JP5548481B2 - Composition for inkjet containing nickel fine particles - Google Patents

Composition for inkjet containing nickel fine particles Download PDF

Info

Publication number
JP5548481B2
JP5548481B2 JP2010042636A JP2010042636A JP5548481B2 JP 5548481 B2 JP5548481 B2 JP 5548481B2 JP 2010042636 A JP2010042636 A JP 2010042636A JP 2010042636 A JP2010042636 A JP 2010042636A JP 5548481 B2 JP5548481 B2 JP 5548481B2
Authority
JP
Japan
Prior art keywords
nickel
nickel particles
solvent
dispersion
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010042636A
Other languages
Japanese (ja)
Other versions
JP2011178845A (en
Inventor
義成 山本
光一 藤城
俊英 板原
齋藤  亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010042636A priority Critical patent/JP5548481B2/en
Priority to KR20110014989A priority patent/KR20110098633A/en
Priority to TW100105790A priority patent/TWI512054B/en
Priority to CN201110120301.4A priority patent/CN102167928B/en
Publication of JP2011178845A publication Critical patent/JP2011178845A/en
Application granted granted Critical
Publication of JP5548481B2 publication Critical patent/JP5548481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • C09D11/326Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Description

本発明は、インクジェット用組成物に関する。詳しくは、平均一次粒子径が10〜20nmであるニッケル微粒子が分散安定化しており、工業用インクジェットヘッドにて塗工が可能なインクジェット用組成物に関するものである。   The present invention relates to an inkjet composition. Specifically, the present invention relates to an inkjet composition in which nickel fine particles having an average primary particle diameter of 10 to 20 nm are dispersed and stabilized and can be applied with an industrial inkjet head.

例えば積層セラミックコンデンサーの内部電極層の形成等において、ニッケル粒子を分散させたニッケルペーストが使用されている。近時では、ニッケルペーストの薄膜塗布形成方法として、従来のスクリーン印刷法にかわり、膜厚1μm以下での塗工が可能なインクジェット印刷法の検討が進められている。   For example, a nickel paste in which nickel particles are dispersed is used in forming an internal electrode layer of a multilayer ceramic capacitor. Recently, as a method for forming a nickel paste thin film, an ink jet printing method capable of coating with a film thickness of 1 μm or less has been studied in place of the conventional screen printing method.

これまでニッケルペーストに用いられてきたニッケル粒子は、最も微粒なサイズでも粒径が100nmサイズであったが、今後、内部電極層の薄膜化に対応すべく、100nmより小さな粒径のニッケル微粒子を用いた薄膜塗布形成方法の実現が期待されている。   Nickel particles that have been used in nickel pastes up to now have the finest particle size of 100 nm, but in the future, nickel particles with a particle size smaller than 100 nm will be used to reduce the thickness of the internal electrode layer. Realization of the thin film coating method used is expected.

すなわち、100nmを超える大きいサイズのニッケル粒子では、積層セラミックコンデンサーのより一層の小型化へ対応する方法に制限があり、より微細なニッケル配線形成や薄膜形成が必要な次世代電子部品用途向けには、その利用が難しい。そのため、粒径が数十ナノメートルサイズの小さなニッケル粒子を分散させたニッケルインクの開発が試みられている。   In other words, for nickel particles with a large size exceeding 100 nm, there is a limit to the method for dealing with further miniaturization of multilayer ceramic capacitors, and for next-generation electronic component applications that require finer nickel wiring formation and thin film formation. , Its use is difficult. Therefore, development of nickel ink in which small nickel particles having a particle size of several tens of nanometers are dispersed has been attempted.

具体的には、金属ニッケル微粒子を含有するニッケルインクとして、特許文献1では、単にニッケル微粒子を分散させただけでは基材への密着性が低下することから、メチルジメトキシシランカップリング剤を含有させる方法が開示されている。特許文献2では、ニッケルコロイド粒子、非極性高分子顔料分散剤、及び有機溶媒を組み合わせる方法が開示されている。特許文献3では、金属ナノ粒子の表面保護剤にポリビニルピロリドンやポリビニルピロリドンの共重合体のほか、ポリビニルアルコール、及びセルロースエーテルを利用する方法が提案されている。   Specifically, as a nickel ink containing metallic nickel fine particles, Patent Document 1 includes a methyldimethoxysilane coupling agent because adhesion to a base material is lowered simply by dispersing nickel fine particles. A method is disclosed. Patent Document 2 discloses a method of combining nickel colloid particles, a nonpolar polymer pigment dispersant, and an organic solvent. Patent Document 3 proposes a method of using polyvinyl alcohol and cellulose ether in addition to polyvinylpyrrolidone and a polyvinylpyrrolidone copolymer as a surface protective agent for metal nanoparticles.

しかしながら、ニッケル粒子がより微粒子になるほど、実用上、インク(組成物)中での分散性が大きな問題になるが、これらの特許文献1〜3では、インク製法時にニッケル粒子を安定に分散させることについて十分な検討がなされていない。すなわち、ニッケル微粒子をインク中に含有させる際、分散性が十分でなくても、多少でも分散できればインク化自体は可能になる。ところが、ニッケル粒子の分散性良否を十分に検討していなければ、インク化するための生産歩留まりが悪くなり、実用上、工業的に安定してインクを量産することはできない。また、例えば粘度の高い溶媒で分散した場合には、機械分散処理の直後でニッケル粒子がほぐれ、溶媒自体の構造粘性により粒子の沈降が抑えられ、見かけ上初期分散が出来ていると判断されることもあるが、実際に、このような場合では、分散状態が分散剤による立体反発効果によるものではなく、溶媒の粘度そのものによる効果であるため、インク自体の長期保管安定性が問題になる。なお、付言すれば、特許文献2では、トルエン溶媒での分散例が示されているが、トルエンは、実際の積層セラミックコンデンサーの下地基板に使用されるブチラール樹脂を溶解したり侵食したりするおそれがあり、この分野では実用上問題がある。   However, as the nickel particles become finer, practically, the dispersibility in the ink (composition) becomes a big problem. However, in these patent documents 1 to 3, the nickel particles are stably dispersed during the ink production method. Not enough consideration has been made. That is, when nickel fine particles are contained in the ink, even if the dispersibility is not sufficient, if it can be dispersed to some extent, the ink can be made. However, if the dispersibility of the nickel particles is not sufficiently studied, the production yield for making ink will deteriorate, and the ink cannot be mass-produced industrially and stably industrially. In addition, for example, when dispersed in a solvent having a high viscosity, the nickel particles loosen immediately after the mechanical dispersion treatment, and the sedimentation of the particles is suppressed by the structural viscosity of the solvent itself, and it is judged that initial dispersion is apparently achieved. In some cases, however, in such a case, the dispersion state is not due to the steric repulsion effect by the dispersant but the effect due to the viscosity of the solvent itself, and thus the long-term storage stability of the ink itself becomes a problem. In addition, although Patent Document 2 shows an example of dispersion in a toluene solvent, toluene may dissolve or erode the butyral resin used for the underlying substrate of the actual multilayer ceramic capacitor. There are practical problems in this field.

特開2007−281307号公報JP 2007-281307 A 特開2004−124237号公報JP 2004-124237 A 特開2008−226816号公報JP 2008-226816 A

金属ニッケルは粒子自身が比重8.9と大きく、また、磁性体であるため粒子の凝集による沈降現象を起こし易い。それに加え、微粒化するほど粒子表面の表面積が大きくなり、ニッケル粒子の凝集はより顕著な問題となる。そのため、ニッケル粒子を含んだインクをインクジェット印刷法により塗布する上で、インクジェット用組成物(インク)におけるニッケル粒子の分散性を安定化させると共に、工業用として期待されるピエゾ方式等のインクジェットヘッドで安定吐出を可能にすることが大きな課題となっている。   Metallic nickel particles have a large specific gravity of 8.9, and because they are magnetic, they tend to cause sedimentation due to particle aggregation. In addition, the surface area of the particle surface increases as the particle size is reduced, and the aggregation of nickel particles becomes a more significant problem. Therefore, when ink containing nickel particles is applied by an ink jet printing method, the dispersibility of nickel particles in the ink jet composition (ink) is stabilized and an ink jet head such as a piezo method expected for industrial use. Enabling stable discharge is a major issue.

本発明は、上記のような要求を満たす、ニッケル微粒子の分散性に優れたインクジェット用組成物を提供することを目的とする。具体的には、ニッケル微粒子と有機バインダーによって良好な分散状態を形成し、ニッケル微粒子の分散安定化を図ったインクジェット用組成物を提供するものである。   An object of this invention is to provide the composition for inkjet which satisfy | fills the above requirements and was excellent in the dispersibility of nickel microparticles | fine-particles. Specifically, the present invention provides an ink jet composition in which a good dispersion state is formed by nickel fine particles and an organic binder and the dispersion of nickel fine particles is stabilized.

本発明者らは、このような課題を解決するために、ニッケルインクを形成するニッケル微粒子に対して、有機バインダーや溶媒の影響を調べて、インクジェット用組成物としての最適な組成設計を行った。その結果、インクジェット用組成物中で、ニッケル微粒子を特定の脂肪酸エステル縮合体、及び溶媒で補うようにすることで、より良好な分散性が得られることを見出し、本発明を完成するに至った。   In order to solve such a problem, the present inventors investigated the influence of an organic binder and a solvent on the nickel fine particles forming the nickel ink, and performed an optimum composition design as an ink jet composition. . As a result, it was found that better dispersibility can be obtained by supplementing nickel fine particles with a specific fatty acid ester condensate and a solvent in an ink jet composition, and the present invention has been completed. .

すなわち、本発明は、(a)沸点190℃以上の溶媒に(b)平均一次粒子径が10〜20nmのニッケル粒子が分散されたインクジェット組成物であり、(c)ニッケル粒子表面への吸着基となるポリカルボン酸成分と、ニッケル粒子同士の凝集を阻害する炭化水素成分とを有し、かつ、ポリマーベースのアニオン系分散剤である脂肪酸エステル縮合体を含有することを特徴とするインクジェット用組成物である。 That is, the present invention is an inkjet composition in which (a) nickel particles having an average primary particle diameter of 10 to 20 nm are dispersed in a solvent having a boiling point of 190 ° C. or higher, and (c) an adsorbing group on the surface of the nickel particles. An inkjet composition characterized by comprising a polycarboxylic acid component to become a hydrocarbon component that inhibits aggregation of nickel particles and a fatty acid ester condensate that is a polymer-based anionic dispersant It is a thing.

本発明のインクジェット用組成物において、好適には、前記脂肪酸エステル縮合体は、構成元素成分がC(炭素)、H(水素)、及びO(酸素)からなると共に、前記炭化水素成分は炭素数が10以上の炭化水素鎖を有し、かつ、水に不溶であって、23℃における粘度範囲1800〜3200mPa・sの有機界面活性剤であるのが良い。また、本発明のインクジェット用組成物は、23℃における粘度が30mPa・s以下に調製されているのが好ましい。 In the ink jet composition of the present invention, preferably, the fatty acid ester condensate is composed of C (carbon), H (hydrogen), and O (oxygen) as constituent element components, and the hydrocarbon component contains carbon atoms. Is an organic surfactant having 10 or more hydrocarbon chains and insoluble in water and having a viscosity range at 23 ° C. of 1800 to 3200 mPa · s. In addition, the ink jet composition of the present invention is preferably prepared so that the viscosity at 23 ° C. is 30 mPa · s or less.

本発明によれば、平均一次粒子径10〜20nmのニッケル微粒子の分散性をより高めることができ、このようなインクジェット用組成物を得る上で、生産歩留まりが低下するようなこともなく、工業的に安定して量産することができる。特に、本発明のインクジェット用組成物では、炭化水素とポリカルボン酸とを主成分とする脂肪酸エステル縮合体を特定の溶媒と組み合わせて配合することで、ニッケルを含んだインクを工業的に実用する上で必要な程度まで、ニッケル微粒子の分散性を高めることができる。しかも、本発明のインクジェット用組成物によれば、ピエゾ方式等の工業用インクジェットヘッドによる安定吐出が可能であり、長期保管安定性にも優れる。   According to the present invention, the dispersibility of nickel fine particles having an average primary particle diameter of 10 to 20 nm can be further increased, and in obtaining such an ink jet composition, the production yield is not lowered, and the industrial yield is reduced. Can be mass-produced stably. In particular, in the ink jet composition of the present invention, an ink containing nickel is industrially put into practical use by blending a fatty acid ester condensate mainly composed of hydrocarbon and polycarboxylic acid in combination with a specific solvent. To the extent required above, the dispersibility of the nickel fine particles can be increased. Moreover, according to the ink jet composition of the present invention, it is possible to stably discharge with an industrial ink jet head such as a piezo method, and excellent long-term storage stability.

図1は、実施例1で得た一次分散液の偏光顕微鏡写真である(倍率93倍)。FIG. 1 is a polarizing micrograph of the primary dispersion obtained in Example 1 (magnification 93 times). 図2は、実施例1で得た一次分散液の偏光顕微鏡写真である(倍率934倍)。FIG. 2 is a polarizing micrograph of the primary dispersion obtained in Example 1 (magnification 934 times). 図3は、実施例3で得た一次分散液の偏光顕微鏡写真である(倍率93倍)。FIG. 3 is a polarizing micrograph of the primary dispersion obtained in Example 3 (magnification 93 times). 図4は、実施例3で得た一次分散液の偏光顕微鏡写真である(倍率934倍)。FIG. 4 is a polarizing micrograph of the primary dispersion obtained in Example 3 (magnification 934 times). 図5は、比較例1で得た一次分散液とする前段階(0.2μmフィルターろ過処理前)の分散処理液の偏光顕微鏡写真である(倍率93倍)。FIG. 5 is a polarizing micrograph of the dispersion treatment liquid in the previous stage (before 0.2 μm filter filtration treatment) as the primary dispersion liquid obtained in Comparative Example 1 (magnification 93 times).

本発明のインクジェット用組成物は、(a)沸点190℃以上の溶媒、(b)平均一次粒子径が10〜20nmのニッケル粒子、及び(c)炭化水素とポリカルボン酸から得られる脂肪酸エステル縮合体を含む。以下、上記沸点190℃以上の溶媒、ニッケル粒子、脂肪酸エステル縮合体を、順に(a)成分、(b)成分、(c)成分ともいう。   The inkjet composition of the present invention comprises (a) a solvent having a boiling point of 190 ° C. or higher, (b) nickel particles having an average primary particle size of 10 to 20 nm, and (c) fatty acid ester condensation obtained from hydrocarbon and polycarboxylic acid. Including the body. Hereinafter, the solvent having a boiling point of 190 ° C. or higher, nickel particles, and fatty acid ester condensate are also referred to as component (a), component (b), and component (c) in this order.

(a)成分の沸点190℃以上の溶媒は、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカンなどの炭素数11以上の直鎖アルカン類や、1−オクタノール、1−ノナノール、1−デカノールなどの炭素数8以上の脂肪族アルコール類を好ましく用いることが出来る。また、ターピネオールなどの炭素数10以上のテルペン系アルコールを用いることもできる。沸点190℃以上の溶媒を用いることで、インクジェットでの吐出安定化を図ることができ、詳しくは吐出されるピコリットリオーダーの微小液滴表面の乾燥性を抑制することができる。本発明のインクジェット用組成物には、沸点190℃未満の溶媒が共存してもよいが、含有率が高くなるとインク組成物における溶剤の蒸発や乾燥が速くなりすぎて、インクジェット吐出性、及び目標下地への着弾において平坦性が低下しやすいため、沸点190℃未満の溶媒が含まれる場合には、(a)成分中で40wt%以下になるようにするのが望ましい。   The solvent having a boiling point of 190 ° C. or higher for the component (a) is a straight chain alkane having 11 or more carbon atoms such as undecane, dodecane, tridecane, tetradecane or pentadecane, or a carbon number such as 1-octanol, 1-nonanol or 1-decanol. Eight or more aliphatic alcohols can be preferably used. A terpene alcohol having 10 or more carbon atoms such as terpineol can also be used. By using a solvent having a boiling point of 190 ° C. or higher, it is possible to stabilize the ejection by inkjet, and in particular, it is possible to suppress the drying property of the surface of the picolit reordered minute droplets to be ejected. In the ink jet composition of the present invention, a solvent having a boiling point of less than 190 ° C. may coexist. However, when the content becomes high, evaporation and drying of the solvent in the ink composition become too fast, and the ink jet discharge property and target Since flatness is liable to be lowered upon landing on the ground, when a solvent having a boiling point of less than 190 ° C. is contained, it is desirable that the content of the component (a) is 40 wt% or less.

(b)成分のニッケル粒子は、平均一次粒子径が10〜20nmのニッケル微粒子を用いる。平均一次粒子径が20nmよりも大きい粒子でもインクジェット吐出は可能であるが、インクジェットヘッドからのノズル詰まりのない、連続的な安定吐出を得られるようにして、尚且つ、吐出後の細線描画、緻密な平坦膜を得るために、本発明では平均一次粒子径が20nm以下のニッケル粒子を用いるようにする。一方、10nmより小さい粒子径サイズであってもインクジェット用インクとして利用できるが、実際に10nmより小さいニッケル粒子を入手するのは困難であり、実用量産性を考慮して下限を10nmとする。なお、本明細書において、平均一次粒子径は、実施例で用いた値を含めて、SEM(走査型顕微鏡)観察を行い、SEM写真にて観察されるニッケル粒子を任意に200個選定して、その粒子径を実計測したものの平均値である。   As the nickel particles as the component (b), nickel fine particles having an average primary particle diameter of 10 to 20 nm are used. Ink jet ejection is possible even with particles having an average primary particle size larger than 20 nm, but continuous stable ejection without nozzle clogging from the ink jet head can be obtained, and fine line drawing after ejection and dense In order to obtain a flat film, nickel particles having an average primary particle diameter of 20 nm or less are used in the present invention. On the other hand, even if the particle size is smaller than 10 nm, it can be used as an ink jet ink. However, it is difficult to actually obtain nickel particles smaller than 10 nm, and the lower limit is set to 10 nm in consideration of practical mass productivity. In addition, in this specification, the average primary particle diameter includes SEM (scanning microscope) observation including the values used in the examples, and arbitrarily selects 200 nickel particles observed in the SEM photograph. The average value of the actual measurement of the particle diameter.

(b)成分のニッケル粒子を得る方法について特に制限はないが、大別すると、液相法と気相法が知られており、いずれの方法で得られたものであってもよい。このうち、液相法は、金属錯体を還元して金属粒子を製造する方法や、アミン還元法などのプロセスが一般的である。また、気相法は、化学反応を用いたCVD(Chemical Vapor Deposition)法と物理的な方法を用いたPVD(Physical Vapor Deposition)法が知られている。これらの方法では、いずれも反応条件を変えることで、粒子径サイズ等を制御することができる。なお、(b)成分のニッケル粒子は、X線回折パターンにて、(111)面、(200)面、(220)面にニッケル特有の強度が発現するものであれば、銀や銅などを含んだ合金であっても構わない。   Although there is no restriction | limiting in particular about the method of obtaining the nickel particle of (b) component, If it divides roughly, the liquid phase method and a gaseous-phase method are known, and what was obtained by any method may be sufficient. Among these, the liquid phase method is generally a method such as a method of producing metal particles by reducing a metal complex, or an amine reduction method. As the vapor phase method, a CVD (Chemical Vapor Deposition) method using a chemical reaction and a PVD (Physical Vapor Deposition) method using a physical method are known. In any of these methods, the particle size and the like can be controlled by changing the reaction conditions. In addition, the nickel particles of the component (b) may be made of silver or copper as long as the nickel-specific strength is expressed on the (111) plane, the (200) plane, and the (220) plane in the X-ray diffraction pattern. It may be an alloy containing.

(c)成分の脂肪酸エステル縮合体は、分散剤として、ニッケル粒子の分散安定化を補うものである。一般に、金属微粒子の分散安定化に用いられる分散剤とは、金属微粒子の表面に吸着もしくは固着して、金属微粒子同士の凝集を阻害するものと定義することができる。一般的な分散剤の基本構造は、金属微粒子に吸着する吸着部と、金属微粒子同士の凝集を阻害する立体反発部とを有する。このうち、吸着部は、金属微粒子表面とは逆の電荷を持った構造を有しており、例えば、金属微粒子表面が酸性処理を施されていた場合、吸着部はNa+やアミンやイミノ構造を有している場合が多い。一方、立体反発部は、長鎖の炭化水素鎖アクリル、エステル、エーテルなどで連結されている。このように一方に電荷を持ち他方に炭化水素構造を有していることから、分散剤は一種の界面活性剤であると言える。 The fatty acid ester condensate of component (c) supplements the dispersion stabilization of nickel particles as a dispersant. In general, the dispersant used for the dispersion stabilization of the metal fine particles can be defined as one that adsorbs or adheres to the surface of the metal fine particles and inhibits aggregation of the metal fine particles. The basic structure of a general dispersant has an adsorbing part that adsorbs to metal fine particles and a three-dimensional repulsion part that inhibits aggregation of metal fine particles. Among these, the adsorption part has a structure having a charge opposite to the surface of the metal fine particle. For example, when the surface of the metal fine particle has been subjected to an acid treatment, the adsorption part has a Na + , amine or imino structure. In many cases. On the other hand, in the three-dimensional repulsion part, long-chain hydrocarbon chains are connected by acrylic, ester, ether or the like. Thus, it can be said that the dispersant is a kind of surfactant because it has a charge on one side and a hydrocarbon structure on the other side.

そこで、本発明における(c)成分の脂肪酸エステル縮合体は、ポリマーベースのアニオン系分散剤であって、詳しくは、ニッケル粒子表面への吸着基として機能するポリカルボン酸成分と、溶媒への親和性を高める役割とニッケル粒子同士の凝集を阻害する立体反発を担う炭化水素成分とから構成される。一般に、金属微粒子を安定分散させる分散剤には、星型構造を有するポリマーベースタイプなどが有効であるが、本発明では、水に不溶であって、構成元素成分がC(炭素)、H(水素)、及びO(酸素)から成り、また、炭素数10以上の炭化水素鎖を有して、粘度範囲が1800〜3200mPa・sの有機界面活性剤を用いるのが好ましい。粘度が1800mPa・sよりも低くなると、低分子量成分の割合が増えて、分散剤構造の立体障害による反発などの分散安定化に有用な特性が損なわれてしまうおそれがある。一方、粘度が3200mPa・sよりも高くなると、高分子量成分の割合が増えて、分散剤の溶媒に対する溶解特性が低下してしまい、尚且つ、インク化したときの粘度も高くなる傾向がある。なお、ここで言う粘度は23℃におけるものであり、コーンプレート型の回転粘度計(E型粘度計)にして測定される値である。   Therefore, the fatty acid ester condensate of component (c) in the present invention is a polymer-based anionic dispersant, and more specifically, a polycarboxylic acid component that functions as an adsorbing group on the surface of nickel particles and an affinity for the solvent. And a hydrocarbon component responsible for steric repulsion that inhibits aggregation of nickel particles. In general, a polymer base type having a star structure is effective as a dispersant for stably dispersing fine metal particles. However, in the present invention, it is insoluble in water and the constituent element components are C (carbon), H ( Hydrogen) and O (oxygen) are used, and an organic surfactant having a hydrocarbon chain having 10 or more carbon atoms and a viscosity range of 1800 to 3200 mPa · s is preferably used. When the viscosity is lower than 1800 mPa · s, the proportion of low molecular weight components increases, and there is a risk that properties useful for dispersion stabilization such as repulsion due to steric hindrance of the dispersant structure may be impaired. On the other hand, when the viscosity is higher than 3200 mPa · s, the proportion of the high molecular weight component is increased, so that the solubility of the dispersant in the solvent is lowered, and the viscosity when ink is formed tends to be high. In addition, the viscosity said here is a thing in 23 degreeC, and is a value measured using a cone plate type rotational viscometer (E type viscometer).

本発明におけるインクジェット用組成物を得る好適な例としては、先ず、ニッケル粒子1質量部に対して(c)成分の分散剤を0.02〜10質量部の範囲で配合すると共に、ニッケル粒子1質量部に対して溶媒を1.5〜200質量部の範囲で配合して、例えばジルコニアビーズをメディアとしたペイントシェーカーで15分〜120分間程度の分散処理を行い、必要に応じて更に、例えばT.Kフィルミックス(特殊機化工業株式会社製)のような高速乳化分散機を用いて、15分〜150分間程度の分散化処理をして、ニッケルスラリーからなる一次分散液を得るようにするのが好ましい。ここで用いる溶媒は、事前にニッケル粒子を分散剤に分散させた一次分散液を得る目的で使用するものであり、本発明のインクジェット用組成物に使用する(a)成分の溶媒を用いるのが良いことは勿論のこと、これ以外の溶媒を用いて一次分散液を得るようにしても良い。   As a suitable example for obtaining the ink jet composition in the present invention, first, the dispersant of the component (c) is blended in the range of 0.02 to 10 parts by mass with respect to 1 part by mass of the nickel particles, and the nickel particles 1 The solvent is blended in the range of 1.5 to 200 parts by mass with respect to parts by mass, and for example, dispersion treatment is performed for about 15 minutes to 120 minutes with a paint shaker using zirconia beads as a medium. T. T. et al. Using a high-speed emulsifying disperser such as K Fillmix (made by Tokushu Kika Kogyo Co., Ltd.), a dispersion process is performed for about 15 minutes to 150 minutes to obtain a primary dispersion composed of nickel slurry. Is preferred. The solvent used here is used for the purpose of obtaining a primary dispersion in which nickel particles are dispersed in a dispersant in advance, and the solvent of the component (a) used in the inkjet composition of the present invention is used. Of course, the primary dispersion may be obtained using a solvent other than this.

次いで、得られた一次分散液からビーズ等を分けるために例えば目開き75μmのフィルターでろ過し、また、インクジェットヘッドのノズル詰まりを考慮して例えば0.2μmのフィルターで更にろ過する。次いで、ろ過した液をインクジェット用組成物とするために、一次分散液に含まれた溶媒を(a)成分の溶媒に置換処理する。この際、置き換えの対象となる不要な溶媒を除去するためには、例えば一般的に溶媒除去に用いられるロータリーエバポレーター等による減圧蒸留処理や、単純加熱によって溶媒を揮発させる処理等が挙げられる。溶媒を除去した後の一次分散液では、ニッケル粒子と分散剤が乾燥個化した状態になる。   Next, in order to separate beads and the like from the obtained primary dispersion liquid, for example, filtration is performed with a filter having a mesh opening of 75 μm, and further filtration is performed with, for example, a 0.2 μm filter in consideration of nozzle clogging of the inkjet head. Subsequently, in order to make the filtered liquid into an inkjet composition, the solvent contained in the primary dispersion is replaced with the solvent of the component (a). At this time, in order to remove the unnecessary solvent to be replaced, for example, a vacuum distillation process using a rotary evaporator or the like generally used for solvent removal, a process of volatilizing the solvent by simple heating, and the like can be mentioned. In the primary dispersion after the solvent is removed, the nickel particles and the dispersant are in a dry individualized state.

そして、(a)成分の溶媒を新たに加え、一次分散液の調製で挙げた攪拌条件等を例に攪拌することで、目的のインクジェット用組成物を得るようにする。このように、一次散液を得た溶媒を一度蒸留等により除去したのち、新たに(a)成分を添加することで、良好な分散状態が維持されたインクジェット用組成物を得ることができる。また、このインクジェット用組成物では、ニッケル粒子1質量部に対して(c)成分の分散剤が0.02〜10質量部であり、ニッケル粒子1質量部に対して(a)成分の溶媒が0.4〜100質量部となるように配合されるのが好ましい。(c)成分の分散剤が上記範囲より少ないと、十分な分散効果が得られず、反対に上記範囲より多いと、余剰の分散剤がインクジェットで吐出した際にインク(インクジェット用組成物)と被着体との密着性を阻害するおそれがある。また、(a)成分の溶媒が上記範囲より少ないと、分散が十分に行われないか、あるいは、分散に長時間要することがあり好ましくなく、反対に上記範囲より多いと、(c)成分の分散剤が希釈されることになり、結果として分散剤を多量に使用する必要があり効率的ではない。なお、一次分散液を得る際に(a)成分の溶媒を用いた場合には、上述した溶媒置換処理を経ずに、目的のインクジェット用組成物を調製するようにしてもよい。   Then, the solvent for the component (a) is newly added, and the target ink jet composition is obtained by stirring, for example, the stirring conditions mentioned in the preparation of the primary dispersion. Thus, after removing the solvent which obtained the primary liquid dispersion once by distillation etc., the composition for inkjet in which the favorable dispersion state was maintained can be obtained by newly adding (a) component. Moreover, in this composition for inkjet, the dispersing agent of (c) component is 0.02-10 mass parts with respect to 1 mass part of nickel particles, and the solvent of (a) component is 1 mass part of nickel particles. It is preferable to mix | blend so that it may become 0.4-100 mass parts. When the amount of the component dispersant (c) is less than the above range, a sufficient dispersion effect cannot be obtained. On the other hand, when the amount of the dispersant is greater than the above range, the excess dispersant is ejected by ink jetting (inkjet composition) and There is a risk of hindering adhesion to the adherend. Further, when the solvent of the component (a) is less than the above range, the dispersion may not be sufficiently performed or it may take a long time for the dispersion. On the other hand, when the amount exceeds the above range, the component (c) The dispersant is diluted, and as a result, a large amount of the dispersant needs to be used, which is not efficient. In addition, when the solvent of the component (a) is used when obtaining the primary dispersion, the target inkjet composition may be prepared without undergoing the solvent replacement treatment described above.

また、本発明のインクジェット用組成物は、インクジェット印刷法で用いる場合の連続吐出特性や間歇吐出特性などを考慮して、好ましくは、23℃における粘度が30mPa・s以下となるように調製するのが良い。粘度の調整は、(a)〜(c)成分の混合割合を変えることで可能であるが、(a)〜(c)成分以外に熱重合性モノマー、熱重合開始剤、分散剤以外のカップリング剤等を添加して調整してもよい。また、インクジェット用組成物中に含まれる金属濃度を調整する観点から、減圧蒸留や加熱等による濃縮を行うようにしても良い。先に述べた一次分散液を得た後の溶媒置換処理は、このような観点からも有効である。なお、ここで言う粘度は、(c)成分に関する説明で述べた測定法と同じである。   In addition, the ink jet composition of the present invention is preferably prepared so that the viscosity at 23 ° C. is 30 mPa · s or less in consideration of continuous discharge characteristics and intermittent discharge characteristics when used in the ink jet printing method. Is good. The viscosity can be adjusted by changing the mixing ratio of the components (a) to (c), but in addition to the components (a) to (c), a cup other than the thermopolymerizable monomer, thermal polymerization initiator, and dispersant. It may be adjusted by adding a ring agent or the like. Further, from the viewpoint of adjusting the concentration of metal contained in the ink jet composition, concentration by vacuum distillation, heating, or the like may be performed. The solvent replacement treatment after obtaining the primary dispersion described above is also effective from this viewpoint. In addition, the viscosity said here is the same as the measuring method described by description regarding (c) component.

以下、実施例等に基づき、本発明をより具体的に説明する。なお、特に断りのない限り、部は質量部を表し、%は質量%を表す。また、一次分散液の調製及び評価、並びにインクジェット組成物の評価方法は、以下のとおりである。   Hereinafter, based on an Example etc., this invention is demonstrated more concretely. In addition, unless otherwise indicated, a part represents a mass part and% represents mass%. The preparation and evaluation of the primary dispersion and the evaluation method of the inkjet composition are as follows.

インクジェット組成物に用いる一次分散液は、先ず、表1に示した各成分配合したものを100ccプラスチック製容器に入れ、φ200μmのビーズを装填して2000rpmで20分間分散した後、これを目開き75μmのフィルターでろ過してビーズを取り除いた。そして、2日間静置した後、上澄み液を目開き0.2μmのフィルターでろ過して、一次分散液とした。この際、一次分散液の評価として、0.2μmフィルターでのろ過性について、一次分散液がろ過フィルターに目詰まりせず、フィルターを通る場合を○、一次分散液がろ過フィルターに目詰まりして、フィルターを通らない場合を×として評価した。また、得られた一次分散液について、規定温度条件(110℃、3時間)で加熱した後の残渣の質量(加熱残分)を測定し、加熱残分値から分散剤の質量を差し引いた分を分散安定化したニッケル粒子分とみなし、分散前のニッケル粒子固形分総質量100%に対する一次分散液中の分散安定化粒子率%を算出した。ここでは、一次分散液に配合された(c)成分の分散剤は、0.2μmのフィルターでろ過する際の上澄み液中にすべて含有されている前提のもと、分散安定化粒子率を計算した。その結果、一次分散液の分散安定化粒子率が5%に満たないものについては、インク生産の実用性を考慮して×(不良)と判断し、5%以上のものを○(良好)と判定して、分散性を評価した。なお、0.2μmフィルターでのろ過性評価では、ろ過できないものについて、分散安定化粒子率の評価には値せず、分散不良と判定した。   First, the primary dispersion used in the ink jet composition is blended with the components shown in Table 1 into a 100 cc plastic container, charged with 200 μm beads and dispersed at 2000 rpm for 20 minutes, and then opened to 75 μm. The beads were removed by filtration with a filter. And after leaving still for 2 days, the supernatant liquid was filtered with a 0.2 micrometer opening filter, and it was set as the primary dispersion liquid. At this time, as for the evaluation of the primary dispersion, the filterability with the 0.2 μm filter is ○ when the primary dispersion does not clog the filtration filter and passes through the filter, and the primary dispersion clogs the filtration filter. The case of not passing through the filter was evaluated as x. In addition, for the obtained primary dispersion, the mass of the residue (heating residue) after heating at the specified temperature condition (110 ° C., 3 hours) was measured, and the amount obtained by subtracting the mass of the dispersant from the heating residue value Was regarded as the dispersion-stabilized nickel particle content, and the dispersion-stabilized particle ratio% in the primary dispersion with respect to 100% of the total solid content of nickel particles before dispersion was calculated. Here, the dispersion-stabilized particle ratio is calculated based on the premise that the dispersant of component (c) blended in the primary dispersion is completely contained in the supernatant when filtered with a 0.2 μm filter. did. As a result, when the dispersion-stabilized particle ratio of the primary dispersion is less than 5%, it is determined as x (defect) in consideration of practicality of ink production, and 5% or more is evaluated as ◯ (good). Judgment and dispersibility were evaluated. In addition, in the filterability evaluation with a 0.2 μm filter, those that could not be filtered were not worthy of evaluation of the dispersion-stabilized particle ratio, and were determined to be poor dispersion.

また、一次分散液を用いて得たインクジェット用組成物について、E型粘度計(コーンプレート型の回転粘度計;東機産業製)を用いて、23℃での粘度測定を行った。得られた結果が30mPa・s以下であれば、工業的なインクとしての吐出に適すると判断することができる。また、得られたインクジェット用組成物の0.2μmフィルターでのろ過性を一次分散液の場合と同様に評価した。更には、インクジェット組成物の分散性の評価として、スピンコーターを用いて125mm×125mm×厚さ0.7mmのガラス基板上に塗布し、偏光顕微鏡を用いて倍率を93倍及び934倍に設定して外観写真観察を行った。このとき、写真中に凝集物が認められなけば、分散性は良好であり、凝集物が認められる場合は分散性が不良であると判定した。   Moreover, about the composition for inkjets obtained using the primary dispersion liquid, the viscosity measurement at 23 degreeC was performed using the E-type viscosity meter (Cone plate type rotational viscometer; Toki Sangyo make). If the obtained result is 30 mPa · s or less, it can be determined that it is suitable for ejection as industrial ink. Further, the filterability of the obtained inkjet composition with a 0.2 μm filter was evaluated in the same manner as in the case of the primary dispersion. Furthermore, as an evaluation of the dispersibility of the inkjet composition, it was applied onto a 125 mm × 125 mm × 0.7 mm thick glass substrate using a spin coater, and the magnification was set to 93 × and 934 × using a polarizing microscope. The appearance photograph was observed. At this time, if no aggregate was found in the photograph, the dispersibility was good, and if the aggregate was found, the dispersibility was judged to be poor.

なお、実施例等で使用した各成分と、表1及び2で記した略号との関係を以下にまとめて示す。   In addition, the relationship between each component used by the Example etc. and the symbol described in Table 1 and 2 is put together and shown below.

ニッケル粒子A:新日鐵化学社製(平均一次粒子径10nm)
ニッケル粒子B:新日鐵化学社製(平均一次粒子径20nm)
ニッケル粒子C:新日鐵化学社製(平均一次粒子径60nm)
なお、ニッケル粒子A〜Cの平均一次粒子径は、粒子のSEM(走査型顕微鏡)観察によるSEM写真からニッケル粒子を任意に200個選定し、その粒子径を実計測したものの平均値である。
Nickel particle A: manufactured by Nippon Steel Chemical Co., Ltd. (average primary particle diameter: 10 nm)
Nickel particles B: manufactured by Nippon Steel Chemical Co., Ltd. (average primary particle size 20 nm)
Nickel particles C: manufactured by Nippon Steel Chemical Co., Ltd. (average primary particle size 60 nm)
The average primary particle diameter of the nickel particles A to C is an average value obtained by arbitrarily selecting 200 nickel particles from an SEM photograph obtained by SEM (scanning microscope) observation of the particles and actually measuring the particle diameter.

分散剤A:脂肪酸エステル縮合体(クローダジャパン社製商品名;HYPERMER KD−9)(成分含有量100%)
分散剤B:ビックケミー・ジャパン社製商品名;Disperbyk−2155
分散剤C:信越化学工業社製商品名;KBM−602
Dispersant A: fatty acid ester condensate (trade name, manufactured by Croda Japan; HYPERMER KD-9) (component content: 100%)
Dispersant B: Product name manufactured by Big Chemie Japan, Inc .; Disperbyk-2155
Dispersant C: Trade name manufactured by Shin-Etsu Chemical Co., Ltd .; KBM-602

(実施例1)
ニッケル粒子としてニッケル粒子B(20nm)100部に対し、分散剤としてHYPERMER KD−9を10部混合して、「HYPERMER KD−9」/「ニッケル粒子B」の比率を0.1(質量比)とした上で、溶剤としてテトラデカン(沸点253.5℃)18.46gに対して、仕込み原料の総質量が20gとなるように、上記ニッケル粒子B−分散剤混合物を配合して、100ccプラスチック製容器に入れ、φ200μmのビーズを装填して2000rpmで20分間分散した。その後、これを目開き75μmのフィルターでろ過してビーズを取り除いた。そして、2日間静置した後、上澄み液を目開き0.2μmのフィルターでろ過して一次分散液とし、上述した各評価を行った。結果を表1に示す。
Example 1
100 parts of nickel particles B (20 nm) as nickel particles, 10 parts of HYPERMER KD-9 as a dispersant are mixed, and the ratio of “HYPERMER KD-9” / “nickel particles B” is 0.1 (mass ratio) Then, the nickel particle B-dispersant mixture is blended so that the total mass of the charged raw material is 20 g with respect to 18.46 g of tetradecane (boiling point 253.5 ° C.) as a solvent, and made of 100 cc plastic. The container was placed in a vessel, loaded with 200 μm beads, and dispersed at 2000 rpm for 20 minutes. Thereafter, this was filtered through a filter having an opening of 75 μm to remove the beads. And after leaving still for 2 days, the supernatant liquid was filtered with a 0.2 micrometer opening filter, and it was set as the primary dispersion liquid, and each evaluation mentioned above was performed. The results are shown in Table 1.

上記で得られた一次分散液をガラス基板上に塗布し、ウェット塗布直後の偏光顕微鏡写真を図1(倍率93倍)、及び図2(倍率934倍)に示す。これらの写真からも分るように、実施例1で得られた一次分散液は、偏光顕微鏡の観察において凝集物が見られなく、良好に分散できていることが確認された。そして、この一次分散液は、このまま本発明のインクジェット用組成物として利用することができる。   The primary dispersion obtained above is applied on a glass substrate, and polarized light micrographs immediately after wet application are shown in FIG. 1 (magnification 93 times) and FIG. 2 (magnification 934 times). As can be seen from these photographs, it was confirmed that the primary dispersion obtained in Example 1 was well dispersed with no agglomerates observed under a polarizing microscope. And this primary dispersion liquid can be utilized as an inkjet composition of the present invention as it is.

(実施例2)
ニッケル粒子としてニッケル粒子B(20nm)100部に対し、分散剤としてHYPERMER KD−9を50部混合して、「HYPERMER KD−9」/「ニッケル粒子B」の比率が0.5(質量比)としたうえで、溶剤としてテトラデカン17.9gに対して、実施例1と同様に総質量が20gとなるよう、上記ニッケル粒子B−分散剤混合物を配合して一次分散液を調製し、評価を行った。結果を表1に示す。なお、この実施例2で得られた一次分散液は、このまま本発明のインクジェット用組成物として利用することができる。
(Example 2)
50 parts of HYPERMER KD-9 as a dispersant is mixed with 100 parts of nickel particles B (20 nm) as nickel particles, and the ratio of “HYPERMER KD-9” / “nickel particles B” is 0.5 (mass ratio). Then, a primary dispersion was prepared by blending the nickel particle B-dispersant mixture so that the total mass was 20 g as in Example 1 with respect to 17.9 g of tetradecane as a solvent, and evaluated. went. The results are shown in Table 1. The primary dispersion obtained in Example 2 can be used as it is as the ink jet composition of the present invention.

(実施例3)
ニッケル粒子としてニッケル粒子A(10nm)100部に対し、分散剤としてHYPERMER KD−9を10部混合して、「HYPERMER KD−9」/「ニッケル粒子A」の比率が0.1(質量比)としたうえで、溶剤としてテトラデカン18.46gに対して、実施例1と同様に総質量が20gとなるよう、上記ニッケル粒子A−分散剤混合物を配合して一次分散液を調製し、評価を行った。結果を表1に示す。
(Example 3)
10 parts of HYPERMER KD-9 as a dispersant is mixed with 100 parts of nickel particles A (10 nm) as nickel particles, and the ratio of “HYPERMER KD-9” / “nickel particles A” is 0.1 (mass ratio) Then, the primary dispersion is prepared by blending the nickel particle A-dispersant mixture so that the total mass becomes 20 g as in Example 1 with respect to 18.46 g of tetradecane as a solvent, and evaluated. went. The results are shown in Table 1.

上記で得られた一次分散液を実施例1と同様にして、ウェット塗布直後の偏光顕微鏡写真を図3(倍率93倍)、及び図4(倍率934倍)に示す。これらの写真からも分るように、いずれの偏光顕微鏡の観察において凝集物が見られなく、良好に分散できていることが確認された。そして、この一次分散液は、このまま本発明のインクジェット用組成物として利用することができる。   In the same manner as in Example 1, the primary dispersion obtained above is shown in FIG. 3 (magnification 93 times) and FIG. 4 (magnification 934 times) immediately after wet coating. As can be seen from these photographs, no agglomerates were observed in any of the polarizing microscopes, and it was confirmed that the particles were well dispersed. And this primary dispersion liquid can be utilized as an inkjet composition of the present invention as it is.

(実施例4)
ニッケル粒子としてニッケル粒子B(20nm)100部に対し、分散剤としてHYPERMER KD−9を10部混合して、「HYPERMER KD−9」/「ニッケル粒子B」の比率が0.1(質量比)としたうえで、溶剤としてトルエン(沸点110.6℃)18.46gに対して、実施例1と同様に総質量が20gとなるよう、上記ニッケル粒子B−分散剤混合物を配合して一次分散液を調製し、評価を行った。結果を表1に示す。なお、この実施例4で得られた一次分散液は、このまま本発明のインクジェット用組成物として利用することができる。
(Example 4)
10 parts of HYPERMER KD-9 as a dispersant is mixed with 100 parts of nickel particles B (20 nm) as nickel particles, and the ratio of “HYPERMER KD-9” / “nickel particles B” is 0.1 (mass ratio) Then, the above-mentioned nickel particle B-dispersant mixture is blended in the primary dispersion so that the total mass becomes 20 g as in Example 1 with respect to 18.46 g of toluene (boiling point 110.6 ° C.) as a solvent. Liquids were prepared and evaluated. The results are shown in Table 1. The primary dispersion obtained in Example 4 can be used as it is as the ink jet composition of the present invention.

(実施例5)
実施例3で得た一次分散液を再度0.2μmフィルターに通した後、テトラデカンで希釈して、インクジェット組成物100部中のニッケル粒子(金属成分)が4.7部となるインクジェット組成物を調製した。得られた組成物について評価を行い、結果を表2に示した。
(Example 5)
The primary dispersion obtained in Example 3 was again passed through a 0.2 μm filter and then diluted with tetradecane to obtain an inkjet composition in which the nickel particles (metal component) in 100 parts of the inkjet composition was 4.7 parts. Prepared. The obtained composition was evaluated and the results are shown in Table 2.

(実施例6)
ニッケル粒子A(10nm)100部に対し、分散剤としてHYPERMER KD−9を10部混合し、ヘキサン18.46gに対して、実施例1と同様に総質量が20gとなる配合で分散して一次分散液を得た。この一次分散液について、加熱によりヘキサンを蒸留除去したのち、インクジェット組成物100部中のニッケル粒子(金属成分)が11部となるようにオクタノールを添加調製し、0.2μmフィルターを通してインクジェット組成物を調製した。得られた組成物について評価を行い、結果を表2に示した。
(Example 6)
10 parts of HYPERMER KD-9 as a dispersing agent is mixed with 100 parts of nickel particles A (10 nm), and dispersed in a composition with a total mass of 20 g as in Example 1 with respect to 18.46 g of hexane. A dispersion was obtained. About this primary dispersion, after hexane is distilled off by heating, octanol is added and prepared so that the nickel particles (metal component) in 100 parts of the ink jet composition become 11 parts, and the ink jet composition is passed through a 0.2 μm filter. Prepared. The obtained composition was evaluated and the results are shown in Table 2.

(実施例7)
ニッケル粒子Bを用いた以外は実施例6と同様にニッケル粒子B(20nm)100部に対してHYPERMER KD−9を10部混合してヘキサンで分散して一次分散液を得た。この一次分散液について、加熱によりヘキサンを蒸留除去したのち、インクジェット組成物100部中のニッケル粒子(金属成分)が10部となるようにテトラデカンを添加調製し、0.2μmフィルターを通してインクジェット組成物を調製した。得られた組成物について評価を行い、結果を表2に示した。
(Example 7)
Except for using the nickel particles B, 10 parts of HYPERMER KD-9 was mixed with 100 parts of nickel particles B (20 nm) in the same manner as in Example 6 and dispersed with hexane to obtain a primary dispersion. About this primary dispersion, after hexane is distilled off by heating, tetradecane is added and prepared so that the nickel particles (metal component) in 100 parts of the ink jet composition become 10 parts, and the ink jet composition is passed through a 0.2 μm filter. Prepared. The obtained composition was evaluated and the results are shown in Table 2.

(比較例1)
ニッケル粒子としてニッケル粒子C(60nm)100部に対し、分散剤としてHYPERMER KD−9を50部混合して、「HYPERMER KD−9」/「ニッケル粒子C」の比率を0.5(質量比)とした上で、溶剤としてテトラデカン17.9gに対して、実施例1と同様に総質量が20gとなるよう上記ニッケル粒子C−分散剤混合物を配合して一次分散液を調製し、評価を行った。結果を表1に示す。
(Comparative Example 1)
50 parts of HYPERMER KD-9 as a dispersant is mixed with 100 parts of nickel particles C (60 nm) as nickel particles, and the ratio of “HYPERMER KD-9” / “nickel particles C” is 0.5 (mass ratio). Then, the nickel particle C-dispersant mixture was blended so that the total mass was 20 g in the same manner as in Example 1 with respect to 17.9 g of tetradecane as a solvent, and a primary dispersion was prepared and evaluated. It was. The results are shown in Table 1.

上記で得られた一次分散液について、0.2μmフィルターろ過処理前の分散処理液をガラス基板上に塗布して撮影した偏光顕微鏡写真を図5に示す。この写真からも分るように、ニッケル粒子の多くが凝集物として観察された。結果として、0.2μmフィルターを通して得られた一次分散液の分散安定粒子率は4%であった。   About the primary dispersion liquid obtained above, the polarizing microscope photograph which image | photographed and apply | coated the dispersion processing liquid before a 0.2 micrometer filter filtration process on a glass substrate is shown in FIG. As can be seen from this photograph, many of the nickel particles were observed as aggregates. As a result, the dispersion stable particle ratio of the primary dispersion obtained through the 0.2 μm filter was 4%.

(比較例2)
ニッケル粒子としてニッケル粒子B(20nm)100部に対し、分散剤としてDisperbyk−2155を10部混合して、「Disperbyk−2155」/「ニッケル粒子B」の比率を0.1(質量比)とした上で、溶剤としてトルエン18.46gに対して、実施例1と同様に総質量が20gとなるよう、上記ニッケル粒子B−分散剤混合物を配合して一次分散液を調製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
10 parts of Disperbyk-2155 as a dispersing agent was mixed with 100 parts of nickel particles B (20 nm) as nickel particles, and the ratio of “Disperbyk-2155” / “Nickel particles B” was set to 0.1 (mass ratio). Above, with respect to 18.46 g of toluene as a solvent, the said nickel particle B-dispersant mixture was mix | blended so that the total mass might be 20 g similarly to Example 1, and the primary dispersion liquid was prepared and evaluated. . The results are shown in Table 1.

(比較例3)
ニッケル粒子としてニッケル粒子B(20nm)100部に対し、分散剤としてKBM−602を30部混合して、「KBM−602」/「ニッケル粒子B」の比率を0.3(質量比)とした上で、溶剤としてヘキサン18.2gに対して、実施例1と同様に総質量が20gとなるよう、上記ニッケル粒子B−分散剤混合物を配合して分散一次溶液を調製し、評価を行った。結果を表1に示す。
(Comparative Example 3)
30 parts of KBM-602 as a dispersant was mixed with 100 parts of nickel particles B (20 nm) as nickel particles, so that the ratio of “KBM-602” / “nickel particles B” was 0.3 (mass ratio). Above, the said nickel particle B-dispersant mixture was mix | blended so that the total mass might be set to 20g similarly to Example 1 with respect to 18.2 g of hexane as a solvent, and the dispersion | distribution primary solution was prepared and evaluated. . The results are shown in Table 1.

(比較例4)
ニッケル粒子としてニッケル粒子A(10nm)1.4gに対して、溶剤としてエチレングリコール(沸点197.6℃)を18.6g配合して総質量20gとし、分散剤を用いずに、実施例1と同様にして一次分散液を調製して評価を行ったが、0.2μmフィルターを用いたろ過の再にフィルター目詰まりによりろ過することができなかったため、その後の評価ができなかった。
(Comparative Example 4)
With respect to nickel particles A (10 nm) 1.4 g as nickel particles, 18.6 g of ethylene glycol (boiling point 197.6 ° C.) as a solvent was blended to give a total mass of 20 g, and no dispersant was used. In the same manner, a primary dispersion was prepared and evaluated. However, after the filtration using a 0.2 μm filter, it could not be filtered due to filter clogging, so that the subsequent evaluation could not be performed.

Figure 0005548481
Figure 0005548481

Figure 0005548481
Figure 0005548481

上記比較例1〜4の比較例では、実施例1〜7の結果と比べて、いずれも比重8.9のニッケル粒子を安定化させる効果に劣ることが分った。本発明によれば、長期の保管安定性に優れたインクジェット用組成物とすることができる。   In the comparative examples of Comparative Examples 1 to 4, it was found that all of them were inferior in the effect of stabilizing nickel particles having a specific gravity of 8.9, compared with the results of Examples 1 to 7. According to the present invention, an inkjet composition having excellent long-term storage stability can be obtained.

Claims (3)

(a)沸点190℃以上の溶媒に(b)平均一次粒子径が10〜20nmのニッケル粒子が分散されたインクジェット組成物であり、(c)ニッケル粒子表面への吸着基となるポリカルボン酸成分と、ニッケル粒子同士の凝集を阻害する炭化水素成分とを有し、かつ、ポリマーベースのアニオン系分散剤である脂肪酸エステル縮合体を含有することを特徴とするインクジェット用組成物。 (A) an inkjet composition in which nickel particles having an average primary particle diameter of 10 to 20 nm are dispersed in a solvent having a boiling point of 190 ° C. or higher, and (c) a polycarboxylic acid component that serves as an adsorption group on the surface of the nickel particles And a hydrocarbon component that inhibits aggregation of the nickel particles, and a fatty acid ester condensate that is a polymer-based anionic dispersant . 前記脂肪酸エステル縮合体は、構成元素成分がC(炭素)、H(水素)、及びO(酸素)からなると共に、前記炭化水素成分は炭素数が10以上の炭化水素鎖を有し、かつ、水に不溶であって、23℃における粘度範囲1800〜3200mPa・sの有機界面活性剤である請求項1記載のインクジェット用組成物。 The fatty acid ester condensate is composed of C (carbon), H (hydrogen), and O (oxygen) as constituent element components, and the hydrocarbon component has a hydrocarbon chain having 10 or more carbon atoms, and The inkjet composition according to claim 1, which is an organic surfactant that is insoluble in water and has a viscosity range of 1800 to 3200 mPa · s at 23 ° C. 23℃における粘度が30mPa・s以下に調製されている請求項1記載のインクジェット用組成物。   The inkjet composition according to claim 1, wherein the viscosity at 23 ° C. is adjusted to 30 mPa · s or less.
JP2010042636A 2010-02-26 2010-02-26 Composition for inkjet containing nickel fine particles Expired - Fee Related JP5548481B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010042636A JP5548481B2 (en) 2010-02-26 2010-02-26 Composition for inkjet containing nickel fine particles
KR20110014989A KR20110098633A (en) 2010-02-26 2011-02-21 Composition containing nickel particles for inkjet
TW100105790A TWI512054B (en) 2010-02-26 2011-02-22 Composition of inkjet containing nickel particles
CN201110120301.4A CN102167928B (en) 2010-02-26 2011-02-25 Ink-jet composition with nickel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042636A JP5548481B2 (en) 2010-02-26 2010-02-26 Composition for inkjet containing nickel fine particles

Publications (2)

Publication Number Publication Date
JP2011178845A JP2011178845A (en) 2011-09-15
JP5548481B2 true JP5548481B2 (en) 2014-07-16

Family

ID=44489252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042636A Expired - Fee Related JP5548481B2 (en) 2010-02-26 2010-02-26 Composition for inkjet containing nickel fine particles

Country Status (4)

Country Link
JP (1) JP5548481B2 (en)
KR (1) KR20110098633A (en)
CN (1) CN102167928B (en)
TW (1) TWI512054B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037893B2 (en) * 2013-02-26 2016-12-07 新日鉄住金化学株式会社 Metal fine particle composition, bonding material, electronic component, method for forming bonding layer, method for forming conductor layer, and ink composition
CN108690401B (en) * 2017-03-30 2021-09-17 理想科学工业株式会社 Oil-based ink-jet ink
KR20200138237A (en) 2018-03-28 2020-12-09 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste, electronic components, and multilayer ceramic capacitors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036199A (en) * 2004-10-08 2007-09-12 三井金属矿业株式会社 Conductive ink
JP2007146117A (en) * 2005-11-04 2007-06-14 Mitsui Mining & Smelting Co Ltd Nickel ink and electrically conductive film formed from the same
JP5065613B2 (en) * 2006-04-10 2012-11-07 三井金属鉱業株式会社 Nickel ink
KR100768706B1 (en) * 2006-06-08 2007-10-19 삼성전기주식회사 Metal ink composition for ink-jet
KR100777662B1 (en) * 2006-06-14 2007-11-29 삼성전기주식회사 Conductive ink composition for ink-jet
KR100935168B1 (en) * 2007-09-21 2010-01-06 삼성전기주식회사 Nonaqueous conductive nanoink composition
JP2010135180A (en) * 2008-11-06 2010-06-17 Sekisui Chem Co Ltd Conductive paste
JP2010265420A (en) * 2009-05-18 2010-11-25 Konica Minolta Holdings Inc Inkjet ink and method for forming electroconductive pattern

Also Published As

Publication number Publication date
TWI512054B (en) 2015-12-11
TW201202354A (en) 2012-01-16
CN102167928A (en) 2011-08-31
CN102167928B (en) 2015-01-21
JP2011178845A (en) 2011-09-15
KR20110098633A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
CN109789482B (en) Bonding material and bonding method using the same
TWI352689B (en) Composite powder of silver particle and preparing
KR101371269B1 (en) Process for producing silver powder
TWI702262B (en) Composition for manufacturing metal nanoparticle
JP2009074054A (en) Non-aqueous electroconductive nano ink composition
JP2007039718A (en) Method for producing silver powder
WO2006062186A1 (en) Nickel powder, process for producing the same, and conductive paste
JP5176060B2 (en) Method for producing silver particle dispersion
JP5548481B2 (en) Composition for inkjet containing nickel fine particles
JP6261098B2 (en) Stabilized nanoparticles, dispersion of stabilized nanoparticles, and application method
WO2018124263A1 (en) Bonding material, and bonding method using same
JP2008179851A (en) Method for manufacturing silver powder, and silver powder
JP6414085B2 (en) Method for producing metal nanoparticles
KR101334052B1 (en) Silver particle dispersion and process for producing the same
JP2007046072A (en) Method for manufacturing silver particle powder
JP6968543B2 (en) Copper particle structure and copper ink
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
KR20190064605A (en) Bonding material and bonding method using it
JPWO2015045932A1 (en) Copper thin film forming composition
JP2014029017A (en) Method for producing metal fine particle composition
JP2009013494A (en) Nickel powder with plate shape, organic slurry of the same, manufacturing method thereof and conductive paste using these materials
JP2005146386A (en) Method of producing metal powder slurry, and nickel powder slurry obtained by the production method
JP5830265B2 (en) Method for producing dispersion-stable tin fine particles and method for producing tin ink using the same
WO2018163619A1 (en) Method for producing silver nano-particles
JP2014162961A (en) Method for manufacturing tin particulate-containing liquid and inkjet tin ink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees