JP3163510B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3163510B2
JP3163510B2 JP02203592A JP2203592A JP3163510B2 JP 3163510 B2 JP3163510 B2 JP 3163510B2 JP 02203592 A JP02203592 A JP 02203592A JP 2203592 A JP2203592 A JP 2203592A JP 3163510 B2 JP3163510 B2 JP 3163510B2
Authority
JP
Japan
Prior art keywords
battery
powder
acid
lead
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02203592A
Other languages
Japanese (ja)
Other versions
JPH05190197A (en
Inventor
昭夫 徳永
俊明 林
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP02203592A priority Critical patent/JP3163510B2/en
Publication of JPH05190197A publication Critical patent/JPH05190197A/en
Application granted granted Critical
Publication of JP3163510B2 publication Critical patent/JP3163510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery.

【0002】[0002]

【従来の技術】電池の充電中に発生する酸素ガスを負極
で吸収するいわゆる酸素サイクルを利用した密閉形鉛蓄
電池には、リテ−ナ式とゲル式の二種類がある。リテ−
ナ式は正極板と負極板との間に微細ガラス繊維を素材と
するマット状セパレ−タ(ガラスセパレ−タ)を挿入
し、これで電池の充放電に必要な硫酸電解液の保持と両
極の隔離を行っており、無保守、無漏液、ポジションフ
リ−などの特徴を生かして、近年ポ−タブル機器、コ−
ドレス機器、コンピュ−タ−のバックアップ電源をはじ
め、大型の据置用電池や自動車のエンジン始動用にも使
用されるようになってきた。
2. Description of the Related Art There are two types of sealed lead-acid batteries using a so-called oxygen cycle in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. Rete
In the Na-type, a mat-shaped separator (glass separator) made of fine glass fiber is inserted between a positive electrode plate and a negative electrode plate, thereby holding a sulfuric acid electrolytic solution necessary for charging and discharging of a battery, and maintaining both electrodes. In recent years, it has been segregated, making use of features such as maintenance-free, liquid-free, and position-free.
In addition to dressing equipment, backup power supplies for computers, large-sized stationary batteries and automobile engine starting have come to be used.

【0003】しかしガラスセパレ−タは特殊な方法で製
造される直径1ミクロン前後の極細ガラス繊維を抄造し
てマット状としたもので、一般的に用いられている鉛蓄
電池用のセパレ−タに比してかなり高価なことや、目標
の電池性能を得るためには極板群を強く圧迫して電槽内
に組み込まなければならないので電池の組立が困難とな
り、必然的に電池の製造コストが高くなるという欠点が
あった。
[0003] However, the glass separator is made by forming a very fine glass fiber having a diameter of about 1 micron manufactured by a special method into a mat shape, and is compared with a separator commonly used for lead-acid batteries. In order to obtain the target battery performance, it is necessary to squeeze the electrode group strongly and incorporate it into the battery case, making it difficult to assemble the battery and inevitably increasing the manufacturing cost of the battery. There was a disadvantage of becoming.

【0004】また、リテ−ナ式密閉形鉛蓄電池は、実質
的に正、負極板間に挿入したガラスセパレ−タに硫酸電
解液を保持できるだけであるから電池の充放電に関与で
きる電解液量が少なく、電解液が豊富に存在する開放形
の一般的な鉛蓄電池に比べると電池容量、とくに低率放
電容量が劣るという欠点があった。
[0004] Further, in the case of the closed-type lead storage battery of the retainer type, since the sulfuric acid electrolytic solution can only be held in the glass separator inserted between the positive and negative electrodes, the amount of the electrolytic solution that can participate in the charging and discharging of the battery is reduced. There is a disadvantage that the battery capacity, especially the low-rate discharge capacity, is inferior to that of a general open-type lead-acid battery having a small amount and abundant electrolyte.

【0005】一方、ゲル式は硫酸電解液をコロイド状シ
リカや水ガラスによってゲル化した密閉形鉛蓄電池であ
るが、硫酸が離しょうしたり硫酸イオンの移動が悪いた
めに性能的にやはり問題があった。
On the other hand, the gel type is a sealed lead-acid battery in which a sulfuric acid electrolyte is gelled with colloidal silica or water glass. However, there is still a problem in performance due to sulfuric acid separation and poor transfer of sulfate ions. there were.

