら添加する。懸濁体には
分散状態が保たれるよう、必要に応じた、撹拌、
超音波分散処理などを与えておくことが望まし
く、また温度も制御できるように設定しておくこ
とが望ましい。無電解ニツケルメツキ液は、水性
懸濁体に添加してその容量の大小に応じて稀釈さ
れるために、通常のメツキ液濃度の浴に被メツキ
基材を浸漬処理してメツキ操作を行うのと異な
り、通常のメツキ液濃度よりも濃い方がよい。 ここで無電解ニツケルメツキ液を制御しながら
添加するというのは液濃度と共に添加速度がメツ
キ反応に直接的に影響し、また、これらの要素は
芯材の物性特に表面特性にも著しく関係するので
これらの要素を十分に考慮した上で、メツキ皮膜
のむらの生じないよう均一かつ強固なメツキ皮膜
を形成させるためにメツキ液の添加速度を設定す
るということであり多くの場合徐々に添加する方
がよい。 また、このメツキ液の添加に当つては多くの場
合要すれば、水性懸濁体のPH調整のため、PH調整
剤は個別的かつ同時に添加することが望ましい。
この理由はメツキ液の添加によつてメツキ反応が
進行し、液中の次亜リン酸ナトリウムの如き還元
剤が酸化されるに従つて水素イオン濃度が増加
し、次第に水性懸濁体のPHが低下することによ
る。それ故、当初に設定したPHを一定に保持する
ためにメツキ液とPH調整剤とを上記の如く併行し
て添加するのがよい。添加方法はPH計をコントロ
ールしながら、添加する方法もよいが、還元剤の
酸化還元反応に見合つた量のアルカリ量を所定の
濃度にして添加することでもよい。 このようにして、無電解ニツケルメツキ液を水
性懸濁体に制御して添加することにより懸濁体中
で速やかなメツキ反応が生じ分散した芯材表面に
均一かつ強固なメツキ皮膜が形成されてゆく。従
つて、添加量に応じてメツキ皮膜の膜厚を調節す
ることができ、用途に応じて、添加量は設定すれ
ばよい。 なお、メツキ反応温度は50〜90℃の範囲が好ま
しい。 かくして、本発明にかかる方法によれば粉末ま
たは粒状の芯材について実質的に一次粒子に近い
状態で均一なメツキ皮膜を付与することができ、
またその膜厚は精度よく自由に設定することがで
きる。 他方、メツキ操作の面からみるとメツキ反応は
完全に停止するまで行われるのでメツキ薬剤を効
率よく使用できること、メツキ雰囲気が安定して
いるので各成分濃度の調節が不要であるのみなら
ずPHの変動も実質的に回避できそのための調整装
置も特に必要としないなど従来法に比べて数々の
利点があげられる。 特に、本発明にかかる無電解ニツケルメツキ浴
を用いることにより次のような利点があげられ
る。 (1) ニツケルを還元すべき次亜リン酸アルカリ等
の消費量が約20〜35%の範囲で節減でき、極め
て経済的であること; (2) メツキ条件にもよるがニツケル皮膜中の含リ
ン量が低下し、例えば約1.5%まで減少させる
ことができる。このことは純ニツケルの電気抵
抗が6×10-6Ωcm程度とすれば本発明にかかる
メツキ皮膜は13.5×10-6Ωcm程度となつて純ニ
ツケルのそれに近いメツキ皮膜となる; (3) 老化液中にはNa2SO4、NaHPO3あるいは
NH4OH等のみが存在することになるで苛性ア
ルカリによるNH3の分離、石膏または消石灰
等による亜リン酸カルシウムとしての分離等、
老化液の処理が効果的に行える; (4) メツキ液は高濃度で使用できるので、エネル
ギー消費量の削減および処理効率も高くなる 等メツキ方法と相俟つてすぐれたメツキ処理が期
待できる。 かくして、本発明にかかるメツキ方法で得られ
る無電解ニツケルメツキ品は例えば導電性顔料と
して塗料分野、あるいは電磁遮蔽用樹脂に添加す
る導電材、各種粉末冶金材料、その他複合材料、
触媒として有用である。 以下、実施例を掲げて本発明を具体的に説明す
る。 実施例 1〜5 真比重3.95、平均粒径5μmのα―Al2O3粉末
100gを濃度1g/の塩化第一錫および濃度1
ml/塩酸からなる増感剤1に添加して十分脱
アグロメレートするように分散させて約5分間増
感処理する。過、リパルプ、過した後0.1g/
の塩化パラジウムおよび0.1モル/の塩酸か
らなる活性化剤1に投入して同様に分散させて
約5分間撹拌浸漬後、過、リパルプ、過工程
をへて活性化処理を行なつた。 このように前処理を施したα―Al2O3の芯材を
6.7ml/(28%アンモニア水使用)アンモニア
水溶液200mlに投入してアグロメレートが実質的
にないように分散処理を施し、温度を65℃に加温
してアンモニアアルカリ性の水性懸濁体を調製し
た。 次いで第1表に示す無電解ニツケルメツキ液を
a液およびb液に分けて各aおよびb液1をそ
れぞれ50ml/分の添加速度で撹拌下の上記分散液
に添加した。 全量添加後、水素の発生が停止するまで65℃を
保持しながら撹拌を続けた。かくして、メツキ反
応によりα―Al2O3粒子表面に均一かつ強固なニ
ツケル皮膜を有する粒子を得た。
The present invention relates to an electroless nickel plating solution suitable for forming an electroless nickel plating film on a powdery core material, and a method for electroless nickel plating the core material using the solution. In general, due to advances in technology and development of applications, electroless plating is now applied regardless of the material, organic or inorganic, and regardless of its shape or size. However, in many cases, the base material is plate-shaped or molded, and the use of powdered or granular core materials has only recently been developed, and there is no established manufacturing method. Currently, it is processed according to conventional general methods. That is, when performing electroless plating, a method is generally used in which the substrate to be plated is immersed in a plating solution prepared in advance, allowed to react for a predetermined time, and then the reaction is stopped. Even if the base material to be plated is powder or granular,
The same method as above is used, but in this case, it must be added to the plating solution immediately to perform plating, and after the reaction, the plating solution must be stopped by filtering, quenching, diluting, etc. When the base material is a granular material (powder or granular material), the plating reaction rate is abnormally fast because the specific surface area is significantly larger than that of other base materials. Therefore, the PH of the plating solution and each component fluctuate drastically, so it is not only extremely difficult to maintain the plating solution stably by adjusting the PH and replenishing each component.
