JPH0357164A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH0357164A
JPH0357164A JP1192200A JP19220089A JPH0357164A JP H0357164 A JPH0357164 A JP H0357164A JP 1192200 A JP1192200 A JP 1192200A JP 19220089 A JP19220089 A JP 19220089A JP H0357164 A JPH0357164 A JP H0357164A
Authority
JP
Japan
Prior art keywords
plate
electrode plate
positive
electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192200A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1192200A priority Critical patent/JPH0357164A/en
Publication of JPH0357164A publication Critical patent/JPH0357164A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve discharge performance by linearly applying a hot-melt resin to a plate to keep the distance between a positive plate and a negative plate constant and by filling an electrolyte retainer made of silica fine particles in a battery. CONSTITUTION:A plurality of lines of thermoplastic resin are vertically formed on a positive plate or a negative plate so that the distance between the positive plate 3 and the negative plate 4 is kept constant by hot melt resin 2 coated. An electrolyte retainer 9 made of silica fine particles whose primary particle size is 10-40mum is filled in the space between the positive plate and the negative plate and that between a plate group and a container 5. The distance between the electrodes are properly kept with the electrolyte retainer 9 and short circuit is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである. 従来の技術とその課題 電池の充電中に発生する酸素ガスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二種類
がある.リテーナ式は正極板と負極板との間にm,mガ
ラス繊維を素材とするマット状セパレータ《ガラスセパ
レータ)を挿入し、これによって放電に必要な硫酸電解
液の保持と両極の隔離を行っており、無保守,無漏液,
ポジションフリーなどの特徴を生かして、近年、ボータ
プル機器やコンピューターのバックアップ電源として広
く用いられるようになってきた.しかし、反面ガラスセ
パレー夕が高価なことや極板群を強く圧迫する必要から
電槽の強度も大きくしなければならないなど電池の製造
コストが高くなる要因が多く、さらに従来の液式電池に
比べて低率放電性能が劣るなどの欠点があって、この種
の密閉電池の普及に障害となっている. 一方、ゲル式はリテーナ式よりも安価であるが、電池性
能が液式やリテーナ式に劣るという欠点があった, 課題を解決するための手段 本発明は上述した従来の密閉式!9蓄電池の欠点を除去
し、優れた放電性能を有する安価な密閉式鉛′lii電
池を提供するもので、その骨子とするところは、相対す
る正極板と負極板との間の少なくとも一方の極板面に上
下方向に熱可塑性樹脂を線状または破線状となるように
複数本塗布することにより極板間隔が保持されるように
し、正極板と負極板との間隙および極板群の周囲に一次
粒子が10〜40ミリミクロンのシリカ微粉体からなる
電解液保持体を充填,配置し、放電に必要かつ充分な量
の硫酸電解液を上記電解液保持体に含浸,保持させたと
ころにある.以下本発明を実施例に基づいて説明する. 実施例 内一〇一く合金より成る正および負極格子体に通常の正
極および負極ぺ″−ストをそれぞれ充填した後、熟或を
施して未化成極板を作製した.ついでこれらの正極およ
び負極末化tci板を用い、第1図に示すように正極お
よび負極末化成極板の片面に熱可塑性樹脂を線状に複数
本塗布した.図において1は未化戒の極板(正極も負極
も同じ構成である)で、その片面に熱可塑性樹脂、いわ
ゆるボノトメルト樹脂をホットメルトアブリゲーターを
用いて極板の上下方向に3本線状に塗布したもので、2
がホットメルト樹脂である。この実施例ではホットメル
ト樹脂を桶板の両端と中央に塗布したが、極板の幅や厚
みに応じてその本数を増減する.また、塗布する線状の
ホヅトメルト樹脂はほぼ円柱状で、本実施例では約11
の直径である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed lead-acid batteries. Conventional technology and its challenges There are two types of sealed lead-acid batteries, the retainer type and the gel type, in which the negative electrode absorbs oxygen gas generated during battery charging. In the retainer type, a matte separator (glass separator) made of m/m glass fiber is inserted between the positive electrode plate and the negative electrode plate, and this holds the sulfuric acid electrolyte necessary for discharge and isolates the two electrodes. No maintenance, no leakage,
