JPH02236963A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH02236963A
JPH02236963A JP1057075A JP5707589A JPH02236963A JP H02236963 A JPH02236963 A JP H02236963A JP 1057075 A JP1057075 A JP 1057075A JP 5707589 A JP5707589 A JP 5707589A JP H02236963 A JPH02236963 A JP H02236963A
Authority
JP
Japan
Prior art keywords
electrolyte
positive
active material
negative
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1057075A
Other languages
Japanese (ja)
Other versions
JP2552352B2 (en
Inventor
Katsuyoshi Kawai
勝由 河合
Satoshi Matsubayashi
敏 松林
Akio Komaki
小牧 昭夫
Takaharu Akuto
阿久戸 敬治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Resonac Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Shin Kobe Electric Machinery Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1057075A priority Critical patent/JP2552352B2/en
Publication of JPH02236963A publication Critical patent/JPH02236963A/en
Application granted granted Critical
Publication of JP2552352B2 publication Critical patent/JP2552352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/126Small-sized flat cells or batteries for portable equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase capacity by arranging a highly water-absorbing resin or a gelled electrolyte between positive and negative active materials and by forming an electrolyte retaining layer over the whole upper part of them. CONSTITUTION:A gelled electrolyte 9 is arranged between a positive electrode 1 and a negative electrode 2. A positive current collector 4 and a negative current collector 7 are arranged in the lower part of each of a positive active material 3 and a negative active material 6. A nonwoven fabric mainly comprising inorganic fibers or organic fibers is arranged as an electrolyte retaining layer 5 over the whole upper part of the active materials 3, 6 and the electrolyte 9, then the whole of them is sealed with an airtight resin film 8. When a battery is discharged, discharge reaction continues through the layer 5, and when the battery is charged, gas absorbing reaction proceeds through the electrolyte 9. The amount of electrolyte required for reaction between the electrodes 1 and 2 is always retained and capacity is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポータブル機器などの小型機器に用いること
のできる密閉形鉛蓄電池の構造に関するものである. 従来の技術 従来、密閉形鉛蓄電池の構造は、電解液保持体であるセ
パレータなどを介して,正極板と負極板を積層した構造
となっている.しかしながら,この構造では、近年の機
器の小型化に伴う密閉形鉛蓄電池の薄形化要求に対して
、既に限界にきている.そこで,第5図に示すような、
同一平面上に正極1と負極2を電解液を保持したセパレ
ータ10を介して配置し,全体を樹脂製フィルム8で密
封した密閉形釦蓄電池の構造が提案されている.(比較
品) 発明が解決しようとする課題 上記提案による密閉形鉛蓄電池は,厚さの面でかなり簿
くすることができるようになった.しかしながら、同一
平面上で,必要量の電解液を保持したセパレータを介し
て正極と負極を配置するために,極間が離れすぎてセパ
レータ中の電解液抵抗が大きくなる欠点があり,また,
電解液との接触が活物質全体に及びにくいので、容量が
非常に小さいという欠点を有している.本発明は,上記
の問題を解決し,さらに高容斌化を可能にするような密
閉形鉛蓄電池を提供することを目的とする. 課題を解決するための手段 本発明は,同一平面上に設巴した正極と負極の活物質間
に、電解液を含浸した高吸水性樹脂又はゲル状電解質を
有し、前記正極及び負極の活物質面と前記高吸水性樹脂
又はゲル状電解質面の上部にわたって電解液保持層を設
けたことを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a sealed lead-acid battery that can be used in small devices such as portable devices. Conventional technology Conventionally, the structure of a sealed lead-acid battery is a structure in which a positive electrode plate and a negative electrode plate are stacked with a separator, which is an electrolyte holding body, interposed therebetween. However, this structure has already reached its limit in meeting the demand for thinner sealed lead-acid batteries due to the miniaturization of devices in recent years. Therefore, as shown in Figure 5,
A sealed button storage battery structure has been proposed in which a positive electrode 1 and a negative electrode 2 are placed on the same plane with a separator 10 holding an electrolyte in between, and the entire structure is sealed with a resin film 8. (Comparative product) Problems to be solved by the invention The sealed lead-acid battery proposed above can now be made considerably smaller in terms of thickness. However, since the positive and negative electrodes are placed on the same plane with a separator holding the required amount of electrolyte in between, there is a drawback that the electrodes are too far apart, increasing the resistance of the electrolyte in the separator.
Since it is difficult for the entire active material to come into contact with the electrolyte, it has the disadvantage of very low capacity. An object of the present invention is to provide a sealed lead-acid battery that solves the above problems and also enables higher capacity. Means for Solving the Problems The present invention has a super absorbent resin or gel electrolyte impregnated with an electrolytic solution between the active materials of the positive and negative electrodes disposed on the same plane. It is characterized in that an electrolyte holding layer is provided over the material surface and the superabsorbent resin or gel electrolyte surface.

作用 本発明は、上記の特徴を有することにより、放電時には
、電解液保持層を通じて電池反応が持続し、充電時には
,前記高吸水性樹脂又はゲル状電解質を通じて直接対極
へのガス吸収反応が進行するので、正極と負極が接触す
る電池反応に必要な電解液量を常に確保できる.実施例 本発明の一実施例について説明する. 第1図は,本発明の密閉形蓄電池に関する第1の実施例
としてその縦断面図を示すもので,1は正極、2は負極
、3は正極活物質,4は正極集電体、5は電解液保持層
、6は負極活物質、7は負極集電体、8は樹脂製フィル
ム、9はゲル状電解質である. 第1図の実施例において、正極1と負極2がその間にゲ
ル状電解質9を介して同一平面上に設置され、各極活物
質3、6面下部に各極隻電体4、7を有し、各極活物質
3,6面とゲル状電解質9面上部にわたって無機繊維又
は有機繊維を主体とする不織布が電解液保持)FJ 5
として配置され、全体が気密性を有する樹脂製フィルム
8で密封されている。(本発明品1)ゲル状電解質9は
、シリカ粒子を分散させた水溶液に゛市解液を加えて撹
拌し,ゾル状態で各極1、2間に充填した後ゲル化した
ものである.電解液保持N5の不織布としては、ガラス
繊維のほかアルミナ繊維,ジルコニア繊維,ポリプロピ
レン繊維、ポリエステル繊維、アクリル繊維等を使用す
ることができる。
Operation The present invention has the above features, so that during discharging, the battery reaction continues through the electrolyte holding layer, and during charging, the gas absorption reaction progresses directly to the counter electrode through the superabsorbent resin or gel electrolyte. Therefore, the amount of electrolyte required for the battery reaction in which the positive and negative electrodes are in contact can always be secured. Example An example of the present invention will be explained. FIG. 1 shows a vertical cross-sectional view of a first embodiment of the sealed storage battery of the present invention, in which 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode active material, 4 is a positive electrode current collector, and 5 is a positive electrode current collector. An electrolytic solution holding layer, 6 a negative electrode active material, 7 a negative electrode current collector, 8 a resin film, and 9 a gel electrolyte. In the embodiment shown in FIG. 1, a positive electrode 1 and a negative electrode 2 are installed on the same plane with a gel electrolyte 9 interposed between them, and each electrode has an electric body 4, 7 at the bottom of the surface of each electrode active material 3, 6. (FJ 5
The entire structure is sealed with an airtight resin film 8. (Product 1 of the present invention) Gel electrolyte 9 is obtained by adding a city solution to an aqueous solution in which silica particles are dispersed, stirring the mixture, filling it in a sol state between electrodes 1 and 2, and then gelling it. In addition to glass fibers, alumina fibers, zirconia fibers, polypropylene fibers, polyester fibers, acrylic fibers, and the like can be used as the electrolyte-retaining nonwoven fabric N5.

正極活物質3は、pboz、負極活物質6は、pbであ
り,正極集電体4と負極集電体7は、鉛又は鉛合金シー
トからなっている。
The positive electrode active material 3 is pboz, the negative electrode active material 6 is pb, and the positive electrode current collector 4 and negative electrode current collector 7 are made of lead or a lead alloy sheet.

正極1と負極2の平面形状は、第3図(.)、(b)に
それぞれ示すもので、第4図のように組み合わされてい
る。第4図のA−A線に沿う断面が、第1図の正極1と
負極2との関係に相当する. なお、各極朶電体4、7と各極活物質3、6を合わせた
各極板の厚さはlUl.幅は4m,正極1と負極2の間
の間隔は2IIIoで、電解液保持層5の厚さは1.2
閣、大きさは52mX52nnである.樹脂製フィルム
8の大きさは60++n+X60m+++で厚さは0.
1閣である.その結果、密閉形鉛蓄電池の厚さは全体で
2.4Rl1となり、極めて薄くかつ十分な容量を持つ
密閉形釦蓄電池を得ることが可能となる. 放電時には、電解液保持層5を通じて電池反応が持続し
、充電時には、ゲル状電解質9を通じて直接対極へのガ
ス吸収反応が進行するので、正極1と負極2が接触する
電池反応に必要な電解液量を常に確保できる. 正極1、負極2を同一平面に設置したとき、電解液保持
層5を各極1、2の活物質3、6面上部にわたって設置
すると,各極1、2間に電解液を保持したセパレータ1
0を設置するものに比べて、電解液の保持量が多く、活
物質3、6面全体での反応が可能となり、内部抵抗を小
さくするための各極1、2間隔の接近も可能となり、そ
れに伴い密閉形鉛蓄電池も小型化できる。
The planar shapes of the positive electrode 1 and the negative electrode 2 are shown in FIGS. 3(.) and 3(b), respectively, and are combined as shown in FIG. 4. The cross section taken along the line A-A in FIG. 4 corresponds to the relationship between the positive electrode 1 and the negative electrode 2 in FIG. The thickness of each electrode plate, which is the sum of each electrode body 4, 7 and each electrode active material 3, 6, is lUl. The width is 4 m, the distance between the positive electrode 1 and the negative electrode 2 is 2IIIo, and the thickness of the electrolyte holding layer 5 is 1.2 m.
The size of the cabinet is 52m x 52nn. The size of the resin film 8 is 60++n+X60m+++ and the thickness is 0.
There is one cabinet. As a result, the total thickness of the sealed lead acid battery is 2.4Rl1, making it possible to obtain a sealed button storage battery that is extremely thin and has sufficient capacity. During discharging, the battery reaction continues through the electrolyte holding layer 5, and during charging, the gas absorption reaction progresses directly to the counter electrode through the gel electrolyte 9, so that the electrolyte necessary for the battery reaction where the positive electrode 1 and the negative electrode 2 are in contact with each other. You can always secure the quantity. When the positive electrode 1 and the negative electrode 2 are installed on the same plane, and the electrolyte holding layer 5 is installed over the active material 3 and 6 surfaces of each electrode 1 and 2, the separator 1 holding the electrolyte between each electrode 1 and 2
Compared to the case where 0 is installed, the amount of electrolyte retained is large, and the reaction can occur on the entire 3rd and 6th surfaces of the active material, and it is also possible to close the 1st and 2nd intervals of each pole to reduce internal resistance. Accordingly, sealed lead-acid batteries can also be made smaller.

更に,活物質3、6面の剥離防止にも役立ち、全体的に
容量安定となる。又、各極1、2間にゲル状電解質9を
設けると電池反応に寄与するだけでなく、充電中の発生
ガスが電解質保持層5中に捕らわれず、このゲル状電解
質9の亀裂を通じて直接対極へ吸収されるので、電解液
保持層5と各極1、2との密着がガス発生により損なわ
れることがなくなり、高容量化できる。
Furthermore, it also helps to prevent the active materials 3 and 6 from peeling off, resulting in overall capacity stability. Furthermore, by providing a gel electrolyte 9 between each electrode 1 and 2, not only does it contribute to the battery reaction, but gas generated during charging is not trapped in the electrolyte holding layer 5, and is directly transferred to the counter electrode through cracks in the gel electrolyte 9. Therefore, the adhesion between the electrolyte holding layer 5 and each of the electrodes 1 and 2 is not impaired by gas generation, and the capacity can be increased.

