JP7172328B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP7172328B2
JP7172328B2 JP2018173120A JP2018173120A JP7172328B2 JP 7172328 B2 JP7172328 B2 JP 7172328B2 JP 2018173120 A JP2018173120 A JP 2018173120A JP 2018173120 A JP2018173120 A JP 2018173120A JP 7172328 B2 JP7172328 B2 JP 7172328B2
Authority
JP
Japan
Prior art keywords
gate
pad
semiconductor
electrode
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173120A
Other languages
English (en)
Other versions
JP2020047675A (ja
Inventor
啓樹 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018173120A priority Critical patent/JP7172328B2/ja
Priority to US16/519,517 priority patent/US10833189B2/en
Publication of JP2020047675A publication Critical patent/JP2020047675A/ja
Priority to US17/034,599 priority patent/US11430714B2/en
Application granted granted Critical
Publication of JP7172328B2 publication Critical patent/JP7172328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

この発明は、半導体装置に関する。
従来、MOS(金属膜-酸化膜-半導体の3層構造からなる絶縁ゲート)型半導体装置では、活性領域に、ゲート電極の材料であるポリシリコン(poly-Si)による寄生抵抗が形成される。この寄生抵抗の抵抗値は、プレーナゲート構造ではばらつきが小さいが、トレンチゲート構造ではゲートトレンチの形状やトレンチゲート構造の仕上り寸法によって変わるため、ばらつきが大きい。寄生抵抗の抵抗値のばらつきを制御する方法として、ゲートパッドとゲート電極との間に、寄生抵抗よりも抵抗値が高く、かつ自身の抵抗値のばらつきの小さい平面平板状の内蔵抵抗を直列に接続することが公知である。
従来の半導体装置の構造について、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)を例に説明する。図7~9は、従来の半導体装置を半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。図8,9には、ゲートトレンチ121のレイアウトを示し、ゲートフィンガー113よりも外側(半導体基板110の端部側)の部分を図示省略する。図10は、従来の半導体装置の等価回路を示す回路図である。
図7~10に示す従来の半導体装置は、半導体基板110のおもて面上に互いに離して配置されたソースパッド111およびゲートパッド112を備える。ソースパッド111は、活性領域101における有効領域102に配置されている。ゲートパッド112は、活性領域101における無効領域103に配置されている。有効領域102は、活性領域101のうちの無効領域103を除く領域であり、MOSFETの単位セル(素子の構成単位)が配置され、MOSFETとして機能する。無効領域103は、MOSFETとして機能しない領域であり、MOSFETの単位セルが配置されていない。
ゲートパッド112には、ゲートフィンガー113およびゲートポリシリコン層114を介してすべてのゲート電極123(図10)が電気的に接続されている。ゲートフィンガー113は、エッジ終端領域104において、活性領域101とエッジ終端領域104との境界に沿って活性領域101の周囲を囲む環状に設けられている。ゲート電極123は、半導体基板110のおもて面に平行な方向に延在するストライプ状に設けられたゲートトレンチ121の両端部それぞれにおいてゲートフィンガー113に接続されている(図8,9)。図8,9には、ゲートフィンガー113よりも細線でゲートトレンチ121を示す。
ゲートフィンガー113により、ゲートポリシリコン層114による内蔵抵抗Rg2と、ゲート電極123による寄生抵抗Rg1と、が直列に接続される。内蔵抵抗Rg2と寄生抵抗Rg1との合成抵抗は、この図7~10に示す従来の半導体装置の全体のゲート抵抗Rg3である。このゲート抵抗Rg3の抵抗値は、寄生抵抗Rg1よりも抵抗値の高い内蔵抵抗Rg2の抵抗値で決まる。抵抗値測定用の電極パッド(以下、測定パッドとする)115は、例えば略矩形状の平面形状を有する活性領域101の1つの頂点に相当するコーナー部に配置され、活性領域101のコーナー部においてゲートフィンガー113に接続されている(図8参照)。
ゲートフィンガー113に測定パッド115を接続することで、図10に示すように、ゲートパッド112と測定パッド115との間に内蔵抵抗Rg2が直列に接続された状態となり、この測定パッド115により内蔵抵抗Rg2の抵抗値を測定可能である。このため、内蔵抵抗Rg2の抵抗値でゲート抵抗Rg3の抵抗値が決まるように、上述したように内蔵抵抗Rg2の抵抗値を寄生抵抗Rg1の抵抗値よりも高くする。これにより、測定パッド115により内蔵抵抗Rg2の抵抗値を測定することで、全体のゲート抵抗Rg3が所定の抵抗値である半導体基板(半導体チップ)110を選別可能となる。
符号C101は、有効領域102に配置されたMOSFETの各単位セルのゲート-ソース間に、ゲート絶縁膜(不図示)の、ゲートトレンチ121の側壁に沿った部分で形成される寄生容量である。符号C102は、ゲートフィンガー113とソースパッド111との間の層間絶縁膜(不図示)で形成される寄生容量である。符号C103は、ゲートフィンガー113と半導体基板110のおもて面との間のフィールド酸化膜で形成される寄生容量である。
符号C104は、測定パッド115と半導体基板110のおもて面との間の層間絶縁膜およびフィールド酸化膜(不図示)で形成される寄生容量である。符号C105は、内蔵抵抗Rg2を構成するポリシリコン層(以下、ゲートポリシリコン層とする)114と、半導体基板110のおもて面と、の間のフィールド酸化膜で形成される寄生容量である。これらの寄生容量C101~C105は、ゲートパッド112とソースパッド111との間に並列に接続されている。
ポリシリコンからなる抵抗体を半導体基板の主面上に半導体基板の端部に沿って配置したMOSFETとして、MOSFETと同一の半導体基板上にポリシリコンからなる抵抗体を形成し、当該抵抗体により電気的に接続されたソースパッドおよびゲートパッドを介してMOSFETセルのゲート・ソース間を接続した装置が提案されている(例えば、下記特許文献1(第0018~0020,0024段落)参照。)。下記特許文献1では、MOSFETのゲート・ソース間の寄生容量に蓄積された電荷がポリシリコンからなる抵抗体を通って放電される。
特開平05-304296号公報
しかしながら、上述した従来の半導体装置(図10参照)では、次の問題がある。図11,13は、図10の半導体装置を並列に接続した半導体回路装置の等価回路の一例を示す回路図である。図12,14は、それぞれ図11,13の半導体回路装置の1つの半導体チップの断面構造を模式的に示す断面図である。図11,12には、半導体基板(半導体チップ)110の材料として炭化珪素(SiC)を用いた場合を示す。
図13,14には、シリコン(Si)を材料としたIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)に図10の半導体装置を適用した場合を示す。図12,14では、半導体基板110に形成されたMOSFET130,150の、ゲートトレンチ131,151、ゲート絶縁膜132,152およびゲート電極133,153以外の各部を図示省略する。
図11に示す半導体回路装置では、図10の半導体装置が並列に複数接続され、各半導体基板110それぞれにおいて、半導体基板110に作製(製造)されたMOSFET130のゲート電極133とPG(Protective Ground)との間に、ゲート電極133による寄生抵抗Rg1と、半導体基板110上に付加したゲートポリシリコン層114による内蔵抵抗Rg2と、が直列に接続された等価回路となる。
図10の半導体装置を並列に複数接続することで、所定の電流量を実現している。各半導体基板110において、ゲートポリシリコン層114による内蔵抵抗Rg2の両端はそれぞれゲートパッド112および測定パッド115に接続されている。符号Rg4は、PGと、ゲートポリシリコン層114による内蔵抵抗Rg2と、の間に形成された、半導体基板110によるチップ抵抗Rg4であり、例えば30Ω程度である。
半導体基板110の材料として炭化珪素を用いた場合、半導体基板110のチップサイズは小さく、例えば3mm2程度である。ゲートトレンチ131の個数が少なく、かつゲートトレンチ131が浅いことで、ゲート電極133となるポリシリコンの体積が小さいため、ゲート電極133による寄生抵抗Rg1の抵抗値が大きい(図12)。また、所定電流量を得るために並列に接続する半導体基板110の個数が多くなる。
各半導体基板110それぞれにおいて全体のゲート抵抗Rg3のばらつきを制御するには、各半導体基板110の内蔵抵抗Rg2の抵抗値をそれぞれ高くする必要がある。しかしながら、寄生抵抗Rg1の抵抗値が大きく、寄生抵抗Rg1の抵抗値と内蔵抵抗Rg2の抵抗値とが近い抵抗値になってしまう場合、内蔵抵抗Rg2の抵抗値で全体のゲート抵抗Rg3を決めることができない。
具体的には、例えば、寄生抵抗Rg1の抵抗値および内蔵抵抗Rg2の抵抗値がそれぞれ7Ω程度および8Ω程度であり、全体のゲート抵抗Rg3が15Ω程度(=7Ω+8Ω)となる。このため、各半導体基板110で寄生抵抗Rg1の抵抗値がばらついている場合、内蔵抵抗Rg2の抵抗値で全体のゲート抵抗Rg3の抵抗値を制御することができず、各半導体基板110での全体のゲート抵抗Rg3の抵抗値にばらつきが生じる。
一方、比較として挙げる図13に示す半導体回路装置は、図11に示す半導体回路装置と略同様の構成となっている。すなわち、各半導体基板110それぞれにおいて、半導体基板110に作製されたIGBT150のゲート電極153とPGとの間に、ゲート電極153による寄生抵抗Rg1と、半導体基板110上のゲートポリシリコン層114による内蔵抵抗Rg2と、が直列に接続された等価回路となる。
シリコンを材料とした半導体基板110にIGBT150を作製する場合、半導体基板110のチップサイズは大きく、例えば10mm2程度である。ゲートトレンチ151の個数が多く、かつゲートトレンチ151が深いことで、ゲート電極153となるポリシリコンの体積が大きいため、ゲート電極153による寄生抵抗Rg1の抵抗値が小さい(図14)。かつ、所定電流量を得るために並列に接続する半導体基板110の個数が少ない。
各半導体基板110において全体のゲート抵抗Rg3のばらつきを制御するには、内蔵抵抗Rg2の抵抗値を寄生抵抗Rg1の抵抗値よりも1桁程度高くすれば足りる。例えば、寄生抵抗Rg1の抵抗値および内蔵抵抗Rg2の抵抗値がそれぞれ0.1Ωオーダー程度および7.5Ω程度であるため、全体のゲート抵抗Rg3の抵抗値は内蔵抵抗Rg2の抵抗値とほぼ同じとなる。
このように寄生抵抗Rg1の抵抗値が低い場合、内蔵抵抗Rg2の抵抗値で全体のゲート抵抗Rg3の抵抗値を決めることができる。一方、図11に示す半導体回路装置のように寄生抵抗Rg1の抵抗値が大きい場合、上述したように内蔵抵抗Rg2の抵抗値で全体のゲート抵抗Rg3を決めることができないため、測定パッド115で内蔵抵抗Rg2の抵抗値を測定するだけでは全体のゲート抵抗Rg3の抵抗値を得ることができない。
また、寄生抵抗Rg1の抵抗値は、一般的にLCRメータ(Inductance(L) Capacitance(C) and Resistance(R) meter)で測定されるが、測定精度が低く、例えば設定値を7Ωとした場合に6.5Ω~9.5Ω程度に測定され、バラつきも大きく、かつ当該測定値の信憑性に欠ける。したがって、寄生抵抗Rg1の抵抗値を測定したとしても全体のゲート抵抗Rg3の抵抗値を得ることができない。
このように全体のゲート抵抗Rg3の正確な抵抗値を得ることができないことで、並列に接続された各半導体基板110で寄生抵抗Rg1の抵抗値がばらついている場合、各半導体基板110の全体のゲート抵抗Rg3の抵抗値にもばらつきが生じる。並列に接続された各半導体基板110の中にスイッチングのタイミングが異なる半導体基板110が存在することとなるため、スイッチングノイズを低減することができない。
この発明は、上述した従来技術による問題点を解消するため、スイッチングノイズを低減することができる半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。半導体基板の第1主面側に、金属膜-酸化膜-半導体の3層構造からなる絶縁ゲート構造が設けられている。前記半導体基板の第1主面に、絶縁膜を介してゲートパッドが設けられている。前記半導体基板の第1主面に、前記絶縁膜を介してゲートフィンガーが設けられている。前記ゲートフィンガーには、前記絶縁ゲート構造の前記金属膜であるゲート電極が電気的に接続されている。前記半導体基板の第1主面に、前記絶縁膜を介してゲートポリシリコン層が設けられている。前記ゲートポリシリコン層は、前記ゲートパッドと前記ゲートフィンガーとを電気的に接続する。前記半導体基板の第1主面に、前記絶縁膜を介して、第1抵抗値を測定するための電極パッドが設けられている。前記電極パッドは、前記ゲートフィンガーに電気的に接続されている。前記ゲートフィンガーの、前記ゲートポリシリコン層との接続部から前記電極パッドとの接続部までの間にすべての前記ゲート電極が電気的に接続されている。
また、この発明にかかる半導体装置は、上述した発明において、前記絶縁ゲート構造は、前記半導体基板の第1主面から所定深さに達するトレンチと、前記トレンチの内部に、前記酸化膜であるゲート絶縁膜を介して設けられた前記ゲート電極と、を有するトレンチゲート構造であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板の第1主面に前記絶縁膜を介して設けられ、前記ゲートポリシリコン層を介して前記ゲートパッドに電気的に接続された、第2抵抗値を測定するための他の電極パッドをさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記ゲートフィンガーとして第1,2ゲートフィンガーを有する。前記第1ゲートフィンガーは、前記ゲートポリシリコン層と前記ゲート電極とを電気的に接続する。前記第2ゲートフィンガーは、前記ゲート電極と前記電極パッドとを電気的に接続する。前記ゲートパッド、前記ゲートポリシリコン層、前記第1ゲートフィンガー、前記ゲート電極、前記第2ゲートフィンガーおよび前記電極パッドの順に接続されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記絶縁膜の内部に設けられた、前記ゲート電極の電位のポリシリコン層をさらに備える。前記ポリシリコン層は、前記電極パッドと前記半導体基板との間に配置されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、第2導電型の第1半導体領域、第1導電型の第2半導体領域、第3半導体領域、第1,2電極および前記第1電極の電位のポリシリコン層を備える。前記第1半導体領域は、第1導電型の前記半導体基板の、前記トレンチ間に設けられている。前記第2半導体領域は、前記第1半導体領域の内部に選択的に設けられている。前記第3半導体領域は、前記半導体基板の第2主面に設けられている。前記第1電極は、前記第1半導体領域および前記第2半導体領域に電気的に接続されている。前記第2電極は、前記第3半導体領域に電気的に接続されている。前記第1電極の電位のポリシリコン層は、前記絶縁膜の内部に設けられている。前記ポリシリコン層は、前記電極パッドと前記半導体基板との間に配置されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1抵抗値は、前記ゲート電極による寄生抵抗と、前記ゲートポリシリコン層による内蔵抵抗の抵抗値と、の合成抵抗であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2抵抗値は、前記ゲートポリシリコン層による内蔵抵抗の抵抗値であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板は炭化珪素からなることを特徴とする。
上述した発明によれば、第2測定パッドによって、ゲートポリシリコン層による内蔵抵抗と、ゲート電極による寄生抵抗と、の合成抵抗である全体のゲート抵抗の抵抗値(第1抵抗値)を測定することができる。これにより、ゲートパッドとゲート電極との間のゲート抵抗の正確な抵抗値を得ることができ、当該ゲート抵抗の正確な抵抗値に基づいて半導体チップ(半導体基板)を、ゲート抵抗の抵抗値が同程度となる所定ランクに仕分けすることができる。したがって、複数の半導体チップを並列に接続するにあたって、スイッチングのタイミングがほぼ同じ半導体チップを選別して用いることができる。
本発明にかかる半導体装置によれば、スイッチングノイズを低減することができるという効果を奏する。
実施の形態1にかかる半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。 図1の切断線A1-A3における断面構造を示す断面図である。 図2の等価回路の回路構成を示す回路図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 実施の形態2にかかる半導体装置の構造の一例を示す断面図である。 従来の半導体装置を半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。 従来の半導体装置を半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。 従来の半導体装置を半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。 従来の半導体装置の等価回路を示す回路図である。 図10の半導体装置を並列に接続した半導体回路装置の等価回路の一例を示す回路図である。 図11の半導体回路装置の1つの半導体チップの断面構造を模式的に示す断面図である。 図10の半導体装置を並列に接続した半導体回路装置の等価回路の一例を示す回路図である。 図13の半導体回路装置の1つの半導体チップの断面構造を模式的に示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置の構造について、MOSFETを例に説明する。図1は、実施の形態1にかかる半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。図1に示す実施の形態1にかかる半導体装置は、MOSFETと同一の半導体基板(半導体チップ)10上に、ゲートポリシリコン層14からなる内蔵抵抗Rg2(図3参照)を配置した半導体装置である。半導体基板10は例えば炭化珪素(SiC)からなり、チップサイズが例えば3mm2程度と小さい。半導体基板10のおもて面上には、ソースパッド11、ゲートパッド12および第1,2測定パッド15,16が互いに離して配置され、パッシベーション膜28により電気的に絶縁されている。
ソースパッド11、ゲートパッド12および第1,2測定パッド15,16は、例えば、略矩形状の平面形状を有する金属層であり、同一の積層構造で同一階層に配置されている。ソースパッド11は、活性領域1における有効領域2のほぼ全面に配置されている。ソースパッド11の表面は、ボンディングワイヤーの接合箇所を除いて、パッシベーション膜28に覆われている。有効領域2は、活性領域1のうちの無効領域3を除く領域であり、MOSFETの単位セル(素子の構成単位)が配置され、MOSFETとして機能する。無効領域3は、MOSFETとして機能しない領域であり、MOSFETの単位セルが配置されていない。
ゲートパッド12および第1,2測定パッド15,16は、活性領域1における無効領域3に配置されている。ゲートパッド12には、ゲートポリシリコン層14を介してゲートフィンガー13が電気的に接続されている。ゲートフィンガー13は、エッジ終端領域4の、活性領域1との境界に沿って設けられ、活性領域1の周囲を略矩形状に囲む。ゲートフィンガー13には、すべてのゲート電極23(図2,3参照)が電気的に接続されている。ゲート電極23は、例えば、半導体基板10のおもて面に平行な方向(以下、第1方向とする)Xに延在するストライプ状に設けられたゲートトレンチ21の両端部それぞれにおいてゲートフィンガー13に接続されている。
ゲートフィンガー13は、ゲートポリシリコン層14と同一階層に配置されたポリシリコン層である。ゲートフィンガー13は、ゲートポリシリコン層14に直接接続されていてもよいし、コンタクト電極(不図示)を介してゲートポリシリコン層14に電気的に接続されていてもよい。ゲートフィンガー13により、ゲートポリシリコン層14による内蔵抵抗Rg2と、ゲート電極23の材料であるポリシリコンによる寄生抵抗Rg1と、が直列に接続される。内蔵抵抗Rg2と寄生抵抗Rg1との合成抵抗は、実施の形態1にかかる半導体装置の全体のゲート抵抗Rg3である。ゲートフィンガー13には、抵抗値測定用の2つの電極パッド(以下、第1,2測定パッドとする)15,16が互いに離して接続されている。
第1測定パッド(第2抵抗値を測定するための他の電極パッド)15は、ゲートフィンガー13とゲート電極23との接続点のうち、最もゲートポリシリコン層14寄りの接続点と、ゲートフィンガー13とゲートポリシリコン層14との接続点と、の間に接続される。これによって、第1測定パッド15とゲートパッド12との間に、ゲートポリシリコン層14による内蔵抵抗Rg2が接続される。このため、第1測定パッド15によって、内蔵抵抗Rg2の抵抗値(第2抵抗値)を測定することができる。第1測定パッド15は設けられていなくてもよい。
第2測定パッド(第1抵抗値を測定するための電極パッド)16は、ゲートフィンガー13とゲート電極23との接続点のうち、最もゲートポリシリコン層14から離れた接続点よりもゲートポリシリコン層14から離れた位置においてゲートフィンガー13に接続される。第2測定パッド16とゲートパッド12との間に、ゲート電極23による寄生抵抗Rg1と、ゲートポリシリコン層14による内蔵抵抗Rg2と、が直列に接続される。このため、第2測定パッド16によって、内蔵抵抗Rg2と寄生抵抗Rg1との合成抵抗である全体のゲート抵抗Rg3の抵抗値(第1抵抗値)を測定することができる。
具体的には、第1,2測定パッド15,16は、例えば活性領域1の異なるコーナー部にそれぞれ配置され、当該活性領域1のコーナー部でゲートフィンガー13に接続されている。第1測定パッド15は、例えば、活性領域1の4つのコーナー部のうち、ゲートポリシリコン層14に最も近いコーナー部でゲートフィンガー13に接続されている。第2測定パッド16は、例えば、活性領域1の4つのコーナー部のうち、ゲートポリシリコン層14から最も離れたコーナー部で、かつ第1測定パッド15が配置されたコーナー部と1辺を共有するコーナー部においてゲートフィンガー13に接続されている。活性領域1のコーナー部とは、略矩形状の平面形状を有する活性領域1の頂点である。抵抗値の測定後、第1,2測定パッド15,16は図示省略する絶縁物で覆われる。このため、製品としての半導体チップの信頼性を向上させることができる。
次に、実施の形態1にかかる半導体装置の断面構造について説明する。図2は、図1の切断線A1-A3における断面構造を示す断面図である。図1の切断線A1-A2は、第1測定パッド15を通り、活性領域1を、活性領域1を、半導体基板10のおもて面に平行で、かつ第1方向Xと直交する方向(以下、第2方向とする)Yに平行に切断する切断線である。図1の切断線A2-A3は、ゲートポリシリコン層14および第1測定パッド15を通り、活性領域1を第1方向Xに平行に切断する切断線である。図2では、半導体基板10の内部に設けられた各半導体領域を図示省略する。図3は、図2の等価回路の回路構成を示す回路図である。
図2に示すように、活性領域1の有効領域2において、半導体基板10のおもて面側には、MOSFETの各単位セルの一般的なトレンチゲート構造が第1方向X(図1参照)に延びるストライプ状に設けられている。トレンチゲート構造は、図示省略するp型ベース領域(第1半導体領域)、図示省略するn+型ソース領域(第2半導体領域)、トレンチ(ゲートトレンチ)21、ゲート絶縁膜22およびゲート電極23からなる。p型ベース領域およびn+型ソース領域は、ゲートトレンチ21間(メサ領域)に設けられている。ゲート電極23は、ゲートトレンチ21の両端部においてゲートフィンガー13に電気的に接続されている。ゲート電極23は、ポリシリコンからなる。
半導体基板10のおもて面には、ゲート電極23を覆うように、層間絶縁膜24が設けられている。ソース電極25は、層間絶縁膜24のコンタクトホールを介してp型ベース領域およびn+型ソース領域に電気的に接続されている。ソース電極25は、ソースパッド11を構成する。ソース電極25は、例えば、チタン(Ti)膜、窒化チタン(TiN)膜およびアルミニウムシリコン(AlSi)膜を順に積層した積層構造を有していてもよい。ソース電極25の、パッシベーション膜28で覆われた部分を除いた表面は、例えばニッケル(Ni)めっき膜26で覆われている。
活性領域1の無効領域3において、半導体基板10のおもて面は、フィールド酸化膜27で覆われている。フィールド酸化膜27上には、最も第1測定パッド15寄りに配置されたゲートトレンチ21a(21)の内部からゲート電極23aが延在している。このゲート電極23aの、フィールド酸化膜27上に延在する部分(以下、延在部とする)23a’は、無効領域3で終端している。ゲート電極23aの延在部23a’は、例えば、層間絶縁膜24を挟んでソース電極25の一部および後述する金属電極31の一部に深さ方向Zに対向する。ゲート電極23aの延在部23a’は、図示省略する部分でゲートフィンガー13に電気的に接続され、ゲート電位に固定されている。ゲート電極23aの延在部23a’は、ソース電位に固定されていてもよい。
また、フィールド酸化膜27上には、ゲート電極23aの延在部23a’と離して、ゲートポリシリコン層14が設けられている。ゲートポリシリコン層14は、層間絶縁膜24を挟んで金属電極31の一部および後述する金属電極33に深さ方向Zに対向する。ゲートポリシリコン層14、および、ゲート電極23aの延在部23a’は、層間絶縁膜24で覆われている。ゲートポリシリコン層14とゲート電極23aの延在部23a’と、は層間絶縁膜24のコンタクトホールを介して金属電極31により電気的に接続されている。また、ゲートポリシリコン層14には層間絶縁膜24のコンタクトホールを介して金属電極33が接続され、ゲートポリシリコン層14を介して金属電極31,33同士が電気的に接続されている。ソース電極25および金属電極31,33は互いに離して配置されている。金属電極31,33は、例えばソース電極25と同じ積層構造を有する。
金属電極31,33の、パッシベーション膜28で覆われた部分を除いた表面は、それぞれ例えばニッケルめっき膜32,34で覆われている。金属電極31,33は、それぞれ第1測定パッド15およびゲートパッド12を構成する。図示省略するが、第2測定パッド16は、第1測定パッド15と同様に、金属電極31およびニッケルめっき膜34で構成される。かつ、第2測定パッド16は、第1測定パッド15と同様に、下層の層間絶縁膜24を介して、最も第2測定パッド16寄りに配置されたゲート電極23aの延在部23a’に深さ方向に対向する。半導体基板10の裏面の表面層には、半導体基板10の裏面の全面にわたって、図示省略するn+型ドレイン(第3半導体領域)領域が設けられている。半導体基板10の裏面の全面に、図示省略するドレイン電極が設けられている。
図2,3に示すように、MOSFETの各単位セルのゲート-ソース間に、ゲート絶縁膜22の、ゲートトレンチ21の側壁に沿った部分で寄生容量C1が形成される。ゲート電極23aの延在部23a’とソースパッド11との間の層間絶縁膜24で寄生容量C2が形成される。ゲート電極23aの延在部23a’と半導体基板10のおもて面との間のフィールド酸化膜27で寄生容量C3が形成される。第1測定パッド15と半導体基板10のおもて面との間の層間絶縁膜24およびフィールド酸化膜27で寄生容量C4が形成される。ゲートポリシリコン層14と半導体基板10のおもて面との間のフィールド酸化膜27で寄生容量C5が形成される。層間絶縁膜24およびフィールド酸化膜27の厚さを調整することで、これら寄生容量C1~C5を調整可能である。
寄生容量C3,C4を大きくすることで、第1,2測定パッド15,16の下層のESD(ElectroStatic Discharge:静電気放電)耐量を向上させることができる。寄生容量C5を大きくすることで、ゲートパッド12の下層のESD耐量を向上させることができる。また、第1,2測定パッド15,16の下層のポリシリコン層(ゲート電極23aの延在部23a’)をゲート電位またはソース電位に固定することで、寄生容量C3,C4を大きくすることができる。寄生容量C1~C5は、ゲートパッド12とソースパッド11との間に並列に接続されている。このため、いずれかの寄生容量C1~C5を大きくすることで、層間絶縁膜24およびフィールド酸化膜27で形成される全体の寄生容量を大きくすることができる。
以上、説明したように、実施の形態1によれば、第2測定パッドとゲートパッドとの間に、ゲート電極による寄生抵抗と、ゲートポリシリコン層による内蔵抵抗と、が直列に接続される。第2測定パッドによって、内蔵抵抗と寄生抵抗との合成抵抗である全体のゲート抵抗の抵抗値を測定することができる。これにより、ゲートパッドとゲート電極との間のゲート抵抗の正確な抵抗値を得ることができ、当該ゲート抵抗の正確な抵抗値に基づいて半導体チップ(半導体基板)を、0ゲート抵抗の抵抗値が同程度となる所定ランクに仕分けすることができる。したがって、複数の半導体チップを並列に接続するにあたって、スイッチングのタイミングがほぼ同じ半導体チップを選別して用いることができるため、スイッチングノイズを低減することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図4A,4B,5A,5B,6A,6Bは、実施の形態2にかかる半導体装置の構造の一例を示す断面図である。図4A,4B,5A,5B,6A,6Bには、ゲートフィンガー13よりも細線でゲートトレンチ21を示す。また、図4A,4B,5A,5B,6A,6Bでは、ゲートフィンガー13よりも外側(半導体基板10の端部側)の部分を図示省略する。実施の形態2にかかる半導体装置は、ゲートフィンガー13の配置が実施の形態1にかかる半導体装置と異なる。ゲートフィンガー13は、ゲートパッド12、ゲートポリシリコン層14、ゲートフィンガー13、ゲート電極23、ゲートフィンガー13および第2測定パッド16の順に電気的に接続されるように配置されればよく、その配置は種々変更可能である。
具体的には、例えば、図4Aに示すように、ゲートトレンチ21は、第1方向Xに延在するストライプ状に配置されている。ゲートパッド12は、活性領域1の、第1方向Xに平行な1辺付近において当該1辺の略中央付近に配置されている。第2測定パッド16は、活性領域1の、ゲートパッド12に近い1辺に対向する1辺の端部にあたるコーナー部に配置されている。活性領域1の、ゲートパッド12に近い1辺と直交する1組の対辺それぞれに、各辺に沿って第2方向Yに略平行に延在するゲートフィンガー13(13a,13b)が配置されている。ゲート電極23の両端部はそれぞれ異なるゲートフィンガー(第1,2ゲートフィンガー)13a,13bに電気的に接続されている。
一方のゲートフィンガー13aは、活性領域1の、ゲートパッド12に近い1辺と直交する1辺から、ゲートパッド12に近い1辺に沿って延在する略L字状をなす。この一方のゲートフィンガー13aの一端にゲートポリシリコン層14を介してゲートパッド12が電気的に接続されている。一方のゲートフィンガー13aは、ゲートポリシリコン層14とゲート電極23とを電気的に接続する。一方のゲートフィンガー13aに第2測定パッド16は接続されていない。他方のゲートフィンガー13bは、ゲートパッド12に近い1辺と直交する1辺に沿って延在する略直線状の平面形状をなす。この他方のゲートフィンガー13bの一端に第2測定パッド16が電気的に接続されている。他方のゲートフィンガー13bは、第2測定パッド16とゲート電極23とを電気的に接続する。他方のゲートフィンガー13bにゲートパッド12は接続されていない。
したがって、図4Aに示す実施の形態2にかかる半導体装置においては、ゲートパッド12、ゲートポリシリコン層14、ゲートフィンガー13a、ゲートトレンチ21の内部のゲート電極23、ゲートフィンガー13bおよび第2測定パッド16の順で電気的に接続されている。
第1測定パッド15を配置する場合には、図4Bに示すように、第1測定パッド15を、活性領域1の、第2測定パッド16を配置したコーナー部の対角にあたるコーナー部に配置して、一方のゲートフィンガー13aに電気的に接続すればよい。
また、図5Aに示すように、互いに離して2つの第2測定パッド16が配置されていてもよい。ゲートトレンチ21およびゲートパッド12の配置は、図4Aに示す実施の形態2にかかる半導体装置と同様である。活性領域1の、ゲートパッド12に近い1辺に対向する1辺の両端部にあたる各コーナー部に、それぞれ異なる第2測定パッド16が配置されている。活性領域1の略中央部を通って、第2方向Yに平行に延在する直線状の平面形状でゲートフィンガー13(13c)が配置されている。活性領域1の、ゲートパッド12に近い1辺と直交する1組の対辺それぞれに、各辺に沿って第2方向Yに略平行に延在する直線状にゲートフィンガー13(13d)が配置されている。ゲート電極23の略中央部はゲートフィンガー13cに電気的に接続され、両端部はそれぞれ異なるゲートフィンガー13dに電気的に接続されている。
活性領域1の略中央を通るゲートフィンガー13cの一端にゲートポリシリコン層14を介してゲートパッド12に電気的に接続されている。一方のゲートフィンガー13cは、ゲートポリシリコン層14とゲート電極23とを電気的に接続する。一方のゲートフィンガー13cに第2測定パッド16は接続されていない。活性領域1の、ゲートパッド12に近い1辺と直交する1組の対辺それぞれに各辺に沿って延在する各ゲートフィンガー13dには、それぞれ異なる第2測定パッド16が電気的に接続されている。他方のゲートフィンガー13dは、第2測定パッド16とゲート電極23とを電気的に接続する。ゲートフィンガー13dにゲートパッド12は接続されていない。
したがって、図5Aに示す実施の形態2にかかる半導体装置においては、活性領域1の2箇所で、ゲートパッド12、ゲートポリシリコン層14、ゲートフィンガー13c、ゲートトレンチ21の内部のゲート電極23、ゲートフィンガー13dおよび第2測定パッド16の順で電気的に接続されている。
第1測定パッド15を配置する場合には、図5Bに示すように、第1測定パッド15を、活性領域1の、一方のゲートフィンガー13cを挟んでゲートパッド12の付近に配置して、一方のゲートフィンガー13cに電気的に接続すればよい。
また、図6Aに示すように、活性領域1の、第2方向Yに平行な1辺の両端部にあたる各コーナー部に、それぞれゲートパッド12’および第2測定パッド16が配置されてもよい。ゲートトレンチ21の配置は、図4Aに示す実施の形態2にかかる半導体装置と同様である。活性領域1の、第2測定パッド16を配置したコーナー部と対角となるコーナー部を共有する2辺に沿って延在するゲートフィンガー13(13e)が配置されている。活性領域1の、ゲートパッド12’および第2測定パッド16を両端部にそれぞれ配置した1辺に沿ってゲートフィンガー13(13f)が配置されている。ゲート電極23の両端部はそれぞれゲートフィンガー13e,13fに電気的に接続されている。
一方のゲートフィンガー13eは活性領域1の2辺に沿って延在する略L字状の平面形状をなす。この一方のゲートフィンガー13eの一端にゲートポリシリコン層14を介してゲートパッド12が電気的に接続されている。一方のゲートフィンガー13eは、ゲートポリシリコン層14とゲート電極23とを電気的に接続する。一方のゲートフィンガー13eに第2測定パッド16は接続されていない。他方のゲートフィンガー13fは、活性領域1の、ゲートパッド12’および第2測定パッド16を両端部にそれぞれ配置した1辺に沿って延在する略直線状の平面形状をなす。この他方のゲートフィンガー13fの一端は第2測定パッド16に電気的に接続され、他端はゲートパッド12に達しない位置で終端している。他方のゲートフィンガー13fは、第2測定パッド16とゲート電極23とを電気的に接続する。他方のゲートフィンガー13fにゲートパッド12は接続されていない。
したがって、図6Aに示す実施の形態2にかかる半導体装置においては、ゲートパッド12、ゲートポリシリコン層14、ゲートフィンガー13e、ゲートトレンチ21の内部のゲート電極23、ゲートフィンガー13fおよび第2測定パッド16の順に電気的に接続されている。
第1測定パッド15を配置する場合には、図6Bに示すように、第1測定パッド15を、活性領域1の、第2測定パッド16を配置したコーナー部の対角にあたるコーナー部に配置して、一方のゲートフィンガー13eに電気的に接続すればよい。
以上、説明したように、実施の形態2によれば、ゲートフィンガーの配置に依らず、実施の形態1と同様の効果を得ることができる。
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、MOSFETを例に説明しているが、IGBTにも適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置は、ゲート電極による寄生抵抗のばらつきが大きいトレンチゲート構造のMOS型半導体装置に有用である。
1 活性領域
2 活性領域の有効領域
3 活性領域の無効領域
4 エッジ終端領域
10 半導体基板
11 ソースパッド
12,12' ゲートパッド
13,13a~13f ゲートフィンガー
14 ゲートポリシリコン層
15 測定パッド(第1測定パッド)
16 測定パッド(第2測定パッド)
21,21a ゲートトレンチ
22 ゲート絶縁膜
23,23a ゲート電極
23a' ゲート電極の延在部
24 層間絶縁膜
25 ソース電極
26,32,34 ニッケルめっき膜
27 フィールド酸化膜
28 パッシベーション膜
31,33 金属電極
C1~C5 寄生容量
Rg1 ゲート電極による寄生抵抗
Rg2 ゲートポリシリコン層による内蔵抵抗
Rg3 全体のゲート抵抗
X トレンチが半導体基板のおもて面に平行な方向(第1方向)
Y 半導体基板のおもて面に平行でかつ第1方向と直交する方向(第2方向)
Z 深さ方向

Claims (9)

  1. 半導体基板の第1主面側に設けられた、金属膜-酸化膜-半導体の3層構造からなる絶縁ゲート構造と、
    前記半導体基板の第1主面に絶縁膜を介して設けられたゲートパッドと、
    前記半導体基板の第1主面に前記絶縁膜を介して設けられ、前記絶縁ゲート構造の前記金属膜であるゲート電極が電気的に接続されたゲートフィンガーと、
    前記半導体基板の第1主面に前記絶縁膜を介して設けられ、前記ゲートパッドと前記ゲートフィンガーとを電気的に接続するゲートポリシリコン層と、
    前記半導体基板の第1主面に前記絶縁膜を介して設けられ、前記ゲートフィンガーに電気的に接続された、第1抵抗値を測定するための電極パッドと、
    を備え、
    前記ゲートフィンガーの、前記ゲートポリシリコン層との接続部から前記電極パッドとの接続部までの間にすべての前記ゲート電極が電気的に接続されていることを特徴とする半導体装置。
  2. 前記絶縁ゲート構造は、
    前記半導体基板の第1主面から所定深さに達するトレンチと、
    前記トレンチの内部に、前記酸化膜であるゲート絶縁膜を介して設けられた前記ゲート電極と、を有するトレンチゲート構造であることを特徴とする請求項1に記載の半導体装置。
  3. 前記半導体基板の第1主面に前記絶縁膜を介して設けられ、前記ゲートポリシリコン層を介して前記ゲートパッドに電気的に接続された、第2抵抗値を測定するための他の電極パッドをさらに備えることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記ゲートフィンガーとして、
    前記ゲートポリシリコン層と前記ゲート電極とを電気的に接続する第1ゲートフィンガーと、
    前記ゲート電極と前記電極パッドとを電気的に接続する第2ゲートフィンガーと、を有し、
    前記ゲートパッド、前記ゲートポリシリコン層、前記第1ゲートフィンガー、前記ゲート電極、前記第2ゲートフィンガーおよび前記電極パッドの順に接続されていることを特徴とする請求項1~3のいずれか一つに記載の半導体装置。
  5. 前記絶縁膜の内部に設けられた、前記ゲート電極の電位のポリシリコン層をさらに備え、
    前記ポリシリコン層は、前記電極パッドと前記半導体基板との間に配置されていることを特徴とする請求項1~4のいずれか一つに記載の半導体装置。
  6. 第1導電型の前記半導体基板の、前記トレンチ間に設けられた第2導電型の第1半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第2半導体領域と、
    前記半導体基板の第2主面に設けられた第3半導体領域と、
    前記第1半導体領域および前記第2半導体領域に電気的に接続された第1電極と、
    前記第3半導体領域に電気的に接続された第2電極と、
    前記絶縁膜の内部に設けられた、前記第1電極の電位のポリシリコン層と、をさらに備え、
    前記ポリシリコン層は、前記電極パッドと前記半導体基板との間に配置されていることを特徴とする請求項に記載の半導体装置。
  7. 前記第1抵抗値は、前記ゲート電極による寄生抵抗と、前記ゲートポリシリコン層による内蔵抵抗の抵抗値と、の合成抵抗であることを特徴とする請求項1~6のいずれか一つに記載の半導体装置。
  8. 前記第2抵抗値は、前記ゲートポリシリコン層による内蔵抵抗の抵抗値であることを特徴とする請求項3に記載の半導体装置。
  9. 前記半導体基板は炭化珪素からなることを特徴とする請求項1~8のいずれか一つに記載の半導体装置。
JP2018173120A 2018-09-14 2018-09-14 半導体装置 Active JP7172328B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018173120A JP7172328B2 (ja) 2018-09-14 2018-09-14 半導体装置
US16/519,517 US10833189B2 (en) 2018-09-14 2019-07-23 Semiconductor device
US17/034,599 US11430714B2 (en) 2018-09-14 2020-09-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173120A JP7172328B2 (ja) 2018-09-14 2018-09-14 半導体装置

Publications (2)

Publication Number Publication Date
JP2020047675A JP2020047675A (ja) 2020-03-26
JP7172328B2 true JP7172328B2 (ja) 2022-11-16

Family

ID=69774550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173120A Active JP7172328B2 (ja) 2018-09-14 2018-09-14 半導体装置

Country Status (2)

Country Link
US (1) US10833189B2 (ja)
JP (1) JP7172328B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11430714B2 (en) * 2018-09-14 2022-08-30 Fuji Electric Co., Ltd. Semiconductor device
CN114242778B (zh) * 2022-02-23 2022-05-17 山东晶芯科创半导体有限公司 高频率大功率的沟槽mos场效应管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069064A1 (en) 2011-09-20 2013-03-21 Kabushiki Kaisha Toshiba Semiconductor device
WO2015033476A1 (ja) 2013-09-09 2015-03-12 三菱電機株式会社 スイッチング素子、半導体装置、半導体装置の製造方法
JP2016012670A (ja) 2014-06-30 2016-01-21 株式会社デンソー 半導体モジュール
JP2017011007A (ja) 2015-06-18 2017-01-12 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304296A (ja) 1992-04-27 1993-11-16 Mitsubishi Electric Corp 半導体装置
JP6440989B2 (ja) * 2013-08-28 2018-12-19 ローム株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069064A1 (en) 2011-09-20 2013-03-21 Kabushiki Kaisha Toshiba Semiconductor device
JP2013065759A (ja) 2011-09-20 2013-04-11 Toshiba Corp 半導体装置
WO2015033476A1 (ja) 2013-09-09 2015-03-12 三菱電機株式会社 スイッチング素子、半導体装置、半導体装置の製造方法
JP2016012670A (ja) 2014-06-30 2016-01-21 株式会社デンソー 半導体モジュール
JP2017011007A (ja) 2015-06-18 2017-01-12 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法

Also Published As

Publication number Publication date
US20200091339A1 (en) 2020-03-19
JP2020047675A (ja) 2020-03-26
US10833189B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP7413329B2 (ja) 半導体装置
US20200279923A1 (en) SiC SEMICONDUCTOR DEVICE WITH INSULATING FILM AND ORGANIC INSULATING LAYER
CN112786591B (zh) 半导体器件
US10566324B2 (en) Integrated gate resistors for semiconductor power conversion devices
JP6348703B2 (ja) 半導体装置及びその製造方法
US10483383B2 (en) Semiconductor device including a gate contact structure
JPH04229658A (ja) 半導体装置
JP7172328B2 (ja) 半導体装置
JP7280261B2 (ja) 半導体素子および半導体装置
JP7135636B2 (ja) 半導体装置
US9601572B2 (en) Semiconductor device for reducing gate wiring length
EP2933841B1 (en) Semiconductor device
JP6718140B2 (ja) 半導体装置
JP2009540620A (ja) 高性能分路キャパシタを有するrfパワートランジスタデバイスとその使用方法
US11674983B2 (en) SiC semiconductor device with current sensing capability
JP2002305300A (ja) パワーmosトランジスタ
US11430714B2 (en) Semiconductor device
JP7167639B2 (ja) 半導体装置および半導体装置の製造方法
WO2021205879A1 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150