JPH0357165A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH0357165A
JPH0357165A JP1192201A JP19220189A JPH0357165A JP H0357165 A JPH0357165 A JP H0357165A JP 1192201 A JP1192201 A JP 1192201A JP 19220189 A JP19220189 A JP 19220189A JP H0357165 A JPH0357165 A JP H0357165A
Authority
JP
Japan
Prior art keywords
spacer
electrode plate
electrolyte
plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192201A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1192201A priority Critical patent/JPH0357165A/en
Publication of JPH0357165A publication Critical patent/JPH0357165A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve discharge performance by keeping the distance between a positive plate and a negative plate constant with a special shape spacer and fixing the upper part of an electrolyte retainer made of silica fine particles filled in a battery with a foamed phenol resin. CONSTITUTION:A spacer 1 formed by connecting polypropylene separation rods 2 with upper and lower connection parts 3, 3' is interposed between a positive plate 4 and a negative plate 5. An electrolyte retainer 7 made of silica fine particles having a primary particle size of 10-40mum is filled in the space between the positive plate 4 and the negative plate 5 and in the surrounding space of a plate group to the level that the plate group is burried, then the upper part of the electrolyte retainer is fixed with a foamed phenol resin 8. By heightening the upper connection part 3 than the plate, particles are fully filled between the plates.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである. 従来の技術とその課題 電池の充電中に発生する酸素ガスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二種類
がある.リテーナ式は正極板と負極板との間に微細ガラ
ス繊維を素材とするマット状セバレータ(ガラスセパレ
ータ)を挿入し、これによって放電に必要な硫酸電解液
の保持と両極の隔離を行っており、無保守,@漏液,ポ
ジションフリーなどの特徴を生かして、近年、ポータブ
ル機器やコンピューターのバックアップ電源として広く
用いられるようになってきた.しがし、反面ガラスセパ
レー夕が高価なことや極板群を強く圧迫する必要から電
槽の強度も大きくしなければならないなど電池のa遺コ
ストが高くなる要因が多く、さらに従来の液式電池に比
べて低率放電性能が劣るなどの欠点があって、この種の
密rjA電池の普及に障害となっている. 一方、ゲル式はリテーナ式よりも安価であるが、電池性
能が液式やリテーナ式に劣るという欠点があった. 課題を解決するための手段 本発明は上述した従来の密閉式釦蓄電池の欠点を除去し
、優れた放電性能を有する安価な密閉式釦H Th池全
提供するもので、その骨子とするところは、垂直方向に
一定間隔で並べた複数本の隔離棒をその上部および下部
で結合したスペーサーであって、その上部結合部を極板
の高さよりも高い位置に設けたスペーサを極間に挿入す
ることにより極板間隔が保持されるようにし、正極板と
負極板との間隙および極板群の周囲に一次粒子が10〜
40ミリミクロンのシリカ微粉体からなる電解液保持体
を倭板群が埋没するまで充填し、電解液保持体上部は発
泡フェノール樹脂で固定すると共に、放電に必要かつ充
分な量の硫a電解液を上記電解液保持体に含浸,保持さ
せたところにある.以下本発明を実施例に基づいて説明
する. 実施例 R−Ca 一Sn合金より戒る正および負極格子体に通
常の正極および負極ペーストをそれぞれ充填した後、熟
成を施して未化成極板を作製した。ついでこれらの正極
および負極末化成極板を用い、第2図に示すスペーサー
を両極板間に挿入して極板群を作製した。ここで使用し
たスペーサーについて説明すれば、第2図はスベーサ−
1の斜視図であって、直径1■のボリプロビレン製の隔
離棒2がその上部および下部で結合部3および3′で結
合されており、このスペーサの高さhは極板の高さより
も大きくしてある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed lead-acid batteries. Conventional technology and its challenges There are two types of sealed lead-acid batteries, the retainer type and the gel type, in which the negative electrode absorbs oxygen gas generated during battery charging. The retainer type inserts a matte separator (glass separator) made of fine glass fiber between the positive and negative electrode plates, which holds the sulfuric acid electrolyte necessary for discharge and isolates the two electrodes. In recent years, it has become widely used as a backup power source for portable devices and computers, taking advantage of its features such as no maintenance, no leakage, and no position. However, on the other hand, there are many factors that increase the cost of batteries, such as the high cost of the glass separator and the need to press the electrode groups strongly, which requires the strength of the battery case to be increased. They have drawbacks such as inferior low-rate discharge performance compared to batteries, which is an obstacle to the widespread use of this type of high-density RJA batteries. On the other hand, the gel type is cheaper than the retainer type, but has the disadvantage that its battery performance is inferior to the liquid type and retainer type. Means for Solving the Problems The present invention eliminates the drawbacks of the conventional sealed button accumulators mentioned above and provides an inexpensive sealed button H Th battery with excellent discharge performance. , a spacer in which multiple isolation rods arranged at regular intervals in the vertical direction are joined at their upper and lower parts, and the spacer is inserted between the poles, with the upper joining part set at a higher position than the height of the electrode plate. By doing this, the gap between the electrode plates is maintained, and the primary particles are placed in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group.
Fill the electrolyte holder made of silica fine powder of 40 millimicrons until the Japanese plate group is buried, fix the upper part of the electrolyte holder with foamed phenolic resin, and add a sufficient amount of sulfur aluminium electrolyte necessary for discharge. is impregnated and held in the electrolyte holding body. The present invention will be explained below based on examples. Example R-Ca Positive and negative electrode grids made of Sn alloy were filled with normal positive and negative electrode pastes, respectively, and then aged to produce unformed electrode plates. Next, using these positive and negative electrode terminal plates, a spacer shown in FIG. 2 was inserted between the two electrode plates to produce an electrode plate group. To explain the spacer used here, Figure 2 shows the spacer.
1, in which a polypropylene isolation rod 2 with a diameter of 1 mm is connected at its upper and lower parts by joints 3 and 3', and the height h of this spacer is greater than the height of the electrode plate. It has been done.

そこでこのような形状のスペーサーを用いる理由につい
て説明する. 本発明による密閉式鉛蓄電池はセバレー夕を用いないこ
と、および電解液保持体として倣小シリ力粉体を使用す
ることが大きな特徴である。そのため正極板と負極板と
の間にシリカ粉体を一定の厚みで充電するには極間を一
定に保つことが重要であり、これがうまくいかないと短
絡が起こるおそれがある.そこで本発明では極間に第2
図に示したスベーサを挿入し、隔離棒2によって極間を
一定に保つようにした.ただ単に極間を一定に保つだけ
なら1本ずつ隔離棒を極間に挿入すればよいが、電池の
組立を自動的に行うには一度に挿入できるのが望ましい
.そこで垂直方向に並べた隔離棒を結合部3および3′
で結合して一体化させた。ところがここで問題となるの
は、上部に設けた水平の結合部が邪魔になって、粉体を
極間に充填できない点である.これを除去して第3図に
示す形状にすれば問題はないが、隔離棒が下部のみで結
合されているので、電池組立時に非常に扱いにくいこと
がわかった. そこで本発明ではスベーサ−1の上部結合部3を極板よ
りも高くすることでこの問題を解決した.すなわち、第
4図は極板群を電槽に押入したのちシリカ粉体を充填す
る際の電池一部断面を示しているが、スペーサーの上部
水平結合部3が正極板4および負極板5の高さ以下に設
けると電解液保持体としてのシリカ粉体7は水平結合部
が邪魔になって極間に充電できない(第4図).一方、
本発明では第4図Bに示すように水平結合部3を極板よ
りも高い位置に設けたので、粉体を極間にくまなく充填
することができた。
Therefore, we will explain the reason for using a spacer with this shape. The sealed lead-acid battery according to the present invention is characterized in that it does not use a separator, and it uses imitation powder with small sintering strength as an electrolyte holder. Therefore, in order to charge the silica powder with a constant thickness between the positive and negative electrode plates, it is important to maintain a constant distance between the electrodes, and if this is not done properly, a short circuit may occur. Therefore, in the present invention, a second
The spacer shown in the figure was inserted, and the distance between the poles was kept constant using isolation rod 2. If you simply want to keep the distance between poles constant, you can insert the isolation rods one by one between the poles, but if you want to automatically assemble the battery, it is desirable to be able to insert them all at once. Therefore, vertically aligned isolation rods are connected to joints 3 and 3'.
were combined and integrated. However, the problem here is that the horizontal joint provided at the top gets in the way, making it impossible to fill the powder between the poles. There would be no problem if this was removed and the shape shown in Figure 3 was created, but since the isolation rod was only connected at the bottom, it turned out to be very difficult to handle when assembling the battery. Therefore, in the present invention, this problem was solved by making the upper joint part 3 of the spacer 1 higher than the electrode plate. That is, FIG. 4 shows a partial cross section of the battery when filling the battery with silica powder after pushing the electrode plate group into the battery case. If installed below the height, the silica powder 7 as an electrolyte holder will not be able to charge between the electrodes because the horizontal joints will get in the way (Figure 4). on the other hand,
In the present invention, as shown in FIG. 4B, the horizontal joint portion 3 is provided at a higher position than the electrode plates, so that the powder can be thoroughly filled between the electrodes.

つぎに本発明のように電解液保持体としてシリカの微小
粉体を充填した密閉式鉛蓄電池で問題となるのは、粉体
を極間および極板群の周囲に充填後、電解液を注液して
電池を初充電する際に、充電終期に発生するガスによっ
て電解液保持体内部にガス溜りが生じ、極板と電解液保
持体とが接触が悪くなる点である.これを防止するには
電池内に充填した粉体を固定すればよいわけであるが、
種々検討したところ第1図に示すように充填した粉体上
部に発泡フェノール樹脂を流すことが最適であることが
分かった.発泡フェノール樹脂は連続気泡で気孔率が高
く耐酸性に優れ、とりわけ現場発泡が可能な点で本発明
の実施には好適であった. 次に試作電池の容量試験を行った.供試電池は公称容量
4.5Ahで、比較のために同じロットの正極および負
極板を用いた従来のリテーナ式電池およびゲル式電池も
試験した.その結果を第1表に示す. 第1表 この試験結果より、リテーナ式とゲル式とを比較すると
、リテーナ式は電解液比重がやや高いためにゲル式より
も高率放電性能が優れていた。また、低率放電容量はゲ
ル式の方が若干多かったのは電解液量が多いためである
。一方、本発明品はこれら従来の密閉式鉛蓄電池に比べ
て低率放電、高率放電とも10〜20%も性能が向上し
た.これは電解液量比重をゲル式よりやや高くしたこと
、および電解液量をリテーナ式より多く含浸できたこと
、さらに放電の際に抵抗となるセパレー夕を使用する必
要がないことや酸の拡散が優れていたことなどの相乗効
果によるものである. 発明の効果 上述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は、特殊な形状のスペーサーによって正極板と
負極板との間隔を一定に保つと共に、電池内に充填され
たシリカ微粉体からなる電解液保持体の上部を発泡フェ
ノール樹脂で固定するという簡単な構成であるから、安
価に製造でき、さらに従来の密閉式鉛蓄電池の放電性能
を大幅に改善できた点工業的価値は非常に大きい.
Next, the problem with sealed lead-acid batteries filled with fine silica powder as an electrolyte holder as in the present invention is that after filling the powder between the electrodes and around the electrode plate group, the electrolyte is poured into the battery. When charging the battery for the first time, the gas generated at the end of charging creates a gas pocket inside the electrolyte holder, resulting in poor contact between the electrode plate and the electrolyte holder. To prevent this, it is possible to fix the powder filled inside the battery, but
After various studies, we found that it is optimal to pour the foamed phenolic resin over the filled powder as shown in Figure 1. The foamed phenolic resin has open cells, high porosity, and excellent acid resistance, and is especially suitable for the implementation of the present invention because it can be foamed on-site. Next, we conducted a capacity test on the prototype battery. The test battery had a nominal capacity of 4.5Ah, and for comparison, a conventional retainer type battery and a gel type battery using positive and negative electrode plates from the same lot were also tested. The results are shown in Table 1. Table 1 From the test results, when the retainer type and the gel type were compared, the retainer type had a slightly higher electrolyte specific gravity, so the high rate discharge performance was superior to the gel type. Also, the low rate discharge capacity was slightly higher in the gel type because the amount of electrolyte was larger. On the other hand, the products of the present invention improved performance by 10 to 20% in both low rate discharge and high rate discharge compared to these conventional sealed lead-acid batteries. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, and the amount of electrolyte that can be impregnated is larger than that of the retainer type.Furthermore, there is no need to use a separator that acts as a resistance during discharge, and there is no need for acid diffusion. This was due to synergistic effects such as superior performance. Effects of the Invention As is clear from the embodiments described above, the sealed lead-acid battery according to the present invention maintains a constant distance between the positive electrode plate and the negative electrode plate using a specially shaped spacer, and also maintains a constant distance between the positive electrode plate and the negative electrode plate by using a specially shaped spacer. Because it has a simple structure in which the upper part of the electrolyte holder is fixed with foamed phenolic resin, it can be manufactured at low cost, and its industrial value is that it can significantly improve the discharge performance of conventional sealed lead-acid batteries. Very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による密閉式鉛蓄電池の断面図、第2図
および第3図はスペーサーの斜視図、第4図は電解液保
持体を充填する際の状況を示す電池の一部断面図である
。 1・・・スペーサー、2・・・隔離棒、3・・・上部結
合部、3′・・・下部結合部、4・・・正極板、5・・
・負極板、6・・・電槽、7・・・電解液保持体、8・
・・発泡フェノール樹脂充填層 方 1 凹 ガ 7 ■ λ 3 因 オ 4 薗 A 8
Figure 1 is a sectional view of a sealed lead-acid battery according to the present invention, Figures 2 and 3 are perspective views of a spacer, and Figure 4 is a partial sectional view of the battery showing the situation when filling an electrolyte holder. It is. DESCRIPTION OF SYMBOLS 1... Spacer, 2... Isolation rod, 3... Upper coupling part, 3'... Lower coupling part, 4... Positive electrode plate, 5...
・Negative electrode plate, 6... Battery container, 7... Electrolyte holder, 8.
...Foamed phenolic resin filled layer 1 Concave 7 ■ λ 3 Ino 4 Sono A 8

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式鉛蓄電池において、垂直方向に一定間隔で並べ
た複数本の隔離棒をその上部および下部で結合したスペ
ーサーであって、その上部結合部を極板の高さよりも高
い位置に設けたスペーサーが極間に挿入されると共に、
正極板と負極板との間隙および極板群の周囲に一次粒子
が10〜40ミリミクロンのシリカ微粉体からなる電解
液保持体が極板群が埋没するまで充填され、電解液保持
体上部は発泡フェノール樹脂で固定されてなり、放電に
必要かつ充分な量の硫酸電解液を上記電解液保持体に含
浸、保持させたことを特徴とする密閉式鉛蓄電池。
1. In a sealed lead-acid battery in which the negative electrode absorbs oxygen gas generated during battery charging, a spacer is a spacer in which multiple isolation rods arranged vertically at regular intervals are joined at their upper and lower parts; A spacer with a connecting part placed at a position higher than the height of the electrode plates is inserted between the electrodes, and
The gap between the positive electrode plate and the negative electrode plate and the periphery of the electrode plate group are filled with an electrolyte holder made of silica fine powder with primary particles of 10 to 40 millimeters in diameter until the electrode plate group is buried, and the upper part of the electrolyte holder is 1. A sealed lead-acid battery fixed with a foamed phenolic resin, characterized in that the electrolyte holder is impregnated and held with a sufficient amount of sulfuric acid electrolyte necessary for discharge.
JP1192201A 1989-07-25 1989-07-25 Sealed lead-acid battery Pending JPH0357165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192201A JPH0357165A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192201A JPH0357165A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0357165A true JPH0357165A (en) 1991-03-12

Family

ID=16287355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192201A Pending JPH0357165A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0357165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432165A (en) * 1990-05-25 1992-02-04 Japan Storage Battery Co Ltd Enclosed lead battery
JPH05121090A (en) * 1991-10-25 1993-05-18 Wan Riankisan Large-capacity colloidal storage battery, colloidal electrolyte used for said storage battery and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432165A (en) * 1990-05-25 1992-02-04 Japan Storage Battery Co Ltd Enclosed lead battery
JPH05121090A (en) * 1991-10-25 1993-05-18 Wan Riankisan Large-capacity colloidal storage battery, colloidal electrolyte used for said storage battery and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS5835877A (en) Closed type lead battery and its production method
JPH0357165A (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH02165570A (en) Closed lead battery
JP3146438B2 (en) Sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JP2855693B2 (en) Clad sealed lead-acid battery
JPH02236963A (en) Sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH04160762A (en) Sealed type lead storage battery
JPH04141961A (en) Gastight lead storage battery
JPS60163380A (en) Lead-acid battery
JPH0535578Y2 (en)
JPS58108653A (en) Sealed storage battery
JPH04132171A (en) Closed type lead-acid battery
JPH0332180B2 (en)
JPH0413829B2 (en)
JPH02215056A (en) Sealed lead battery
JPH0357164A (en) Sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPH0436966A (en) Sealed type lead-acid battery
JPH06150961A (en) Sealed lead-acid battery
JPS61232559A (en) Clad type sealed lead-acid battery