Each time, the plating speed becomes unstable. On the other hand, if the powder and granules can be added to the plating solution all at once, there is no problem, but if the powder is added over time, there will be a difference in the thickness of the plating film between the beginning and the end, resulting in non-uniformity. In particular, when plating powder or granules, a problem is that if a plating film is applied to aggregated secondary particles, the secondary particles will be broken during use, resulting in defects in the coating due to exposure of the uncoated surface. Therefore, when plating powder or granular materials, it is most important to apply a plating film to a well-dispersed material with as few secondary particles as possible, but this cannot be expected at all with conventional methods. It was hot. In view of the above-mentioned facts when plating such fine particles of powder or granular material, the present inventor proposed a method for electroless plating of the powder or granular core material by first making the core material into an aqueous suspension. JP-A-60-59070 (Japanese Patent Application No. 58-166674) has developed a method of applying a plating film by adding an electroless plating solution to the liquid and has already filed a patent application. On the other hand, in the past, complexing agents have been used in electroless nickel-metsuki liquids as essential chemicals to prevent Ni ++ from forming hydroxides and phosphites due to the nickel-metsuki reaction. As complexing agents, citric acid, tartaric acid, malic acid, lactic acid, gluconic acid or salts thereof, carboxylic acids or salts thereof such as ethylenediamine and EDTA, and typical chelating agents are mainly used. In addition, other drugs such as acetic acid, propionic acid, and
Butyric acid, succinic acid, boric acid, etc. are used. Therefore, the following problems arise in the electroless Nickel-metsuki solution using such chemicals: (1) The high concentration of COD and BOD in the Nickel-aging solution complicates wastewater treatment and increases cost; To reduce 1 mole, 3 moles of alkali hypophosphite as a reducing agent are consumed; (3) Since the nickel of the plating film contains about 4% or more of phosphorus, the electrical resistance is more than three times that of pure nickel. And so on. For this reason, the present inventors have been conducting intensive research to further improve the nickel plating method, and have found that when plating liquid is added to the core material, the complexing agent is not as strong as the conventional one. The present invention was completed based on the finding that a weak complexing agent is sufficient, and that a weaker complexing agent is better overall. That is, the present invention relates to an electroless nickel plating liquid composed of at least a nickel salt, a reducing agent, a PH adjuster, and a complexing agent, in which ammonia is used as the complexing agent. When electrolessly plating the material, an electroless plating solution consisting of at least a nickel salt, a reducing agent, a pH adjuster, and ammonia as a complexing agent is added to the aqueous suspension in which the core material is dispersed in a controlled manner. The present invention relates to a plating method characterized in that the core material is subjected to electroless nickel plating treatment. The electroless nickel plating solution according to the present invention can be used exclusively as an additive plating solution for powder or granular core materials, and can be used as a plating solution when preparing a bath and immersing the base material to be plated in the conventional manner. is not suitable. To explain the various chemicals that make up the liquid, nickel salts include nickel sulfate and nickel chloride, and reducing agents mainly use alkali hypophosphites such as sodium hypophosphite and potassium hypophosphite. Other reducing agents such as alkali hydrogen borate may also be used. A PH regulator is a drug that adjusts the PH of the reaction system in advance or in response to changes in the PH of the reaction system due to the Metsuki reaction. This refers to acidifying agents such as alkali oxides, sulfuric acid, and hydrochloric acid, and a further feature of the present invention is the use of ammonia as a complexing agent. In addition, auxiliary agents such as a plating reaction accelerator may be used as necessary. Further, a small amount of a soluble metal salt capable of forming an alloy with nickel, such as a copper salt, cobalt salt, zinc salt, or manganese salt, may be added as necessary. As described above, the electroless nickel plating solution according to the present invention is composed of at least a nickel salt, a reducing agent such as alkali hypophosphite, a PH regulator, and an ammonia complexing agent. The mixing ratio of the above chemicals varies depending on the type of core material, plating reaction conditions, purpose of use of the plating product, etc., but in most cases it is Ni:NH 3 :NaH 2 PO 2
