JPH03167852A - Package for semiconductor-element - Google Patents

Package for semiconductor-element

Info

Publication number
JPH03167852A
JPH03167852A JP1308596A JP30859689A JPH03167852A JP H03167852 A JPH03167852 A JP H03167852A JP 1308596 A JP1308596 A JP 1308596A JP 30859689 A JP30859689 A JP 30859689A JP H03167852 A JPH03167852 A JP H03167852A
Authority
JP
Japan
Prior art keywords
external lead
lead terminal
lid
semiconductor element
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1308596A
Other languages
Japanese (ja)
Other versions
JP2736452B2 (en
Inventor
Hiroshi Matsumoto
弘 松本
Masaaki Iguchi
井口 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308596A priority Critical patent/JP2736452B2/en
Priority to US07/573,406 priority patent/US5057905A/en
Publication of JPH03167852A publication Critical patent/JPH03167852A/en
Application granted granted Critical
Publication of JP2736452B2 publication Critical patent/JP2736452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce a generated noise to a minimum by a method wherein an external lead terminal is formed of a metal body in which copper sheets having a thickness of a prescribed % with reference to a thickness of a sheetlike body composed of an alloy of Ni, Co and Fe at respectively specific wt.% are bonded to the surface and the rear surface of the sheetlike body and whose magnetic permeability, electric conductivity and coefficient of thermal expansion are specific. CONSTITUTION:An insulating substrate 1 and a lid body 2 are composed of at least one kind out of an aluminum nitride sintered substance, a mullite sintered substance and a zircon sintered substance. External lead terminals 5 composed of a conductive material are arranged between the substrate 1 and the lid body 2; the terminals 5 are connected electrically to individual electrodes of a semiconductor element 4; the terminals 5 are connected to an external electric circuit via wires 7. The terminals 5 are composed of a metal body in which copper sheets having a thickness of 10 to 20% with reference to a thickness of a sheetlike body composed of an alloy of 28.5 to 29.5wt.% of Ni, 15.5 to 16.5wt.% of Co and 54.0 to 56.0wt.% of Fe are bonded to the surface and the rear surface of the sheetlike body, whose magnetic permeability is about 185 (CGS), whose electric conductivity is 23.1 (ICAS) and whose coefficient of thermal expansion is about 49X10<-7>/ deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パンケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improvement in a semiconductor device storage pancase that accommodates a semiconductor device.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パフケージは、絶縁基体と蓋体とから成り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構威されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形或すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
に被着させた封止用のガラス部材を溶融一体化させるこ
とによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a glass-sealed puff cage for accommodating a semiconductor element, which is sealed by glass welding, consists of an insulating base and a lid, and the semiconductor element is housed inside. The structure consists of an insulating container having a cavity, and an external lead terminal for electrically connecting a semiconductor element housed in the container to an external electric circuit, and an insulating base and a lid facing each other. A glass member for sealing is preliminarily applied to the main surface of the insulating substrate, external lead terminals are fixed to the main surface of the insulating substrate, and each electrode of the semiconductor element and the external lead terminal are connected by wire bonding, and then the insulating substrate and A semiconductor element is hermetically sealed inside by melting and integrating a sealing glass member attached to each lid.

(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納用
パッケージは通常、外部リード端子がコバール(29 
htχNi−16 WtX Co−55 WtXFe合
金)や42AIIoy(42 titχNi−58 W
tX Fe合金)の導電性材料から戒っており、該コバ
ールや42A I Joy等は透磁率が高く、且つ導電
率が低いことから以下に述べる欠点を有する。
(Problem to be Solved by the Invention) However, in this conventional glass-sealed package for storing semiconductor elements, the external lead terminals are usually made of Kovar (29
htχNi-16 WtX Co-55 WtXFe alloy) and 42AIIoy (42 titχNi-58 W
Kovar, 42A I Joy, and the like have high magnetic permeability and low conductivity, so they have the following disadvantages.

