JPH0332180B2 - - Google Patents

Info

Publication number
JPH0332180B2
JPH0332180B2 JP60098653A JP9865385A JPH0332180B2 JP H0332180 B2 JPH0332180 B2 JP H0332180B2 JP 60098653 A JP60098653 A JP 60098653A JP 9865385 A JP9865385 A JP 9865385A JP H0332180 B2 JPH0332180 B2 JP H0332180B2
Authority
JP
Japan
Prior art keywords
tube
lead
acid
electrode plate
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60098653A
Other languages
Japanese (ja)
Other versions
JPS61256565A (en
Inventor
Kunio Yonezu
Katsuto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60098653A priority Critical patent/JPS61256565A/en
Publication of JPS61256565A publication Critical patent/JPS61256565A/en
Publication of JPH0332180B2 publication Critical patent/JPH0332180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/765Tubular type or pencil type electrodes; tubular or multitubular sheaths or covers of insulating material for said tubular-type electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はゲル状電解液を用いたクラツド式密閉
鉛蓄電池の改良に関するものである。 従来の技術とその問題点 従来の液式鉛蓄電池は使用する正極板の種類に
よつて、ペースト式とクラツド式の2種類があ
り、高エネルギー密度や高出力が要求される用途
にはペースト式、長寿命が要求される用途にはク
ラツド式というように使い分けられている。しか
し、電解液をゲル状とした密閉鉛蓄電池は通常ペ
ースト式電池に限られている。これはクラツド式
電池ではチユーブでゲルが分離され、正極板の放
電性能が損われるためである。しかしクラツド式
密閉鉛蓄電池でも、格子に鉛−カルシウム合金な
ど実質的にアンチモンを含まない合金を用いるた
めに、深い充放電で格子の腐食や伸び、さらに活
物質の軟化、脱落で寿命性能が劣るという問題点
があつた。 問題点を解決するための手段 本発明はチユーブの組織を疎にしてチユーブ部
でのゲルの分離防ぐことにより、実質的にアンチ
モンを含まない鉛合金芯金を用いたクラツド式密
閉鉛蓄電池の放電性能を高めたものであり、25℃
において比重1.200の希硫酸中における電気抵抗
が0.002Ω・dm2以下であり、とくに通水量が水
中で10cm水柱の圧力によつて200c.c./min・cm2
上のチユーブであることが望ましい。 作 用 通常の液式電池では正極活物質の軟化・脱落を
防ぐためにチユーブの組織を密にする必要があつ
た。このものの電気抵抗は通常0.003Ω・dm2
上であり、通水量は150c.c.以下である。このよう
な密な組織のチユーブであつても電解液が液状の
通常の電池ではチユーブで電解液が分離されるこ
とはなく、充分な放電性能が得られ問題はない。
しかし、電解液をゲル状とした場合には、チユー
ブでゲルが分離され、放電性能が損われる。 本発明はチユーブの組織を疎にしているのでチ
ユーブ部でのゲルの分離が防止され放電性能が損
われることがない。また、電解液をゲル状とした
場合には、電解液が活物質を保持する機能を有す
るために、活物質の軟化、脱落が無く、チユーブ
の組織を疎にしても寿命に悪影響を及ぼすような
ことはない。 実施例 本発明になる鉛蓄電池の一実施例を第1図に示
す。図において、1は鉛合金芯金で、鉛−カルシ
ウム−すず合金のように実質的にアンチモンを含
まない合金からなる。2はチユーブで、耐酸・耐
酸化性材料である含アルカリガラスからなる繊維
を例えば、従来の本数より少なくしたり、織密度
を低くして編組することにより、25℃において比
重1.200の希硫酸中における電気抵抗が0.002Ω・
dm2以下としたものである。とくに水中で10cm水
柱の圧力によつて200c.c./min・cm2以上の通水量
であることが望ましい。なお、本実施例ではチユ
ーブの材質として、含アルカリガラスを用いた
が、耐酸耐酸化性材料であるポリエステル、ポリ
アクリルニトリル、親ポリエチレンなどからなる
繊維を用いてもよい。3は正極活物質で、チユー
ブ2とチユーブの中心部に配置された芯金1との
間に充填されている。4は上部鉛合金連座、5は
下部連座でプラスチツクからなり、1〜5で正極
板を形成している。6は負極板で正極板と同様に
実質的にアンチモンを含まない鉛合金が好まし
い。7はセパレータ、8は電槽、9はゲル状電解
液で、例えば希硫酸とシリカ粒子との混合物であ
る。10は弁機能を有する排気部、11は正極端
子、12は負極端子である。 ゲル9は電槽の空隙を埋めるだけでなく、セパ
レータ7およびチユーブ2の多孔性空隙をも埋め
ている。このゲルはシリカ粒子と硫酸および水と
が弱い結合で準固態状のゲルとなつており、活物
質表面を押圧、支持して軟化、脱落を防いでい
る。活物質は鉛イオンの溶解、析出で充放電を繰
返すと形態変化や結合の切断を生じるが、電解液
がゲル状であるとこの鉛イオンの溶解、析出を抑
える効果もある。 つぎにコロイダルシリカと希硫酸とを混合して
シリカを7重量%ととしたゲル状電解液を有する
クラツド式密閉鉛蓄電池について、チユーブ内容
を種々変えて電池を試作し放電性能を調べた。初
期、10HR電流で100H過充電後、および放電深
さ60%の充放電500サイクル後について、それぞ
れ5HR放電容量を求め、第1表に示す。なお容
量は通常のチユーブを用いた電池のそれを100と
する比率で表した。
INDUSTRIAL APPLICATION FIELD The present invention relates to an improvement in a closed lead-acid battery using a gel electrolyte. Conventional technology and its problems There are two types of conventional liquid lead-acid batteries, paste type and clad type, depending on the type of positive electrode plate used.Paste type is used for applications that require high energy density and high output. The clad type is used for applications that require long life. However, sealed lead-acid batteries with a gel electrolyte are usually limited to paste-type batteries. This is because in a closed battery, the gel separates in the tube, impairing the discharge performance of the positive electrode plate. However, even in closed-type sealed lead-acid batteries, because the lattice is made of an alloy that does not substantially contain antimony, such as a lead-calcium alloy, the lattice corrodes and stretches during deep charging and discharging, and the active material softens and falls off, resulting in poor life performance. There was a problem. Means for Solving the Problems The present invention provides a method for discharging a closed-type sealed lead-acid battery using a lead alloy core substantially free of antimony by making the structure of the tube sparse and preventing gel separation at the tube portion. 25℃
It is desirable that the tube has an electrical resistance of 0.002 Ω・dm 2 or less in dilute sulfuric acid with a specific gravity of 1.200, and a water flow rate of 200 c.c./min・cm 2 or more at the pressure of a 10 cm water column in water. . Function In normal liquid type batteries, it is necessary to make the tube structure dense to prevent the positive electrode active material from softening and falling off. The electrical resistance of this material is usually 0.003 Ω·dm 2 or more, and the water flow rate is 150 c.c. or less. Even if the tube has such a dense structure, in a normal battery in which the electrolyte is in a liquid state, the electrolyte will not be separated in the tube, and sufficient discharge performance can be obtained without any problem.
However, when the electrolyte is in gel form, the gel separates in the tube, impairing discharge performance. In the present invention, since the structure of the tube is made sparse, gel separation at the tube portion is prevented and discharge performance is not impaired. In addition, when the electrolyte is in gel form, the electrolyte has the function of holding the active material, so the active material does not soften or fall off, and even if the structure of the tube is made loose, it will not have a negative effect on the lifespan. Nothing happens. Embodiment FIG. 1 shows an embodiment of a lead-acid battery according to the present invention. In the figure, 1 is a lead alloy core metal, which is made of an alloy that does not substantially contain antimony, such as a lead-calcium-tin alloy. 2 is a tube, which is made of alkali-containing glass, which is an acid-resistant and oxidation-resistant material, and is braided with fewer fibers than conventional ones or with a lower weave density. The electrical resistance at is 0.002Ω・
dm2 or less. In particular, it is desirable that the water flow rate be 200 c.c./min・cm 2 or more under water under the pressure of a 10 cm water column. In this embodiment, alkali-containing glass was used as the tube material, but fibers made of acid-resistant and oxidation-resistant materials such as polyester, polyacrylonitrile, parent polyethylene, etc. may also be used. A positive electrode active material 3 is filled between the tube 2 and the core metal 1 placed at the center of the tube. 4 is an upper lead alloy seat, and 5 is a lower seat made of plastic, and 1 to 5 form a positive electrode plate. 6 is a negative electrode plate, and like the positive electrode plate, it is preferably made of a lead alloy that does not substantially contain antimony. 7 is a separator, 8 is a battery container, and 9 is a gel electrolyte, for example, a mixture of dilute sulfuric acid and silica particles. 10 is an exhaust section having a valve function, 11 is a positive terminal, and 12 is a negative terminal. Gel 9 not only fills the voids in the battery case, but also fills the porous voids in separator 7 and tube 2. This gel is a semi-solid gel due to weak bonds between silica particles, sulfuric acid, and water, and presses and supports the surface of the active material to prevent it from softening and falling off. When the active material is repeatedly charged and discharged due to the dissolution and precipitation of lead ions, its shape changes and bonds break, but a gel-like electrolyte has the effect of suppressing the dissolution and precipitation of lead ions. Next, regarding a closed-type sealed lead acid battery having a gel electrolyte containing 7% by weight of silica by mixing colloidal silica and dilute sulfuric acid, prototype batteries were made with various tube contents and the discharge performance was investigated. The 5HR discharge capacity was determined for the initial stage, after 100H overcharging at 10HR current, and after 500 charge/discharge cycles at a discharge depth of 60%, and is shown in Table 1. The capacity is expressed as a ratio of 100 to that of a battery using a normal tube.

【表】 放電容量は初期にはチユーブの電気抵抗や通水
量が大幅に異なつてもあまり差はないが、過充電
後とくに充放電サイクル後には容量に著しい差を
生じる。容量低下は主としてチユーブの電気抵抗
に左右されるが、電気抵抗が同じ場合にはチユー
ブの通水量が大きいほうが少なくて好ましい。 チユーブは一般的には電気抵抗の小さなものほ
ど通水量が大きい傾向がある。しかし例えば編組
式チユーブでは撚りを多くした糸を用いると糸そ
のものの多孔度が小さくなつて通水量が同じでも
電気抵抗は大きくなる。 発明の効果 本発明はチユーブの組織を疎にして、ゲル状電
解液に適した電気抵抗または通水量とすることに
より、クラツド式密閉鉛蓄電池の放電容量を改善
して、深い充放電における寿命性能の優れた密閉
電池を可能にしたものである。
[Table] Initially, there is not much difference in discharge capacity even if the tube's electrical resistance and water flow rate are significantly different, but after overcharging, especially after a charge/discharge cycle, a significant difference in capacity occurs. The decrease in capacity mainly depends on the electrical resistance of the tube, but when the electrical resistance is the same, it is preferable that the amount of water flowing through the tube is larger. Generally speaking, the smaller the electrical resistance of a tube, the greater the flow rate of water. However, for example, in a braided tube, if a thread with a large number of twists is used, the porosity of the thread itself becomes smaller and the electrical resistance increases even though the amount of water passing through is the same. Effects of the Invention The present invention improves the discharge capacity of closed lead-acid batteries by making the structure of the tube sparse and making the electrical resistance or water flow rate suitable for gel electrolyte, thereby improving the life performance in deep charging and discharging. This made it possible to create an excellent sealed battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になるクラツド式密閉鉛蓄電池
を示す要部縦断面図である。 1……芯金、2……チユーブ、3……正極活物
質、6……負極板、7……セパレータ、9……ゲ
ル状電解液、10……排気部。
FIG. 1 is a vertical cross-sectional view of a main part of a closed-type sealed lead-acid battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Core metal, 2... Tube, 3... Positive electrode active material, 6... Negative electrode plate, 7... Separator, 9... Gel electrolyte, 10... Exhaust part.

Claims (1)

【特許請求の範囲】 1 耐酸・耐酸化性材料、例えば含アルカリガラ
ス、ポリエステル、ポリアクリルニトリル、親水
性ポリエチレンなどからなる繊維を編組した織布
または結着した不織布からなり、かつ25℃におい
て比重1.200の希硫酸中における電気抵抗が0.002
Ω・dm2以下であるチユーブと、実質的にアンチ
モンを含まない鉛合金芯金と二酸化鉛を主成分と
する活物質とで構成されるクラツド式正極板と、
好ましくは実質的にアンチモンを含まない鉛合金
を用いたペースト式負極板と、弁機能を有する排
気部と、ゲル状電解液とを用いたクラツド式密閉
鉛蓄電池。 2 上記チユーブが水中で10cm水柱の圧力によつ
て200c.c./min・cm2以上の通水量を示すものであ
る特許請求の範囲第1項記載のクラツド式密閉鉛
蓄電池。
[Scope of Claims] 1. Consisting of a woven fabric or a bound nonwoven fabric made of fibers made of acid- and oxidation-resistant materials, such as alkali-containing glass, polyester, polyacrylonitrile, hydrophilic polyethylene, etc., and having a specific gravity at 25°C. Electrical resistance in dilute sulfuric acid of 1.200 is 0.002
A clad positive electrode plate composed of a tube having a resistance of Ω・dm 2 or less, a lead alloy core metal substantially free of antimony, and an active material whose main component is lead dioxide;
A clad sealed lead-acid battery using a paste-type negative electrode plate preferably made of a lead alloy that does not substantially contain antimony, an exhaust section having a valve function, and a gel electrolyte. 2. The clad sealed lead-acid battery according to claim 1, wherein the tube exhibits a water flow rate of 200 c.c./min·cm 2 or more under water at a pressure of 10 cm of water column.
JP60098653A 1985-05-08 1985-05-08 Enclosed clad lead storage battery Granted JPS61256565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098653A JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098653A JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Publications (2)

Publication Number Publication Date
JPS61256565A JPS61256565A (en) 1986-11-14
JPH0332180B2 true JPH0332180B2 (en) 1991-05-10

Family

ID=14225464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098653A Granted JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Country Status (1)

Country Link
JP (1) JPS61256565A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851729B2 (en) * 1991-10-25 1999-01-27 ワン リアンキサン Large-capacity colloid storage battery, colloid electrolyte used therefor, and method for producing them
WO2021059533A1 (en) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 Active material holding member, electrode and lead acid storage battery

Also Published As

Publication number Publication date
JPS61256565A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
US5047300A (en) Ultra-thin plate electrochemical cell
US6492059B1 (en) Separator for sealed lead-acid battery
US5156935A (en) Lead-acid battery
JPWO2019087686A1 (en) Lead-acid battery
JP6525167B2 (en) Lead storage battery
JP2847761B2 (en) Sealed lead-acid battery and method of manufacturing the same
JPS5835877A (en) Closed type lead battery and its production method
JPH08264202A (en) Lead-acid battery
JP4507483B2 (en) Control valve type lead acid battery
CN111279541A (en) Lead-acid battery
JPH0332180B2 (en)
JPS63221565A (en) Sealed lead-acid battery
JP7294057B2 (en) lead acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH02177260A (en) Closed type lead accumulator
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JPH0244658A (en) Sealed lead-acid battery
JPH0233859A (en) Lead-acid battery
EP0143666B1 (en) Lead acid recombination cells
JPS61256566A (en) Enclosed clad lead storage battery
JPS59151772A (en) Manufacture of sealed lead-acid battery
JPH0413829B2 (en)
JPH0246653A (en) Lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JPH042059A (en) Clad type lead acid battery of sealed structure