【0006】そこで上記欠点を解消するために、鉛蓄電
池活物質に比して多孔度が高く比表面積の大きな粉体を
直接正、負極板間および極板群の周囲に配置し、この粉
体に電池の充放電に必要な硫酸電解液を保持させた構造
であって、上述したリテーナ式でもなくゲル式でもない
密閉形鉛蓄電池が提案されている。しかしこのような粉
体を電解液保持体とする密閉形鉛蓄電池では次のような
問題点があった。
Therefore, in order to solve the above-mentioned drawbacks, a powder having a high porosity and a large specific surface area as compared with a lead storage battery active material is directly disposed between the positive and negative electrode plates and around the electrode plate group. In addition, there has been proposed a sealed lead-acid battery having a structure in which a sulfuric acid electrolytic solution necessary for charging and discharging the battery is held, and which is neither the retainer type nor the gel type described above. However, a sealed lead-acid battery using such a powder as an electrolyte holder has the following problems.

【0007】すなわち、複数のセルからなるモノブロッ
ク形の電池に粉体を充填する場合、充填量を一定にする
方が粉体の充填がやりやすいし、注液量も一定にできる
ので都合がよいわけであるが、セルごとに電槽の内容積
が異なるので、粉体を電槽内に充満させると充填量が一
定にならない。また、電槽内に粉体を充満させると電池
が重くなり、注液に長時間を要するという問題もあっ
た。しかし、一定量の粉体を各セルに充填すると電槽内
の上部にどうしても空間ができてしまう。電池内に空間
ができると、注液や初充電の際に粉体が移動して極板間
に充填した粉体層に空洞が生じ、期待した電池性能が得
られなくなる。
That is, when filling a monoblock type battery composed of a plurality of cells with powder, it is convenient to make the filling amount constant so that the powder can be easily filled and the injection amount can be made constant. Although it is good, since the inner volume of the battery case differs for each cell, the filling amount is not constant when the battery is filled with the powder. Also, when the battery case is filled with powder, the battery becomes heavy, and there is a problem that it takes a long time to inject the liquid. However, if each cell is filled with a certain amount of powder, a space is inevitably formed in the upper part of the battery case. If a space is formed in the battery, the powder moves during liquid injection or initial charging, and a cavity is formed in the powder layer filled between the electrode plates, so that expected battery performance cannot be obtained.

【0008】そこで、例えば合成樹脂を現場発泡させて
連続気泡のプラスチックフォームで電池内の空間を埋め
て粉体が移動しないように固定することを試みたが、プ
ラスチックフォームには必ずその表面にスキン層が生じ
て通気性がなくなり、電池内に充填した粉体は外部と連
通しなくなるため注液が不可能となり、電池を構成する
ことができなかった。
Therefore, for example, an attempt was made to foam the synthetic resin in situ and fill the space in the battery with open-cell plastic foam so that the powder would not move. A layer was formed, the air permeability was lost, and the powder filled in the battery was not communicated with the outside, so that injection was impossible, and the battery could not be constructed.

【0009】[0009]

【発明が解決しようとする課題】本発明は電解液の保持
体として粉体を使用した密閉形鉛蓄電池の上記課題を解
決する手段を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a means for solving the above-mentioned problems of a sealed lead-acid battery using powder as a support for an electrolytic solution.

【0010】[0010]

【課題を解決するための手段】本発明は電槽ふた部分に
排気室を有し、該排気室はその上部に排気弁を、その下
部に通気性のある多孔板を備え、前記多孔板の下端を極
板群の上端に近接して設け、電解液保持体として特性の
優れた粉体の一定量を充填して排気室下部に設けた多孔
板を埋設し、粉体層と電槽ふた裏との間に形成された空
間に現場発泡させた耐酸性プラスチックフォームを充満
させた構成とすることによって、上記課題を解決するこ
とができた。
According to the present invention, an exhaust chamber is provided at a lid of a battery case, the exhaust chamber is provided with an exhaust valve at an upper portion thereof, and a permeable porous plate at a lower portion thereof. The lower end is provided close to the upper end of the electrode plate group, filled with a certain amount of powder having excellent characteristics as an electrolyte holder, and a perforated plate provided at the bottom of the exhaust chamber is buried, and the powder layer and the battery case lid The above problem could be solved by forming a structure in which an acid-resistant plastic foam foamed in-situ was filled in a space formed between the back side and the space.

【0011】[0011]

【実施例】図1は本発明による密閉形鉛蓄電池を自動車
用電池に適用した場合の一実施例を示す概略図である。
図2は要部側面図である。図において、正極板1はアン
チモンフリーの鉛合金またはアンチモンを少量含む鉛合
金からなる格子に正極ペーストを充填した正極板であ
る。アンチモンフリーの鉛合金としては、Ca 0.05〜0.
12wt% 、Sn 0.20〜1.0wt%を含む一般的な鉛カルシウム
系合金が使用できる。電解液保持体としてアンチモンを
吸着する特性がある含水二酸化珪素を使用すれば鉛アン
チモン系合金でもよい。
FIG. 1 is a schematic view showing an embodiment in which a sealed lead-acid battery according to the present invention is applied to an automobile battery.
FIG. 2 is a side view of a main part. In the figure, a positive electrode plate 1 is a positive electrode plate in which a positive electrode paste is filled in a grid made of an antimony-free lead alloy or a lead alloy containing a small amount of antimony. As an antimony-free lead alloy, Ca 0.05-0.
A general lead-calcium alloy containing 12 wt% and Sn 0.20-1.0 wt% can be used. If a hydrous silicon dioxide having the property of adsorbing antimony is used as the electrolyte holder, a lead-antimony alloy may be used.