また、本発明の密閉形銘’Tj ′K1池に関する第2
の実施例として、第1図に示したゲル状電解質9に代え
て高吸水性樹脂11中に電解液を含浸したものを第2図
に示している。(本発明品2)高吸水性樹脂11は、ゲ
ル状電解質より多址の電解液を保持することができるの
で、各極活物質3,6面に供給される放電反応に寄与す
る電解液が増加し、容量が増加する。
Also, the second part regarding the sealed type 'Tj'K1 pond of the present invention
As an example, FIG. 2 shows a super absorbent resin 11 impregnated with an electrolyte instead of the gel electrolyte 9 shown in FIG. (Product of the present invention 2) The superabsorbent resin 11 can hold more electrolyte than the gel electrolyte, so that the electrolyte that contributes to the discharge reaction supplied to the surfaces of each electrode active material 3 and 6 is increases and capacity increases.

第6図に前記本発明品1、2と比較品のICの定電流に
よる高率放電曲線を示す。図よりわかるように、比較品
は30分間の放電持続時間であったが,本発明品1は4
5分間、本1発明品2は55分間となり、比較品より容
量がそれぞれ50%、80%向上した. 発明の効果 本発明により、従来提案された密閉形鉛蓄電池に比べ、
活物質反応面積が増し、その結果容量安定となった.又
、電解液保持層で必要量の電解液量を確保できるので、
極間を接近させることができ、更に,電解液保持層とは
別に極間に電解液を含浸した高吸水性樹脂又はゲル状電
解質を介在させたことにより、電池反応に寄与するだけ
でなく充電時に発生したガスが電解液保持層を経由する
ことなく直接対極へ吸収されて電解液保持層へ残留しな
いため、活物質と電解液が十分に接触し高容社化をもた
らすので,工業的価値は絶大なるものである.
FIG. 6 shows high rate discharge curves at constant current of ICs of the invention products 1 and 2 and a comparative product. As can be seen from the figure, the comparative product had a discharge duration of 30 minutes, but the inventive product 1 had a discharge duration of 40 minutes.
5 minutes, and 55 minutes for Inventive Product 1 and Invention Product 2, showing a capacity improvement of 50% and 80%, respectively, over the comparative product. Effects of the Invention The present invention provides a
The active material reaction area increased, resulting in stable capacity. In addition, since the required amount of electrolyte can be secured in the electrolyte holding layer,
It is possible to bring the electrodes closer together, and by interposing a super absorbent resin or gel electrolyte impregnated with electrolyte between the electrodes in addition to the electrolyte holding layer, it not only contributes to the battery reaction but also improves charging. The gas generated at the time is directly absorbed into the counter electrode without passing through the electrolyte holding layer, and does not remain in the electrolyte holding layer, so the active material and electrolyte come into sufficient contact, resulting in high capacity, which has industrial value. is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造の一実施例を示す拡大断面図,第
2図は同じく他の実施例を示す拡大断面図,第3図は第
1図及び第2図に用いる(a)正極、(b)負極、の形
状をそれぞれ示す平面図、第4図は同じく両極を組合せ
た状態を示す平面図,第5図は比較品の楕造を示す拡大
断面図、第6図は本発明品と比較品における高率放電特
性曲線図である。 1は正極、2は負極、3は正極活物質、4は正極集電体
、5は電解液保持層、6は負極活物質、7は負極集電体
、8は樹脂製フィルム,9はゲル状電解質,10はセパ
レータ、11は電解液を含浸した高吸水性樹脂
Fig. 1 is an enlarged sectional view showing one embodiment of the structure of the present invention, Fig. 2 is an enlarged sectional view showing another embodiment, and Fig. 3 is the positive electrode (a) used in Figs. 1 and 2. , (b) A plan view showing the shapes of the negative electrode, FIG. 4 is a plan view showing the combined state of the two electrodes, FIG. 5 is an enlarged sectional view showing the oval shape of the comparative product, and FIG. 6 is the inventive product. It is a high rate discharge characteristic curve diagram of a product and a comparison product. 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode active material, 4 is a positive electrode current collector, 5 is an electrolyte holding layer, 6 is a negative electrode active material, 7 is a negative electrode current collector, 8 is a resin film, 9 is a gel 10 is a separator, 11 is a super absorbent resin impregnated with electrolyte

Claims (1)

【特許請求の範囲】[Claims]  同一平面上に設置した正極及び負極の活物質間に、電
解液を含浸した高吸水性樹脂又はゲル状電解質を有し、
且つ前記正極及び負極の活物質面と前記高吸水性樹脂又
はゲル状電解質面の上部にわたって電解液保持層を設け
たことを特徴とする密閉形鉛蓄電池。
It has a super absorbent resin or gel electrolyte impregnated with an electrolytic solution between the active materials of the positive electrode and negative electrode installed on the same plane,
A sealed lead-acid battery characterized in that an electrolyte holding layer is provided over the active material surfaces of the positive and negative electrodes and the superabsorbent resin or gel electrolyte surface.
JP1057075A 1989-03-09 1989-03-09 Sealed lead acid battery Expired - Lifetime JP2552352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057075A JP2552352B2 (en) 1989-03-09 1989-03-09 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057075A JP2552352B2 (en) 1989-03-09 1989-03-09 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPH02236963A true JPH02236963A (en) 1990-09-19
JP2552352B2 JP2552352B2 (en) 1996-11-13

Family

ID=13045343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057075A Expired - Lifetime JP2552352B2 (en) 1989-03-09 1989-03-09 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JP2552352B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129009A (en) * 1991-11-06 1993-05-25 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH05129036A (en) * 1991-11-06 1993-05-25 Shin Kobe Electric Mach Co Ltd Closed type secondary battery
EP0689273A1 (en) * 1993-05-03 1995-12-27 Dial Engineering Ag Method for charging of sealed lead-acid batteries
JP2006147210A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
JP2013170289A (en) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd Electrolytic etching jig and electrolytic etching method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108653A (en) * 1981-12-22 1983-06-28 Matsushita Electric Ind Co Ltd Sealed storage battery
JPS6113468U (en) * 1984-06-29 1986-01-25 新神戸電機株式会社 sealed lead acid battery
JPS63190260A (en) * 1987-01-30 1988-08-05 Shin Kobe Electric Mach Co Ltd Lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108653A (en) * 1981-12-22 1983-06-28 Matsushita Electric Ind Co Ltd Sealed storage battery
JPS6113468U (en) * 1984-06-29 1986-01-25 新神戸電機株式会社 sealed lead acid battery
JPS63190260A (en) * 1987-01-30 1988-08-05 Shin Kobe Electric Mach Co Ltd Lead storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129009A (en) * 1991-11-06 1993-05-25 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH05129036A (en) * 1991-11-06 1993-05-25 Shin Kobe Electric Mach Co Ltd Closed type secondary battery
EP0689273A1 (en) * 1993-05-03 1995-12-27 Dial Engineering Ag Method for charging of sealed lead-acid batteries
JP2006147210A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
JP2013170289A (en) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd Electrolytic etching jig and electrolytic etching method

Also Published As

Publication number Publication date
JP2552352B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
JPH02236963A (en) Sealed lead-acid battery
JPS62165875A (en) Storage battery
JPH042060A (en) Sealed type lead acid battery
JPH0343966A (en) Sealed lead-acid battery
JPH02236965A (en) Sealed lead-acid battery
JPS5826778B2 (en) lead acid battery
JPS60163380A (en) Lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPS5990360A (en) Solid secondary battery
JPH0658808B2 (en) Sealed lead acid battery
JPS5986165A (en) Manufacture of enclosed lead storage battery
JP2855693B2 (en) Clad sealed lead-acid battery
JPS62216177A (en) Hermetically sealed type lead storage battery
JPS6145565A (en) Storage battery
JPS62165877A (en) Storage battery
JPH0535577Y2 (en)
JPH05174864A (en) Hermetic type lead-acid battery
JPH0260066A (en) Sealed lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPH0278160A (en) Sealed-type lead-acid battery and manufacture thereof
JPH01298655A (en) Sealed lead storage battery
JPS61232559A (en) Clad type sealed lead-acid battery
JPS61171066A (en) Aggregate cell
JPH0357165A (en) Sealed lead-acid battery
JPH04102564U (en) Thin sealed lead acid battery