Taking advantage of its position-free characteristics, it has recently become widely used as a backup power source for portable devices and computers. However, there are many factors that increase the manufacturing cost of batteries, such as the expensive glass separator and the need to press the electrode plates strongly, making the battery case stronger, and compared to conventional liquid batteries. However, there are drawbacks such as poor low-rate discharge performance, which is an obstacle to the widespread use of this type of sealed battery. On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type. This invention eliminates the drawbacks of 9 storage batteries and provides an inexpensive sealed lead-acid battery with excellent discharge performance. By applying multiple pieces of thermoplastic resin in the vertical direction on the plate surface in the form of linear or broken lines, the gap between the electrode plates is maintained, and the gap between the positive and negative electrode plates and around the group of electrode plates is An electrolyte holder made of fine silica powder with primary particles of 10 to 40 millimeters is filled and arranged, and a sufficient amount of sulfuric acid electrolyte necessary for discharge is impregnated and retained in the electrolyte holder. .. The present invention will be explained below based on examples. In the example, positive and negative electrode grids made of a 101% alloy were filled with ordinary positive and negative electrode pastes, respectively, and then subjected to ripening to produce unformed electrode plates.Then, these positive and negative electrodes were As shown in Figure 1, thermoplastic resin was coated in multiple lines on one side of the chemically modified TCI plate for the positive and negative electrodes. (also have the same structure), and one side of the plate is coated with thermoplastic resin, so-called Bonotomelt resin, in three lines in the vertical direction of the electrode plate using a hot melt aggregator.
is a hot melt resin. In this example, hot-melt resin was applied to both ends and the center of the tub plate, but the number can be increased or decreased depending on the width and thickness of the electrode plate. In addition, the linear hotmelt resin to be applied has a substantially cylindrical shape, and in this example, it has a diameter of approximately 11 mm.
is the diameter of

この直径は正極と負極との間隙を決定することとなるの
で、太すぎると極間抵抗が大きくなり、電池性能が低下
する原因となる。逆に細かすぎるとシリカ微粉体を充填
しにくくなったり、短絡が起りやすくなる.また、保持
し得る電解漬量にし大きく係わってくるので目標とする
電池性能が得られるように選定する。つぎにこの様なホ
ットメルト樹脂を塗布した極板を用いて極板群を組み立
てる.セバレータが不要なので正極板と負極板を交互に
積み重ねるだけでよく、組立は極めて容易である.第2
図は極板群を電槽に挿入した状態での断面図を示し、3
は正極板、4は負極板、5は電槽である.線状のホット
メルト樹脂2によって正極板3と負極板4との間隔が一
定に保たれている.そこで一次粒子が10〜40ミリミ
クロンのシリカ微粉体からなる電解液保持体を正極板と
負極板との間隙及び電槽と極板群との間隙に充填した.
この電解液保持体は上記シリカ微粉体が凝集して二次お
、よび三次粒子を形威しており、密に充填した際の空隙
率はおよそ90%であった。この電解液保持体は第3図
に示すように極板群が埋没する程度に充填した.粉体は
さらさらしており振動を加えながら行えば短時間に充填
することができた.なお、第3図において、6はストラ
ッグ、7は負極端子、8は正極端子、9は電解液保持体
、10は排気弁である. 次に試作電池の容量試験を行った.供試電池は公称容量
4.5^hで、比較のために同じロフトの正極および負
極板を用いた従来のリテーナ式電池およびゲル式電池も
試験した.その結果を第1表に示す. 第1表 この試験結果より、リテーナ式とゲル式とを比較すると
、リテーナ式は電解液比重がやや高いためにゲル式より
も高率放電性能が優れていた。また、低率放電容量はゲ
ル式の方が若干多かったのは電解液量が多いためである
.一方、本発明品はこれら従来の密閉式船蓄電池に比べ
て低率放電、高率放電とも10〜20%も性能が向上し
た.これは電解液量比重をゲル式よりやや高くしたこと
、および電解液量をリテーナ式より多く含浸できたこと
、さらに放電の際に抵抗となるセパレータを使用する必
要がないことや酸の拡散が優れていたことなどの相乗効
果によるものである. なお、本実施例では正極板の片面および負極板の片面に
ボットメルト回脂を塗布したが、正極板または負陽板ど
ちらか一方の両面にホットメルト樹脂を塗布しても効果
は同じであり、ホットメルl−樹脂の塗布はそのアプリ
ケータを用いれば容易に行うことができ、自動化もしや
すい。また、線状に塗布する代わりに破線状に塗布して
も極間を一定に保つ効果にかわりはなかった. 発明の効果 上述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は、極板にホットメルト樹脂を線状に塗布して
正極板と負極板との間隔を一定に保つと共に、シリカ微
粉体からなる電解液保持体を電池内に充填するという簡
単な操作で、安価に製造でき、さらに従来の密閉式鉛蓄
電池の放電性能を大幅に改善できた点工業的価値は非常
に大きい
This diameter determines the gap between the positive electrode and the negative electrode, so if it is too thick, the resistance between the electrodes will increase, causing a decrease in battery performance. On the other hand, if it is too fine, it will be difficult to fill the silica fine powder and short circuits will occur more easily. Also, since it greatly affects the amount of electrolytic immersion that can be maintained, it should be selected so that the target battery performance can be obtained. Next, a group of electrode plates is assembled using the electrode plates coated with hot melt resin. Assembly is extremely easy, as no separator is required, so all you have to do is stack the positive and negative plates alternately. Second
The figure shows a cross-sectional view of the electrode plate group inserted into the battery case.
is a positive electrode plate, 4 is a negative electrode plate, and 5 is a battery case. The distance between the positive electrode plate 3 and the negative electrode plate 4 is kept constant by the linear hot melt resin 2. Therefore, an electrolyte holder made of fine silica powder with primary particles of 10 to 40 millimeters was filled in the gap between the positive and negative plates and the gap between the battery case and the plate group.
In this electrolyte holder, the fine silica powder was aggregated to form secondary and tertiary particles, and the porosity when packed densely was approximately 90%. This electrolyte holder was filled to the extent that the electrode plates were buried as shown in Figure 3. The powder was free-flowing and could be filled in a short time by applying vibration. In FIG. 3, 6 is a strug, 7 is a negative terminal, 8 is a positive terminal, 9 is an electrolyte holder, and 10 is an exhaust valve. Next, we conducted a capacity test on the prototype battery. The test battery had a nominal capacity of 4.5 h, and for comparison, conventional retainer-type batteries and gel-type batteries using positive and negative electrode plates with the same loft were also tested. The results are shown in Table 1. Table 1 From the test results, when the retainer type and the gel type were compared, the retainer type had a slightly higher electrolyte specific gravity, so the high rate discharge performance was superior to the gel type. Also, the low rate discharge capacity was slightly higher for the gel type because the amount of electrolyte was larger. On the other hand, the products of the present invention have improved performance by 10 to 20% in both low rate discharge and high rate discharge compared to these conventional sealed marine storage batteries. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, and the amount of electrolyte that can be impregnated is larger than that of the retainer type.Furthermore, there is no need to use a separator that acts as a resistance during discharge, and acid diffusion is reduced. This is due to the synergistic effect of superiority. In addition, in this example, Bottmelt resin was applied to one side of the positive electrode plate and one side of the negative electrode plate, but the effect is the same even if hot melt resin is applied to both sides of either the positive electrode plate or the negative electrode plate. Application of hotmel l-resin can be easily performed using the applicator and is easy to automate. Also, there was no difference in the effect of keeping the distance between the electrodes constant even if the coating was applied in a broken line instead of in a linear pattern. Effects of the Invention As is clear from the above embodiments, the sealed lead-acid battery according to the present invention maintains a constant distance between the positive and negative electrode plates by linearly applying hot-melt resin to the electrode plates, and also coats the electrode plates with hot melt resin in a linear manner. It can be manufactured at low cost by simply filling the battery with an electrolyte holder made of fine powder, and it has great industrial value as it can significantly improve the discharge performance of conventional sealed lead-acid batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は未化成の極板にホットメルト樹脂を線状に塗布
した状態を示す斜視図、第2図および第3図は本発明に
よる密閉式鉛蓄電池の断面図および側面図である。 1・・・末化成極板、2・・・ホットメルト樹脂、3・
・・正極板、4・・・賃極板、5・・・電槽、9・・・
電解液保持体 才 1 呂 方 2 回 才 3 囚 lθ 32祁稍友
FIG. 1 is a perspective view showing a state in which a hot melt resin is linearly applied to an unformed electrode plate, and FIGS. 2 and 3 are a sectional view and a side view of a sealed lead acid battery according to the present invention. 1... Chemically formed electrode plate, 2... Hot melt resin, 3...
...Positive electrode plate, 4...Lesson electrode plate, 5...Battery case, 9...
Electrolyte holding body size 1 Lufang 2 Timesai 3 Prison lθ 32 Qiyeonyu

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式鉛蓄電池において、相対する正極板と負極板の
極板面の少なくとも一方の極板面には上下方向に熱可塑
性樹脂が線状または破線状となるように複数本塗布され
た極板を用いて極板群が構成され、正極板と負極板との
間隙および極板群の周囲に一次粒子が10〜40ミリミ
クロンのシリカ微粉体からなる電解液保持体を充填、配
置し、放電に必要かつ充分な量の硫酸電解液を上記電解
液保持体に含浸、保持させたことを特徴とする密閉式鉛
蓄電池。
1. In a sealed lead-acid battery in which the negative electrode absorbs oxygen gas generated during battery charging, at least one of the opposing positive and negative electrode plates has a thermoplastic resin lined in the vertical direction. An electrode plate group is constructed using a plurality of electrode plates coated in a shape or broken line, and primary particles of 10 to 40 millimicrons of silica are formed in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. 1. A sealed lead-acid battery, characterized in that an electrolyte holder made of fine powder is filled and arranged, and the electrolyte holder is impregnated and held with a sufficient amount of sulfuric acid electrolyte necessary for discharge.
JP1192200A 1989-07-25 1989-07-25 Sealed lead-acid battery Pending JPH0357164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192200A JPH0357164A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192200A JPH0357164A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0357164A true JPH0357164A (en) 1991-03-12

Family

ID=16287340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192200A Pending JPH0357164A (en) 1989-07-25 1989-07-25 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0357164A (en)

Similar Documents

Publication Publication Date Title
JPH0357164A (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH02165570A (en) Closed lead battery
JPS5826778B2 (en) lead acid battery
JP2855693B2 (en) Clad sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH0357165A (en) Sealed lead-acid battery
JPH0482155A (en) Enclosed lead storage battery
JPH0195465A (en) Closed type lead battery
JPH06140019A (en) Clad type sealed lead acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JP2958790B2 (en) Sealed lead-acid battery
JPH0654680B2 (en) Sealed lead acid battery
JPH06187967A (en) Clad type sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPS5986165A (en) Manufacture of enclosed lead storage battery
JP2794588B2 (en) Sealed lead-acid battery
JPH0357166A (en) Sealed lead-acid battery
JPS59169081A (en) High temperature type battery
JPH03105874A (en) Sealed lead-acid battery
JPH0355765A (en) Sealed lead storage battery
JPS63252363A (en) Manufacture of lead-acid battery
JPH042059A (en) Clad type lead acid battery of sealed structure
JPH05198310A (en) Sealed lead-acid battery