即ち、 ■コハーノレや42八1 Joyは鉄(Fe)、−yケ
ノレ(Ni)、コバルト(Co)といった強磁性体金属
のみから成っており、その透磁率は250〜700 (
CGS)と高い。そのためこのコバールや42^11o
y等から成る外部リード端子に電流が流れると外部リー
ド端子中に透磁率に比例した大きな自己インダクタンス
が発生し、これが逆起電力を誘発してノイズとなると共
に、該ノイズが半導体素子に入力されて半導体素子に誤
動作を生じさせる、 ■コバールや42AIIoyはその導電率が3.0〜3
.5χ(rAcs)と低い。そのためこのコバールや4
2AIIoy等から成る外部リード端子に信号を伝搬さ
せた場合、信号の伝搬速度が極めて遅いものとなり、高
速駆動を行う半導体素子はその収容が不可となってしま
う、 ■半導体素子収納用パフケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42AIIoyの導電率が低いことと
相俊って電気抵抗が極めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
In other words, ■Kohanare and 4281 Joy are made only of ferromagnetic metals such as iron (Fe), -ykenore (Ni), and cobalt (Co), and their magnetic permeability is between 250 and 700 (
CGS) and high. Therefore, this Kobar and 42^11o
When a current flows through the external lead terminals such as y, a large self-inductance proportional to the magnetic permeability is generated in the external lead terminals, which induces back electromotive force and becomes noise, and the noise is input to the semiconductor element. Kovar and 42AIIoy have a conductivity of 3.0 to 3.
.. It is as low as 5χ(rAcs). Therefore, this Kobar and 4
When a signal is propagated to an external lead terminal made of 2AIIoy, etc., the propagation speed of the signal becomes extremely slow, making it impossible to accommodate semiconductor devices that drive at high speed. With the progress of higher density and higher integration of semiconductor devices, the number of electrodes on semiconductor devices has increased significantly, and the line width of external lead terminals that connect each electrode of semiconductor devices to external electric circuits has also become extremely large. It's getting thinner. Therefore, the electrical resistance of the external lead terminal has become extremely large due to the low conductivity of Kovar and 42AIIoy described in (2) above, and when a signal is propagated to the external lead terminal, the external lead terminal The signal is greatly attenuated due to the electrical resistance of the device, making it impossible to accurately input the signal to the semiconductor device housed inside the device, resulting in malfunction of the semiconductor device.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的は
外部リード端子で発生するノイズ及び外部リード端子.
における信号の減衰を極小となし、内部に収容する半導
体素子への信号の入出力を確実に行うことを可能として
半導体素子を長期間にわたり正常、且つ安定に作動させ
ることができる半導体素子収納用パフケージを提供する
ことにある。
(Object of the Invention) The present invention was devised in view of the above-mentioned drawbacks, and its purpose is to eliminate noise generated at the external lead terminal and to reduce noise generated at the external lead terminal.
A puff cage for storing semiconductor devices that minimizes signal attenuation in the semiconductor device and ensures reliable input/output of signals to the semiconductor devices housed inside, allowing the semiconductor devices to operate normally and stably for a long period of time. Our goal is to provide the following.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用パソケージを提供
することにある。
Another object of the present invention is to provide a semiconductor device storage path cage capable of accommodating semiconductor devices that are driven at high speed.

(課題を解決するこめの手段) 本発明は絶縁基体と蓋体とから戒り、内部に半導体素子
を収容するための空所を有する絶縁容器と、該容器内に
収容される半導体素子を外部電気回路に接続するための
外部リード端子とから成る半導体素子収納用パッケージ
において、前記絶縁基体及び蓋体を窒化アルミニウム質
焼結体、ムライト質焼結体、ジルコン質焼結体の少なく
とも1種で、外部リード端子をニッケル28.5乃至2
9.5WtX 、コハル} 15.5乃至16.5Wt
X 、鉄54.0乃至56.0Wtχの合金から成る板
状体の上下面に、該板状体の厚みに対し10乃至20χ
の厚みの銅板を接合させた金属体で形成したことを特徴
とするものである。
(Further Means for Solving the Problems) The present invention includes an insulating container having a cavity for accommodating a semiconductor element inside the insulating base body and a lid body, and an insulating container having a cavity for accommodating a semiconductor element inside the container, and a semiconductor element housed in the container. In a package for housing a semiconductor element comprising an external lead terminal for connection to an electric circuit, the insulating base and the lid are made of at least one of an aluminum nitride sintered body, a mullite sintered body, and a zircon sintered body. , the external lead terminal is made of nickel 28.5 to 2
9.5WtX, Kohar} 15.5 to 16.5Wt
X, on the upper and lower surfaces of a plate-shaped body made of an alloy of iron 54.0 to 56.0 Wtχ, 10 to 20χ relative to the thickness of the plate-shaped body
It is characterized by being formed from a metal body joined with copper plates having a thickness of .

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be explained in detail based on the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パソケー
ジの一実施例を示し、1は絶縁基体、2は蓋体である。
FIG. 1 and FIG. 2 show an embodiment of the semiconductor device housing passocage of the present invention, where 1 is an insulating base and 2 is a lid.

この絶縁基体1と蓋体2とにより絶縁容器3が構威され
る。
The insulating base 1 and the lid 2 constitute an insulating container 3.

前記絶縁基体1及び蓋体2はそれぞれの中央部に半導体
素子を収容する空所を形成するための凹部が設けてあり
、絶縁基体lの凹部底面には半導体素子4が樹脂、ガラ
ス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center thereof to form a cavity for accommodating the semiconductor element, and the semiconductor element 4 is placed on the bottom of the recess of the insulating base 1 with resin, glass, or brazing agent. It is attached and fixed via adhesive such as.

前記絶縁基体1及び蓋体2は窒化アルミニウム質焼結体
、ムライト質焼結体、ジルコン質焼結体の少なくとも1
種から成り、第1図に示すような絶縁基体l及び蓋体2
に対応した形状を有するプレス型内に、窒化アルミニウ
ム質焼結体の場合は窒化アルミニウム(AIN) 、イ
フトリア(YzO:++等の原料粉末を、ムライト質焼
結体の場合はアルミナ( A1zOz ) 、シリカ(
Si(h)等の原料粉末を、ジルコン質焼結体の場合は
酸化ジルコニウム(ZrOz)、シリカ(Si(h)等
の原料粉末を充填させるとともに一定圧力を印加して威
形し、しかる後、戒形品を約1300〜1800℃の温
度で焼戒することによって製作される。
The insulating base 1 and the lid 2 are made of at least one of an aluminum nitride sintered body, a mullite sintered body, and a zircon sintered body.
It consists of a seed, an insulating base l and a lid body 2 as shown in FIG.
In the case of an aluminum nitride sintered body, raw material powders such as aluminum nitride (AIN) and Iftoria (YzO:++) are placed in a press mold having a shape corresponding to silica(
In the case of a zircon-based sintered body, raw material powder such as Si(h) is filled with raw material powder such as zirconium oxide (ZrOz) or silica (Si(h)), and a constant pressure is applied to shape it. It is produced by burning a precept article at a temperature of approximately 1,300 to 1,800 degrees Celsius.

尚、前記絶縁基体1及び蓋体2を形或する窒化アルミニ
ウム質焼結体、ムライト質焼結体、ジルコン質焼結体は
その熱膨張係数が40〜50X10−’/℃であり、後
述する封止用ガラス部材の熱膨張係数との関係において
絶縁基体1及び蓋体2と封止用ガラス部材間に大きな熱
膨張の差が生じることはない。
The aluminum nitride sintered body, mullite sintered body, and zircon sintered body that form the insulating base 1 and the lid 2 have a thermal expansion coefficient of 40 to 50×10-'/°C, which will be described later. In relation to the coefficient of thermal expansion of the sealing glass member, there is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member.

また前記絶縁基体1及び蓋体2にはその相対向する主面
に封止用のガラス部材6が予め被着形戒されており、該
絶縁基体l及び蓋体2の各々に被着されている封止用ガ
ラス部材6を加熱溶融させ一体化させることにより絶縁
容器3内の半導体素子4を気密に封止する。
Further, a glass member 6 for sealing is attached in advance to the main surfaces of the insulating base 1 and the lid 2 that face each other, and a glass member 6 for sealing is attached to each of the insulating base 1 and the lid 2. The semiconductor element 4 inside the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 to be integrated.

前記絶縁基体l及び蓋体2の相対向する主面に被着され
る封止用ガラス部材6は、例えばホウケイ酸鉛系ガラス
にフィラーを添加したものから威り、原料[,lLての
酸化鉛( PbO )70.0 〜90.0れχ、酸化
ホウ素( B20:I )12.0〜13.OWt! 
, シ’)力(SiOz)0.5 〜3.O WtX及
び7 )li 5 ナ(AI 203) 0.5〜3.
O WtX ニ7イ−7−トしテチタン酸鉛(PbTi
Oi)、β−ユークリプタイト(LiJhSizOs)
 、コージライト(MgzAltSisO+s)、ジ7
L/] ン(ZrSi04)、酸化スズ(Snug)、
ウィレマイト(ZnzSiOt)等を40〜50VoI
X添加混合すると共に、該混合粉末を950 −110
0℃の温度で加熱溶融させることによって製作される。
The sealing glass member 6 adhered to the opposing main surfaces of the insulating base 1 and the lid 2 is made of, for example, lead borosilicate glass with a filler added, Lead (PbO) 70.0-90.0 χ, boron oxide (B20:I) 12.0-13. OWt!
, Si') Force (SiOz) 0.5 ~ 3. O WtX and 7) li 5 na (AI 203) 0.5-3.
O WtX Lead titanate (PbTi)
Oi), β-eucryptite (LiJhSizOs)
, Cordierite (MgzAltSisO+s), Di7
L/] (ZrSi04), tin oxide (Snug),
Willemite (ZnzSiOt) etc. 40-50VoI
While adding X, the mixed powder was heated to 950-110
It is manufactured by heating and melting at a temperature of 0°C.

このホウケイ酸鉛系のガラスはその熱膨張係数が40 
〜60xlO−’/ ”cである。
This lead borosilicate glass has a coefficient of thermal expansion of 40
~60xlO-'/''c.

前記封止用ガラス部材6はその熱膨張係数が40〜60
X10−’/ ’Cであり、絶縁基体1及び蓋体2の各
々の熱膨張係数と近似することから絶縁基体1及び蓋体
2の各々に被着されている封止用ガラス部材6を加熱溶
融させ一体化させることにより絶縁容器3内の半導体素
子4を気密に封止する際、絶縁基体1及び蓋体2と封止
用ガラス部材6との間には両者の熱膨張係数の相違に起
因する熱応力が発生することは殆どなく、絶縁基体1と
蓋体2とを封止用ガラス部材6を介し強固に接合するこ
とが可能となる。
The sealing glass member 6 has a thermal expansion coefficient of 40 to 60.
X10-'/'C, which approximates the coefficient of thermal expansion of each of the insulating base 1 and the lid 2, so the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 is heated. When the semiconductor element 4 in the insulating container 3 is hermetically sealed by melting and integrating, there is a difference in thermal expansion coefficient between the insulating base 1 and lid 2 and the sealing glass member 6. Almost no resulting thermal stress occurs, and it becomes possible to firmly join the insulating base 1 and the lid 2 via the sealing glass member 6.

尚、前記封止用ガラス部材6はフィラーを添加したホウ
ケイ酸鉛系ガラスの粉末に適当な有機溶剤、溶媒を添加
して得たガラスペーストを従来周知の厚膜手法を採用す
ることによって絶縁基体l及び蓋体2の相対向する主面
に被着形成される。
The sealing glass member 6 is made by applying a well-known thick film method to a glass paste obtained by adding a suitable organic solvent to a filler-added lead borosilicate glass powder to form an insulating substrate. 1 and the main surfaces of the lid body 2 that face each other.

また前記封止用ガラス部材6はフィラーを添加したホウ
ケイ酸鉛系のガラスに限定されるものではなく、熱膨張
係数が40〜60X10−’/ ’Cの範囲のガラスで
あればいかなるものでも使用することができる。
Further, the sealing glass member 6 is not limited to lead borosilicate glass containing filler, but any glass having a coefficient of thermal expansion in the range of 40 to 60X10-'/'C can be used. can do.

前記絶縁基体1と蓋体2との間には導電性材料から成る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電極がワイヤ7を介し電気的に接続
され、外部リード端子5を外部電気回路に接続すること
によって半導体素子4が外部電気回路に接続されること
となる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base 1 and the lid 2.
Each electrode of the semiconductor element 4 is electrically connected via the wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リード端子5は絶縁基体1と蓋体2の相対向す
る主面に被着させた封止用ガラス部材6を溶融一体化さ
せ、絶縁容器3を気密封止する際に同時に絶縁基体1と
蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrating the sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating base 1 when the insulating container 3 is hermetically sealed. and the lid body 2.

前記外部リード端子5はニッケル28.5乃至29.5
Wt! , コハnt ト15.5乃至16.5WtX
 ,鉄54.0乃至56.OWtχの合金から戒る板状
体の上下面に、該板状体の厚みに対し10乃至20χの
厚みの銅板を接合させた金属体から威り、その透磁率は
約185 (CGS)、導電率ハ23.1!(IACS
) 、熱膨張係数は約49X10−’/℃である。
The external lead terminal 5 is made of nickel 28.5 to 29.5
Wt! , Kohant 15.5~16.5WtX
, iron 54.0 to 56. It is made of a metal body in which copper plates with a thickness of 10 to 20χ relative to the thickness of the plate body are bonded to the top and bottom surfaces of a plate body made of an alloy of OWtχ, and its magnetic permeability is approximately 185 (CGS) and conductivity. The rate is 23.1! (IACS
), the coefficient of thermal expansion is approximately 49X10-'/°C.

尚、前記外部リード端子5はニッケルーコバルトー鉄合
金(Ni−Co−Fe合金)の板状体の上下面に銅(C
u)板を圧接し、しかる後、これを圧延することによっ
て形成される。
The external lead terminals 5 are made of copper (C
u) Formed by pressing plates together and then rolling them.

また前記外部リード端子5はニッケル(Ni)、コバル
ト(co)、鉄(Fe)の量及び板状体と銅板の厚みが
上述の範囲を外れると外部リード端子5の透磁率が所望
する小さな値に、導電率が大きな値にならず、また熱膨
張係数も絶縁基体及び蓋体の熱膨張係数と合わなくなる
。そのため外部リード端子5はニッケル28.5乃至2
9.5Wtl ,コバルト15.5乃至16.5Wtχ
、鉄54.0乃至56.OWtX (7)合金から成る
板状体の上下面に、該板状体の厚みに対し10乃至20
Xの厚みの銅板を接合させた金属体で形成することに限
定される。
In addition, if the amount of nickel (Ni), cobalt (co), iron (Fe) and the thickness of the plate and copper plate of the external lead terminal 5 are out of the above-mentioned range, the magnetic permeability of the external lead terminal 5 will be a desired small value. In addition, the electrical conductivity does not reach a large value, and the thermal expansion coefficient does not match that of the insulating base and the lid. Therefore, the external lead terminal 5 is nickel 28.5 to 2.
9.5Wtl, cobalt 15.5 to 16.5Wtχ
, iron 54.0 to 56. OWtX (7) On the upper and lower surfaces of a plate-like body made of an alloy, 10 to 20
It is limited to forming the metal body by joining copper plates having a thickness of X.

前記外部リード端子5はその透磁率が185 (CGS
)であり、透磁率が低いことから外部リード端子5に電
流が流れたとしても外部リード端子5中には大きな自己
インダクタンスが発生することはなく、その結果、前記
自己インダクタンスにより誘発される逆起電力に起因し
たノイズを極小となし、内部に収容する半導体素子4を
常に正常に作動させることができる。
The external lead terminal 5 has a magnetic permeability of 185 (CGS
), and since the magnetic permeability is low, even if a current flows through the external lead terminal 5, a large self-inductance is not generated in the external lead terminal 5, and as a result, the back electromotive force induced by the self-inductance is Noise caused by electric power can be minimized, and the semiconductor element 4 housed inside can always operate normally.

また前記外部リード端子5はその導電率が23.1χ(
IACS)であり、電気を流し易いことから外部リード
端子5の信号伝搬速度を極めて速いものとなすことがで
き、wA縁容器3内に収容した半導体素子4を高速駆動
させたとしても半導体素子4と外部電気回路との間にお
ける信号の出し入れは常に安定、且つ確実となすことが
できる。
Further, the external lead terminal 5 has a conductivity of 23.1χ(
IACS), and since it is easy to conduct electricity, the signal propagation speed of the external lead terminal 5 can be made extremely high, and even if the semiconductor element 4 housed in the wA edge container 3 is driven at high speed, the semiconductor element 4 The input/output of signals between the external electric circuit and the external electric circuit can always be performed stably and reliably.

また同時に外部リード端子5の導電率が高いことから外
部リード端子5の線幅が細くなったとしても外部リード
端子5の電気抵抗を低く抑えることができ、その結果、
外部リード端子5における信号の減衰を極小として内部
に収容する半導体素子4に外部電気回路から供給される
電気信号を正確に人力することができる。
At the same time, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the electrical resistance of the external lead terminal 5 can be kept low, and as a result,
By minimizing the attenuation of the signal at the external lead terminal 5, it is possible to accurately manually input the electric signal supplied from the external electric circuit to the semiconductor element 4 housed inside.

また更に前記外部リード端子5はその熱膨張係数が約4
9X10−7/ ’Cであり、封止用ガラス部材6の熱
膨張係数と近似することから外部リード端子5を絶縁基
休1と蓋体2の間に封止用ガラス部材6を用いて固定す
る際、外部リード端子5と封止用ガラス部材6との間に
は両者の熱膨張係数の相違に起因する熱応力が発生する
ことはなく、外部リード端子5を封止用ガラス部材6で
強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a coefficient of thermal expansion of about 4.
9X10-7/'C, which approximates the coefficient of thermal expansion of the sealing glass member 6, so the external lead terminal 5 is fixed between the insulating base 1 and the lid 2 using the sealing glass member 6. At this time, thermal stress due to the difference in coefficient of thermal expansion between the external lead terminals 5 and the sealing glass member 6 is not generated, and the external lead terminals 5 are connected to the sealing glass member 6. It also becomes possible to securely fix it.

か《して、この半導体素子収納用パソケージによれば絶
縁基体1の凹部底面に半導体素子4を取着固定するとと
もに該半導体素子4の各電極をボンディングワイヤ7に
より外部リード端子5に接続させ、しかる後、絶縁基体
1と蓋体2とを該絶縁基体1及び蓋体2の相対向する主
面に予め被着させておいた封止用ガラス部材6を溶融一
体化させることによって接合させ、これによって最終製
品としての半導体装置が完戒する。
Thus, according to this path cage for storing semiconductor elements, the semiconductor element 4 is attached and fixed to the bottom surface of the recess of the insulating substrate 1, and each electrode of the semiconductor element 4 is connected to the external lead terminal 5 by the bonding wire 7. Thereafter, the insulating base 1 and the lid 2 are joined by melting and integrating the sealing glass member 6 that has been previously attached to the opposing main surfaces of the insulating base 1 and the lid 2, This completes the final product of the semiconductor device.

(発明の効果) 本発明の半導体素子収納用パッケージによれば、半導体
素子を収容するための絶縁容器を構戒する絶縁基体及び
蓋体を窒化アルミニウム質焼結体、ムライト質焼結体、
ジルコン質焼結体の少なくとも1種で、外部リード端子
をニソケル28.5乃至29.5Wtχ、コバルト15
.5乃至16.5Wtχ、鉄54.0乃至56.OWt
χの合金から成る板状体の上下面に、該板状体の厚みに
対し10乃至20χの厚みの銅板を接合させた透磁率が
約185 (CGS)、導電率が23.lχ(I八CS
)、熱膨張係数が約49X10−’/ ”Cの金属体で
形戊したことから外部リード端子に電流を流したとして
も該外部リード端子中に大きな自己インダクタンスが発
生することはな《、その結果、前記自己インダクタンス
により誘発される逆起電力に起因したノイズを極小とな
し、内部に収容する半導体素子を常に正常に作動させる
ことが可能となる。
(Effects of the Invention) According to the semiconductor device storage package of the present invention, the insulating base and the lid that constitute the insulating container for accommodating the semiconductor device are made of an aluminum nitride sintered body, a mullite sintered body,
At least one type of zircon sintered body, the external lead terminal is Nisokel 28.5 to 29.5Wtχ, Cobalt 15
.. 5 to 16.5 Wtχ, iron 54.0 to 56. OWt
Copper plates with a thickness of 10 to 20 χ relative to the thickness of the plate are bonded to the upper and lower surfaces of a plate-shaped body made of an alloy of χ, and the magnetic permeability is approximately 185 (CGS) and the electrical conductivity is 23. lχ(I8CS
), and the thermal expansion coefficient is approximately 49X10-'/''C, so even if a current is passed through the external lead terminal, a large self-inductance will not occur in the external lead terminal. As a result, the noise caused by the back electromotive force induced by the self-inductance can be minimized, and the semiconductor elements housed inside can always operate normally.

また外部リード端子の信号伝搬速度を極めて速いものと
なすことができ、絶縁容器内に収容した半導体素子を高
速駆動させたとしても半導体素子と外部電気回路との間
における信号の出し入れを常に安定、且つ確実となすこ
とが可能となる。
In addition, the signal propagation speed of the external lead terminal can be made extremely fast, so that even if the semiconductor element housed in the insulating container is driven at high speed, the signal input and output between the semiconductor element and the external electric circuit is always stable. Moreover, it becomes possible to do so reliably and reliably.

更に外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低く抑えることができ、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することが可能となる。
Furthermore, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low, and as a result, the attenuation of the signal at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. It becomes possible to accurately input the supplied electrical signal.

また更に外部リード端子はその熱膨張係数が絶縁基体、
蓋体及び封止用ガラス部材の各々の熱膨張係数と近似し
、絶縁基体と蓋体この間に外部リード端子を挟み、各々
を封止用ガラス部材で取着接合したとしても絶縁基体及
び蓋体と封止用ガラス部材との間、外部リード端子と封
止用ガラス部材との間のいずれにも熱膨張係数の相違に
起因する熱応力は発生せず、すべてを強固に取着接合す
ることも可能となる。
Furthermore, the coefficient of thermal expansion of the external lead terminal is
The coefficient of thermal expansion is similar to that of each of the lid and the sealing glass member, and even if an external lead terminal is sandwiched between the insulating base and the lid and each is attached and bonded with the sealing glass member, the insulating base and the lid are and the sealing glass member, and between the external lead terminal and the sealing glass member, all of which are firmly attached and bonded without generating thermal stress due to differences in thermal expansion coefficients. is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体素子収納用バ・7ケージの一実
施例を示す断面図、第2図は第1図に示すパ・ノケージ
の絶縁基体上面より見た平面図である。 l ・・絶縁基体  2 ・・蓋体 3 ・・絶縁容器 5 ・・外部リード端子 6 ・・封止用ガラス部材
FIG. 1 is a cross-sectional view showing one embodiment of the semiconductor element housing bar cage of the present invention, and FIG. 2 is a plan view of the insulating base of the cage shown in FIG. 1, as viewed from above. l...Insulating base 2...Lid 3...Insulating container 5...External lead terminal 6...Glass member for sealing

Claims (1)

【特許請求の範囲】[Claims]  絶縁基体と蓋体とから成り、内部に半導体素子を収容
するための空所を有する絶縁容器と、該容器内に収容さ
れる半導体素子を外部電気回路に接続するための外部リ
ード端子とから成る半導体素子収納用パッケージにおい
て、前記絶縁基体及び蓋体を窒化アルミニウム質焼結体
、ムライト質焼結体、ジルコン質焼結体の少なくとも1
種で、外部リード端子をニッケル28.5乃至29.5
Wt%、コバルト15.5乃至16.5Wt%、鉄54
.0乃至56.0Wt%の合金から成る板状体の上下面
に、該板状体の厚みに対し10乃至20%の厚みの銅板
を接合させた金属体で形成したことを特徴とする半導体
素子収納用パッケージ。
An insulating container consisting of an insulating base and a lid and having a cavity for accommodating a semiconductor element therein, and an external lead terminal for connecting the semiconductor element housed in the container to an external electric circuit. In the semiconductor element storage package, the insulating base and the lid are made of at least one of an aluminum nitride sintered body, a mullite sintered body, and a zircon sintered body.
Separately, the external lead terminal is nickel 28.5 to 29.5.
Wt%, cobalt 15.5 to 16.5 Wt%, iron 54
.. A semiconductor device characterized in that it is formed of a metal body in which copper plates having a thickness of 10 to 20% of the thickness of the plate-shaped body are bonded to the upper and lower surfaces of a plate-shaped body made of an alloy of 0 to 56.0 Wt%. Packaging for storage.
JP1308596A 1989-08-25 1989-11-27 Package for storing semiconductor elements Expired - Lifetime JP2736452B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308596A JP2736452B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements
US07/573,406 US5057905A (en) 1989-08-25 1990-08-24 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308596A JP2736452B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03167852A true JPH03167852A (en) 1991-07-19
JP2736452B2 JP2736452B2 (en) 1998-04-02

Family

ID=17982944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308596A Expired - Lifetime JP2736452B2 (en) 1989-08-25 1989-11-27 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2736452B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043851A (en) * 1983-07-27 1985-03-08 オリン コ−ポレ−シヨン Coated metal lead frame substrate
JPS6243155A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Integrated circuit package
JPS63169056A (en) * 1987-01-05 1988-07-13 Kobe Steel Ltd Lead frame material
JPS63314855A (en) * 1987-06-17 1988-12-22 Shinko Electric Ind Co Ltd Ceramic package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043851A (en) * 1983-07-27 1985-03-08 オリン コ−ポレ−シヨン Coated metal lead frame substrate
JPS6243155A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Integrated circuit package
JPS63169056A (en) * 1987-01-05 1988-07-13 Kobe Steel Ltd Lead frame material
JPS63314855A (en) * 1987-06-17 1988-12-22 Shinko Electric Ind Co Ltd Ceramic package

Also Published As

Publication number Publication date
JP2736452B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JPH03167852A (en) Package for semiconductor-element
JPH03173155A (en) Package for housing semiconductor element
JPH03167851A (en) Package for semiconductor-element
JPH03167853A (en) Package for semiconductor-element
JPH03173154A (en) Package for housing semiconductor element
JP2691304B2 (en) Package for storing semiconductor elements
JPH03167858A (en) Package for semiconductor-element
JP2736454B2 (en) Package for storing semiconductor elements
JP2691306B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JP2691305B2 (en) Package for storing semiconductor elements
JPH03218660A (en) Semiconductor element housing package
JP2742611B2 (en) Package for storing semiconductor elements
JP2691312B2 (en) Package for storing semiconductor elements
JPH03167850A (en) Package for semiconductor-element
JP2742612B2 (en) Package for storing semiconductor elements
JPH03173156A (en) Package for housing semiconductor element
JP2691307B2 (en) Package for storing semiconductor elements
JP2691308B2 (en) Package for storing semiconductor elements
JPH03173164A (en) Package for housing semiconductor element
JP2747613B2 (en) Package for storing semiconductor elements
JPH03167864A (en) Package for semiconductor-element
JPH03173157A (en) Package for housing semiconductor element
JPH03167865A (en) Package for semiconductor-element
JPH03173160A (en) Package for housing semiconductor element