【0012】鉛アンチモン合金のアンチモン含有量とし
ては Sb 0.7 〜2.0wt%、とくに0.7〜1.5 重量% が好
ましく、アンチモン以外の金属として砒素 As を 0.1〜
0.3wt%、錫 Sn を 0.01 〜0.5wt% を添加する。核化剤
としてセレンSeやイオウS を極少量添加すれば格子の鋳
造性や耐食性を改善できる。
The antimony content of the lead-antimony alloy is preferably Sb 0.7-2.0 wt%, particularly preferably 0.7-1.5 wt%, and arsenic As as a metal other than antimony is 0.1-0.1 wt%.
Add 0.3wt% and tin Sn 0.01 ~ 0.5wt%. Addition of a very small amount of selenium Se or sulfur S as a nucleating agent can improve the castability and corrosion resistance of the lattice.

【0013】正極格子に充填する正極ペーストは鉛粉を
希硫酸と混練して調製する一般的なペーストも使用可能
であるが、正極板の化成性や電池性能の向上を図るため
には、鉛粉に鉛丹(Pb3 O4)を混入するのが好ましい。
As the positive electrode paste filled in the positive electrode grid, a general paste prepared by kneading lead powder with dilute sulfuric acid can be used. However, in order to improve the chemical properties of the positive electrode plate and the battery performance, lead paste is required. It is preferable to mix lead red (Pb 3 O 4 ) into the powder.

【0014】負極板2はアンチモフリーの鉛合金を用い
た格子にリグニンや硫酸バリウムなどの防縮剤を添加し
た通常の負極ペーストを充填して製造する。負極格子の
鉛合金は Ca 0.05〜0.12wt% 、Sn 0.001〜0.5wt% を含
む一般的な鉛カルシウム系合金が使用できる。
The negative electrode plate 2 is manufactured by filling a grid made of an antimo-free lead alloy with a normal negative electrode paste obtained by adding a shrinkproofing agent such as lignin or barium sulfate. As the lead alloy of the negative electrode grid, a general lead-calcium alloy containing 0.05 to 0.12 wt% of Ca and 0.001 to 0.5 wt% of Sn can be used.

【0015】上述した正極および負極格子は鋳造したも
のや鉛合金シートを展開したエキスパンド格子あるいは
打ち抜き格子などいづれも使用可能である。なお、ペー
ストを充填した極板は30〜50℃の部屋で熟成してから使
用する。正極板の熟成は電池性能上とくに重要である。
As the above-mentioned positive and negative electrode grids, any of a cast grid, an expanded grid obtained by expanding a lead alloy sheet, and a punched grid can be used. The electrode plate filled with the paste is used after aging in a room at 30 to 50 ° C. Aging of the positive electrode plate is particularly important for battery performance.

【0016】3は正極板と負極板との間に挿入した合成
セパレータである。厚みが薄く多孔性でかつ電気抵抗の
低いセパレータであればいづれも使用できるが、孔径の
小さすぎるセパレータは酸素ガスが透過しにくく、負極
による酸素吸収反応を妨げるので好ましくない。また、
正、負極板間に粉体を充填するためには、両極間に隙間
を設ける必要があり、その目的のためには、波付きセパ
レータやエンボスセパレータなど表面に凹凸を設けたセ
パレータを使用するのが都合がよい。なお、後述する粉
体を電解液保持体として使用すれば、極間の粉体層がセ
パレータとしての機能も有するので、このような場合に
はセパレータの使用を省略することが可能である。
Reference numeral 3 denotes a synthetic separator inserted between the positive electrode plate and the negative electrode plate. Any separator can be used as long as it is thin and porous and has low electric resistance. However, a separator having too small a pore diameter is not preferable because oxygen gas hardly permeates and hinders the oxygen absorption reaction by the negative electrode. Also,
In order to fill the powder between the positive and negative electrodes, it is necessary to provide a gap between the two electrodes, and for that purpose, use a separator with irregularities on the surface such as a corrugated separator or an embossed separator. Is convenient. In addition, if a powder described later is used as the electrolyte holder, the powder layer between the electrodes also has a function as a separator. In such a case, the use of the separator can be omitted.

【0017】上述した正極板、負極板およびセパレータ
とを積み重ね、正、負極板それぞれ別々に溶接して極板
群を作製し電槽4に挿入する。従来のガラスセパレータ
を用いたものでは、極板群を強く圧迫しなければならな
いので電槽への挿入が非常に困難であったが、本発明で
は極板群を圧迫する必要がないので挿入は容易である。
極板群を電槽に挿入したのち、セル間の接続を行う。図
において5はストラップ、6はセル間接続部、7は極柱
である。
The above-described positive electrode plate, negative electrode plate and separator are stacked, and the positive and negative electrode plates are separately welded to form an electrode plate group, which is inserted into the battery case 4. In the case of using the conventional glass separator, it was very difficult to insert the electrode group into the battery case because the electrode group had to be strongly pressed, but in the present invention, it was not necessary to press the electrode group, so the insertion was not necessary. Easy.
After inserting the electrode group into the battery case, the connection between the cells is performed. In the figure, 5 is a strap, 6 is an inter-cell connection, and 7 is a pole.

【0018】次に電槽ふた8を電槽4に溶着する。ここ
で電槽ふた8には排気室9と粉体の充填口10が設けて
あり、排気室9の上部には排気弁12が、その下部には
通気性のある多孔板13がそれぞれ配置してある。排気
弁12は電池内圧が上昇した時は開き、減圧した時は閉
じる機能を有し、キャップ弁、リング弁、板弁など一般
的に用いられるいずれの弁も使用できる。
Next, the battery case lid 8 is welded to the battery case 4. Here, an exhaust chamber 9 and a powder filling port 10 are provided in the battery case lid 8, an exhaust valve 12 is disposed above the exhaust chamber 9, and a gas-permeable porous plate 13 is disposed below the exhaust valve 12. It is. The exhaust valve 12 has a function of opening when the internal pressure of the battery increases and closing it when the internal pressure of the battery decreases, and any commonly used valve such as a cap valve, a ring valve, and a plate valve can be used.

【0019】また、多孔板13は、電池に注液する際や
初充電中あるいは使用時の充電で発生するガスを外部に
逃がすためのもので、気体や液体は通過し粉体は通過し
ない大きさの孔を有する耐酸性のある連続気泡の多孔
体、例えば発泡フェノールやアルミナの焼結体からでき
ている。
The perforated plate 13 is for releasing gas generated during charging of the battery, during initial charging or during charging during use, to the outside. It is made of an acid-resistant, open-celled porous body having pores, for example, a sintered body of expanded phenol or alumina.

【0020】なお、多孔板13の下端は極板群の上端に
近接させて配置する。これは初充電時に先だって電解液
を注液する際、注液時間を短縮するためである。すなわ
ち、多孔板を極板群の上端に近接させると、注液した電
解液がまず極板に吸収されて周囲に広がるため、注液時
間を大幅に短縮することができる。
The lower end of the perforated plate 13 is arranged close to the upper end of the electrode group. This is to shorten the injection time when the electrolyte is injected before the first charge. That is, when the porous plate is brought close to the upper end of the electrode group, the injected electrolyte is first absorbed by the electrode plate and spreads around the electrode plate, so that the injection time can be significantly reduced.

【0021】上記構造の鉛蓄電池を組み立てたあとは、
粉体14の一定量を充填口10から供給し、電池に振動
を加えながら正、負極板間や極板群の周囲に充填する。
この際、図1および図2に示したように多孔板13がち
ょうど埋没するように充填する粉体の量を調製する。
After assembling the lead storage battery having the above structure,
A certain amount of the powder 14 is supplied from the filling port 10 and charged between the positive and negative electrode plates and around the electrode plate group while applying vibration to the battery.
At this time, as shown in FIGS. 1 and 2, the amount of powder to be filled is adjusted so that the perforated plate 13 is just buried.

【0022】なお、電解液保持体としての粉体は、充填
した状態での多孔度が高く、耐酸性があって電解液吸収
力の優れた流動性の高いものがよく、本実施例では、一
次粒子径が10〜40ミリミクロン、比表面積150〜20
0m2 /gの含水二酸化珪素(SiO2 ・nH2 O)の
微細粒子が凝集して50〜200ミクロンの二次粒子を
形成している顆粒状の粉体であって、安息角が30〜3
5度の流動性のよい粉体を用いた。このように流動性に
優れた粉体であれば、電槽内への粉体の充填は重力加速
度2 〜4G、振幅1 〜2mm の振動をかければ短時間で密に
充填でき、充填後の粉体はガラスセパレータに匹敵する
90%近い多孔度を有している。
It is preferable that the powder as the electrolyte holding member has a high porosity in a filled state, has acid resistance, and has a high fluidity with an excellent electrolyte absorbing power. Primary particle size is 10-40 mm, specific surface area is 150-20
A granular powder in which fine particles of 0 m 2 / g of hydrous silicon dioxide (SiO 2 · nH 2 O) are aggregated to form secondary particles of 50 to 200 microns, and have a repose angle of 30 to 3
A powder with good fluidity of 5 degrees was used. If the powder has such excellent fluidity, the filling of the powder in the battery case can be densely filled in a short time by applying a vibration with a gravitational acceleration of 2 to 4 G and an amplitude of 1 to 2 mm. The powder has a porosity close to 90% comparable to a glass separator.

【0023】粉体の充填が終わったなら、粉体の充填口
10から耐酸性のある発泡性の合成樹脂を注入してから
密封栓11で密封したのち現場発泡させ、粉体層とふた
裏との間に生じた空間をプラスチックフォーム15で満
たして粉体層を固定する。このような現場発泡が可能な
耐酸性樹脂としては、例えば発泡フェノール樹脂、とく
に常温発泡型の2液混合タイプフェノール樹脂であれば
発泡が容易で耐酸性や耐熱性、機械的強度にも優れてい
て都合がよい。
After the filling of the powder is completed, an acid-resistant foaming synthetic resin is injected from the filling port 10 of the powder, sealed with a sealing stopper 11 and then foamed in situ. Is filled with the plastic foam 15 to fix the powder layer. As such an acid-resistant resin that can be foamed in-situ, for example, a foamed phenol resin, particularly a room temperature foaming type two-liquid mixed type phenol resin, is easily foamed and has excellent acid resistance, heat resistance, and mechanical strength. It is convenient.

【0024】現場発泡させるといずれのプラスチックフ
ォームもかならずその表面にスキン層が生成するので、
もし多孔板13を粉体層に埋没させなければ、多孔板の
表面がスキン層で覆われて通気性がなくなり、目的を達
することができなくなる。多孔板13を粉体層に埋没さ
せた理由はここにある。したがって、使用するプラスチ
ックフォームは、かかならずしも連続気泡である必要は
なく、耐酸性、耐熱性、機械的強度などを有する発泡樹
脂であればポリエチレンやポリスチレンでもよいことに
なる。
When foamed in situ, any plastic foam always forms a skin layer on its surface.
If the perforated plate 13 is not buried in the powder layer, the surface of the perforated plate is covered with the skin layer, and the air permeability is lost, so that the purpose cannot be achieved. This is why the perforated plate 13 is buried in the powder layer. Therefore, the plastic foam to be used does not necessarily have to be open cells, and polyethylene or polystyrene may be used as long as it is a foamed resin having acid resistance, heat resistance, mechanical strength and the like.

【0025】このようにして組み立てた電池を初充電す
る場合は、まず排気弁12を取り外して所定量の硫酸電
解液を注液する。上述したように、多孔板13の下端は
極板群の上端に近接して設けてあるので、注液した電解
液は多孔板13を通過し、その直下にある極板群の正、
負極板やセパレータに吸収されて周囲に広がるために短
時間で注液は完了する。初充電は排気栓を装着した状態
で行う。充電中はガッシングによって電解液面が上昇す
るが、排気室8内にトラップされるために、従来のよう
に溢液防止治具を装着しなくても外部に電解液が漏れ出
すことはない。この意味から排気室8の容積はできるだ
け大きく取るのが望ましい。
When the battery thus assembled is charged for the first time, the exhaust valve 12 is first removed and a predetermined amount of a sulfuric acid electrolyte is injected. As described above, since the lower end of the perforated plate 13 is provided near the upper end of the electrode group, the injected electrolyte passes through the perforated plate 13 and the positive and
The injection is completed in a short time because it is absorbed by the negative electrode plate and the separator and spreads around. The first charge is performed with the exhaust plug attached. During charging, the level of the electrolyte rises due to gassing, but is trapped in the exhaust chamber 8, so that the electrolyte does not leak to the outside even if the overflow prevention jig is not attached as in the related art. In this sense, it is desirable to make the volume of the exhaust chamber 8 as large as possible.

【0026】次に本発明による密閉形鉛蓄電池の初期性
能試験および寿命試験を行った実験例について説明す
る。試験に供した電池は12Vの自動車用密閉形鉛蓄電池
で、公称容量は25Ahである。表1に試験結果を示す。な
お、寿命試験は次の条件で行った。 定電圧寿命試験条件:周囲温度 40℃ 放電 25A で4 分 充電 14.8V で10分(MAX 電流25A )
Next, an experimental example in which an initial performance test and a life test of the sealed lead-acid battery according to the present invention are performed will be described. The battery used for the test was a sealed 12V automotive lead-acid battery with a nominal capacity of 25Ah. Table 1 shows the test results. The life test was performed under the following conditions. Constant voltage life test condition: Ambient temperature 40 ° C Discharge 25A for 4 minutes Charge 14.8V for 10 minutes (MAX current 25A)

【0027】[0027]

【表1】 [Table 1]

【0028】( ) 内は5 秒目電圧 Aは粉体を電解液保持体とし正極格子合金にPb-0.1%Ca
-0.5%Snを用いた本発明品である。BはAと同じ正極格
子合金を用いたリテーナ式の従来品である。負極はいず
れもPb-0.7%Ca-0.5%Snの鉛カルシウム合金格子とし
た。本実験例から明らかなように、初期性能は5時間率
容量、150A放電容量とも本発明品A、が従来品Bよりも
優れていた。これは本発明品の電解液量が従来品に比べ
て多く保持できたことおよび正極ペーストに鉛丹を混入
することによって正極板の化成性が向上したからである
と思われる。
The voltage in A is the 5th second voltage. A is Pb-0.1% Ca on the positive electrode grid alloy using powder as an electrolyte holder.
The present invention uses -0.5% Sn. B is a conventional retainer type product using the same positive electrode lattice alloy as A. Each of the negative electrodes was a lead-calcium alloy lattice of Pb-0.7% Ca-0.5% Sn. As is clear from the present experimental example, the product A of the present invention was superior to the conventional product B in both initial capacity and discharge capacity at a 5-hour rate and 150 A discharge capacity. This is presumably because the amount of the electrolytic solution of the present invention was larger than that of the conventional product, and the conversion property of the positive electrode plate was improved by mixing lead tin into the positive electrode paste.

【0029】寿命試験は上述した充放電を1サイクルと
して500 サイクル毎にコールドクランキング電流(274
A)で放電し、30秒目電圧が7.2Vに低下した時点を寿命
とした。その結果、本発明の電池Aは従来品の電池Bに
比べて2倍以上の優れた性能が得られた。また、寿命試
験中の電解液の減少量も少なく、優れた密閉反応効率を
有していることがわかった。
In the life test, a cold cranking current (274
The battery was discharged in A), and the point at which the voltage dropped to 7.2 V at the 30th second was defined as the life. As a result, the battery A of the present invention obtained twice or more superior performance as compared with the conventional battery B. Further, it was found that the amount of decrease in the electrolytic solution during the life test was small, and that it had excellent sealed reaction efficiency.

【0030】寿命試験後に電池を解体して観察すると、
従来のガラスセパレータを用いた密閉形鉛蓄電池では正
極格子の腐食が著しく、正極板は原型をとどめないほど
に劣化していたのに対して、本発明品は充填した粉体に
よって極板がしっかりと固定されているため、その変形
はわずかであった。このようなことも本発明品の寿命性
能が優れていた理由の1つであると思われる。
When the battery is disassembled after the life test and observed,
In conventional sealed lead-acid batteries using glass separators, the positive electrode grid was significantly corroded and the positive electrode plate was degraded to the extent that it could not keep its original shape. And the deformation was slight. This is also considered to be one of the reasons why the product of the present invention had excellent life performance.

【0031】図3は本発明密閉形鉛蓄電池の他の一実施
例を示す概略図、図4はその要部側面図である。本実施
例は排気弁,排気室,多孔板を、電槽ふたに装着する排
気栓16に構成した例であり、17は発泡樹脂の充填口
である。
FIG. 3 is a schematic view showing another embodiment of the sealed lead-acid battery of the present invention, and FIG. 4 is a side view of a main part thereof. This embodiment is an example in which an exhaust valve, an exhaust chamber, and a perforated plate are configured in an exhaust plug 16 mounted on a battery case lid. Reference numeral 17 denotes a filling port of a foamed resin.

【0032】上述したように本発明による密閉形鉛蓄電
池は、比表面積の大きな微細一次粒子に電解液を保持さ
せるとともに、それが凝集した比較的粗大な二次粒子が
密接して生じる間隙をガス通路にするという新規な密閉
形鉛電池の考え方に基づいて、従来のガラスセパレータ
を使用するリテーナ式密閉形鉛電池を上回る電池性能と
優れた密閉反応効率を得ることができた。
As described above, the sealed lead-acid battery according to the present invention allows the fine primary particles having a large specific surface area to hold the electrolytic solution, and the gap formed by the relatively coarse secondary particles, which are agglomerated, to come into close contact with each other. Based on the concept of a novel sealed lead battery that is used as a passage, battery performance and superior sealed reaction efficiency were obtained that surpassed those of a conventional sealed sealed lead battery using a glass separator.

【0033】このように粉体を電解液の保持体とする密
閉形鉛蓄電池には、本実施例で示した含水二酸化珪素粉
体以外にも珪酸カルシウムの板状結晶のように、一次粒
子が微細で比表面積および多孔度が大きく、それが凝集
して二次粒子を形成し、かつ耐酸性と親水性を有する粉
体でればいずれも使用が可能である。また、二次粒子が
壊れ易い粉体の場合は適当なバインダーを使用すること
ができる。さらに、極板群の圧迫をする必要が無いので
電池の組立が容易になり、かつ使用材料が安価なため電
池の製造コストを大幅に低減することができた。
As described above, in the sealed lead-acid battery using the powder as a holder for the electrolytic solution, in addition to the hydrous silicon dioxide powder shown in this embodiment, the primary particles such as calcium silicate plate-like crystals are used. Any powder can be used as long as it is fine and has a large specific surface area and porosity, which aggregates to form secondary particles, and has acid resistance and hydrophilicity. In the case where the secondary particles are fragile powder, an appropriate binder can be used. Further, since it is not necessary to press the electrode group, the assembly of the battery is facilitated, and the production cost of the battery can be greatly reduced because the materials used are inexpensive.

【0034】従来のリテーナ式密閉鉛蓄電池では極板群
のストラップ部が露出しているので、電池が高温で充放
電されるような条件で使用されると、負極ストラップ部
で腐食が起こる場合があった。しかし、本発明による密
閉形鉛蓄電池では、極板群全体が粉体層に埋没している
ためこのような使用条件下でも腐食が起こらないのは大
きな利点の1つである。
In a conventional sealed lead storage battery of the retainer type, since the strap portion of the electrode group is exposed, when the battery is used under conditions where the battery is charged and discharged at a high temperature, corrosion may occur in the negative electrode strap portion. there were. However, in the sealed lead-acid battery according to the present invention, it is one of the great advantages that corrosion does not occur even under such use conditions because the entire electrode plate group is buried in the powder layer.

【0035】なお、本発明は実施例に示した以外にも種
々の態様が考えられる。例えば、本発明をチューブラー
式の鉛蓄電池に適用すれば、容易に密閉形鉛蓄電池を製
造することができる。従来チューブラー式の鉛蓄電池
は、その正極板がフラットでない構造からガラスセパレ
ータを使用することができず、したがって専らゲル式の
密閉電池しか製造できなかったため寿命が短いという重
大な欠点があったが、本発明に基づいて製造すれば電池
の製造が簡略化されるばかりでなく、優れた寿命性能の
チューブラー式密閉形鉛蓄電池の得られることがわかっ
た。
The present invention can be embodied in various modes other than those shown in the embodiments. For example, if the present invention is applied to a tubular lead-acid battery, a sealed lead-acid battery can be easily manufactured. Conventional tubular-type lead-acid batteries have a serious drawback in that they cannot use glass separators because of their non-flat cathode plate, and can only be manufactured using gel-type sealed batteries. It has been found that manufacturing according to the present invention not only simplifies manufacturing of a battery, but also provides a tubular sealed lead-acid battery having excellent life performance.

【0036】[0036]

【発明の効果】上述したように本発明密閉形鉛蓄電池
は、セル毎の電槽内容積のバラツキに応じて粉体充填量
や注液量を代える必要がなく、一定量の粉体を充填し、
注液量も一定とし、残部空間には発泡させた耐酸性プラ
スチックフォームを充満させるという構成であるから、
製造が容易で安定した一定特性の電池が得られる。プラ
スチックフォームには必ずその表面にスキン層が生じて
通気性がなくなるが、本発明では排気部に多孔板を用い
これを粉体層に埋没するように配置することにより、排
気部の通気性は何ら阻害されることはなく、その工業的
価値は大きい。
As described above, in the sealed lead-acid battery of the present invention, it is not necessary to change the powder filling amount or the liquid injection amount according to the variation in the inner volume of the battery for each cell, and the fixed amount of powder is filled. And
Since the injection volume is also fixed and the remaining space is filled with foamed acid-resistant plastic foam,
A battery with constant characteristics that is easy to manufacture and stable can be obtained. The plastic foam always has a skin layer on its surface and loses air permeability, but in the present invention, by using a perforated plate for the exhaust part and arranging it so as to be buried in the powder layer, the air permeability of the exhaust part is improved. It is not hindered at all and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明密閉形鉛蓄電池の一実施例を示す概略図FIG. 1 is a schematic view showing one embodiment of a sealed lead-acid battery of the present invention.

【図2】本発明密閉形鉛蓄電池の要部側面図FIG. 2 is a side view of a main part of the sealed lead-acid battery of the present invention.

【図3】本発明密閉形鉛蓄電池の他の一実施例を示す概
略図
FIG. 3 is a schematic diagram showing another embodiment of the sealed lead-acid battery of the present invention.

【図4】本発明密閉形鉛蓄電池の要部側面図FIG. 4 is a side view of a main part of the sealed lead storage battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電槽 8 電槽ふた 9 排気室 10 粉体の充填口 11 密封栓 12 排気弁 13 多孔板 14 粉体 15 プラスチックフォーム 16 排気栓 17 発泡樹脂の充填口 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 8 Battery case lid 9 Exhaust chamber 10 Powder filling port 11 Sealing stopper 12 Exhaust valve 13 Perforated plate 14 Powder 15 Plastic foam 16 Exhaust plug 17 Foaming resin filling port

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 2/12 H01M 10/06 - 10/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 2/12 H01M 10/06-10/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微細な一次粒子が凝集して粗大な二次粒
子を形成する流動性の高い顆粒状の粉体を電解液保持体
とする密閉形鉛蓄電池において、前記密閉形鉛蓄電池の
電槽ふた部分には、上部に排気弁を、下部に通気性のあ
る多孔板を備えた排気室を有し、前記多孔板の下端を極
板群の上端に近接して設けるとともに、正、負極板間お
よび極板群の周囲に充填された粉体層に前記多孔板がち
ょうど埋没するように配置された密閉形鉛蓄電池であっ
て、粉体層と電槽ふた裏との間に形成された空間は現場
発泡させた耐酸性プラスチックフォームで充満させたこ
とを特徴とする密閉形鉛蓄電池。
1. A sealed lead-acid battery in which fine primary particles are aggregated to form coarse secondary particles and a highly fluid granular powder is used as an electrolyte holder. The tank lid has an exhaust valve at the top, an exhaust chamber with a gas-permeable porous plate at the bottom, and a lower end of the porous plate provided near the upper end of the electrode plate group, and a positive and negative electrode. A sealed lead-acid battery in which the perforated plate is disposed so as to be directly buried in a powder layer filled between the plates and around the electrode group, formed between the powder layer and the back of the battery case lid. The sealed space is filled with acid-resistant plastic foam that has been foamed on site.
JP02203592A 1992-01-10 1992-01-10 Sealed lead-acid battery Expired - Fee Related JP3163510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02203592A JP3163510B2 (en) 1992-01-10 1992-01-10 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02203592A JP3163510B2 (en) 1992-01-10 1992-01-10 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH05190197A JPH05190197A (en) 1993-07-30
JP3163510B2 true JP3163510B2 (en) 2001-05-08

Family

ID=12071707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02203592A Expired - Fee Related JP3163510B2 (en) 1992-01-10 1992-01-10 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3163510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045791A (en) * 2018-10-23 2020-05-06 주식회사 한국아트라스비엑스 Acid-resistant polyurethane rolled pads for preventing the life of lead-acid batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045791A (en) * 2018-10-23 2020-05-06 주식회사 한국아트라스비엑스 Acid-resistant polyurethane rolled pads for preventing the life of lead-acid batteries
KR102149804B1 (en) 2018-10-23 2020-09-01 주식회사 한국아트라스비엑스 Acid-resistant polyurethane rolled pads for preventing the life of lead-acid batteries

Also Published As

Publication number Publication date
JPH05190197A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US5128218A (en) Sealed lead-acid battery
KR101831423B1 (en) Battery, battery plate assembly, and method of assembly
US6492059B1 (en) Separator for sealed lead-acid battery
AU594891B2 (en) Multicell recombinant lead-acid battery with vibration resistant intercell connector
JPH0457072B2 (en)
US11824204B2 (en) Battery and battery plate assembly with absorbent separator
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
WO2017047054A1 (en) Lead storage battery
JP3163510B2 (en) Sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP3146438B2 (en) Sealed lead-acid battery
GB2084790A (en) Lead-acid batteries
JPH08329975A (en) Sealed lead-acid battery
JPH05343093A (en) Sealed lead acid battery
JPH0636793A (en) Sealed lead-acid battery
JPH05290875A (en) Sealed lead-acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JPH0652882A (en) Sealed lead-acid battery
JPH0628169B2 (en) Sealed lead acid battery
JPH06150961A (en) Sealed lead-acid battery
JP2573082B2 (en) Sealed lead-acid battery
JPH0636792A (en) Sealed lead-acid battery
JPH06104005A (en) Sealed-lead-acid battery
JP4857481B2 (en) Method for manufacturing retainer-gel hybrid sealed lead-acid battery
JP3266918B2 (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees