JPH03167858A - Package for semiconductor-element - Google Patents

Package for semiconductor-element

Info

Publication number
JPH03167858A
JPH03167858A JP1308603A JP30860389A JPH03167858A JP H03167858 A JPH03167858 A JP H03167858A JP 1308603 A JP1308603 A JP 1308603A JP 30860389 A JP30860389 A JP 30860389A JP H03167858 A JPH03167858 A JP H03167858A
Authority
JP
Japan
Prior art keywords
external lead
lead terminal
lid
semiconductor element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1308603A
Other languages
Japanese (ja)
Other versions
JP2736455B2 (en
Inventor
Hiroshi Matsumoto
弘 松本
Masaaki Iguchi
井口 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308603A priority Critical patent/JP2736455B2/en
Priority to US07/574,472 priority patent/US5168126A/en
Publication of JPH03167858A publication Critical patent/JPH03167858A/en
Application granted granted Critical
Publication of JP2736455B2 publication Critical patent/JP2736455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce an attenuation of a signal to a minimum at an external lead terminal and to operate a semiconductor element normally and stably for a long term by a method wherein prescribed materials are used for an insulating container, the external lead terminal and a glass member for sealing use. CONSTITUTION:An insulating substrate 1 and a lid body 2 which constitute an insulating container 3 are formed of at least one kind out of an aluminum nitride sintered substance, a mullite sintered substance and a zircon sintered substance. Glass members 6, for sealing use, applied to opposite main faces of the substrate 1 and the lid body 2 are composed of the following: 65.0 to 80.0wt.% of silica; 10.0 to 25.0wt.% of boron oxide; 1.0 to 10.0wt.% of alumina; and 1.0 to 10.0wt.% of at least one kind of oxides of sodium and potassium. External lead terminals 5 composed of a conductive material are arranged between the substrate 1 and the lid body 2; an electric conductivity of the terminals 5 is set at 14% (IACS) or higher and their coefficient of thermal expansion is set at 40 to 50X10<-7>/ deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a semiconductor element housing package that houses a semiconductor element.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パッケージは、絶縁基体と蓋体とから威り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構威されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形成すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
に被着させた封止用のガラス部材を溶融一体化させるこ
とによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, packages for accommodating semiconductor devices, especially glass-sealed semiconductor device storage packages that are sealed by glass welding, are made up of an insulating base and a lid, and the semiconductor devices are not placed inside. It consists of an insulating container having a cavity for accommodating the semiconductor device, and an external lead terminal for electrically connecting the semiconductor device accommodated in the container to an external electric circuit. A glass member for sealing is previously formed on the main surface of the insulating substrate, external lead terminals are fixed to the main surface of the insulating substrate, and each electrode of the semiconductor element and the external lead terminal are connected by wire bonding. A semiconductor element is hermetically sealed inside by melting and integrating a sealing glass member attached to each lid.

(発明が解決しようとする課題) しかじケら、この従来のガラス封止型半導体素子収納用
パフ,ケージは通常、外部リード端子がコハール(29
 WtX Ni−16 WtX Co−55 WtXF
e合金)や42Alloy(42 WtX Ni−58
 WtX Fe合金)の導電性材料から戒っており、該
コバールや42A11oy等は導電率が低いことから以
下に述べる欠点を有する。
(Problem to be Solved by the Invention) However, in this conventional puff and cage for storing glass-sealed semiconductor elements, the external lead terminals are usually cohar (29
WtX Ni-16 WtX Co-55 WtXF
e Alloy) and 42Alloy (42 WtX Ni-58
Kovar, 42A11oy, etc. have the following disadvantages due to their low conductivity.

即ち、 ■コバールや42A11oyはその導電率が3.0 〜
3.52(IACS)と低い。そのためこのコバールや
42A 1 1oy等から或る外部リード端子に信号を
伝搬させた場合、信号の伝搬速度が極めて遅いものとな
り、高速駆動を行う半導体素子はその収容が不可となっ
てしまう、 ■半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42AI1oyの導電率が低いことと
相俊って電気抵抗が極めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
That is, ■ Kovar and 42A11oy have an electrical conductivity of 3.0 ~
It is low at 3.52 (IACS). Therefore, when a signal is propagated from this Kovar or 42A 1 1oy to a certain external lead terminal, the signal propagation speed becomes extremely slow, making it impossible to accommodate semiconductor elements that drive at high speed. ■Semiconductor With the progress of higher density and higher integration of semiconductor elements housed inside element storage packages, the number of electrodes on semiconductor elements has increased significantly. The line width of lead terminals is also becoming extremely thin. Therefore, the electrical resistance of the external lead terminal has become extremely large due to the low conductivity of Kovar and 42AI1oy described in (2) above, and when a signal is propagated to the external lead terminal, the external lead terminal The signal is greatly attenuated due to the electrical resistance of the device, making it impossible to accurately input the signal to the semiconductor device housed inside the device, resulting in malfunction of the semiconductor device.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的は
外部リード端子における信号の減衰を極小となし、内部
に収容する半導体素子への信号の入出力を確実に行うこ
とを可能として半導体素子を長期間にわたり正常、且つ
安定に作動させることができる半導体素子収納用パッケ
ージを提供することにある。
(Object of the Invention) The present invention was devised in view of the above drawbacks, and its purpose is to minimize the attenuation of signals at external lead terminals and ensure the input and output of signals to and from semiconductor elements housed inside. It is an object of the present invention to provide a package for storing a semiconductor element, which enables the semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用パッケージを提供
することにある。
Another object of the present invention is to provide a semiconductor device storage package that can accommodate semiconductor devices that operate at high speed.

(課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有す
る絶縁容器に外部リード端子をガラス部材を介して取着
して成る半導体素子収納用パッケージにおいて、前記絶
縁容器を窒化アルミニウム質焼結体、ムライト賞焼結体
、ジルコン質焼結体の少なくとも1種で、外部リード端
子を熱膨張係数40乃至50X10−77 ’C、導電
率14χ(IACS)以上の金属で、ガラス部材をシリ
カ65.0乃至80.0Wt%、酸化ホウ素10.0乃
至25.0Wt%、アルξナ1.0乃至10.OWt%
 、ナトリウム、カリウムの酸化物の少なくとも1種1
.0乃至10.OWtχから或るガラスで形成したこと
を特徴とするものである。
(Means for Solving the Problems) The present invention provides a package for storing a semiconductor element, which is formed by attaching an external lead terminal to an insulating container having a cavity for accommodating a semiconductor element through a glass member. The insulating container is made of at least one of aluminum nitride sintered body, mullite prize sintered body, and zircon sintered body, and the external lead terminal is made of a material with a thermal expansion coefficient of 40 to 50X10-77'C and a conductivity of 14χ (IACS) or more. As for the metal, the glass member is made of 65.0 to 80.0 wt% silica, 10.0 to 25.0 wt% boron oxide, and 1.0 to 10.0 wt% alumina. OWt%
, at least one of sodium and potassium oxides1
.. 0 to 10. It is characterized in that it is made of a certain glass made of OWtχ.

(実施例) 次に本発明を添付図面に基づき詳細に説明する.第1図
及び第2図は本発明の半導体素子収納用バソケージの一
実施例を示し、1は絶縁基体、2は蓋体である。この絶
縁基体Iと蓋体2とにより絶縁容器3が構威される。
(Example) Next, the present invention will be explained in detail based on the attached drawings. FIGS. 1 and 2 show an embodiment of a bass cage for storing semiconductor elements according to the present invention, where 1 is an insulating base and 2 is a lid. The insulating base I and the lid 2 constitute an insulating container 3.

前記絶縁基体1及び蓋体2はそれぞれの中央部に半導体
素子を収容する空所を形成するための凹部が設けてあり
、絶縁基体1の凹部底面には半導体素子4が樹脂、ガラ
ス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center thereof to form a cavity for accommodating a semiconductor element, and the semiconductor element 4 is placed in a resin, glass, or brazing agent on the bottom of the recess of the insulating base 1. It is attached and fixed via adhesive such as.

前記絶縁基体1及び蓋体2は窒化アルミニウム質焼結体
、ムライト質焼結体、ジルコン質焼結体?少なくとも1
種から成り、第1図に示すような絶縁基体1及び蓋体2
に対応した形状を有するプレス型内に、窒化アルミニウ
ム質焼結体の場合は窒化アルミニウム(AIN) 、イ
ットリア(YzOi )等の原料粉末を、ムライト質焼
結体の場合はアルミナ( AIZO3 ) 、シリカ(
SiO■)等の原料粉末を、ジルコン質焼結体の場合は
酸化ジルコニウム(ZrO■)、シリカ(SiO■)等
の原料粉末を充填させるとともに一定圧力を印加して戒
形し、しかる後、戒形品を約1300〜1800℃の温
度で加熱焼戒することによって製作される。
The insulating base 1 and the lid 2 are made of aluminum nitride sintered body, mullite sintered body, zircon sintered body? at least 1
It consists of an insulating base 1 and a lid 2 as shown in FIG.
In a press mold having a shape corresponding to (
In the case of a zircon-based sintered body, raw material powder such as SiO■) is filled with raw material powder such as zirconium oxide (ZrO■) or silica (SiO■), and a constant pressure is applied to form the material, and then, It is produced by heating and burning the precepts at a temperature of approximately 1,300 to 1,800 degrees Celsius.

尚、前記絶縁基体1及び蓋体2を形成する窒化アルミニ
ウム質焼結体、ムライト質焼結体、ジルコン質焼結体は
その熱膨張係数が40乃至50X10−’/℃であり、
後述する封止用ガラス部材の熱膨張係数との関係におい
て絶縁基体1及び蓋体2と封止用ガラス部材間に大きな
熱膨張の差が生じることはない。
The aluminum nitride sintered body, mullite sintered body, and zircon sintered body forming the insulating base 1 and the lid 2 have a coefficient of thermal expansion of 40 to 50×10-'/°C,
In relation to the coefficient of thermal expansion of the sealing glass member, which will be described later, there is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member.

また前記絶縁基体1及び蓋体2にはその相対向する主面
に封止用のガラス部材6が予め被着形成されており、該
絶縁基体1及び蓋体2の各々に被着されている封止用ガ
ラス部材6を加熱溶融させ一体化させることにより絶縁
容器3内の半導体素子4を気密に封止する。
Further, a sealing glass member 6 is formed in advance on the opposing main surfaces of the insulating base 1 and the lid 2, and is adhered to each of the insulating base 1 and the lid 2. The semiconductor element 4 inside the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 to integrate it.

前記絶縁基体l及び蓋体2の相対向する主面に被着され
る封止用ガラス部材6は、シリカ65.0乃至so.o
wtχ、酸化ホウ素10.0乃至25.0Wtχ、アル
ミナ1.0乃至10.0Wt%、ナトリウム、カリウム
の酸化物の少なくとも1種1.0乃至10.OWtXよ
り形成されるガラスより戒り、上記各戒分を所定の値に
秤量混合すると共に、該混合粉末をl500〜1600
℃の温度で加熱溶融させることによって製作される。こ
のガラス部材6はその熱膨張係数が30乃至45X 1
0 −’/ ’Cである。
The sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2 is made of silica 65.0 to so. o
wtχ, boron oxide 10.0 to 25.0Wtχ, alumina 1.0 to 10.0Wt%, at least one of sodium and potassium oxides 1.0 to 10.0%. The above-mentioned ingredients were weighed and mixed to a predetermined value, and the mixed powder was heated to 1500 to 1600 l.
It is manufactured by heating and melting at a temperature of ℃. This glass member 6 has a coefficient of thermal expansion of 30 to 45×1
0-'/'C.

前記封止用ガラス部材6はその熱膨張係数が30乃至4
5X10−’/ ’Cであり、絶縁基体1及び蓋体2の
各々の熱膨張係数と近似することから絶縁基体l及び蓋
体2の各々に被着されている封止用ガラス部材6を加熱
溶融させ一体化させることにより絶縁容器3内の半導体
素子4を気密に封止する際、?縁基体1及び蓋体2と封
止用ガラス部材6との間には両者の熱膨張係数の相違に
起因する熱応力が発生することは殆どなく、絶縁基体1
と蓋体2とを封止用ガラス部材6を介し強固に接合する
ことが可能となる。
The sealing glass member 6 has a thermal expansion coefficient of 30 to 4.
5X10-'/'C, which approximates the coefficient of thermal expansion of each of the insulating base 1 and the lid 2, so the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 is heated. When the semiconductor element 4 in the insulating container 3 is hermetically sealed by melting and integrating,? There is almost no thermal stress generated between the edge base 1 and the lid 2 and the sealing glass member 6 due to the difference in coefficient of thermal expansion between the two, and the insulating base 1
It becomes possible to firmly join the lid body 2 to the lid body 2 through the sealing glass member 6.

尚、前記封止用ガラス部材6はシリカ(SiO■)が6
5.OWtχ未満であるとガラスの結晶化が進んで絶縁
容器3の気密封止が困難とり、またso.owtzを越
えるとガラスの熱膨張が小さくなって絶縁基体lと蓋体
2の熱膨張と合わなくなることからシリカ(SiOz)
は65.0乃至80.OWtXの範囲に限定される.ま
た酸化ホウ素(BzO+)が10.OWtX未満である
とガラスの結晶化が進んで絶縁容器3の気密封止が困難
とり、また25.0WLXを越えるとガラスの耐薬品性
が劣化して絶縁容器3の気密封止の信頼性が大きく低下
するため酸化ホウ素(BZO3)は10.0乃至25.
OWtχの範囲に限定される。
The sealing glass member 6 is made of silica (SiO).
5. If it is less than OWtχ, crystallization of the glass will progress, making it difficult to hermetically seal the insulating container 3, and so. owtz, the thermal expansion of the glass decreases and does not match the thermal expansion of the insulating base 1 and the lid 2, so silica (SiOz) is used.
is 65.0 to 80. Limited to the range of OWtX. Also, boron oxide (BzO+) is 10. If it is less than OWtX, crystallization of the glass will progress and it will be difficult to hermetically seal the insulating container 3, and if it exceeds 25.0WLX, the chemical resistance of the glass will deteriorate and the reliability of hermetically sealing the insulating container 3 will deteriorate. Boron oxide (BZO3) is 10.0 to 25.
limited to the range of OWtχ.

またアルミナ( AI.O. ) が1.0レχ未満で
あるとガラスの耐薬品性が劣化して絶縁容器3の気密封
止の信頼性が大きく低下し、また10.OWt2を越え
るとガラスの熱膨張が小さくなって絶縁基体1と蓋体2
の熱膨張と合わなくなることからアルミ−j−( Ah
03 ) ハI.O乃至10.OWtXの範囲に限定さ
れる。
Furthermore, if the alumina (AI.O.) content is less than 1.0 χ, the chemical resistance of the glass will deteriorate, and the reliability of hermetic sealing of the insulating container 3 will be greatly reduced. When OWt2 is exceeded, the thermal expansion of the glass becomes smaller and the insulation base 1 and lid 2
Aluminum-j-(Ah
03) Ha I. O to 10. Limited to the OWtX range.

またナトリウム、カリウムの酸化物が1.O WtX未
満であるとガラスを製作する際のガラスの溶融温度が大
幅に上がって作業性が著しく悪くなり、また10.OW
tXを越えるとガラスの耐薬品性が劣化して絶縁容器3
の気密封止の信頼性が大きく低下するためナトリウム、
カリウムの酸化物は1.0乃至10.OWtXの範囲に
限定される。
Also, sodium and potassium oxides are 1. If it is less than O WtX, the melting temperature of the glass during glass production will rise significantly, resulting in significantly poor workability; OW
If the temperature exceeds tX, the chemical resistance of the glass deteriorates and the insulation container 3
Sodium, as the reliability of hermetic sealing is greatly reduced.
Potassium oxide is 1.0 to 10. Limited to the OWtX range.

前記封止用ガラス部材6は前述した戒分から成るガラス
の粉末に適当な有機溶剤、溶媒を添加して得たガラスペ
ーストを従来周知の厚膜手法を採用することによって絶
縁基体1及び蓋体2の相対向する主面に被着形或される
The sealing glass member 6 is formed by applying a well-known thick film method to a glass paste obtained by adding a suitable organic solvent to the glass powder made of the precepts described above, and then forming the insulating base 1 and the lid 2. The material is adhered to the opposite main surfaces of the material.

前記絶縁基体1と蓋体2との間には導電性材料から或る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電極がワイヤ7を介し電気的に接続
され、外部リード端子5を外部電気回路に接続すること
によって半導体素子4が外部電気回路に接続されること
となる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base 1 and the lid 2.
Each electrode of the semiconductor element 4 is electrically connected via the wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リード端子5は絶縁基体lと蓋体2の相対向す
゜る主面に被着させた封止用ガラス部材6を溶融一体化
させ、絶縁容器3を気密封止する際に同時に絶縁基体1
と蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrating the sealing glass member 6 attached to the opposing main surfaces of the insulating base l and the lid 2, and simultaneously sealing the insulating base when the insulating container 3 is hermetically sealed. 1
and the lid body 2.

前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面にニッケルーコバルト鉄合金(N
i−Co−Fe合金)を被着させたもの、或いは非磁性
体金属である銅(Cu)の上下面にニフヶルーコバルト
鉄合金(Ni−Co−Fe合金)を接合させたもの等か
ら成り、その導電率は14χ(IACS)以上、熱膨張
係数は40〜50X10−’/ ”Cである。
The external lead terminal 5 is made of copper (Cu), which is a non-magnetic metal.
Nickel-cobalt iron alloy (N
Co-cobalt iron alloy (Ni-Co-Fe alloy) is bonded to the upper and lower surfaces of copper (Cu), which is a non-magnetic metal. Its electrical conductivity is 14χ (IACS) or more, and its thermal expansion coefficient is 40 to 50X10-'/''C.

前記外部リード端子5はその導電率が142(IACS
)以上であり、電気を流し易いことから外部リード端子
5の信号伝搬速度を極めて速いものとなすことができ、
絶縁容器3内に収容した半導体素子4を高速駆動させた
としても半導体素子4と外部電気回路との間における信
号の出し入れは常に安定、且つ確実となすことができる
The external lead terminal 5 has a conductivity of 142 (IACS
), and since electricity can easily flow, the signal propagation speed of the external lead terminal 5 can be made extremely fast,
Even when the semiconductor element 4 housed in the insulating container 3 is driven at high speed, signals can always be input and output stably and reliably between the semiconductor element 4 and the external electric circuit.

また外部リード端子5の導電率が高いことから外部リー
ド端子5の線幅が細くなったとしても外部リード端子5
の電気抵抗を低く抑えることができ、その結果、外部リ
ード端子5における信号の減衰を極小として内部に収容
する半導体素子4に外部電気回路から供給される電気信
号を正確に入力することができる。
Furthermore, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the external lead terminal 5
As a result, the attenuation of the signal at the external lead terminal 5 is minimized, and the electrical signal supplied from the external electrical circuit can be accurately input to the semiconductor element 4 housed inside.

更に前記外部リード端子5はその熱膨張係数が40乃至
50X10−’/ ℃であり、封止用ガラス部材6の熱
膨張係数と近似することから外部リード端子5を絶縁基
体1と蓋体2の間に封止用ガラス部材6を用いて固定す
る際、外部リード端子5と封止用ガラス部材6との間に
は両者の熱膨張係数の相違に起因する熱応力が発生する
ことはなく、外部リード端子5を封止用ガラス部材6で
強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a thermal expansion coefficient of 40 to 50×10-'/°C, which is similar to that of the sealing glass member 6, so the external lead terminal 5 is connected to the insulating base 1 and the lid 2. When fixing using the sealing glass member 6 between the external lead terminals 5 and the sealing glass member 6, no thermal stress is generated between the external lead terminals 5 and the sealing glass member 6 due to the difference in coefficient of thermal expansion between the two. It is also possible to firmly fix the external lead terminal 5 with the sealing glass member 6.

かくして、この半導体素子収納用パフケージによれば絶
縁基体1の凹部底面に半導体素子4を取着固定するとと
もに該半導体素子4の各電極をポンディングワイヤ7に
より外部リード端子5に接続させ、しかる後、絶縁基体
Iと蓋体2とを該絶縁基体1及び蓋体2の相対向する主
面に予め被着させておいた封止用ガラス部材6を溶融一
体化させることによって接合させ、これによって最終製
品としての半導体装置が完成する。
Thus, according to this puff cage for storing semiconductor elements, the semiconductor element 4 is attached and fixed to the bottom of the recess of the insulating substrate 1, and each electrode of the semiconductor element 4 is connected to the external lead terminal 5 by the bonding wire 7, and then , the insulating base I and the lid 2 are joined together by melting and integrating the sealing glass member 6 that has been previously attached to the opposing main surfaces of the insulating base 1 and the lid 2, and thereby A semiconductor device as a final product is completed.

(発明の効果) 本発明の半導体素子収納用バソケージによれば、絶縁基
体及び蓋体を窒化アルミニウム質焼結体、ムライト質焼
結体、ジルコン質焼結体の少なくとも1種で、外部リー
ド端子を熱膨張係数が40乃至50x10−7/ ℃、
導電率が14%(IACS)以上の金属で、ガラス部材
をシリカ65.0乃至80.0Wt%、酸化ホウ素10
.0乃至25.0Wt! 、アルミナ1.0乃至10.
0Wt%、ナトリウム、カリウムの酸化物の少なくとも
I種1.0乃至10.0Wt$から成るガラスで形成し
たことから外部リード端子の信号伝搬速度を極めて速い
ものとなすことができ、絶縁容器内に収容した半導体素
子を高速駆動させたとしても半導体素子と外部電気回路
との間における信号の出し入れを常に安定、且つ確実と
なすことが可能となる。
(Effects of the Invention) According to the bath cage for storing semiconductor elements of the present invention, the insulating base and the lid are made of at least one of aluminum nitride sintered body, mullite sintered body, and zircon sintered body, and the external lead terminal The thermal expansion coefficient is 40 to 50x10-7/℃,
A metal with an electrical conductivity of 14% or more (IACS), and a glass member containing 65.0 to 80.0 wt% silica and 10% boron oxide.
.. 0 to 25.0Wt! , alumina 1.0 to 10.
Since it is made of glass consisting of at least 1.0 to 10.0 Wt% of sodium and potassium oxides, the signal propagation speed of the external lead terminal can be made extremely fast. Even if the housed semiconductor element is driven at high speed, it is possible to always stably and reliably transmit signals between the semiconductor element and the external electric circuit.

また外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低く抑えることができ、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することが可能となる。
In addition, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low, and as a result, the signal attenuation at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. It becomes possible to accurately input the supplied electrical signal.

更に外部リード端子はその熱膨張係数が絶縁基体、蓋体
及び封止用ガラス部材の各々の熱膨張係数と近似し、絶
縁基体と蓋体との間に外部リード端子を挟み、各々を封
止用ガラス部材で取着接合したとしても絶縁基体及び蓋
体と封止用ガラス部材との間、外部リード端子と封止用
ガラス部材との間のいずれにも熱膨張係数の相違に起因
する熱応力は発生せず、すべてを強固に取着接合するこ
とも可能となる。
Furthermore, the coefficient of thermal expansion of the external lead terminal is close to that of each of the insulating base, the lid, and the sealing glass member, and the external lead terminal is sandwiched between the insulating base and the lid, and each is sealed. Even if they are attached and bonded using a glass material for sealing, there will be heat due to differences in thermal expansion coefficients between the insulating base and lid and the glass sealing member, and between the external lead terminal and the glass sealing member. No stress is generated, and everything can be firmly attached and joined.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の半導体素子収納用パソケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 1 ・・絶縁基体  2 ・・蓋体 ・絶縁容器 ・外部リード端子 ・封止用ガラス部材
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor element housing package according to the present invention, and FIG. 2 is a plan view of the package shown in FIG. 1, viewed from the top surface of the insulating base. 1...Insulating base 2...Lid, insulating container, external lead terminal, glass member for sealing

Claims (1)

【特許請求の範囲】[Claims]  内部に半導体素子を収容するための空所を有する絶縁
容器に外部リード端子をガラス部材を介して取着して成
る半導体素子収納用パッケージにおいて、前記絶縁容器
を窒化アルミニウム質焼結体、ムライト質焼結体、ジル
コン質焼結体の少なくとも1種で、外部リード端子を熱
膨張係数40乃至50×10^−^7/℃、導電率14
%(IACS)以上の金属で、ガラス部材をシリカ65
.0乃至80.0Wt%、酸化ホウ素10.0乃至25
.0Wt%、アルミナ1.0乃至10.0Wt%、ナト
リウム、カリウムの酸化物の少なくとも1種1.0乃至
10.0Wt%から成るガラスで形成したことを特徴と
する半導体素子収納用パッケージ。
In a package for storing a semiconductor element, the insulating container is made of an aluminum nitride sintered body, a mullite-based sintered body, etc. The external lead terminal is made of at least one type of sintered body or zircon sintered body, and has a thermal expansion coefficient of 40 to 50 x 10^-^7/℃ and an electrical conductivity of 14.
% (IACS) or more, and the glass member is made of silica 65
.. 0 to 80.0 Wt%, boron oxide 10.0 to 25
.. 1. A package for housing a semiconductor element, characterized in that it is formed of glass comprising 0 Wt%, alumina 1.0 to 10.0 Wt%, and 1.0 to 10.0 Wt% of at least one of oxides of sodium and potassium.
JP1308603A 1989-08-25 1989-11-27 Package for storing semiconductor elements Expired - Lifetime JP2736455B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308603A JP2736455B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements
US07/574,472 US5168126A (en) 1989-08-25 1990-08-27 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308603A JP2736455B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03167858A true JPH03167858A (en) 1991-07-19
JP2736455B2 JP2736455B2 (en) 1998-04-02

Family

ID=17983027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308603A Expired - Lifetime JP2736455B2 (en) 1989-08-25 1989-11-27 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2736455B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236936A (en) * 1993-02-10 1994-08-23 Kyocera Corp Package for housing semiconductor-element
JPH06244295A (en) * 1993-02-16 1994-09-02 Kyocera Corp Semiconductor element containing package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243155A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Integrated circuit package
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63314855A (en) * 1987-06-17 1988-12-22 Shinko Electric Ind Co Ltd Ceramic package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243155A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Integrated circuit package
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63314855A (en) * 1987-06-17 1988-12-22 Shinko Electric Ind Co Ltd Ceramic package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236936A (en) * 1993-02-10 1994-08-23 Kyocera Corp Package for housing semiconductor-element
JPH06244295A (en) * 1993-02-16 1994-09-02 Kyocera Corp Semiconductor element containing package

Also Published As

Publication number Publication date
JP2736455B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JPH03167858A (en) Package for semiconductor-element
JP2678509B2 (en) Package for storing semiconductor elements
JP2742617B2 (en) Package for storing semiconductor elements
JP2736459B2 (en) Package for storing semiconductor elements
JP2736451B2 (en) Package for storing semiconductor elements
JPH03167845A (en) Package for semiconductor-element
JP2736461B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JP2742613B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JP2691307B2 (en) Package for storing semiconductor elements
JP2691306B2 (en) Package for storing semiconductor elements
JPH03173164A (en) Package for housing semiconductor element
JP2747613B2 (en) Package for storing semiconductor elements
JP2736458B2 (en) Package for storing semiconductor elements
JP2736452B2 (en) Package for storing semiconductor elements
JPH03167853A (en) Package for semiconductor-element
JP2736456B2 (en) Package for storing semiconductor elements
JP2691312B2 (en) Package for storing semiconductor elements
JP2736454B2 (en) Package for storing semiconductor elements
JPH03173163A (en) Package for housing semiconductor element
JPH03167865A (en) Package for semiconductor-element
JPH03218660A (en) Semiconductor element housing package
JPH03167864A (en) Package for semiconductor-element
JPH03167856A (en) Package for semiconductor-element