= 1:1.5 to 4:2.0 to 2.5 molar ratio. The reason for this is that if the ratio is outside the above range, the reducing power will be weak, the plating reaction will be insufficient, the formation of precipitates, etc. will occur, and there will be many disadvantages for economic reasons. The concentration of the plating solution mentioned above is not a plating solution that is used after preparing a bath as in the past, so it does not necessarily have to be within the practical range for preparing a bath.If the above mixing ratio is used, it is possible to reach the saturation concentration as a plating solution. Alternatively, the saturation concentration of each drug may be taken into consideration, and there is no need to limit the concentration. However, since it is not economical if it is thin, the lower limit should naturally be limited from a practical point of view. Next, a plating method using the electroless nickel plating solution according to the present invention will be explained. In the present invention, the core material used as a base material to be subjected to electroless plating is intended to be in the form of powder particles, and its particle size is not particularly limited, and it can range from colloidal fine particles to particles of several mm in size, with an appearance that is powdery. Alternatively, it may be a granular material. Further, the shape may be determined by microscopic observation to be spherical, plate-like, rod-like, needle-like, hollow, or fibrous.
In short, the substrate to be plated is treated as a granular or powdery material as a core material. Further, the material of the core material includes all materials that can be electrolessly plated, regardless of whether they are organic or inorganic. Of course, the core material must be substantially water-insoluble or sparingly water-soluble. Furthermore, it goes without saying that the core material does not need to have a chemically uniform composition, but it may be either crystalline or amorphous. the important thing is,
The surface of the core has the ability to form a film by chemically reacting with the plating solution, and its appearance is powdery or granular. Examples of such core materials include metal powders (including alloys), metal or non-metal oxides (including hydrated materials), metal silicates including aluminosilicates, and metals. These include carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal salts, metal halides, and carbon, and organic core materials include natural fibers, natural resins,
Polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylonitrile,
Thermoplastic resins such as polyacetal, ionomer, polyester, alkyd resins, phenolic resins, urea resins, melamine resins, xylene resins,
Examples include thermosetting resins such as silicone resins and diallyl phthalate resins. They are,
It may be one kind or a mixture of two or more kinds. This mixture includes anything from chemically heterogeneous compositions to mixtures used as core materials. In performing electroless plating on the surface of such a core material, first a well-dispersed aqueous suspension is prepared. Here, the aqueous suspension is not limited to water as a medium, but it is suitable to use any electroless plating solution having a low concentration that does not substantially cause electroless plating. Since the dispersibility of an aqueous suspension differs depending on the physical properties of the core material, the dispersion method can be determined by any desired means, such as ordinary stirring, high-speed stirring, or a shear dispersion device such as a colloid mill or homogenizer. It is desirable to prepare an aqueous suspension in a state of dispersion close to that of primary particles by removing as much of the core agglomerate as possible by using diaphragm dispersion, ultrasonic dispersion, or the like. When dispersing the core material, for example,
