JP2958791B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2958791B2
JP2958791B2 JP2048356A JP4835690A JP2958791B2 JP 2958791 B2 JP2958791 B2 JP 2958791B2 JP 2048356 A JP2048356 A JP 2048356A JP 4835690 A JP4835690 A JP 4835690A JP 2958791 B2 JP2958791 B2 JP 2958791B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
negative electrode
silica powder
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2048356A
Other languages
Japanese (ja)
Other versions
JPH03252063A (en
Inventor
重治 大角
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP2048356A priority Critical patent/JP2958791B2/en
Publication of JPH03252063A publication Critical patent/JPH03252063A/en
Application granted granted Critical
Publication of JP2958791B2 publication Critical patent/JP2958791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in a sealed lead-acid battery.

従来の技術とその課題 電池の充電中に発生する酸素ガスを負極で吸収させる
タイプの密閉式鉛蓄電池にはリテーナ式とゲル式の二種
類がある。リテーナ式は正極板と負極板との間に直径約
1ミクロン(μm)の微細ガラス繊維を素材とするマッ
ト状セパレータ(以下、ガラスセパレータという。)を
挿入し、これによって放電に必要な硫酸電解液の保持と
両極の隔離を行っており、近年、ポータブル機器やコン
ピューターのバックアップ電源として広く用いられるよ
うになってきた。しかし、リテーナ式はガラスセパレー
タが高価なことおよび充分な量の電解液を保持できない
ために、低率放電では放電容量が電解液量で制限される
という欠点があり、この種の密閉電池の普及に障害とな
っている。
2. Description of the Related Art There are two types of sealed lead-acid batteries of a type in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (hereinafter, referred to as a glass separator) made of fine glass fiber having a diameter of about 1 micron (μm) is inserted between a positive electrode plate and a negative electrode plate, and thereby sulfuric acid electrolysis required for electric discharge. It maintains liquid and separates both electrodes. In recent years, it has been widely used as a backup power source for portable devices and computers. However, the retainer type has the drawback that the discharge capacity is limited by the amount of electrolyte at low rate discharge because the glass separator is expensive and cannot hold a sufficient amount of electrolyte. Has become an obstacle.

一方、ゲル式はリテーナ式よりも安価であるが、電池
性能が液式やリテーナ式に劣るという欠点があった。
On the other hand, the gel type is less expensive than the retainer type, but has a drawback that the battery performance is inferior to the liquid type and the retainer type.

課題を解決するための手段 上述した問題点を解決するため、鋭意研究を重ねた結
果、我々は、二酸化珪素(シリカ)の粉体、特に直径約
10〜500μmのものを電解液保持体に用いた電池は、従
来のリテーナ式よりも高率放電性能に優れ、ゲル式電池
よりも低率放電性能に優れているという特徴をみいだし
た。さらに、シリカの粉体は安価な工業材料である。こ
れらに基づいて、本発明は先の問題点を解決するもの
で、生産性に優れ、安価でかつ放電性能に優れた密閉式
鉛蓄電池を提供するもので、その要旨とするところは電
池の充電中に発生する酸素ガスを負極で吸収させる密閉
式鉛蓄電池において、正極板と負極板との間に隔離体を
挿入してなる極板群を電槽内に収納すると共に、正極板
と負極板との間隙および極板群の周囲に直径が約10〜50
0μmのシリカ粉体を充填、配置し、硫酸電解液を該粉
体に含浸、保持させることにある。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, we have found that silicon dioxide (silica) powder, particularly having a diameter of about
Batteries using 10 to 500 μm as the electrolyte holder were found to be superior in high-rate discharge performance to the conventional retainer type, and superior in low-rate discharge performance to the gel type battery. Furthermore, silica powder is an inexpensive industrial material. Based on these, the present invention solves the above problems, and provides a sealed lead-acid battery that is excellent in productivity, inexpensive, and excellent in discharge performance. In a sealed lead-acid battery in which oxygen gas generated therein is absorbed by a negative electrode, a group of electrodes formed by inserting a separator between a positive electrode plate and a negative electrode plate is housed in a battery case, and the positive electrode plate and the negative electrode plate are stored. Approximately 10 to 50 in diameter around the gap and electrode group
The object of the present invention is to fill and arrange 0 μm silica powder, impregnate and hold the sulfuric acid electrolyte in the powder.

実施例 以下、本発明を実施例にて詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples.

