JP6590089B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP6590089B2
JP6590089B2 JP2018567543A JP2018567543A JP6590089B2 JP 6590089 B2 JP6590089 B2 JP 6590089B2 JP 2018567543 A JP2018567543 A JP 2018567543A JP 2018567543 A JP2018567543 A JP 2018567543A JP 6590089 B2 JP6590089 B2 JP 6590089B2
Authority
JP
Japan
Prior art keywords
value
compensation
command value
unit
dead time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018567543A
Other languages
English (en)
Other versions
JPWO2018147465A1 (ja
Inventor
博明 高瀬
博明 高瀬
亮 皆木
亮 皆木
澤田 英樹
英樹 澤田
孝義 菅原
孝義 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Application granted granted Critical
Publication of JP6590089B2 publication Critical patent/JP6590089B2/ja
Publication of JPWO2018147465A1 publication Critical patent/JPWO2018147465A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0496Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures by using a temperature sensor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、3相ブラシレスモータの駆動をdq軸回転座標系でベクトル制御すると共に、複数のデッドタイム補償値を所定条件で機能に応じて切り換え(ソフトウェアの瞬間的な条件分岐と徐々に切り換える徐変切換で補正し、操舵性能を向上して、滑らかで操舵音のないアシスト制御を可能とした電動パワーステアリング装置に関する。また、温度補償を考慮した高性能な電動パワーステアリング装置に関する。
車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、アクチュエータとしてのモータの駆動力を、減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のDutyの調整で行っている。
電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の舵角θを検出する舵角センサ14と、ハンドル1の操舵トルクThを検出するトルクセンサ10とが設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから舵角(モータ回転角)θを得ることもできる。
コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(Central Processing Unit)(MPU(Micro Processor Unit)やMCU(Micro Controller Unit)等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Vsは操舵補助指令値演算部31に入力され、操舵補助指令値演算部31は操舵トルクTh及び車速Vsに基づいてアシストマップ等を用いて操舵補助指令値Iref1を演算する。演算された操舵補助指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された操舵補助指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
減算部32Bでの減算結果である偏差ΔI(=Irefm−Im)はPI制御部35でPI(比例積分)等の電流制御をされ、電流制御された電圧制御指令値Vrefが変調信号(三角波キャリア)CFと共にPWM制御部36に入力されてDuty指令値を演算され、Duty指令値を演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、特性改善を実施する。
近年、電動パワーステアリング装置のアクチュエータは3相ブラシレスモータが主流となっていると共に、電動パワーステアリング装置は車載製品であるため、稼動温度範囲が広く、フェールセーフの観点からモータを駆動するインバータは家電製品を代表とする一般産業用と比較して、デッドタイムを大きく(産業用機器<EPS)する必要がある。一般にスイッチング素子(例えばFET(Field-Effect Transistor))にはOFFの際に遅れ時間があるため、上下アームのスイッチング素子のOFF/ON切り換えを同時に行うと、直流リンクを短絡する状況になり、これを防ぐため、上下アーム両方のスイッチング素子がOFFになる時間(デッドタイム)を設けている。
その結果、電流波形が歪み、電流制御の応答性や操舵感が悪化する。例えばハンドルがオンセンター付近にある状態でゆっくり操舵すると、トルクリップル等による不連続な操舵感などが生じる。また、中・高速操舵時におけるモータの逆起電圧や、巻線間の干渉電圧が電流制御に対して外乱として作用するため、転追性や切り返し操舵時の操舵感を悪化させている。
3相ブラシレスモータのロータの座標軸であるトルクを制御するq軸と、磁界の強さを制御するd軸とを独立に設定し、dq軸が90°の関係にあることから、そのベクトルで各軸に相当する電流(d軸電流指令値及びq軸電流指令値)を制御するベクトル制御方式が知られている。
図3は、ベクトル制御方式で3相ブラシレスモータ100を駆動制御する場合の構成例を示しており、操舵トルクTh、車速Vs等に基づいて2軸(dq軸座標系)の操舵補助指令値(Iref2(idref,iqref))が演算され、最大値を制限された2軸のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qで求められた電流偏差Δid *及びΔiq *はそれぞれPI制御部120d及び120qに入力される。PI制御部120d及び120qでPI制御された電圧指令値vd及びvqは、それぞれ減算部141d及び加算部141qに入力され、減算部141dで求められた電圧Δvd及び加算部141qで求められた電圧Δvqはdq軸/3相交流変換部150に入力される。dq軸/3相交流変換部150で3相に変換された電圧指令値Vu*,Vv*,Vw*はPWM制御部160に入力され、演算された3相のDuty指令値(Dutyu,Dutyv,Dutyw)に基づくPWM信号UPWM,VPWM,WPWMにより、図4に示すような上下アームのブリッジ構成で成るインバータ(インバータ印加電圧VR)161を介してモータ100が駆動される。上側アームはスイッチング素子としてのFETQ1,Q3,Q5で構成され、下側アームはFETQ2,Q4,Q6で構成されている。
モータ100の3相モータ電流iu,iv,iwは電流検出器162で検出され、検出された3相モータ電流iu,iv,iwは3相交流/dq軸変換部130に入力され、3相交流/dq軸変換部130で変換された2相のフィードバック電流id及びiqはそれぞれ減算部131d及び131qに減算入力されると共に、d−q非干渉制御部140に入力される。また、モータ100には回転センサ等が取り付けられており、センサ信号を処理する角度検出部110からモータ回転角θ及びモータ回転速度(回転数)ωが出力される。モータ回転角θはdq軸/3相交流換部150及び3相交流/dq軸変換部130に入力され、モータ回転速度ωはd−q非干渉制御部140に入力される。d−q非干渉制御部140からの2相の電圧vd1 *及びvq1 *はそれぞれ減算部141d及び加算部141qに入力され、減算部141dで電圧Δvdが算出され、加算部141qで電圧Δvqが算出される。
このようなベクトル制御方式の電動パワーステアリング装置は、運転者の操舵をアシストする装置であると同時に、モータの音や振動、トルクリップル等はハンドルを介して運転者へ力の感覚として伝達される。インバータを駆動するパワーデバイスは一般的にFETが用いられており、モータへ通電を行うが、3相モータの場合には、図4に示されるように各相毎に上下アームの直列接続されたFETが用いられている。上下アームのFETは交互にON/OFFを繰り返すが、FETは理想スイッチではなく、ゲート信号の指令通りに瞬時にON/OFFせず、ターンオン時間やターンオフ時間を要する。このため、上側アームFETへのON指令と下側アームのOFF指令が同時になされると、上側アームFETと下側アームFETが同時にONになって、上下アームが短絡する問題がある。FETのターンオン時間とターンオフ時間には差があり、同時にFETに指令を出した場合、上側FETにON指令を出してターンオン時間が短い場合(例えば100[ns])、直ぐにFETがONになり、下側FETにOFF指令を出してもターンオフ時間が長い場合(例えば400[ns])、直ぐにFETがOFFにならず、瞬間的に上側FETがON、下側FETがONになる状態(例えば、400[ns]〜100[ns]間、ON−ON)が発生することがある。
そこで、上側アームFETと下側アームFETが同時にONすることのない様に、ゲート駆動回路にデッドタイムという所定時間をおいてON信号を与えることが行われる。このデッドタイムは非線形であるため電流波形は歪み、制御の応答性能が悪化し、モータの音や振動、トルクリップルが発生する。コラム式電動パワーステアリング装置の場合、ハンドルと鋼製のコラム軸で接続されるギアボックスに直結されるモータの配置が、その構造上運転者に極めて近い位置となっているため、モータに起因する音、振動、トルクリップル等には、下流アシスト方式の電動パワーステアリング装置に比べて、特に配慮する必要がある。
インバータのデッドタイムを補償する手法として、従来はデッドタイムが発生するタイミングを検出して補償値を足し込んだり、電流制御におけるdq軸上の外乱オブザーバによってデッドタイムを補償している。
インバータのデッドタイムを補償する電動パワーステアリング装置は、例えば特許第4681453号公報(特許文献1)、特開2015−171251号公報(特許文献2)に開示されている。特許文献1では、モータ、インバータを含む電流制御ループのリファレンスモデル回路に電流指令値を入力して電流指令値を基にモデル電流を作成し、モデル電流を基にインバータのデッドタイムの影響を補償するデッドバンド補償回路を備えている。また、特許文献2では、Duty指令値に対してデッドタイム補償値に基づく補正を行うデッドタイム補償部を備え、電流指令値に基づいてデッドタイム補償値の基礎値である基本補償値を演算する基本補償値演算部と、基本補償値に対してLPF(Low Pass Filter)に対応するフィルタリング処理を施すフィルタ部とを有している。
特許第4681453号公報 特開2015−171251号公報
特許文献1の装置は、q軸電流指令値の大きさによるデッドタイム補償量の計算と3相電流リファレンスモデルとを使用して、補償符号を推定する方式である。補償回路の出力値が、所定の固定値以下ではモデル電流に比例する変化値であり、所定の固定値以上では、固定値とモデル電流に比例する変化値の加算値であり、電流指令から電圧指令へと出力されるが、所定の固定値を出力するヒステリシス特性を決めるためのチューニング作業が必要である。
また、特許文献2の装置は、デッドタイム補償値を決定する際、q軸電流指令値とそれをLPF処理した補償値とでデッドタイム補償を行っているが、LPF処理により遅れが生じ、モータへの最終的な電圧指令に対して、デッドタイム補償値を操作するものではないという問題がある。
更に、操舵性能向上のため特定の領域で複数のデッドタイム補償機能を切り換える場合がある。例えば低負荷・低速操舵状態において、スイッチで切り換えた場合、それぞれの機能の補償値の差からステップ状若しくは不連続的に補償値が変化するためトルクリップルが発生し、また、高速操舵時において徐変で切り換えた場合、徐変切換の期間中に補償値の位相がずれる場合がある。このように単一機能のデッドタイム補償で全領域を補償しようとした場合、特定の領域で補償精度が悪くなり、トルクリップルや音、振動が発生する場合がある。
本発明は上述のような事情よりなされたものであり、本発明の目的は、ベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイムを補償する複数のデッドタイム補償機能を有し、操舵状態や機能に応じてデッドタイム補償機能を切り換えて補償し、操舵性能を向上すると共に、電流波形の歪み改善と電流制御の応答性の向上を図り、モータの音や振動、トルクリップルを抑制した電動パワーステアリング装置を提供することにある。また、コントロールユニット(ECU、インバータ等)の温度に応じた補正を行い、デッドタイム補償を正確に行い得る高性能な電動パワーステアリング装置を提供することを目的としている。
本発明は、少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、各相モータ端子電圧及び前記Duty指令値に基づいてデッドタイム補償Aを行う補償機能1と、前記操舵補助指令値に基づいてデッドタイム補償Bを行う補償機能2と、前記dq軸電流指令値に基づいてデッドタイム補償Cを行う補償機能3と、前記インバータ若しくはインバータ近辺の温度を検出する温度検出部とを具備し、前記温度に基づいて前記デッドタイム補償B及び前記デッドタイム補償Cのデッドタイム補正を行うと共に、前記補償機能1、前記補償機能2、前記補償機能3の切換を、ソフトウェアによる条件分岐と前記操舵補助指令値及びモータ回転数に基づく徐変切換とで行い、前記条件分岐及び前記徐変切換の後のdq軸デッドタイム補償値を演算し、前記dq軸デッドタイム補償値で前記dq軸電圧指令値を補償することにより達成される。
また、本発明は、少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記インバータ若しくはインバータ近辺の温度を検出する温度検出部と、各相モータ端子電圧、前記Duty指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づいて補償値CAを演算するデッドタイム補償部Aと、前記操舵補助指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CBを演算するデッドタイム補償部Bと、前記dq軸電流指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CCを演算するデッドタイム補償部Cと、前記補償値CA,温度補正された前記補償値CB,温度補正された前記補償値CCを入力すると共に、切換条件として前記操舵補助指令値、前記dq軸電流指令値及び前記モータ回転速度を入力し、判定された条件によって前記補償値CA,CB,CCの切換をソフトウェアによる条件分岐と、前記操舵補助指令値及びモータ回転数に基づく徐変切換で行い、dq軸デッドタイム補償値を演算する補償値切換部とを備え、前記dq軸電圧指令値を、温度補正された前記dq軸デッドタイム補償値で補償することにより達成される。
更に本発明は、少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記インバータ若しくはインバータ近辺の温度を検出する温度検出部と、各相モータ端子電圧、前記Duty指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づいて補償値CAを演算するデッドタイム補償部Aと、前記操舵補助指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CBを演算するデッドタイム補償部Bと、前記dq軸電流指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CCを演算するデッドタイム補償部Cと、前記補償値CA,温度補正された前記補償値CB,温度補正された前記補償値CCを入力すると共に、切換条件として前記操舵補助指令値、前記dq軸電流指令値及び前記モータ回転速度を入力し、判定された条件によって前記補償値CA,CB,CCの切換をソフトウェアによる条件分岐と、前記操舵補助指令値及びモータ回転数に基づく徐変切換で行い、dq軸デッドタイム補償値を演算する補償値切換部とを備え、前記dq軸電圧指令値を、温度補正された前記dq軸デッドタイム補償値で補償することにより達成される。
更にまた、本発明は、少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、各相モータ端子電圧及び前記Duty指令値に基づいてデッドタイム補償Aを行う補償機能1と、前記操舵補助指令値に基づいてデッドタイム補償Bを行う補償機能2と、前記dq軸電流指令値に基づいてデッドタイム補償Cを行う補償機能3とを具備し、前記補償機能1、前記補償機能2、前記補償機能3の切換を、ソフトウェアによる条件分岐と前記操舵補助指令値及びモータ回転数に基づく徐変切換とで行うと共に、前記徐変切換を非線形機能で行い、前記条件分岐及び前記徐変切換の後のdq軸デッドタイム補償値を演算し、前記dq軸デッドタイム補償値で前記dq軸電圧指令値を補償することによって達成される。
本発明の電動パワーステアリング装置によれば、複数のデッドタイム補償機能(例えば各相モータ端子電圧に基づくインバータのデッドタイム補償機能(A)と、モータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能(B)と、電流指令値モデルに基づくデッドタイム補償機能(C))を所定条件で切り換えると共に、制御の機能(精度重視、速さ重視)によって徐変切換とソフトウェアの条件分岐とを使い分け、最適な状態でデッドタイムの補償を行うようにしているので、操舵性能を一層向上することができる。各相モータ端子電圧に基づくインバータのデッドタイム補償機能(A)は、補償符号及び補償量が自動計算されるため、オンセンター付近の低負荷・低速操舵状態においてもチャタリングがなく補償可能である。自動計算されるため、3相の補償波形が矩形波でない場合においても補償可能である。また、モータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能(B)は、角度と相電流の位相が合う低速操舵領域及び中速操舵領域において補償精度が高く、3相の補償波形が矩形波でない場合においても補償可能であるといった特長がある。また、電流指令値モデルに基づくデッドタイム補償機能(C)は、高速操舵時においても位相ずれが小さく、単純にデッドタイム補償を実施することができる特長がある。
本発明によれば、操舵条件に従って補償機能(A)、(B)及び(C)を切り換えると共に、機能によって徐変切換とソフトウェアの条件分岐を使い分けているので、両者の特長を生かした最適な操舵を実現することができる。これにより、チューニング作業もなく、インバータのデッドタイムを補償し、電流波形の歪み改善と電流制御の応答性の向上を図ることができる。
また、ECU温度(インバータ若しくはインバータ近辺の温度)に応じてデッドタイム補償機能(B)及びデッドタイム補償機能(C)を補正し、徐変切換にモータ回転数(回転速度)を考慮しているので、より微細で正確なデッドタイム補償を実現できる。
一般的な電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 ベクトル制御方式の構成例を示すブロック図である。 一般的なインバータの構成例を示す結線図である。 本発明の構成例(第1実施形態)を示すブロック図である。 デッドタイム補償部(A)の構成例を示すブロック図である。 中点電圧推定部の構成例を示すブロック図である。 補正タイミング判定部及び補正値保持部の詳細例を示すブロック図である。 補償量制限部の構成例を示すブロック図である。 補償量上限値の一例を示す特性図である。 デッドタイム補償部(B)の構成例(実施例1)を示すブロック図である。 電流指令値感応ゲイン部の構成例を示すブロック図である。 電流指令値感応ゲイン部内のゲイン部の特性図である。 電流指令値感応ゲイン部の特性例を示す特性図である。 補償符号推定部の動作例を示す波形図である。 インバータ印加電圧感応ゲイン演算部の構成例を示すブロック図である。 インバータ印加電圧感応ゲイン演算部の特性例を示す特性図である。 位相調整部の特性例を示す特性図である。 各相角度−デッドタイム補償値関数部の動作例を示す線図である。 デッドタイム補償部(C)の構成例(実施例1)を示すブロック図である。 インバータ印加電圧感応補償量演算部の構成例を示すブロック図である。 インバータ印加電圧感応補償量演算部の特性例を示す特性図である。 3相電流指令値モデルの出力波形の一例を示す波形図である。 相電流補償符号推定部の動作例を示す波形図である。 スイッチ切換判定部の構成例を示すブロック図である。 徐変切換判定部(実施例1)の構成例を詳細に示すブロック図である。 徐変比率演算部(実施例1)の構成例を詳細に示すブロック図である。 徐変比率の特性例を示す特性図である。 デッドタイム補償の動作例を示すフローチャートである。 デッドタイム補償の他の動作例を示すフローチャートである。 徐変比率演算部(実施例2)の構成例を詳細に示すブロック図である。 徐変比率演算部(実施例3)の構成例を詳細に示すブロック図である。 徐変比率演算部(実施例4)の構成例を詳細に示すブロック図である。 空間ベクトル変調部の構成例を示すブロック図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示すタイミングチャートである。 空間ベクトル変調の効果を示す波形図である。 本発明のデッドタイム補償値の切換動作の一例を示す波形図である。 本発明(第1実施形態)の効果を示す波形図である。 本発明(第1実施形態)の効果を示す波形図である。 本発明(第1実施形態)の効果を示す波形図である。 本発明の構成例(第2実施形態)を示すブロック図である。 デッドタイム補償部(B)の構成例(実施例2)を示すブロック図である。 温度感応ゲイン演算部の特性例を示す特性図である。 温度感応ゲイン演算部の特性例を示す特性図である。 デッドタイム補償部(C)の構成例(実施例2)を示すブロック図である。 温度感応ゲイン演算部の特性例を示す特性図である。 温度感応ゲイン演算部の特性例を示す特性図である。 徐変切換判定部の構成例(実施例2)を示すブロック図である。 徐変比率演算部(実施例2)の構成例を示すブロック図である。 温度補正なしの場合の電流波形例を示す波形図である。 温度補正なしの場合の電流波形例を示す波形図である。 温度補正なしの場合の電流波形例を示す波形図である。 本発明(第2実施形態)の効果を示す波形図である。 本発明(第2実施形態)の効果を示す波形図である。 本発明(第2実施形態)の効果を示す波形図である。
本発明は、ECUのデッドタイムの影響により電流歪みが発生し、トルクリップルの発生や操舵音の悪化などの問題を解消するために、インバータのデッドタイム補償値を、各相モータ端子電圧及びDuty指令値に基づくインバータのデッドタイム補償機能(A)と、モータ回転角(電気角)に応じた関数に基づくデッドタイム補償機能(B)と、電流指令値モデルに基づくデッドタイム補償機能(C)とを所定条件で切り換えると共に、切り換える補償量の差が大きいときには精度重視で、徐変切換タイプを使用し、切り換えタイミングの速さが必要な場合には速さ重視で、ソフトウェアの条件分岐(スイッチタイプ)を使用してデッドタイム補償値を演算し、dq軸にフィードフォワードで補償するようにしている。
単一機能の単一アルゴリズムのデッドタイム補償機能では、低速操舵時は精度よく補償されるが、高速操舵時は補償精度が悪くなる場合があったり、或いは高負荷時において精度よく補償されるが、低負荷時に補償精度が悪くなる場合もある。また、低負荷・低速操舵状態において、スイッチで瞬間的に切り換えた場合、それぞれの機能の補償値の差からステップ状若しくは不連続的に補償値が変化するためトルクリップルが発生し、また、高速操舵時において徐変で切り換えた場合、徐変切換の期間中に補償値の位相がずれる場合がある。そのため、単一機能の単一アルゴリズムのデッドタイム補償では、操舵領域全体を精度よく補償するのは困難であると共に、補償値の切り換えを単一の機能(スイッチ)で行うと性能が劣化する可能性がある。しかしながら、本発明では操舵条件において補償精度の高いデッドタイム補償機能を複数用意し、操舵状態によって最適なデッドタイム補償機能に切り換えると共に、切換手段を瞬間的なソフトウェアの条件分岐と徐々に切り換える徐変切換で使い分けすることにより、全操舵領域に対し、補償精度の高いデッドタイム補償を実施することが可能となる。
本発明では、dq軸ベクトル制御方式のd軸電圧指令値及びq軸電圧指令値に対し、複数の補償機能に基づくデッドタイム補償をそれぞれ別々に行うと共に、複数のデッドタイム補償機能を操舵補助電流指令値、d軸電流指令値、q軸電流指令値及びモータ回転速度で定まる所定条件により切り換え、低速操舵領域、中速操舵領域及び高速操舵領域の全ての領域で最適なデッドタイム補償値が選択される。
本発明の実施形態では、各相モータ端子電圧及びDuty指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づくデッドタイム補償機能(A)と、操舵補助指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づくデッドタイム補償機能(B)と、dq軸電流指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づくデッドタイム補償機能(C)とを有し、dq軸電流指令値及びモータ回転速度によるスイッチ切換判定を行い、デットタイム補償機能(B)及び(C)をソフトウェアの条件分岐で切り換えると共に、デットタイム補償機能(A)とデットタイム補償機能(B)、(C)との切換を操舵補助指令値による徐変で行う構成となっている。デッドタイム補償機能(B)及び(C)の切換では、速さ重視で瞬間的に切り換えられるソフトウェアの条件分岐(スイッチタイプ)を使用し、デッドタイム補償機能(A)及び(B),(C)の切換では精度重視で、切換に一定時間を要する徐変を使用している。
また、本発明では、ECU温度(インバータ若しくはインバータ近辺の温度)に応じてデッドタイム補償機能(B)及びデッドタイム補償機能(C)を補正すると共に、徐変切換動作にモータ回転速度(回転数)及び操舵補助指令値(iqref)を考慮しているので、より微細で正確なデッドタイム補償を実現することができる。
なお、モータの種類やEPSの減速ギア3の減速比によっても相違するが、例えば低速操舵領域のモータ回転数は0〜300[rpm]であり、中速操舵領域のモータ回転数は300〜1800[rpm]、高速操舵領域のモータ回転数は1800〜4000[rpm]で、モータの定格回転数以上(弱め界磁制御が必要となる回転数領域)の回転数である。
以下に、本発明の実施の形態を、図面を参照して説明する。
図5は本発明の全体構成(第1実施形態)を図3に対応させて示しており、dq軸上の補償値CdA及びCqAを演算するデッドタイム補償部(A)200と、dq軸上の補償値CdB及びCqBを演算するデッドタイム補償部(B)400と、dq軸上の補償値CdC及びCqCを演算するデッドタイム補償部(C)部600と、補償値CdA及びCqAと、補償値CdB及びCqBと、補償値CdC及びCqCとを所定条件でかつ機能に応じて切り換えて演算し、dq軸のデッドタイム補償値vd *及びvq *を出力する補償値切換部500とが設けられている。デッドタイム補償部(A)200の補償機能は、オンセンター付近の低負荷及び低速操舵状態においてチャタリングなく補償でき、デッドタイム補償部(B)400の補償機能は、低速操舵領域及び中速操舵領域において補償精度が高く、デッドタイム補償部(C)600の補償機能は、高速操舵領域において補償精度が高い特性となっている。
デッドタイム補償部200(詳細は後述)には、モータ端子電圧Vu,Vv,Vwがそれぞれノイズ除去用のLPF(ローパスフィルタ)163U,163V,163Wを経て入力されると共に、PWM制御部160内のDuty指令値演算部160AからDuty指令値Dutyu,Dutyv,Dutywが入力されている。デッドタイム補償部(A)200には更に、モータ回転角θ、モータ回転速度ω及びインバータ161に印加されているインバータ印加電圧VRが入力されている。デッドタイム補償部(B)400(詳細は後述)には、図2の操舵補助指令値Iref2に相当するq軸の操舵補助指令値iqrefが入力されると共に、インバータ印加電圧VR、モータ回転角θ及びモータ回転速度ωが入力されている。デッドタイム補償部(C)600(詳細は後述)には、d軸電流指令値id *及びq軸電流指令値iq *、モータ回転角θ、インバータ印加電圧VR及びモータ回転速度ωが入力されている。
また、補償値切換部500は、スイッチ(条件分岐部)の切換を判定して切換判定フラグSF1を出力するスイッチ切換判定部510と、スイッチ切換判定部510からの切換判定フラグSF1によって、デッドタイム補償部(B)400からの補償値CdB,CqBとデッドタイム補償部(C)600からの補償値CdC,CqCとを切り換えて出力するソフトウェアによる条件分岐部540(スイッチ切換部541及び542)と、操舵補助指令値iqrefに基づいて徐変切換を判定してUP/DOWN判定フラグSF2を出力する徐変切換判定部520と、UP/DOWN判定フラグSF2によって、条件分岐部540からの補償値Cd及びCqとデッドタイム補償部(A)200からの補償値CdA及びCqAとの徐変比率RtA(例えば0〜100%)及びRtBC(例えば100〜0%)を演算する徐変比率演算部530と、乗算部551〜554及び加算部555、556で成る徐変切換部550とで構成されている。なお、徐変切換判定部520及び徐変比率演算部530で徐変部を構成している。
条件分岐部540のスイッチ切換部541及び542はそれぞれ機能的に接点a1、b1及びa2、b2を有している。接点a1には補償値CdBが入力され、接点b1には補償値CdCが入力され、接点a2には補償値CqBが入力され、接点b2には補償値CqCが入力されている。スイッチ切換部541の接点a1及びb1、スイッチ切換部542の接点a2及びb2は同期して、スイッチ切換判定部510からの切換判定フラグSF1によって切り換えられる。即ち、切換判定フラグSF1が入力されていないとき(例えば論理「L」)は接点a1及びa2であり、切換判定フラグSF1が入力されているとき(例えば論理「H」)は接点b1及びb2である。条件分岐部540からは補償値Cd及びCqが出力され、補償値Cd及びCqはそれぞれ徐変切換部550内の乗算部552及び554に入力される。
次に、デッドタイム補償部(A)200について説明する。
デッドタイム補償部(A)200は図6に示すように、減算部201(201u、201v、201w)及び202、中点電圧推定部210、各相印加電圧演算部220、電圧検出遅れモデル230、ゲイン部240、補償量制限部250及び3相交流/dq軸変換部260で構成されている。モータ回転角θは中点電圧推定部210及び3相交流/dq軸変換部260に入力され、モータ回転速度ωは中点電圧推定部210に入力される。モータ端子電圧Vu,Vv,VwはLPF163U〜163Wを経て中点電圧推定部210及び減算部201u,201v,201wに入力されている。また、PWM制御部160内のDuty 指令値演算部160AからのDuty指令値Dutyu,Dutyv,Dutywは各相印加電圧演算部220に入力され、インバータ印加電圧VRは中点電圧推定部210、各相印加電圧演算部220及び補償量制限部250に入力されている。
中点電圧推定部210は、中点電圧の基準電圧をインバータ印加電圧VRにより算出する。詳細は図7の構成であり、ハードの構成、検出誤差などの影響により中点電圧はズレを生じるため、インバータ印加電圧VRと各相モータ端子電圧Vu〜Vwの差分から補正する。補正するタイミングは、特定のモータ回転角θ及び特定のモータ回転速度ωの条件で補正する。即ち、インバータ印加電圧VRは半減部211で半減(VR/2)され、半減値(VR/2)が減算部217及び218に加算入力される。端子電圧Vu〜Vwは加算部216に入力されて加算され、加算結果(Vu+Vv+Vw)が除算部(1/3)212で1/3倍され、1/3倍された電圧(Vu+Vv+Vw)/3が減算部217に減算入力される。減算部217は半減値VR/2から電圧“(Vu+Vv+Vw)/3”を減算し、減算結果VRnaを補正値保持部214に入力する。補正タイミング判定部213は、モータ回転角θ及びモータ回転速度ωに基づいて補正タイミングを判定し、補正信号CTを補正値保持部214に入力する。補正値保持部214で保持された電圧VRnbに基づき、補正量制限部215は補正量ΔVmを算出する。
補正タイミング判定部213及び補正値保持部214の詳細は図8に示す構成であり、補正タイミング判定部213は角度判定部213−1、有効回転数判定部213−2及びAND回路213−3で構成され、補正値保持部214は切換部214−1及び保持ユニット(Z−1)214−2で構成されている。即ち、モータ回転角θは角度判定部213−1に入力され、下記数1の判定が行われる。数1が成立するとき、角度判定部213−1は判定信号JD1を出力する。
(数1)
179[deg]<θ<180[deg]

中点補正値として相電圧がゼロクロスするポイントでの演算が、精度が高いため、U相電圧がゼロクロスするモータ回転角θの180[deg]付近の角度を補正条件とする。また、モータ回転速度ωが高い場合、逆起電圧の影響が大きくなるため、正確な補正演算ができなくなる。このため、有効回転速度判定部213−2はモータ回転速度ωが補正演算可能な有効回転速度ω以下であるかを判定し、モータ回転速度ωが補正演算可能な有効回転速度ω以下の時に判定信号JD2を出力する。
(数2)
ω≦ω

判定信号JD1及びJD2はAND回路213−3に入力され、判定信号JD1及びJD2が入力されたAND条件で補正信号CTが出力される。補正信号CTは補正値保持部214内の切換部214−1に切換信号として入力され、接点a,bを切り換える。接点aには減算結果VRnaが入力され、接点bには出力電圧VRnbが保持ユニット(Z−1)214−2を経て入力されている。補正値保持部214は次のタイミングまで安定した補正値を出力するため、値を保持する。また、補正量制限部213は、ノイズや逆起電圧、補正タイミング誤判定などにより、補正量が通常よりも明らかに大きい場合、当該補正量が正しくないと判断して最大補正量に制限する。最大補正量に制限された電圧補正値ΔVmは減算部218に入力され、減算部218で下記数3に基づいて演算された中点電圧推定値Vmが出力される。中点電圧推定値Vmは、減算部201u,201v,201wにそれぞれ減算入力される。
Figure 0006590089
また、各相印加電圧演算部220には各相Duty指令値Dutyu,Dutyv,Dutyw及びインバータ印加電圧VRが入力されており、各相印加電圧演算部220は、各相Duty指令値Dutyu,Dutyv,Dutyw及びインバータ印加電圧VRにより、下記数4を用いて各相印加電圧Vinを算出する。各相印加電圧Vinは、電圧検出遅れモデル230に入力される。なお、数4中のDutyrefはDutyu,Dutyv,Dutywを示している。
Figure 0006590089
中点電圧推定値Vmは減算部201(201u,201v,201w)に減算入力され、減算部201(201u,201v,201w)にはLPF163U,163V,163Wを経た端子電圧Vu,Vv,Vwが減算入力されている。減算部201u,201v,201wは各相端子電圧Vu,Vv,Vwから中点電圧推定値Vmを数5に従って減算する。これにより、各相検出電圧Vdn(Vdu,Vdv,Vdw)を演算する。各相検出電圧Vdn(Vdu,Vdv,Vdw)は、各相損失電圧演算部としての減算部202に入力される。
Figure 0006590089

端子電圧Vu〜Vwの検出は、ECUのノイズフィルタ等により遅れが生じる。このため、直接各相印加電圧Vinと各相検出電圧Vdnの差分をとって損失電圧を算出した場合、位相差により誤差が生じる。この問題を解決するため、本発明では、フィルタ回路等のハードウェアの検出遅れを1次のフィルタモデルとして近似し、位相差を改善する。本実施形態の電圧検出遅れモデル230は、Tをフィルタ時定数として、数6の1次フィルタとしている。電圧検出遅れモデル230は、2次以上のフィルタをモデルとした構成でもよい。
Figure 0006590089
減算部202には各相印加電圧Vinが加算入力され、各相検出電圧Vdnが減算入力されており、各相印加電圧Vinから各相検出電圧Vdnを減算することにより各相損失電圧PLA(Vloss_n)が算出される。即ち、減算部202で下記数7が演算される。
Figure 0006590089

各相損失電圧PLA(Vloss_n)はゲイン部240でゲインP(例えばP=0.8)を乗算され、ゲインPを乗算された各相損失電圧PLBは補償量制限部250に入力される。ゲインPは基本的に調整する必要はないが、他の補償器との整合や実車チューニング、ECUの部品が変わったときなど、出力調整を必要とする場合には変更する。
補償量制限部250はインバータ印加電圧VRに感応しており、その詳細構成は図9のようになっている。即ち、インバータ印加電圧VRは、補償量制限部250内の補償量上限値演算部251に入力され、図10に示すような特性で補償量上限値DTCaが演算される。補償量上限値DTCaは、所定電圧VR1まで一定値DTCa1であり、所定電圧VR1から所定電圧VR2(>VR1)まで線形(若しくは非線形)に増加し、所定電圧VR2以上で一定値DTCa2を保持する特性である。補償量上限値DTCaは切換部252の接点a1A及び比較部255に入力されると共に、反転部254に入力される。また、各相損失電圧PLB(Vloss_u,Vloss_v,Vloss_w)は比較部255及び256に入力されると共に、切換部252の接点b1Aに入力されている。そして、反転部254の出力−DTCaは切換部253の接点a2Aに入力されている。切換部252の接点a1A及びb1Aは、比較部255の比較結果CP1に基づいて切り換えられ、切換部253の接点a2A及びb2Aは、比較部256の比較結果CP2に基づいて切り換えられる。
比較部255は補償量上限値DTCaと各相損失電圧PLBとを比較し、下記数8に従って切換部252の接点a1A及びb1Aを切り換える。また、比較部256は補償量上限値−DTCaと各相損失電圧PLBとを比較し、下記数9に従って切換部253の接点a2A及びb2Aを切り換える。
(数8)
各相損失電圧PLB≧補償量上限値DTCaのとき、切換部252の接点a1AがON
各相損失電圧PLB<補償量上限値DTCaのとき、切換部252の接点b1AがON
(数9)
各相損失電圧PLB≧補償量上限値−DTCaのとき切換部253の接点a2AがON
(デッドタイム補償値DTC=−DTCa)
各相損失電圧PLB<補償量上限値−DTCaのとき切換部253の接点b2AがON
(デッドタイム補償値DTC=切換部252の出力)

次に、デッドタイム補償部(B)400(実施例1)について説明する。
デッドタイム補償部400は図11に示すように、電流制御遅れモデル401、補償符号推定部402、乗算部403、404d及び404q、加算部421、位相調整部410、インバータ印加電圧感応ゲイン部420、角度−デッドタイム補償値関数部430U、430V及び430W、乗算部431U、431V及び431W、3相交流/dq軸変換部440、電流指令値感応ゲイン演算部450で構成されている。
q軸操舵補助指令値iqrefは、電流制御遅れモデル401に入力される。dq軸の電流指令値id *及びiq *が実電流に反映されるまでに、ECUのノイズフィルタ等により遅れが生じる。このため、直接電流指令値iq *から符号を判定しようとすると、タイミングずれが生じる場合がある。この問題を解決するため、電流制御全体の遅れを1次のフィルタモデルとして近似し、位相差を改善する。電流制御遅れモデル401は、Tをフィルタ時定数として、前記数6に示す1次フィルタとしているが、2次以上のフィルタをモデルとした構成でもよい。
電流制御遅れモデル401から出力される電流指令値Icmは、電流指令値感応ゲイン部450及び補償符号推定部402に入力される。低電流領域においてデッドタイム補償量が過補償になる場合があり、電流指令値感応ゲイン部450は、電流指令値Icm(操舵補助指令値iqref)の大きさにより補償量を下げるゲインを算出する機能を持つ。また、電流指令値Icm(操舵補助指令値iqref)からのノイズなどで、補償量を下げるゲインが振動しないように加重平均フィルタを使用し、ノイズの低減処理を行っている。
電流指令値感応ゲイン部450は図12に示すような構成であり、電流指令値Icmは絶対値部451で絶対値となる。絶対値は入力制限部452で最大値を制限され、最大値を制限された絶対値の電流指令値がスケール変換部453を経て加重平均フィルタ454に入力される。加重平均フィルタ454でノイズを低減された電流指令値Iamは減算部455に加算入力され、減算部455で一定値のオフセットOSを減算する。一定値のオフセットOSを減算する理由は、微小電流指令値によるチャタリング防止のためであり、オフセットOS以下の入力値を最小のゲインに固定する。減算部455でオフセットOSを減算された電流指令値Iasはゲイン部456に入力され、図13に示すようなゲイン特性に従って電流指令値感応ゲインGcを出力する。
電流指令値感応ゲイン部450から出力される電流指令値感応ゲインGcは、入力される電流指令値Icmに対して例えば図14に示すような特性である。即ち、所定電流Icm1まで一定ゲインGcc1であり、所定電流Icm1から所定電流Icm2(>Icm1)まで線形(若しくは非線形)に増加し、所定電流Icm2以上で一定ゲインGcc2を保持する特性である。なお、所定電流Icm1は0[A]であっても良い。
補償符号推定部402は入力される電流指令値Icmに対して、図15(A)及び(B)に示すヒステリシス特性で正(+1)又は負(−1)の補償符号SN1を出力する。電流指令値Icmがゼロクロスするポイントを基準として補償符号SN1を推定するが、チャタリング抑制のためにヒステリシス特性となっている。推定された補償符号SN1は乗算部403に入力される。
電流指令値感応ゲイン部450からの電流指令値感応ゲインGcは乗算部403に入力され、乗算部403は補償符号SN1を乗算した電流指令値感応ゲインGcs(=Gc×SN1)を出力する。電流指令値感応ゲインGcsは、乗算部404d及び404qに入力される。
最適なデッドタイム補償量はインバータ印加電圧VRに応じて変化するので、インバータ印加電圧VRに応じたデッドタイム補償量を演算し、可変するようにしている。インバータ印加電圧VRを入力して電圧感応ゲインGvを出力するインバータ印加電圧感応ゲイン演算部420は図16に示す構成であり、インバータ印加電圧VRは入力制限部421で正負最大値を制限され、最大値を制限されたインバータ印加電圧VRlはインバータ印加電圧/デッドタイム補償ゲイン変換テーブル422に入力される。インバータ印加電圧/デッドタイム補償ゲイン変換テーブル422の特性は、例えば図17のようになっている。変曲点のインバータ印加電圧9.0[V]及び15.0[V]と、電圧感応ゲイン“0.7”及び“1.2”は一例であり、適宜変更可能である。演算された電圧感応ゲインGvは、乗算部431U,431V,431Wに入力される。
モータ回転速度ωによりデッドタイム補償タイミングを早めたり、遅くしたい場合、モータ回転速度ωに応じて調整角度を算出する機能のために位相調整部410を有している。位相調整部410は、進角制御の場合は図18に示すような特性であり、算出された位相調整角Δθは加算部421に入力され、検出されたモータ回転角θと加算される。加算部421の加算結果であるモータ回転角θm(=θ+Δθ)は、角度−デッドタイム(DT)補償値関数部430U,430V,430Wに入力されると共に、3相交流/dq軸変換部440に入力される。
角度−デッドタイム補償値関数部430U,430V,430Wは図19に詳細を示すように、位相調整されたモータ回転角θmに対して、電気角0〜359[deg]の範囲で120[deg]ずつ位相のずれた矩形波の各相デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム補償値角度関数部430U,430V,430Wは、3相で必要とされるデッドタイム補償値を角度による関数とし、ECUの実時間上で計算し、デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム基準補償値の角度関数は、ECUのデッドタイムの特性により異なる。
デッドタイム基準補償値Udt,Vdt,Wdtはそれぞれ乗算部431U,431V,431Wに入力され、電圧感応ゲインGcと乗算される。電圧感応ゲインGcを乗算された3相のデッドタイム補償値Udtc(=Gc・Udt),Vdtc
(=Gc・Vdt),Wdtc(=Gc・Wdt)は3相交流/dq軸変換部440に入力される。3相交流/dq軸変換部440は、モータ回転角θmに同期して、3相のデッドタイム補償値Udtc,Vdtc,Wdtcを2相のdq軸の補償値vda *及びvqa *に変換する。補償値vda *及びvqa *はそれぞれ乗算部404d及び404qに入力され、電流指令値感応ゲインGcsと乗算される。乗算部404d及び404qにおける乗算結果がdq軸補償値CdB及びCqBであり、補償値CdB及びCqBはそれぞれ補償値切換部500内のスイッチ切換部541及び542に入力される。
次に、デッドタイム補償部(C)600(実施例1)について説明する。
デッドタイム補償部600は図20に示すように、加算部601、乗算部602、インバータ印加電圧感応補償量演算部610、3相電流指令値モデル620、相電流補償符号推定部621、位相調整部630、3相交流/dq軸変換部640で構成されている。モータ回転角θは加算部601に入力され、モータ回転速度ωは位相調整部630に入力されている。また、インバータ印加電圧VRはインバータ印加電圧感応補償量演算部610に入力され、加算部601で算出された位相調整後のモータ回転角θmが3相電流指令値モデル620に入力されている。
モータ回転速度ωによりデッドタイム補償タイミングを早めたり、遅くしたい場合、モータ回転速度ωに応じて調整角度を算出する機能のために位相調整部630を有している。位相調整部630は、進角制御の場合は図18に示すような特性であり、算出された位相調整角Δθは加算部601に入力され、検出されたモータ回転角θと加算される。加算部601の加算結果である位相調整後のモータ回転角θm(=θ+Δθ)は、3相電流指令値モデル620に入力されると共に、3相交流/dq軸変換部640に入力される。
最適なデッドタイム補償量はインバータ印加電圧VRに応じて変化するので、インバータ印加電圧VRに応じたデッドタイム補償量DTCを演算し、可変するようにしている。インバータ印加電圧VRを入力してデッドタイム補償量DTCを出力するインバータ印加電圧感応補償量演算部610は図21に示す構成であり、インバータ印加電圧VRは入力制限部611で正負最大値を制限され、最大値を制限されたインバータ印加電圧VRlはインバータ印加電圧/デッドタイム補償量変換テーブル612に入力される。インバータ印加電圧/デッドタイム補償量変換テーブル612の特性は、例えば図22のようになっている。即ち、所定インバータ印加電圧VR1まで一定のデッドタイム補償量DTC1であり、所定インバータ印加電圧VR1から所定インバータ印加電圧VR2(>VR1)まで線形(若しくは非線形)に増加し、所定インバータ印加電圧VR2以上で一定のデッドタイム補償量DTC2を出力する特性である。
d軸電流指令値id *及びq軸電流指令値iq *はモータ回転角θmと共に、3相電流指令値モデル620に入力される。3相電流指令値モデル620は、dq軸電流指令値id *及びiq *、モータ回転角θmから、図23に示すような120[deg]ずつ位相のずれた正弦波の3相電流モデル指令値Icmを演算若しくはテーブルにより算出する。3相電流モデル指令値Icmは、モータタイプによって相違している。
3相電流モデル指令値Icmは相電流補償符号推定部621に入力される。相電流補償符号推定部621は入力される3相電流モデル指令値Icmに対して、図24(A)及び(B)に示すヒステリシス特性で正(+1)又は負(−1)の補償符号SN2を出力する。3相電流モデル指令値Icmがゼロクロスするポイントを基準として補償符号SN2を推定するが、チャタリング抑制のためにヒステリシス特性となっている。推定された補償符号SN2は乗算部602に入力される。
インバータ印加電圧感応補償量演算部610からのデッドタイム補償量DTCは乗算部602に入力され、乗算部602は補償符号SN2を乗算したデッドタイム補償量DTCa(=DTC×SN2)を出力する。デッドタイム補償量DTCaは3相交流/dq軸変換部640に入力され、3相交流/dq軸変換部640は、モータ回転角θmに同期してdq軸の補償値CdC及びCqCを出力する。補償値CdC及びCqCはそれぞれ、補償値切換部500内のスイッチ切換部541及び542に入力される。
補償値切換部500内のスイッチ切換判定部510は図25に示す構成であり、d軸電流指令値id *がゼロ近辺(例えば0.1[A]以下)となった時に判定フラグDF1を出力するゼロ判定部511を備えている。また、q軸電流指令値iq *の絶対値|iq *|を得る絶対値部512と、絶対値|iq *|が所定の閾値TH1以上となった時に判定フラグDF2を出力すると共に、ヒステリシス特性を有する閾値部513と、モータ回転速度ωの絶対値|ω|を得る絶対値部514と、絶対値|ω|が所定の閾値TH2以上となった時に判定フラグDF3を出力すると共に、ヒステリシス特性を有する閾値部515とを備えている。判定フラグDF1〜DF3は切換条件判定部516に入力され、判定フラグDF1〜DF3が全て入力された時に切換判定フラグSF1を出力する。例えば判定フラグDF1=「L」、判定フラグDF2=「H」、判定フラグDF3=「H」のとき、切換条件判定部516は切換判定フラグSF1=「H」を出力する。「H」及び「L」は論理値の例を示しており、「H」及び「L」は逆であっても良い。
切換判定フラグSF1が出力されていないOFF時(例えばSF1=「L」)には、図5に示すように条件分岐部540のスイッチ切換部541及び542の接点はa1及びa2になっており、デッドタイム補償部(B)400からの補償値CdB及びCqBがそれぞれ補償値Cd及びCqとして出力される。そして、切換判定フラグSF1が出力されるON時(例えばSF1=「H」)に、スイッチ切換部541及び542の接点はそれぞれa1及びa2からb1及びb2に切り換えられる。その結果、デッドタイム補償部(C)600からの補償値CdC及びCqCがそれぞれ補償値Cd及びCqとして出力される。条件分岐部540からの補償値Cd及びCqはそれぞれ、徐変切換部550内の乗算部552及び554に入力される。
徐変切換判定部520は操舵補助指令値iqrefを切換条件とし、入力信号に対し不感帯領域を持ち、ヒステリシスを持った判定条件でUP/DOWN判定フラグSF2を出力する。その構成例は図26であり、操舵補助指令値iqrefは不感帯部521に入力されて不感帯(例えば±0.5[A])の処理をされ、不感帯処理された操舵補助指令値iqref-dが絶対値部522に入力され、絶対値部522からの絶対値|iqref-d|がリミッタ523で上下限値を制限される。上下限値を制限された操舵補助指令値iqref-tがヒステリシス特性を有する閾値部524に入力され、閾値部524は所定の閾値の大小関係に基づいてUP/DOWN判定フラグSF2を出力する。UP/DOWN判定フラグSF2は徐変比率演算部530に入力される。
不感帯部521は、ハンドルのオンセンター付近では、外部要因(路面の状態(砂利道、斜面等)や車体の振動など)により信号がふらつくため、これらを回避するために設けられており、不感帯部521は、入力する操舵補助指令値iqrefの振動成分を除去している。また、閾値部524のヒステリシス特性は、不感帯後のチャタリングを防止し、出力の安定化を図る機能を有している。
徐変比率演算部530は例えば図27に示す構成であり、UP/DOWN判定フラグSF2のON(例えばSF2=「H」)、OFF(例えばSF2=「L」)によって接点am及びbmを切り換えられるスイッチ531を備え、接点amにはカウントUP値532が入力され、接点bmにはカウントDOWN値533が入力されている。例えば、UP/DOWN判定フラグSF2が入力されているON時に、接点amに接続されてカウントUP値532(例えば+0.5%)がスイッチ531から出力され、UP/DOWN判定フラグSF2が入力されていないOFF時に接点bmに切り換えられて、カウントDOWN値533(例えば−0.5%)がスイッチ531から出力される。スイッチ531の出力は加算部534に入力され、加算値はカウント値制限部(0〜100%)535で最大値を制限され、徐変比率RtBC(%)として出力されると共に、減算部537に減算入力され、保持ユニット(Z−1)536を経て加算部534に入力される。徐変比率RtBCは減算部537に入力され、固定の100%から減算した値を徐変比率RtA(%)として出力する。その結果、徐変比率RtAは100%から0%に線形に変化し、徐変比率RtBCは0%から100%に線形に変化し、図28の実線に示すような特性の徐変比率RtA及びRtBCを得ることができる。なお、徐変比率RtA及びRtBCの間には常に下記数10の関係があり、徐変比率RtA及びRtBCは徐変切換部550に入力される。
(数10)
RtA(%)+ RtBC(%)=100%

図28の時点t〜tが徐変切換による切換時間であるが、カウント値の大きさを変えることによって切換時間を可変できる。例えばカウントUP値532を+0.5%、カウントDOWN値533を−2%などにすることにより、デッドタイム補償Aからデッドタイム補償Bの切換は遅く、デッドタイム補償Bからデッドタイム補償Aの切換は速く徐変による切換時間を非線形に可変できる。また、カウントUP値532及びカウントDOWN値533の大きさを大きくしたり、小さくしたりすることにより、切り換わりの速度を調整できる。
なお、図28の破線で示すように、非線形で可変することも可能である。非線形で可変する例は後述する。
徐変切換部550は図5に示すように、乗算部551〜554及び加算部555,556で構成されており、乗算部551及び553にはデッドタイム補償部(A)200からの補償値CdA及びCqAがそれぞれ入力されると共に、徐変比率演算部530から徐変比率RtAが入力される。また、乗算部552及び554には条件分岐部540からの補償値Cd及びCqがそれぞれ入力されると共に、徐変比率演算部530から徐変比率RtABが入力される。乗算部551で補償値CdAに徐変比率RtAを乗算された補償値RtA・CdAは加算部555に入力され、乗算部552で補償値Cdに徐変比率RtBCを乗算された補償値RtBC・Cdは加算部555に入力される。加算部555で補償値RtA・CdA及びRtBC・Cdを加算したd軸のデッドタイム補償値vd *が加算部121dに入力される。また、乗算部553で補償値CqAに徐変比率RtAを乗算された補償値RtA・CqAは加算部556に入力され、乗算部554で補償値Cqに徐変比率RtBCを乗算された補償値RtBC・Cqは加算部556に入力される。加算部556で補償値RtA・CqA及びRtBC・Cqを加算したq軸のデッドタイム補償値vq *が加算部121qに入力される。
このような構成において、デッドタイム補償の動作例を図29のフローチャートを参照して説明する。
このような構成において、デッドタイム補償の動作例を図29のフローチャートを参照して説明する。なお、デッドタイム補償は、制御周期(例えば250[μs])に1回だけ電流制御と同じタイミングで実行される。
デッドタイム補償の動作がスタートすると、デッドタイム補償部(A)200で補償値CdA及びCqAが演算され(ステップS1)、デッドタイム補償部(B)400で補償値CdB及びCqBが演算され(ステップS2)、デッドタイム補償部(C)600で補償値CdC及びCqCが演算される(ステップS3)。これら演算順序は適宜変更可能である。
そして、スイッチ切換判定部510はd軸電流指令値id *及びq軸電流指令値iq *、モータ回転速度ωに基づいてスイッチ切換を判定し(ステップS10)、切換判定フラグSF1が出力されていない(OFF)か否かを判定する(ステップS11)。切換判定フラグSF1がOFFのときには、条件分岐部540からデッドタイム補償部(B)400の補償値CdB及びCqBを出力し(ステップS12)、切換判定フラグSF1がONときには、条件分岐部540からデッドタイム補償部(C)600の補償値CdC及びCqCが出力される(ステップS13)。補償値B(CdB及びCqB)又は補償値C(CdC及びCqC)を出力する中速・高速の操舵条件では、徐変比率はRtA=0%、RtBC=100%となっており、“補償値A×0% +補償値B又はC×100%=補償値B又はC”と演算されて、スイッチ切り換えの補償B又はCの値が出力される。
操舵補助指令値iqrefは徐変切換判定部520に入力されており、徐変切換判定部520は操舵補助指令値iqrefに基づいて徐変切換の判定を演算し(ステップS14)、UP/DOWN判定フラグSF2がONであるか否かを判定する(ステップS15)。UP/DOWN判定フラグSF2がONの場合にはカウントUP値532を出力し(ステップS16)、UP/DOWN判定フラグSF2がOFFの場合にはカウントDOWN値533を出力し(ステップS17)、加算部534で、メモリ(保持ユニット536)に記憶された前回カウント値に出力値を加算する(ステップS20)。加算部534で加算されたカウント値はカウント値制限部535で制限され(ステップS21)、制限されたカウント値がメモリ(保持ユニット536)に記憶される(ステップS22)。UP/DOWNカウント処理は1制御周期(例えば250[μs])に1回だけ実行され、カウント値はメモリに記憶され、次の制御周期で、記憶されたカウント値に対してUP処理又はDOWN処理が1回行われる。
徐変比率演算部530は、出力されたカウント値に基づいて徐変比率RtA及びRtBCを演算する(ステップS23)。徐変比率RtAは徐変切換部550内の乗算部551及び553に入力され、徐変比率RtBCは徐変切換部550内の乗算部552及び554に入力されて徐変切換される(ステップS24)。乗算部551及び552の各乗算結果は加算部555で加算されてデッドタイム補償値vd *として出力され、乗算部553及び554の各乗算結果は加算部556で加算されてデッドタイム補償値vq *として出力される(ステップS23)。
なお、徐変比率の演算については、図29に対応する図30に示すように、カウント制限部535からのカウント値を特性変換テーブルに入力し、徐変比率を演算し(ステップS23−1)、特性変換後の徐変比率から徐変比率RtA及びRtBCを演算する(ステップS23−2)ようにしても良い。
手感と切換速度を両立するため、徐変比率を非線形にしたい場合がある。手感が問題となる比率は変化を遅く、手感に問題のない比率は変化を速くする場合である。このように、徐変比率演算部530を図28の破線で示すような非線形にする場合には、図31の構成の非線形機能とすることができる(実施例2)。図31の実施例2では、カウント値制限部535の後段に、非線形要素を構成する徐変比率特性演算部538を設けており、徐変比率特性演算部538から徐変比率RtBCが出力され、減算部537に減算入力される。徐変比率特性演算部538は図31に示すように、比率が全領域において非線形となる特性でも、図32に示すように一部領域において飽和するような特性であっても良い(実施例3)。
また、図33に示すようにデッドタイム補償値切換について、UP/DOWNカウント値の増減をモータ回転数rpmなどの条件により、カウント値を増減することにより、切り換わりの速度を調整することができ、図28の時点t1を矢印ARのように変化させることができる。手感が問題となるモータ回転数rpmでは比率の変化を遅く、手感に問題のないモータ回転数rpmでは比率の変化を速くする。図33がこの場合の構成例(実施例4)であり、モータ回転数rpmを入力して回転数感応カウントUP値を出力するカウントUP値演算処理部532Aと、モータ回転数rpmを入力して回転数感応カウントDOWN値を出力するカウントDOWN値演算処理部533Aとが設けられ、回転数感応カウントUP値はスイッチ531の接点aに入力され、回転数感応カウントDOWN値はスイッチ531の接点bに入力される。カウントUP値演算処理部532Aは図33に示すように、モータ回転数rpmの所定値まで一定値で、所定値以上で増加する特性であり、カウントDOWN値演算処理部533Aは図33に示すように、モータ回転数rpmの所定値まで一定値で、所定値以上で減少する特性である。
次に、空間ベクトル変調について説明する。空間ベクトル変調部300は図34に示すように、dq軸空間の2相電圧(vd **、vq **)を3相電圧(Vua,Vva,Vwa)に変換し、3相電圧(Vua,Vva,Vwa)に3次高調波を重畳する機能を有していれば良く、例えば本出願人による特開2017−070066、WO/2017/098840等で提案している空間ベクトル変調の手法を用いても良い。
即ち、空間ベクトル変調は、dq軸空間の電圧指令値vd **及びvq **、モータ回転角θ及びセクター番号n(#1〜#6)に基づいて、以下に示すような座標変換を行い、ブリッジ構成のインバータのFET(上側アームQ1、Q3、Q5、下側アームQ2、Q4、Q6)のON/OFFを制御する、セクター#1〜#6に対応したスイッチングパターンS1〜S6をモータに供給することによって、モータの回転を制御する機能を有する。座標変換については、空間ベクトル変調において、電圧指令値vd **及びvq **は、数11に基づいて、α−β座標系における電圧ベクトルVα及びVβに座標変換が行われる。この座標変換に用いる座標軸及びモータ回転角θの関係については、図35に示す。
Figure 0006590089
そして、d−q座標系における目標電圧ベクトルとα−β座標系における目標電圧ベクトルとの間には、数12のような関係が存在し、目標電圧ベクトルVの絶対値は保存される。
Figure 0006590089

空間ベクトル制御におけるスイッチングパターンでは、インバータの出力電圧をFET(Q1〜Q6)のスイッチングパターンS1〜S6に応じて、図36の空間ベクトル図に示す8種類の離散的な基準電圧ベクトルV0〜V7(π/3[rad]ずつ位相の異なる非零電圧ベクトルV1〜V6と零電圧ベクトルV0,V7)で定義する。そして、それら基準出力電圧ベクトルV0〜V7の選択とその発生時間を制御するようにしている。また、隣接する基準出力電圧ベクトルによって挟まれた6つの領域を用いて、空間ベクトルを6つのセクター#1〜#6に分割することができ、目標電圧ベクトルVは、セクター#1〜#6のいずれか1つに属し、セクター番号を割り当てることができる。Vα及びVβの合成ベクトルである目標電圧ベクトルVが、α−β空間において正6角形に区切られた図36に示されたようなセクター内のいずれに存在するかは、目標電圧ベクトルVのα−β座標系における回転角γに基づいて求めることができる。また、回転角γはモータの回転角θとd−q座標系における電圧指令値vd **及びvq **の関係から得られる位相δの和として、γ=θ+δで決定される。
図37は、空間ベクトル制御におけるインバータのスイッチングパターンS1、S3,S5によるディジタル制御で、インバータから目標電圧ベクトルVを出力させるために、FETに対するON/OFF信号S1〜S6(スイッチングパターン)におけるスイッチングパルス幅とそのタイミングを決定する基本的なタイミングチャートを示す。空間ベクトル変調は、規定されたサンプリング期間Ts毎に演算などをサンプリング期間Ts内で行い、その演算結果を次のサンプリング期間Tsにて、スイッチングパターンS1〜S6における各スイッチングパルス幅とそのタイミングに変換して出力する。
空間ベクトル変調は、目標電圧ベクトルVに基づいて求められたセクター番号に応じたスイッチングパターンS1〜S6を生成する。図37には、セクター番号#1(n=1)の場合における、インバータのFETのスイッチングパターンS1〜S6の一例が示されている。信号S1、S3及びS5は、上側アームに対応するFETQ1、Q3、Q5のゲート信号を示している。横軸は時間を示しており、Tsはスイッチング周期に対応し、8期間に分割され、T0/4、T1/2、T2/2、T0/4、T0/4、T2/2、T1/2及びT0/4で構成される期間である。また、期間T1及びT2は、それぞれセクター番号n及び回転角γに依存する時間である。
空間ベクトル変調がない場合、本発明のデッドタイム補償をdq軸上に適用し、デッドタイム補償値のみdq軸/3相変換したデッドタイム補償値波形(U相波形)は、図38の破線のような3次成分が除去された波形となってしまう。V相及びW相についても同様である。dq軸/3相変換の代わりに空間ベクトル変調を適用することにより、3相信号に3次高調波を重畳させることが可能となり、3相変換によって欠損してしまう3次成分を補うことができ、図38の実線のような理想的なデッドタイム補償波形を生成することが可能となる。
図39は本発明(第1実施形態)によるデッドタイム補償機能(A),(B),(C)の切換の様子を示しており、時点tまではデッドタイム補償機能(A)で動作し、時点tで徐変による切換となり、時点t〜tではデッドタイム補償機能(A)+(B)で動作し、時点tにおいてデッドタイム補償機能(B)となり、時点tに条件分岐で瞬時にデッドタイム補償機能(C)に切り換わる様子を示している。
特性の異なるデッドタイム補償を切り換える時(時点t〜t)、補償量及び位相に差があり、単純に切り換えた場合には特性の違いにより補償値にステップ状の偏差が発生し、トルクリップルが発生する。例えば、切り換え時のデッドタイム補償機能(B)の補償量を1.00とした場合、デッドタイム補償機能(A)の補償量は0.92〜0.95などの差がある。特に、モータに流す電流量が少ない低負荷・低速領域の操舵ではデッドタイム補償量の影響は大きく(これは、PI制御などの指令電圧よりもデッドタイム補償電圧の方が大きいため)、少しのステップ状の偏差でもトルクリップルを発生させる。2つのデッドタイム補償値を徐変切り換えし、遷移期間を設けてスイープ状の偏差にすることによりトルクリップルの発生をなくし、操舵する人にいつ補償機能が切り換わったのか分からなくしている。
例えばデッドタイム補償機能(A)は端子電圧フィードバック型のデッドタイム補償機能であり、補償符号の推定と補償量の調整が難しい低負荷・低速操舵状態(オンセンター付近でゆっくりとハンドルを左右に振る操舵など)において、自動的に最適な補償符号と補償量を計算するため精度の高い補償が可能となる。デッドタイム補償機能(B)は角度フィードフォワード型のデッドタイム補償機能であり、d軸電流を必要としない低速から中速操舵状態(一定速度でハンドルを操舵したり、徐々に切増ししたりする操舵など)において、定められた角度で遅れることなく理想的なデッドタイム補償値をフィードフォワードで入れられるため精度の高い補償が可能となる。また、角度に応じてデッドタイム補償値を算出するため、低負荷操舵領域(例えば電流指令値0〜4[Aなど])以外の操舵負荷領域では、検出電流にノイズや小さなリップルが乗っている場合においても、補償値の演算に影響を受けず安定した補償が可能である。
図40〜図42は、実車を模擬した台上試験装置による本発明の検証結果であり、図40はd軸電流とd軸デッドタイム補償値を示し、図37はq軸電流とq軸デッドタイム補償値を示している。低速・低負荷でのステアリング操舵状態において、図40及び図41のように本発明のデッドタイム補償を適応することにより、デッドタイム補償値がAからBに切り換わっても、dq軸のデッドタイム補償値にステップ状に発生する歪みはなく、dq軸電流の波形においても歪みが発生しないことが確認できる。操舵時において、切り換え時のトルクリップルはないことが分かる。また、ステアリングの操舵を中速から高速に切り増しをしている操舵状態において、図42のように本発明のデッドタイム補償を適応し、デッドタイム補償値が切り換わることにより、d軸電流が流れ始めるときなど、電流制御特性が変化しても、デッドタイムの影響によるdq軸電流の波形歪みがないことが確認できる。
次に、本発明の第2実施形態を図43に示して説明する。図43は図5に対応しており、同一部分には同一符号を付して説明を省略する。
第2実施形態では新たにコントローユニット(ECU)のパワーデバイス、インバータ若しくはインバータ近辺の温度を、公知の手法で検出する温度検出部700が設けられており、第1実施形態のデッドタイム補償部(B)400及びデッドタイム補償部(C)600が、それぞれデッドタイム補償部(B)400S及びデッドタイム補償部(C)600Sに変更されている。温度検出部700で検出された温度TMは、デッドタイム補償部400S及び600Sに入力される。また、徐変部を構成する第1実施形態の徐変切換判定部520及び徐変比率演算部530が、それぞれ徐変切換判定部520S及び徐変比率演算部530Sに変更され、徐変切換判定部520Sにはモータ回転数rpmが入力されている。モータ回転数rpmは、モータ回転速度ωより容易に内部演算で算出することができる。
デッドタイム補償部(B)400Sの構成例(実施例2)は図44であり、温度検出部700からの温度TMは温度感応ゲイン演算部460に入力され、演算された温度感応ゲインGtmは乗算部461に入力される。温度感応ゲイン演算部460は、図45に示すように、補償量設定温度、性能保証温度上限及び性能保証温度下限の3点で温度感応ゲインGtmを演算し、補償量設定温度の値を基準値“1.00”とし、性能保証温度上限及び性能保証温度下限との比をそれぞれ演算して温度感応ゲインGtmを求める。3点の比率は直線補間演算又は温度TMに対するテーブルで生成するが、性能保証温度上限及び性能保証温度下限には制限を設けても良い。また、制御部(インバータ)の温度特性が複雑な場合は接点数を増やし、曲線補間テーブルにしても良い。温度感応ゲインGtmの特性例として補償量設定温度を+20℃、性能保証温度下限を-40℃、性能保証温度上限を+80℃とし、必要とされるゲインが+20℃時に対して-40℃時に10%増加し、+80℃時に10%減少したとすると、温度感応ゲインGtmの特性テーブルは図46に示すようになる。
温度感応ゲイン演算部460からの温度感応ゲインGtmは乗算部461に入力され、インバータ印加電圧感応ゲイン演算部420からのインバータ感応ゲインGvaと乗算され、乗算結果である電圧感応ゲインGvが乗算部431U,431V,431Wに入力され、以降は第1実施形態と同様な補償値演算の動作が実施される。
デッドタイム補償部(C)600Sの構成例(実施例2)は図47であり、温度検出部700からの温度TMは温度感応ゲイン演算部650に入力され、演算された温度感応ゲインGtnは乗算部651に入力される。温度感応ゲイン演算部650の特性は温度感応ゲイン演算部460とほぼ同様であり、図48に示すような特性であり、図49に示すような特性テーブルとなっている。
温度感応ゲイン演算部650からの温度感応ゲインGtnは乗算部651に入力され、インバータ印加電圧感応ゲイン演算部610からのデッドタイム補償量DTCbと乗算され、乗算結果であるデッドタイム補償量DTCが乗算部602に入力され、以降は第1実施形態と同様な補償値演算の動作が実施される。
また、徐変切換判定部520Sの構成例(実施例2)は図50であり、実施例1を示す図26に対応している。実施例2の徐変切換判定部520Sには、q軸電流指令値iqrefとモータ回転数rpmが入力されており、q軸電流指令値iqrefの系列とモータ回転数rpmの系列とに分かれている。q軸電流指令値iqrefの系列では、図26と同様にq軸電流指令値iqrefは不感帯部521、絶対値部522、リミッタ523で処理され、リミッタ523からの操舵補助指令値iqref-tが、出力の安定化のためのヒステリシス特性を有する閾値部524に入力され、閾値部524は所定の閾値の大小関係に基づいてUP/DOWN判定フラグSFcを出力する。UP/DOWN判定フラグSFcはスイッチ部525に入力され、接点525aに入力されているカウントUP値525A及び接点525bに入力されているカウントDOWN値525Bを切り換え、q軸電流要因の切換カウントUP/DOWN値SCIを出力する。モータ回転数rpmの系列では、モータ回転数rpmは絶対値部526で絶対値化され、絶対値化されたモータ回転数|rpm|が、出力の安定化のためのヒステリシス特性を有する閾値部527に入力され、閾値部527は所定の閾値の大小関係に基づいてUP/DOWN判定フラグSFmを出力する。UP/DOWN判定フラグSFmはスイッチ部528に入力され、接点528aに入力されているカウントUP値528Aと、接点528bに入力されているカウントDOWN値528Bとを切り換え、回転数要因の切換カウントUP/DOWN値SCMを出力する。切換カウントUP/DOWN値SCI及び切換カウントUP/DOWN値SCMは加算部529で加算され、加算部529から切換カウント値SFCが出力され、切換カウント値SFCは徐変比率演算部530Sに入力される。
徐変比率演算部530Sの構成例は図51であり、UP/DOWN判定フラグSF2は加算部534に入力され、保持ユニット(Z−1)536からの徐変グ比率RtBCの前回値と加算され、加算値はカウント値制限部(0〜100%)535で最大値を制限され、徐変比率RtBC(%)として出力されると共に、減算部537に減算入力され、保持ユニット(Z−1)536を経て加算部534に入力される。徐変比率RtBCは減算部537に入力され、固定の100%から減算した値を徐変比率RtA(%)として出力する。
第2実施形態の動作例は、温度補正の部分を除いて、第1実施形態の図29と同様である。即ち、温度検出部700がインバータ等の温度検出し、温度TMがデッドタイム補償部(B)400及び(C)600Sに入力され、温度補正された補償値(B)及び(C)が出力される(ステップS12及びS13)。
以下に、第2実施形態の効果を、実車を模擬した台上試験装置による検証結果で説明する。
図52はいずれも温度+20°Cにおける温度補正無しの場合であり、図52(A)はU相電流波形であり、図52(B)はq軸電流波形であり、図52(C)はd軸電流波形である。図52(A)〜(C)に示すように、+20℃の温度条件では補償量が適切であるため、デッドタイムによる電流波形の歪みは殆どみられない。図53はいずれも温度-40℃における温度補正無しの場合であり、図53(A)はU相電流波形であり、図53(B)はq軸電流波形であり、図53(C)はd軸電流波形である。図53(A)〜(C)に示すように、-40℃の条件では補償量不足のためU相電流に0[A]付近で凹状の歪みが見られ、q軸電流には波状のひずみ、d軸電流には鋸歯状の歪みが発生している。また、図54はいずれも温度+80℃における温度補正無しの場合であり、図54(A)はU相電流波形であり、図54(B)はq軸電流波形であり、図54(C)はd軸電流波形である。図54(A)〜(C)に示すように、+80℃の温度条件では補償量過多のためU相電流に0[A]付近で凸状の歪みが見られ、q軸の電流には波状の歪み、d軸電流には鋸歯状の歪みが発生している。
これら温度補正無しの場合に対して、図55〜図57は第2実施形態による温度補正有りの検証結果である。
図55はいずれも温度+20℃における温度補正有りの場合であり、図55(A)はU相電流波形であり、図55(B)はq軸電流波形であり、図55(C)はd軸電流波形である。図55(A)〜(C)に示すように、温度補正を適用し、温度に応じて補償量を補正することにより、+20℃において適用前と同様にデッドタイムによる歪みは殆ど見られない。つまり、温度補正適用による背反は見られない。図56はいずれも温度-40℃における温度補正無しの場合であり、図56(A)はU相電流波形であり、図56(B)はq軸電流波形であり、図56(C)はd軸電流波形である。図56(A)〜(C)に示すように、温度補正を適用し、温度に応じて補償量を補正することにより、-40℃においてU相電流及びdq軸電流の波形歪みの改善(dq軸電流波形にリップルが少なく正弦波に近い相電流波形)が確認でき、トルクリップルの改善が見られた。また、図57はいずれも温度+80℃における温度補正無しの場合であり、図57(A)はU相電流波形であり、図57(B)はq軸電流波形であり、図57(C)はd軸電流波形である。図57(A)〜(C)に示すように、温度補正を適用し、温度に応じて補償量を補正することにより+80℃においてU相電流及びdq軸電流の波形歪みの改善(dq軸電流波形にリップルが少なく正弦波に近い相電流波形)が確認でき、トルクリップルの改善が見られた。
1 ハンドル
2 コラム軸(ステアリングシャフト、ハンドル軸)
10 トルクセンサ
12 車速センサ
20、100 モータ
30 コントロールユニット(ECU)
31 操舵補助指令値演算部
35 PI制御部
36、160 PWM制御部
37,161 インバータ
110 角度検出部
130、260、440、640 3相交流/dq軸変換部
140 d−q非干渉制御部
200 デッドタイム補償部(A)
210 中点電圧推定部
220 各相印加電圧演算部
230 電圧検出遅れモデル
250 補償量制限部
300 空間ベクトル変調部
301 2相/3相変換部
302 3次高調波重畳部
400、400S デッドタイム補償部(B)
401 電流制御遅れモデル
410、630 位相調整部
460、650 温度感応ゲイン演算部
500 補償値切換部
510 スイッチ切換判定部
520、520S 徐変切換判定部
530、530S 徐変比率演算部
540 条件分岐部
550 徐変切換部
600、600S デッドタイム補償部(C)
620 3相電流指令値モデル
621 相電流補償符号推定部
700 温度検出部

Claims (16)

  1. 少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    各相モータ端子電圧及び前記Duty指令値に基づいてデッドタイム補償Aを行う補償機能1と、前記操舵補助指令値に基づいてデッドタイム補償Bを行う補償機能2と、前記dq軸電流指令値に基づいてデッドタイム補償Cを行う補償機能3とを具備し、
    前記補償機能1、前記補償機能2、前記補償機能3の切換をソフトウェアによる条件分岐と徐変切換で行ってdq軸デッドタイム補償値を演算し、前記dq軸デッドタイム補償値で前記dq軸電圧指令値を補償することを特徴とする電動パワーステアリング装置。
  2. 切り換え時の補償量の切換差分が小さいときに前記徐変切換を使用し、切換タイミングの速さが必要な場合に前記条件分岐を使用する請求項1に記載の電動パワーステアリング装置。
  3. 前記補償機能1、2及び3が、いずれも更にモータ回転角、モータ回転速度及びインバータ印加電圧を演算に用いている請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記インバータ若しくはインバータ近辺の温度を検出する温度検出部が設けられ、前記温度に基づいて前記デッドタイム補償B及び前記デッドタイム補償Cのデッドタイム補正を行うようになっている請求項1乃至3のいずれかに記載の電動パワーステアリング装置。
  5. 少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    各相モータ端子電圧、前記Duty指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づいて補償値CAを演算するデッドタイム補償部Aと、前記操舵補助指令値、前記モータ回転角、前記モータ回転速度及び前記インバータ印加電圧に基づいて補償値CBを演算するデッドタイム補償部Bと、前記dq軸電流指令値、前記モータ回転角、前記モータ回転速度及び前記インバータ印加電圧に基づいて補償値CCを演算するデッドタイム補償部Cとを具備し、
    前記補償値CA,前記補償値CB,前記補償値CCを入力すると共に、切換条件として前記操舵補助指令値、前記dq軸電流指令値及び前記モータ回転速度を入力し、判定された条件によって前記補償値CA,CB,CCの切換をソフトウェアによる条件分岐と徐変切換で行ってdq軸デッドタイム補償値を演算する補償値切換部を備え、
    前記dq軸電圧指令値を前記dq軸デッドタイム補償値で補償することを特徴とする電動パワーステアリング装置。
  6. 前記補償値切換部が、
    前記dq軸電流指令値及び前記モータ回転速度を入力して切換判定を行い、切換判定フラグを出力するスイッチ切換判定部と、
    前記補償値CB及びCCを入力し、前記切換判定フラグに基づく前記条件分岐でdq軸補償値CDを出力する条件分岐部と、
    前記操舵補助指令値に基づいて前記徐変切換を判定し、徐変比率を演算する徐変部と、
    前記補償値CA及び前記dq軸補償値CDを入力し、前記徐変比率で前記dq軸デッドタイム補償値を演算して出力する徐変切換部と、
    で構成されている請求項5に記載の電動パワーステアリング装置。
  7. 前記徐変部が、
    前記操舵補助指令値に基づいて徐変切換を判定してUP−DOWN判定フラグを出力する徐変切換判定部と、
    前記UP−DOWN判定フラグに基づいて前記徐変比率を演算する徐変比率演算部と、
    で構成されている請求項6に記載の電動パワーステアリング装置。
  8. 前記徐変比率が、前記補償値CA用の徐変比率RAと、前記補償値CB及びCC用の徐変比率RBCとであり、
    前記徐変切換部が、前記補償値CA及び前記徐変比率RAを乗算する第1乗算部と、前記dq軸補償値CD及び前記徐変比率RBCを乗算する第2乗算部と、前記第1乗算部の乗算結果及び前記第2乗算部の乗算結果を加算して前記dq軸デッドタイム補償値を出力する加算部とで構成されている請求項7に記載の電動パワーステアリング装置。
  9. 少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    前記インバータ若しくはインバータ近辺の温度を検出する温度検出部と、
    各相モータ端子電圧、前記Duty指令値、モータ回転角、モータ回転速度及びインバータ印加電圧に基づいて補償値CAを演算するデッドタイム補償部Aと、
    前記操舵補助指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CBを演算するデッドタイム補償部Bと、
    前記dq軸電流指令値、前記モータ回転角、前記モータ回転速度、前記インバータ印加電圧及び前記温度に基づいて補償値CCを演算するデッドタイム補償部Cと、
    前記補償値CA,温度補正された前記補償値CB,温度補正された前記補償値CCを入力すると共に、切換条件として前記操舵補助指令値、前記dq軸電流指令値及び前記モータ回転速度を入力し、判定された条件によって前記補償値CA,CB,CCの切換をソフトウェアによる条件分岐と、前記操舵補助指令値及びモータ回転数に基づく徐変切換で行い、dq軸デッドタイム補償値を演算する補償値切換部と、
    を備え、
    前記dq軸電圧指令値を、温度補正された前記dq軸デッドタイム補償値で補償することを特徴とする電動パワーステアリング装置。
  10. 前記徐変切換を、前記操舵補助指令値及び前記モータ回転数を入力して切り換えカウント値を出力する徐変切換判定部と、前記切り換えカウント値を入力して徐変切換比率を演算する徐変比率演算部とで構成されている請求項9に記載の電動パワーステアリング装置。
  11. 前記徐変切換判定部が、
    前記操舵補助指令値に基づいてq軸電流要因切り換えカウントUP/DOWN値を出力する電流要因部と、前記モータ回転数に基づいて回転数要因切り換えカウントUP/DOWN値を出力する回転数要因部と、前記q軸電流要因切り換えカウントUP/DOWN値及び前記回転数要因切り換えカウントUP/DOWN値を加算して前記切り換えカウント値を出力する加算部とで構成されている請求項10に記載の電動パワーステアリング装置
  12. 前記徐変比率演算部が、
    前記切り換えカウント値及び徐変比率2の前回値の加算値を入力するカウント値制限部と、100%の固定値から前記徐変比率2を減算して徐変比率1を出力する減算部とで構成されている請求項10又は11に記載の電動パワーステアリング装置。
  13. 少なくとも操舵トルクに基づいてdq軸操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値から演算されたdq軸電圧指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    各相モータ端子電圧及び前記Duty指令値に基づいてデッドタイム補償Aを行う補償機能1と、
    前記操舵補助指令値に基づいてデッドタイム補償Bを行う補償機能2と、
    前記dq軸電流指令値に基づいてデッドタイム補償Cを行う補償機能3と、
    を具備し、
    前記補償機能1、前記補償機能2、前記補償機能3の切換を、ソフトウェアによる条件分岐と前記操舵補助指令値及びモータ回転数に基づく徐変切換とで行うと共に、前記徐変切換を非線形機能で行い、前記条件分岐及び前記徐変切換の後のdq軸デッドタイム補償値を演算し、前記dq軸デッドタイム補償値で前記dq軸電圧指令値を補償することを特徴とする電動パワーステアリング装置。
  14. 前記非線形機能が、
    カウントUP値及びカウントDOWN値を切り換えた後のカウント値制限部の後段に非線形特性の徐変比率特性変換テーブルを用いた構成である請求項13に記載の電動パワーステアリング装置。
  15. 前記非線形機能が、
    モータ回転数に感応する非線形のカウントUP値演算処理部及びカウントDOWN値演算処理部で構成され、前記カウントUP値演算処理部及び前記カウントDOWN値演算処理部の出力切換となっている請求項13に記載の電動パワーステアリング装置。
  16. 更に前記インバータ若しくはインバータ近辺の温度を検出する温度検出部が設けられ、前記温度に基づいて補償機能2及び3を補正するようになっている請求項13乃至15のいずれかに記載の電動パワーステアリング装置。
JP2018567543A 2017-02-13 2018-02-13 電動パワーステアリング装置 Active JP6590089B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017024164 2017-02-13
JP2017024164 2017-02-13
JP2017250197 2017-12-26
JP2017250197 2017-12-26
JP2018021736 2018-02-09
JP2018021736 2018-02-09
PCT/JP2018/004928 WO2018147465A1 (ja) 2017-02-13 2018-02-13 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP6590089B2 true JP6590089B2 (ja) 2019-10-16
JPWO2018147465A1 JPWO2018147465A1 (ja) 2019-11-07

Family

ID=63107235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567543A Active JP6590089B2 (ja) 2017-02-13 2018-02-13 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10807635B2 (ja)
EP (1) EP3562029B1 (ja)
JP (1) JP6590089B2 (ja)
CN (1) CN110199468B (ja)
WO (1) WO2018147465A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873284B2 (en) * 2017-06-16 2020-12-22 Nsk Ltd. Motor control unit and electric power steering apparatus equipped with the same
CN111034020B (zh) * 2017-08-21 2022-12-13 三菱电机株式会社 功率转换装置及电动助力转向装置
EP3675351A4 (en) * 2018-01-30 2021-02-17 Nsk Ltd. ELECTRIC POWER STEERING DEVICE
US11496077B2 (en) * 2018-08-07 2022-11-08 Nidec Corporation Drive controller, drive unit, and power steering
JP7205108B2 (ja) * 2018-08-20 2023-01-17 日本電産株式会社 モータ制御装置およびパワーステアリング装置
CN109204451A (zh) * 2018-09-11 2019-01-15 长安大学 一种双电机电动助力转向***及其助力转向方法
CN111656664B (zh) * 2018-10-30 2023-09-19 东芝三菱电机产业***株式会社 电力转换装置
JP7256958B2 (ja) * 2019-05-27 2023-04-13 株式会社ジェイテクト 電動パワーステアリング装置
CN110369831B (zh) * 2019-07-24 2021-11-02 成都振中科技有限公司 数字化焊机控制***及方法
KR20210015261A (ko) * 2019-08-01 2021-02-10 현대자동차주식회사 인버터용 스위칭소자의 과전류 검출기준 보상 시스템 및 이를 이용한 과전류 검출 시스템
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム
JP7214040B2 (ja) * 2020-03-27 2023-01-27 三菱電機株式会社 3レベル電力変換装置及び直流電源部の中間電位の制御方法
DE102020117273A1 (de) 2020-07-01 2022-01-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Kompensation von Nichtlinearitäten in einem Wechselrichter eines Kraftfahrzeugs
CN116767342B (zh) * 2023-08-24 2023-10-31 天津德星智能科技有限公司 一种eps***换向凸点消除方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103473A (ja) 1991-10-03 1993-04-23 Toshiba Corp インバータ装置
WO2005023626A1 (ja) 2003-09-02 2005-03-17 Nsk Ltd. 電動パワーステアリング装置の制御装置
JP4760118B2 (ja) 2005-05-13 2011-08-31 日産自動車株式会社 電動機の制御装置
JP5093452B2 (ja) * 2007-03-07 2012-12-12 学校法人同志社 電力変換機器に適用されるコモンモード漏れ電流抑制回路
JP2009268218A (ja) * 2008-04-24 2009-11-12 Juki Corp 多軸モータ制御システム
CN102687385A (zh) * 2010-03-29 2012-09-19 丰田自动车株式会社 电动动力转向装置
JP5890345B2 (ja) 2013-04-18 2016-03-22 トヨタ自動車株式会社 外部給電システム
JP6361178B2 (ja) 2014-03-07 2018-07-25 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
EP3132996B1 (en) * 2014-04-16 2019-02-20 NSK Ltd. Electric power steering device
JP6617500B2 (ja) 2015-09-29 2019-12-11 日本精工株式会社 電動パワーステアリング制御方法、電動パワーステアリング制御装置、電動パワーステアリング装置および車両
BR112018011815A2 (ja) 2015-12-09 2018-12-04 Nsk Ltd. A control method and a control device of an electric power steering device
CN105827175B (zh) * 2016-02-29 2018-01-23 国网安徽省电力公司淮北供电公司 电动汽车矢量控制***非线性补偿方法及***

Also Published As

Publication number Publication date
EP3562029B1 (en) 2021-03-31
US20190375449A1 (en) 2019-12-12
WO2018147465A1 (ja) 2018-08-16
BR112019014995A2 (pt) 2020-04-07
CN110199468A (zh) 2019-09-03
EP3562029A4 (en) 2019-12-25
US10807635B2 (en) 2020-10-20
EP3562029A1 (en) 2019-10-30
JPWO2018147465A1 (ja) 2019-11-07
CN110199468B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
JP6590089B2 (ja) 電動パワーステアリング装置
JP6658995B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6468388B2 (ja) 電動パワーステアリング装置
JP6601595B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6471834B2 (ja) 電動パワーステアリング装置
JP6521185B2 (ja) 電動パワーステアリング装置
CN110809855B (zh) 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置
JPWO2018037981A1 (ja) 電動パワーステアリング装置
WO2019150945A1 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190716

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6590089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150