A dispersant such as a caustic alkali, an alkali such as sodium silicate, an alkali polyphosphate, or a surfactant can be used as necessary. There is no particular reason to limit the concentration of the aqueous suspension, but if the slurry concentration is low, the plating concentration will decrease and the processing capacity will be large, making it uneconomical. Since the dispersibility of the slurry becomes poor, the slurry concentration may be appropriately set to a desired value depending on the physical properties of the core material, but in most cases it is in the range of 50 g/ to 700 g/, preferably 100 g/ to 500 g/. Furthermore, when plating the core material in this suspension, it is desirable to adjust the temperature of the suspension in advance to a temperature that allows plating so that plating can be carried out effectively. It goes without saying that before plating these core materials, pretreatments such as cleaning, etching, sensitization, and activation treatments are performed in accordance with the physical properties of the core materials. Although this pretreatment is preferably carried out in the form of an aqueous suspension as described above, other methods may also be used. For example, the cleaning treatment may be performed with an alkaline agent, the sensitization treatment may be performed with a soluble tin salt aqueous solution, and the activation treatment may be pretreated with a soluble palladium salt aqueous solution by contact treatment with the core material.
These are already known, and there is no need for special pretreatment in the present invention. Therefore, when an aqueous suspension is prepared in the course of a part or all of a pretreatment operation, the aqueous suspension is prepared after being pretreated by some means in advance, or the aqueous suspension is prepared as an aqueous suspension. There are several ways to balance the pretreatment and preparation of the suspension, such as when a pretreatment operation is performed and then the suspension is transferred to plating treatment.
It is sufficient to appropriately select a rational mode that is suitable for the actual operation and the relationship with the core material. Electroless Nickelmeck solution is added in a controlled manner to the aqueous suspension thus prepared. The suspension may be stirred or stirred as necessary to maintain its dispersion.
It is desirable to apply ultrasonic dispersion treatment, etc., and it is also desirable to set the temperature so that it can be controlled. Since the electroless nickel plating solution is added to an aqueous suspension and diluted according to the volume, it can be used for plating operations by immersing the substrate to be plated in a bath with a normal plating solution concentration. Differently, it is better to have a higher concentration than normal plating solution. The reason why the electroless nickel plating solution is added in a controlled manner is that the addition rate as well as the solution concentration directly affect the plating reaction, and these factors are also significantly related to the physical properties, particularly the surface properties, of the core material. The addition rate of the plating solution should be set after fully considering the above factors in order to form a uniform and strong plating film to avoid unevenness of the plating film, and in many cases it is better to add it gradually. . Furthermore, when adding this plating solution, it is desirable to add a PH adjusting agent separately and simultaneously in order to adjust the PH of the aqueous suspension if necessary in many cases.
The reason for this is that the plating reaction progresses with the addition of the plating solution, and as the reducing agent such as sodium hypophosphite in the solution is oxidized, the hydrogen ion concentration increases, and the pH of the aqueous suspension gradually increases. By decreasing. Therefore, in order to maintain the initially set pH constant, it is preferable to add the plating solution and the pH adjuster simultaneously as described above. The addition method may be one in which the alkali is added while controlling the PH meter, but it is also possible to add the alkali in an amount commensurate with the redox reaction of the reducing agent at a predetermined concentration. In this way, by controlling and adding the electroless nickel plating solution to the aqueous suspension, a rapid plating reaction occurs in the suspension, forming a uniform and strong plating film on the surface of the dispersed core material. . Therefore, the thickness of the plating film can be adjusted depending on the amount added, and the amount added can be set depending on the application. Note that the plating reaction temperature is preferably in the range of 50 to 90°C. Thus, according to the method of the present invention, a uniform plating film can be applied to a powder or granular core material in a state substantially similar to that of primary particles,
Further, the film thickness can be freely set with high precision. On the other hand, from the viewpoint of the plating operation, the plating reaction is carried out until it completely stops, so the plating chemical can be used efficiently, and the plating atmosphere is stable, which not only eliminates the need to adjust the concentration of each component, but also reduces the pH. This method has many advantages over conventional methods, such as substantially avoiding fluctuations and not requiring any adjustment equipment. In particular, the use of the electroless nickel plating bath according to the present invention provides the following advantages. (1) The amount of alkali hypophosphite used to reduce nickel can be reduced by approximately 20 to 35%, making it extremely economical; (2) Depending on the plating conditions, the The amount of phosphorus is reduced and can be reduced, for example, to about 1.5%. This means that if the electric resistance of pure nickel is about 6×10 -6 Ωcm, the plating film according to the present invention has a resistance of about 13.5×10 -6 Ωcm, which is close to that of pure nickel; (3) Aging The liquid contains Na 2 SO 4 , NaHPO 3 or
Since only NH 4 OH etc. are present, NH 3 is separated using caustic alkali, separated as calcium phosphite using gypsum or slaked lime, etc.
Aged liquid can be treated effectively; (4) Since the plating liquid can be used at high concentrations, excellent plating processing can be expected in conjunction with the plating method, such as reducing energy consumption and increasing processing efficiency. Thus, the electroless nickel plated product obtained by the plating method according to the present invention can be used, for example, in the paint field as a conductive pigment, a conductive material added to electromagnetic shielding resin, various powder metallurgical materials, other composite materials,
Useful as a catalyst. The present invention will be specifically described below with reference to Examples. Examples 1 to 5 α-Al 2 O 3 powder with true specific gravity of 3.95 and average particle size of 5 μm
100g of stannous chloride at a concentration of 1g/ and a concentration of 1
ml/ml/hydrochloric acid of sensitizer 1, dispersed to sufficiently deagglomerate, and sensitized for about 5 minutes. After filtration, repulping, and filtration 0.1g/
of palladium chloride and 0.1 mole of hydrochloric acid, and dispersed in the same manner. After being stirred and immersed for about 5 minutes, activation treatment was performed through filtration, repulping, and filtration steps. The α-Al 2 O 3 core material pretreated in this way is
6.7 ml/(using 28% ammonia water) was added to 200 ml of ammonia aqueous solution and subjected to dispersion treatment so that there was substantially no agglomerate, and the temperature was heated to 65° C. to prepare an ammonia alkaline aqueous suspension. Next, the electroless nickel plating liquid shown in Table 1 was divided into liquids a and b, and each of liquids a and b was added to the above-mentioned dispersion under stirring at an addition rate of 50 ml/min. After the entire amount was added, stirring was continued while maintaining the temperature at 65°C until hydrogen generation stopped. In this way, particles having a uniform and strong nickel film on the surface of the α-Al 2 O 3 particles were obtained by the plating reaction.

【表】 実施例 6〜13 ニツケルメツキすべき芯材を第2表に示すもの
に変えた以外は実施例4と同様の操作と条件でニ
ツケルメツキしたところ、いずれの芯材とも均一
かつ強固なニツケル皮膜を有する組成物を得た。
[Table] Examples 6 to 13 Nickel plating was performed using the same operations and conditions as in Example 4, except that the core material to be nickel-plated was changed to those shown in Table 2. All core materials had a uniform and strong nickel film. A composition having the following was obtained.

【表】【table】

【表】 比較例 1 実施例1で用いたα―Al2O3粉末100gを実施例
1と同一条件と方法で前処理した。次にこのよう
に前処理を施したα―Al2O3を予め硫酸でPH7.0に
調整した10g/のエチレンジアミン溶液200ml
に投入し、撹拌分散させ、温度65℃に加温して水
性懸濁体を調製した。 次いで180g/(0.685モル)の硫酸ニツケル、
30g/(0.492モル/)のエチレンジアミンか
ら組成されるPH7.0に調整した溶液1.66及び
218g/(2.05モル/)の次亜りん酸ナトリウ
ム水溶液、82.2g/(2.05モル/)の水酸化
ナトリウムから組成された溶液1.66をそれぞれ
50ml/分の添加速度で撹拌下の上記分散スラリー
に添加し、全量添加後、水素の発生が停止するま
で65℃を保持しながら撹拌を続けた。 以上の実施例および比較例で得られた各試料に
ついて被覆した金属を硝酸に溶解し付着したニツ
ケル及びリンを測定したところ第3表の結果が得
られた。
[Table] Comparative Example 1 100 g of α-Al 2 O 3 powder used in Example 1 was pretreated under the same conditions and method as in Example 1. Next, add 200 ml of a 10 g/ethylenediamine solution of α-Al 2 O 3 pretreated in this way to a pH of 7.0 with sulfuric acid.
The mixture was added to the water, stirred and dispersed, and heated to 65°C to prepare an aqueous suspension. Then 180g/(0.685mol) of nickel sulfate,
A solution 1.66 and adjusted to pH 7.0 composed of 30 g/(0.492 mol/) ethylenediamine and
1.66 of a solution composed of 218 g/(2.05 mol/) of sodium hypophosphite aqueous solution and 82.2 g/(2.05 mol/) of sodium hydroxide, respectively.
It was added to the above-mentioned dispersed slurry under stirring at an addition rate of 50 ml/min, and after the entire amount was added, stirring was continued while maintaining the temperature at 65° C. until hydrogen generation stopped. The coated metal of each sample obtained in the above Examples and Comparative Examples was dissolved in nitric acid, and the adhering nickel and phosphorus were measured, and the results shown in Table 3 were obtained.

【表】 (2) 最終メツキ液量は使用した溶液の合
量である。
[Table] (2) The final plating solution volume is the total amount of solution used.

Claims (1)

【特許請求の範囲】 1 少なくともニツケル塩、還元剤、PH調整剤お
よび錯化剤から組成される無電解ニツケルメツキ
液において、錯化剤としてアンモニアを用いてな
る無電解ニツケルメツキ液。 2 還元剤が次亜リン酸アルカリである特許請求
の範囲第1項記載の無電解ニツケルメツキ液。 3 無電解ニツケルメツキ液において Ni:NH3:NaH2PO2=1:1.5〜4:2〜2.5
のモル比関係にある特許請求の範囲第1項記載の
無電解ニツケルメツキ液。 4 芯材に無電解メツキするに当り、芯材を分散
させた水性懸濁体に少なくともニツケル塩、還元
剤、PH調整剤および錯化剤としてアンモニアから
なる無電解ニツケルメツキ液を制御して添加しな
がら、該芯材を無電解ニツケルメツキ処理するこ
とを特徴とする無電解メツキ方法。
[Scope of Claims] 1. An electroless nickel plating solution composed of at least a nickel salt, a reducing agent, a PH adjuster, and a complexing agent, in which ammonia is used as the complexing agent. 2. The electroless nickel plating solution according to claim 1, wherein the reducing agent is alkali hypophosphite. 3 In electroless nickel metal solution Ni: NH3 : NaH2PO2 = 1:1.5~4:2~2.5
The electroless nickel plating liquid according to claim 1, which has a molar ratio relationship of: 4. When electrolessly plating the core material, an electroless nickel plating solution consisting of at least a nickel salt, a reducing agent, a PH adjuster, and ammonia as a complexing agent is added to the aqueous suspension in which the core material is dispersed in a controlled manner. An electroless plating method characterized in that the core material is subjected to electroless nickel plating treatment.
JP3138984A 1984-02-23 1984-02-23 Electroless plating liquid and plating method using said liquid Granted JPS60177182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138984A JPS60177182A (en) 1984-02-23 1984-02-23 Electroless plating liquid and plating method using said liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138984A JPS60177182A (en) 1984-02-23 1984-02-23 Electroless plating liquid and plating method using said liquid

Publications (2)

Publication Number Publication Date
JPS60177182A JPS60177182A (en) 1985-09-11
JPH0249390B2 true JPH0249390B2 (en) 1990-10-30

Family

ID=12329905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138984A Granted JPS60177182A (en) 1984-02-23 1984-02-23 Electroless plating liquid and plating method using said liquid

Country Status (1)

Country Link
JP (1) JPS60177182A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602495B2 (en) * 1985-04-01 1997-04-23 日本化学工業 株式会社 Manufacturing method of nickel plating material
JPS62107073A (en) * 1985-11-01 1987-05-18 Nippon Chem Ind Co Ltd:The Production of noble metal plated material
JPS6421082A (en) * 1987-07-15 1989-01-24 Nippon Chemical Ind Production of powdery plated material
DE102004005999B4 (en) * 2004-02-06 2009-02-12 Nippon Chemical Industrial Co., Ltd. Conductive electroless metallized powder and method of making the same
DE102004006000B4 (en) * 2004-02-06 2017-12-21 Nippon Chemical Industrial Co., Ltd. Conductive electroless metallized powder and method of making the same
JP5720043B2 (en) * 2011-06-29 2015-05-20 トーカロ株式会社 Powder material for cermet thermal spraying excellent in corrosion resistance and plasma erosion resistance and method for producing the same
JP5568756B2 (en) * 2011-06-29 2014-08-13 トーカロ株式会社 Cermet sprayed coating member excellent in corrosion resistance and plasma erosion resistance and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265136A (en) * 1975-11-25 1977-05-30 Kito Kk Chemical plating method of link chain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265136A (en) * 1975-11-25 1977-05-30 Kito Kk Chemical plating method of link chain

Also Published As

Publication number Publication date
JPS60177182A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
JPS61166977A (en) Reduced fine particle catalytic metal
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
CN111687429A (en) End slurry silver powder for chip electronic component and preparation method thereof
CN108480616B (en) Powder preparation method capable of effectively controlling surface roughness of metal powder particles
CN111618316A (en) Surface-modified silver powder and coating preparation method thereof
JPH0249390B2 (en)
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JPH1161424A (en) Electroless silver-plated powder and its production
JPH02500673A (en) Manufacturing and usage of electroless nickel plating bath
JPH0613753B2 (en) Method for producing solution containing fine metal body used for electroless plating
JPH0225431B2 (en)
JP2602495B2 (en) Manufacturing method of nickel plating material
JPH0372683B2 (en)
US7338686B2 (en) Method for producing conductive particles
JPS6320486A (en) Production of silver or copper coated mica
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JPH0475316B2 (en)
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
CN109457238B (en) High-speed stable chemical copper plating solution and preparation method thereof
JPS6096548A (en) Electrically conductive material
JPH09171714A (en) Conductive powder
US4224178A (en) Method for reducing the crystallinity of a stabilized colloidal composition
JP2004323962A (en) Electroless-plated electroconductive powder and manufacturing method therefor