Pb−Ca−Sn合金より成る正極および負極格子体に通常
の正極および負極ペーストをそれぞれ充填した後、熟成
を施して未化成極板を作製した。ついでこれらの正極お
よび負極未化成極板を用い、第1図に示す隔離体を両極
板の間に挿入して極板群を作製した。図に示した隔離体
1は耐酸性の合成樹脂製のものを用いた。シリカ粉体を
充填する密閉式鉛蓄電池においては、正極板と負極板と
の間隙に存在するシリカ粉体によって正極板と負極板と
が接触することが防がれており、通常のセパレータは特
に必要ではない。しかし、シリカ粉体を正極板と負極板
との間隙にできるだけ均一に充填するために、間隙を保
持するための隔離体が必要となる。この間隙保持体とし
ては、図1のような合成樹脂製のものの他、帯状ガラス
マットやガラスセパレータなど、耐酸性を有しかつ両極
を隔離できるものであれば良い。このようにして作製し
た極板群を電槽内に挿入し、極板群の上部からシリカ粉
体を振動を加えながら充填した。ここでシリカ粉体は凝
集したシリカ微粉体を10μm以下、10〜100μm、100〜
200μm、200〜500μm、500μm以上に分級したもので
ある。これらのシリカ粉体を充填したのち蓋を装着し、
排気弁を装着してそれぞれ電池A〜Eを作製した。ここ
で作製した電池は公称容量4.5Ahである。シリカ粉体を
用いた蓄電池の正面図および断面図をそれぞれ第2図お
よび第3図に示す。ここで3は電槽、4は負極板、5は
正極板、6はシリカ粉体、7は電槽フタ、8は排気弁で
ある。
The positive and negative electrode grids made of a Pb-Ca-Sn alloy were filled with ordinary positive and negative electrode pastes, respectively, and then aged to prepare unformed electrode plates. Next, using these positive and negative electrode unformed electrode plates, the separator shown in FIG. 1 was inserted between the two electrode plates to prepare an electrode plate group. The separator 1 shown in the figure was made of an acid-resistant synthetic resin. In a sealed lead-acid battery filled with silica powder, the positive electrode plate and the negative electrode plate are prevented from coming into contact with each other by the silica powder present in the gap between the positive electrode plate and the negative electrode plate. Not necessary. However, in order to fill the gap between the positive electrode plate and the negative electrode plate with the silica powder as uniformly as possible, an isolator for maintaining the gap is required. The gap holding body may be made of a synthetic resin as shown in FIG. 1, or may be a strip-shaped glass mat or a glass separator, as long as it has acid resistance and can separate both electrodes. The electrode group thus produced was inserted into a battery case, and silica powder was filled from above the electrode group while applying vibration. Here, the silica powder is an aggregated silica fine powder of 10 μm or less, 10 to 100 μm, 100 to 100 μm.
Classified to 200 μm, 200 to 500 μm, 500 μm or more. After filling these silica powders, attach the lid,
Batteries A to E were prepared by mounting exhaust valves. The battery manufactured here has a nominal capacity of 4.5 Ah. FIGS. 2 and 3 show a front view and a sectional view of a storage battery using silica powder, respectively. Here, 3 is a battery case, 4 is a negative electrode plate, 5 is a positive electrode plate, 6 is silica powder, 7 is a battery case lid, and 8 is an exhaust valve.

電解液を注入したのち、電池の容量試験をおこなっ
た。比較のために同じロットの正極板および負極板を用
いたリテーナ式電池Fおよびゲル式電池Gも試験した。
結果を第1表に示す。
After injecting the electrolyte, a capacity test of the battery was performed. For comparison, a retainer type battery F and a gel type battery G using the same lot of the positive electrode plate and the negative electrode plate were also tested.
The results are shown in Table 1.

この試験結果よりリテーナ式電池Fとゲル式電池Gと
を比較すると、リテーナ式電池Fは電解液比重がやや高
いためにゲル式電池Gよりも高率放電性能が優れてい
た。また低率放電容量はゲル式電池Gの方が若干多かっ
た。これは電解液量が多いためである。シリカ粉体を充
填した電池A〜Eの内、特に、直径約10〜500μmシリ
カ粉体を用いた本発明による電池B,C,Dはリテーナ式電
池Fおよびゲル式電池Gに比べ低率放電性能は約8〜16
%、高率放電性能は約12〜41%性能が向上した。これは
電解液比重をゲル式よりもやや高くしたこと、電解液を
リテーナ式よりも多く含浸できたことおよび放電の際に
抵抗となる通常のセパレータを使用していないことや酸
の拡散が優れていることなどの相乗効果によるものと考
えられる。
Comparing the retainer type battery F and the gel type battery G based on the test results, the retainer type battery F was superior in the high-rate discharge performance to the gel type battery G because the specific gravity of the electrolytic solution was slightly higher. Also, the low rate discharge capacity of the gel type battery G was slightly higher. This is because the amount of the electrolyte is large. Among the batteries A to E filled with silica powder, the batteries B, C, and D using the silica powder of about 10 to 500 μm in diameter according to the present invention have a lower discharge rate than the retainer battery F and the gel battery G. Performance is about 8-16
%, High rate discharge performance improved by about 12-41%. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, the electrolyte can be impregnated more than the retainer type, and the usual separator that becomes a resistance during discharge is not used, and the acid diffusion is excellent. It is thought to be due to a synergistic effect such as

しかし、直径10μm以下のシリカ粉体を充填した電池
Aおよび直径500μm以上のシリカ粉体を充填した電池
Eは、リテーナ式電池Fおよびゲル式電池Gとほぼ同じ
程度の高率放電性能、低率放電性能しか示さなかった。
これはシリカ粉体が細かすぎると電池作製時十分、シリ
カ粉体を充填できず、したがって電解液量が減少するこ
と、およびシリカ粉体が粗すぎると電解液の保持能力が
低下することによるものであると考えられる。
However, the battery A filled with silica powder having a diameter of 10 μm or less and the battery E filled with silica powder having a diameter of 500 μm or more have a high rate discharge performance and a low rate which are almost the same as those of the retainer type battery F and the gel type battery G. Only discharge performance was shown.
This is due to the fact that if the silica powder is too fine, the silica powder cannot be filled sufficiently during battery fabrication, and therefore the amount of electrolyte decreases, and if the silica powder is too coarse, the ability to hold the electrolyte decreases. It is considered to be.

なお、実施例ではシリカ粉体を単独で用いたが、さら
に性能を改善するためガラス短繊維などの親水性を有す
る耐酸性の短繊維をシリカ粉体と混合して用いても良
い。また、例えば、合成樹脂や合成繊維などを主体とし
た通常のセパレータを併用しても良い。この場合、電池
電圧がわずかに低下することもあるが、特に、高率放電
以外の場合には実際上ほとんど問題にならない。
In the examples, silica powder was used alone, but hydrophilic acid-resistant short fibers such as short glass fibers may be mixed with silica powder to further improve the performance. Further, for example, a normal separator mainly composed of a synthetic resin or a synthetic fiber may be used in combination. In this case, the battery voltage may be slightly reduced, but there is practically no problem particularly in cases other than high-rate discharge.

発明の効果 上述の実施例から明らかなように、本発明による密閉
式鉛蓄電池は正極板と負極板との間隙および極板群の周
囲に直径が約10〜500μmのシリカ粉体を充填、配置
し、硫酸電解液を該粉体に含浸、保持させることによっ
て、安価で性能の優れた電池を作製でき、その工業的価
値は非常に大きい。
Effect of the Invention As is clear from the above-described embodiment, the sealed lead-acid battery according to the present invention is filled with silica powder having a diameter of about 10 to 500 μm around the gap between the positive electrode plate and the negative electrode plate and around the electrode group. However, by impregnating and holding the powder with a sulfuric acid electrolytic solution, a battery that is inexpensive and has excellent performance can be manufactured, and its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は隔離体の斜視図、第2図および第3図は本発明
による密閉式鉛蓄電池の正面図および断面図である。 1……隔離体、3……電槽、4……負極板、5……正極
板、6……シリカ粉体
FIG. 1 is a perspective view of a separator, and FIGS. 2 and 3 are a front view and a sectional view of a sealed lead-acid battery according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Isolator, 3 ... Battery case, 4 ... Negative plate, 5 ... Positive plate, 6 ... Silica powder

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池の充電中に発生する酸素ガスを負極で
吸収させる密閉式鉛蓄電池において、正極板と負極板と
の間に隔離体を挿入してなる極板群を電槽内に収納する
と共に、正極板と負極板との間隙および極板群の周囲に
直径が約10〜500ミクロンのシリカ粉体を充填,配置
し、硫酸電解液を上記粉体に含浸,保持させることを特
徴とする密閉式鉛蓄電池。
In a sealed lead-acid battery in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, an electrode plate group in which a separator is inserted between a positive electrode plate and a negative electrode plate is housed in a battery case. In addition, a silica powder having a diameter of about 10 to 500 microns is filled and arranged around the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group, and the sulfuric acid electrolyte is impregnated in the powder and held. Sealed lead-acid battery.
JP2048356A 1990-02-28 1990-02-28 Sealed lead-acid battery Expired - Fee Related JP2958791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048356A JP2958791B2 (en) 1990-02-28 1990-02-28 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048356A JP2958791B2 (en) 1990-02-28 1990-02-28 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH03252063A JPH03252063A (en) 1991-11-11
JP2958791B2 true JP2958791B2 (en) 1999-10-06

Family

ID=12801080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048356A Expired - Fee Related JP2958791B2 (en) 1990-02-28 1990-02-28 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2958791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003209065A1 (en) 2002-02-07 2003-09-02 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators, electrolyte therefor, and absorbent separators therefor

Also Published As

Publication number Publication date
JPH03252063A (en) 1991-11-11

Similar Documents

Publication Publication Date Title
JPH042060A (en) Sealed type lead acid battery
JP2958791B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH0628169B2 (en) Sealed lead acid battery
JP2952374B2 (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JP2855706B2 (en) Sealed lead-acid battery
JP2855693B2 (en) Clad sealed lead-acid battery
JPS5986165A (en) Manufacture of enclosed lead storage battery
JP2995780B2 (en) Sealed lead-acid battery
JPH06187967A (en) Clad type sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP2527072B2 (en) Sealed lead acid battery
JPS61250968A (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JP3324631B2 (en) Sealed lead-acid battery
JPH05190172A (en) Sealed type clad lead-acid battery
JPH07130391A (en) Manufacture of closed lead acid battery
JPS62170173A (en) Sealed lead-acid battery
JPH05151988A (en) Sealed type lead acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH0547410A (en) Close-type lead-acid battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees