JP2007039718A - Method for producing silver powder - Google Patents

Method for producing silver powder Download PDF

Info

Publication number
JP2007039718A
JP2007039718A JP2005222855A JP2005222855A JP2007039718A JP 2007039718 A JP2007039718 A JP 2007039718A JP 2005222855 A JP2005222855 A JP 2005222855A JP 2005222855 A JP2005222855 A JP 2005222855A JP 2007039718 A JP2007039718 A JP 2007039718A
Authority
JP
Japan
Prior art keywords
silver
particle powder
dispersion
protective agent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005222855A
Other languages
Japanese (ja)
Other versions
JP4674375B2 (en
Inventor
Kimitaka Sato
王高 佐藤
Minoru Kueda
穣 久枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2005222855A priority Critical patent/JP4674375B2/en
Publication of JP2007039718A publication Critical patent/JP2007039718A/en
Priority to TW96105883A priority patent/TWI331059B/en
Application granted granted Critical
Publication of JP4674375B2 publication Critical patent/JP4674375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a silver powder, which is suitable for forming fine wiring, is adequately sintered at a low temperature and is well dispersed, at a low cost and a high yield. <P>SOLUTION: The method for producing the silver particle powder superior in dispersibility into a liquid organic medium with low polarity includes reducing a silver salt in an alcohol with a boiling point of 80°C to 200°C or a polyol with a boiling point of 150 to 300°C, under the coexistence of an organic protective agent and a reduction adjuvant, and in a temperature range of 80°C to 200°C. The above organic protective agent employs a primary amine having an unsaturated bond in its structure and a molecular weight 100 to 1,000, and the reduction adjuvant employs a secondary and/or ternary amine. The silver powder obtained by the reduction treatment has an average particle size D<SB>TEM</SB>of preferably 50 nm or smaller, and is coated with the organic protective agent. For this reason, the silver powder has the adequate dispersibility into the liquid organic medium with the low polarity, though the particle has a nanometric size. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は微細な(特に粒径がナノメートルオーダーの)銀の粒子粉末の製造法に係り、詳しくは、微細な回路パターンを形成するための配線形成用材料例えばインクジェット法による配線形成用材料等に好適な銀粒子粉末の製造法に関する。   The present invention relates to a method for producing fine silver particle powder (particularly having a particle size on the order of nanometers). The present invention relates to a method for producing a silver particle powder suitable for.

固体物質の大きさがnmオーダー(ナノメートルオーダー)になると比表面積が非常に大きくなるために、固体でありながら気体や液体の界面が極端に大きくなる。したがって、その表面の特性が固体物質の性質を大きく左右する。金属粒子粉末の場合は、融点がバルク状態のものに比べ劇的に低下することが知られており、そのためにμmオーダーの粒子に比べて微細な配線の描画が可能になり、しかも低温焼結できるなどの利点を具備するようになる。金属粒子粉末の中でも銀粒子粉末は、低抵抗でかつ高い耐候性をもち、金属の価格も他の貴金属と比較して安価であることから、微細な配線幅をもつ次世代の配線材料として特に期待されている。   When the size of the solid substance is on the order of nm (on the order of nanometers), the specific surface area becomes very large, so that the interface between the gas and the liquid becomes extremely large while being solid. Therefore, the properties of the surface greatly influence the properties of the solid substance. In the case of metal particle powder, it is known that the melting point is drastically lower than that in the bulk state, which makes it possible to draw fine wiring compared to particles on the order of μm, and low temperature sintering. It has the advantage that it can be done. Among the metal particle powders, the silver particle powder has low resistance and high weather resistance, and the price of the metal is low compared with other noble metals, so it is particularly useful as a next-generation wiring material with a fine wiring width. Expected.

nmオーダーの銀の粒子粉末の製造方法としては大別して気相法と液相法が知られている。気相法ではガス中での蒸着法が普通であり、特許文献1にはヘリウム等の不活性ガス雰囲気でかつ0.5Torr程度の低圧中で銀を蒸発させる方法が記載されている。液相法に関しては、特許文献2では、水相で銀イオンをアミンで還元し、得られた銀の析出相を有機溶媒相(高分子量の分散剤)に移動して銀のコロイドを得る方法を開示しており、特許文献3には、溶媒中でハロゲン化銀を還元剤(アルカリ金属水素化ホウ酸塩またはアンモニウム水素化ホウ酸塩)を用いてチオール系の保護剤の存在下で還元する方法が記載されている。
特開2001−35255号公報 特開平11−319538号公報 特開2003−253311号公報
As a method for producing nm order silver particle powder, a gas phase method and a liquid phase method are known. In the vapor phase method, a vapor deposition method in a gas is common, and Patent Document 1 describes a method of evaporating silver in an inert gas atmosphere such as helium and a low pressure of about 0.5 Torr. Regarding the liquid phase method, Patent Document 2 discloses a method in which silver ions are reduced with an amine in an aqueous phase, and the resulting silver precipitation phase is transferred to an organic solvent phase (high molecular weight dispersant) to obtain a silver colloid. Patent Document 3 discloses reduction of silver halide in a solvent using a reducing agent (alkali metal borohydride or ammonium borohydride) in the presence of a thiol-based protective agent. How to do is described.
JP 2001-35255 A JP 11-319538 A JP 2003253331 A

特許文献1の気相法で得られる銀粒子は、粒径が10nm以下で溶媒中での分散性が良好である。しかし、この技術は特別な装置が必要である。このため産業用の銀ナノ粒子を大量に合成するには難がある。   Silver particles obtained by the vapor phase method of Patent Document 1 have a particle size of 10 nm or less and good dispersibility in a solvent. However, this technique requires special equipment. For this reason, it is difficult to synthesize industrial silver nanoparticles in large quantities.

これに対して液相法は基本的に大量合成に適した方法であるが、液中ではそのナノ粒子は極めて凝集性が高いので単一粒子に分散したナノ粒子粉末を得難いという問題がある。一般に、ナノ粒子を製造するためには分散剤としてクエン酸を用いる例が多く、また液中の金属イオン濃度も10mmol/L(=0.01mol/L)以下と極めて低いのが通常であり、このため、産業上の応用面でのネックとなっている。   On the other hand, the liquid phase method is basically a method suitable for large-scale synthesis, but there is a problem in that it is difficult to obtain nanoparticle powder dispersed in a single particle because the nanoparticles are extremely cohesive in the liquid. In general, in order to produce nanoparticles, there are many examples using citric acid as a dispersing agent, and the metal ion concentration in the liquid is usually extremely low as 10 mmol / L (= 0.01 mol / L) or less, This is a bottleneck in industrial applications.

特許文献2は、液相法により0.2〜0.6mol/Lの高い金属イオン濃度と、高い原料仕込み濃度で安定して分散した銀ナノ粒子を合成しているが、凝集を抑制するために数平均分子量が数万の高分子量の分散剤を用いている。高分子量の分散剤を用いたものでは、これを色剤として用いる場合は問題ないが、回路形成用途に用いる場合には高分子分散剤が燃焼し難いために焼成時に残存しやすいこと、さらには焼成後も配線にポアが発生しやすいこと等から抵抗が高くなったり断線が生じたりするので、低温焼成により微細な配線を形成するには問題がある。また高分子量の分散剤を使用している関係上、微粒子銀の分散液の粘度が高くなることも問題となる。   Patent Document 2 synthesizes silver nanoparticles stably dispersed at a high metal ion concentration of 0.2 to 0.6 mol / L and a high raw material feed concentration by a liquid phase method, but to suppress aggregation. In addition, a high molecular weight dispersant having a number average molecular weight of tens of thousands is used. In the case of using a high molecular weight dispersant, there is no problem when this is used as a colorant, but when used for circuit formation, the high molecular weight dispersant is difficult to burn, so it is likely to remain during firing. There is a problem in forming fine wiring by low-temperature firing because resistance increases or disconnection occurs because the pores are easily generated after firing. In addition, since a high molecular weight dispersant is used, the viscosity of the fine particle silver dispersion is also problematic.

特許文献3は、液相法により、仕込み濃度も0.1mol/L以上の比較的高い濃度で反応させ、得られた10nm以下の銀粒子を有機分散媒に分散させているが、特許文献3では分散剤としてチオール系の分散剤が提案されている。チオール系の分散剤は分子量が200程度と低いことから、配線形成時に低温焼成で容易に除去させることができるが、硫黄(S)が含まれており、この硫黄分は、配線やその他電子部品を腐食させる原因となるために配線形成用途には好ましくはない。   In Patent Document 3, reaction is performed at a relatively high concentration of 0.1 mol / L or more by a liquid phase method, and the obtained silver particles of 10 nm or less are dispersed in an organic dispersion medium. Proposed a thiol-based dispersant as a dispersant. Since the thiol-based dispersant has a low molecular weight of about 200, it can be easily removed by low-temperature firing at the time of wiring formation, but it contains sulfur (S), and this sulfur content is used for wiring and other electronic components. This is not preferable for wiring formation applications.

したがって本発明はこのような問題を解決し、微細な配線形成用途に適し、かつ低温焼結性が良好な高分散性球状銀粒子の分散液を安価かつ大量に高い収率で得ることを課題としたものである。   Therefore, the present invention solves such problems, and it is an object to obtain a dispersion of highly dispersible spherical silver particles that is suitable for fine wiring formation applications and has good low-temperature sinterability at low cost and in large yield. It is what.

本発明によれば、沸点80℃〜200℃のアルコール中または沸点150〜300℃のポリオール中で、銀塩を、有機保護剤および還元補助剤の共存下で且つ温度80℃〜200℃の範囲で還元処理する、極性の低い液状有機媒体への分散性に優れた銀粒子粉末の製造法を提供する。ここで、有機保護剤としては分子量100〜1000で構造内に不飽和結合をもつ1級アミンを使用し、還元補助剤としては2級アミンおよび/または3級アミンを使用する。この還元処理は、
Agイオン濃度:0.05〜5.0モル/L、
有機保護剤/Agのモル比:0.05〜5.0、
還元補助剤/Agのモル比:0.1〜20、
アルコールまたはポリオール/Agのモル比:0.5〜50
の量比で行うのがよい。還元処理で得られる銀粒子粉末は平均粒径DTEMが好ましくは50nm以下であり、粒子表面には前記の有機保護剤が被着している。このため、ナノ粒子であっても極性の低い液状有機媒体への分散性が良好である。
According to the present invention, in an alcohol having a boiling point of 80 ° C. to 200 ° C. or in a polyol having a boiling point of 150 to 300 ° C., the silver salt is in the range of a temperature of 80 ° C. to 200 ° C. in the presence of an organic protective agent and a reducing aid. A method for producing a silver particle powder excellent in dispersibility in a liquid organic medium having a low polarity, which is reduced by 1 is provided. Here, a primary amine having a molecular weight of 100 to 1000 and having an unsaturated bond in the structure is used as the organic protective agent, and a secondary amine and / or a tertiary amine is used as the reducing auxiliary agent. This reduction process
Ag ion concentration: 0.05 to 5.0 mol / L,
Organic protective agent / Ag molar ratio: 0.05 to 5.0,
Reduction auxiliary agent / Ag molar ratio: 0.1-20,
Alcohol or polyol / Ag molar ratio: 0.5-50
It is good to carry out by the quantity ratio. The silver particle powder obtained by the reduction treatment preferably has an average particle diameter DTEM of 50 nm or less, and the organic protective agent is deposited on the particle surface. For this reason, even if it is a nanoparticle, the dispersibility to the liquid organic medium with low polarity is favorable.

本発明はまた1級アミン中で、銀塩を、2級アミンまたは3級アミンの一方または両方の共存下で且つ温度80〜200℃の範囲で還元処理する、極性の低い液状有機媒体への分散性の優れた銀粒子粉末の製造法を提供する。   The present invention also provides a low-polarity liquid organic medium in which a silver salt is reduced in a primary amine in the presence of one or both of a secondary amine and a tertiary amine and at a temperature in the range of 80 to 200 ° C. A method for producing a silver particle powder having excellent dispersibility is provided.

本発明の製造法で得られた銀粒子粉末を、極性の低い液状有機媒体に分散させてなる銀粒子粉末の分散液は、
pH:6.5以上
分散液中の銀濃度:5〜90wt%、
粘度:50mPa・s以下、
表面張力:80mN/m以下
のニュートン流体としての性質を有することができる。また、この分散液は、液中の銀粒子粉末の平均粒径+20nmの孔径を有するメンブランフィルターを通過するほどの良好な分散性を具備できる。
A dispersion of silver particle powder obtained by dispersing the silver particle powder obtained by the production method of the present invention in a liquid organic medium having low polarity,
pH: 6.5 or more Silver concentration in the dispersion: 5-90 wt%,
Viscosity: 50 mPa · s or less,
Surface tension: It can have properties as a Newtonian fluid of 80 mN / m or less. Moreover, this dispersion liquid can have the dispersibility so favorable that it passes the membrane filter which has the average particle diameter of the silver particle powder in a liquid + the hole diameter of 20 nm.

本発明法で得られた銀粒子粉末はナノ粒子でありながら極性の低い液状有機媒体に良好に分散させることができるので、低温での焼結性が良好な銀粒子粉末の分散液が得られる。この分散液は粒子個々が単分散している単分散率が高いので特にインクジェット法による配線形成や塗布による薄膜形成に適している。   Since the silver particle powder obtained by the method of the present invention is a nanoparticle, it can be well dispersed in a liquid organic medium having low polarity, so that a dispersion of silver particle powder having good sinterability at low temperatures can be obtained. . Since this dispersion liquid has a high monodispersion ratio in which particles are monodispersed, it is particularly suitable for forming a wiring by an ink jet method or forming a thin film by coating.

本発明者は液相法で銀の粒子粉末を製造する試験を重ねてきたが、沸点が85〜150℃のアルコール中で、硝酸銀を、85〜150℃の温度で(蒸発したアルコールを液相に還流させながら)、例えば分子量100〜400のアミン化合物からなる保護剤の共存下で還元処理すると、粒径の揃った球状の銀のナノ粒子粉末が得られることを知見し、特願2005−26805号明細書および図面に記載した。また、沸点が85℃以上のアルコールまたはポリオール中で、銀化合物(代表的には炭酸銀または酸化銀)を、85℃以上の温度で、例えば分子量100〜400の脂肪酸からなる保護剤の共存下で還元処理すると、腐食性化合物の少ない粒径の揃った球状の銀の粒子粉末が得ることを知見し、特願2005−26866号明細書および図面に記載した。さらに、沸点が85〜150℃のアルコール中で硝酸銀を、85℃以上の温度で有機保護剤(分子量100〜1000の脂肪酸またはアミン化合物)の存在下で還元処理する際、極性抑制剤として沸点85℃以上の炭化水素類を入れておくと、高度に分散可能な銀粒子粉末が高い収率で得られることを知見し、この発明を特願2005−56035号明細書および図面に記載した。   The present inventor has repeatedly conducted tests for producing silver particle powder by a liquid phase method. In an alcohol having a boiling point of 85 to 150 ° C., silver nitrate is heated at a temperature of 85 to 150 ° C. (evaporated alcohol is liquid phase). For example, when a reduction treatment is performed in the presence of a protective agent composed of an amine compound having a molecular weight of 100 to 400, a spherical silver nanoparticle powder having a uniform particle size can be obtained. This is described in the specification of No. 26805 and the drawings. Further, in an alcohol or polyol having a boiling point of 85 ° C. or higher, a silver compound (typically silver carbonate or silver oxide) is mixed with a protective agent comprising a fatty acid having a molecular weight of 100 to 400, for example, at a temperature of 85 ° C. or higher. It was found that when the reduction treatment was performed, spherical silver particle powder having a uniform particle size with few corrosive compounds was obtained and described in Japanese Patent Application No. 2005-26866 and drawings. Furthermore, when reducing the silver nitrate in alcohol having a boiling point of 85 to 150 ° C. in the presence of an organic protective agent (fatty acid or amine compound having a molecular weight of 100 to 1000) at a temperature of 85 ° C. or higher, a boiling point of 85 as a polar inhibitor. It has been found that high-dispersible silver particle powder can be obtained in a high yield when hydrocarbons at ℃ or higher are added, and this invention is described in Japanese Patent Application No. 2005-56035 and drawings.

いずれの場合にも、その銀粒子粉末を非極性もしくは極性の小さな液状有機媒体に分散させることによって銀粒子の分散液を得ることができ、この分散液から遠心分離等で粗粒子を除くと粒径のバラツキの少ない(CV値=標準偏差σ/個数平均粒子の百分率が40%未満の)銀粒子が単分散した分散液を得ることができる。   In either case, a dispersion of silver particles can be obtained by dispersing the silver particle powder in a non-polar or small polar liquid organic medium. When coarse particles are removed from the dispersion by centrifugation or the like, A dispersion in which silver particles having a small variation in diameter (CV value = standard deviation σ / percentage of number average particles is less than 40%) are monodispersed can be obtained.

しかし、これら方法では、反応温度を高くすると、液中の銀イオンが効率よく還元されるが、粒子の焼結が起こって粗粒子化し、目的とする50nm以下の銀粒子粉末が得られ難くなり、反面、反応温度を低くすれば焼結は抑制できるが、液中の銀イオンの還元効率が低下してしまって収率が下がる等のことから、効率よく目的とする50nm以下の銀粒子粉末の作製を行うにはさらなる改善を必要とした。この問題に対し、有機保護剤として用いるアミン化合物量を増やすと、単分散率は向上するが還元率が低下し、結果的に収率が低下するという問題が起きた。単分散率が低いことは、焼結した粒子や強固に凝集した銀粒子が多いことを意味するので、更なる単分散率向上のための改善を必要とした。   However, in these methods, when the reaction temperature is increased, silver ions in the liquid are efficiently reduced, but the particles are sintered and coarsened, making it difficult to obtain the desired silver particle powder of 50 nm or less. On the other hand, if the reaction temperature is lowered, sintering can be suppressed, but the reduction efficiency of silver ions in the liquid is reduced, resulting in a decrease in yield. Further improvements were required to make the. In contrast to this problem, when the amount of the amine compound used as the organic protective agent is increased, the monodispersion rate is improved, but the reduction rate is lowered, and as a result, the yield is lowered. Since the low monodispersion rate means that there are many sintered particles and strongly agglomerated silver particles, further improvement for improving the monodispersion rate was required.

この課題に対し、鋭意研究を進めた結果、前記の還元反応において還元補助剤として2級アミンおよび/または3級アミンを共存させると高い還元率を維持した反応を実現でき且つ極性の低い液状有機媒体に高い単分散率で分散する銀粒子粉末が得られることを知見した。特に、この還元補助剤は還元反応の終了近くで添加するのがよく、還元補助剤の添加量は対Agのモル比で0.1〜20の範囲であるのがよい。   As a result of diligent research on this problem, a liquid organic compound having a low polarity and capable of realizing a reaction maintaining a high reduction rate when a secondary amine and / or a tertiary amine coexist as a reduction auxiliary agent in the above reduction reaction. It was found that a silver particle powder dispersed in a medium at a high monodispersity can be obtained. In particular, this reduction aid is preferably added near the end of the reduction reaction, and the addition amount of the reduction aid is preferably in the range of 0.1 to 20 in terms of the molar ratio of Ag to Ag.

以下に本発明法の詳細を述べる。   Details of the method of the present invention will be described below.

本発明法は、沸点が80℃〜150℃のアルコールまたは沸点が150〜300℃のポリオール中で、銀化合物(各種の銀塩や銀酸化物等)を、有機保護剤の共存下で85℃〜150℃の温度で還元処理することによって銀粒子粉末を製造する際に、還元補助剤をAgモル比で0.1〜20の範囲で添加して製造する点に特徴がある。   In the method of the present invention, a silver compound (various silver salts, silver oxides, etc.) is added at 85 ° C. in the presence of an organic protective agent in an alcohol having a boiling point of 80 ° C. to 150 ° C. or a polyol having a boiling point of 150 to 300 ° C. When the silver particle powder is produced by reduction treatment at a temperature of ˜150 ° C., it is characterized in that it is produced by adding a reducing aid in the range of 0.1 to 20 in terms of Ag molar ratio.

沸点が80℃〜150℃のアルコールまたは150〜300℃のポリオールは銀化合物の還元剤としてまた反応媒体として機能するものである。反応媒体兼還元剤であるアルコールとしては、イソブタノール、1−ブタノール、2−プロパノール、1−ヘキサノール、エタノールなどが挙げられる。還元反応は加熱下でこの反応媒体兼還元剤の蒸発と凝縮を繰り返す還流条件下で行なわせるのがよい。使用する銀イオン原料(各種銀塩、銀化合物)としては、塩化銀、硝酸銀、酸化銀、炭酸銀などがあるが、工業的観点から硝酸銀が好ましいが、硝酸銀に限定するものではない。本発明法では反応時の液中のAgイオン濃度は50mmol/L以上、好ましくは0.05〜5.0モル/Lで行うことができる。有機保護剤/Agのモル比については0.05〜5.0の範囲、還元補助剤/Agのモル比については0.1〜20の範囲、アルコールまたはポリオール/Agのモル比については0.5〜50の範囲であるのがよい。   An alcohol having a boiling point of 80 ° C. to 150 ° C. or a polyol having a boiling point of 150 to 300 ° C. functions as a reducing agent for the silver compound and as a reaction medium. Examples of the alcohol that is the reaction medium and reducing agent include isobutanol, 1-butanol, 2-propanol, 1-hexanol, ethanol, and the like. The reduction reaction is preferably performed under reflux conditions in which the reaction medium / reducing agent is repeatedly evaporated and condensed under heating. Silver ion raw materials (various silver salts and silver compounds) to be used include silver chloride, silver nitrate, silver oxide, and silver carbonate. Silver nitrate is preferred from an industrial viewpoint, but is not limited to silver nitrate. In the method of the present invention, the Ag ion concentration in the solution during the reaction can be 50 mmol / L or more, preferably 0.05 to 5.0 mol / L. The organic protective agent / Ag molar ratio is in the range of 0.05 to 5.0, the reducing auxiliary agent / Ag molar ratio is in the range of 0.1-20, and the alcohol or polyol / Ag molar ratio is 0.00. It is good to be in the range of 5-50.

有機保護剤としては、分子量100〜1000の脂肪酸またはアミン化合物を使用することができる。脂肪酸では、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などが挙げられる。アミノ化合物では、エチルアミン、アリルアミン、イソプロピルアミン、プロピルアミン、エチレンジアミン、2−アミノエタノール、2−ブタンアミン、n−ブチルアミン、t−ブチルアミン、3−ヒドロキシプロピルアミン、3−(メチルアミノ)プロピルアミン、3−メトキシプロピルアミン、シクロヘキシルアミン、ヘキシルアミン、3−(ジメチルアミノ)プロピルアミン、ヘキサノールアミン、ピペラジン、ベンジルアミン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、1、6−ヘキサジアミン、ヘキサメチレンジアミン、2−メチル−1、3−フェニレンジアミン、トリレン−3、4−ジアミン、アニシジン、2−エチルヘキシルアミン、M−キシレン−α α’ジアミン、キシリレンジアミン、トルイジン、3−(2−エチルヘキシルオキシ)プロピルアミン、オレイルアミンなどが挙げられる。   As the organic protective agent, a fatty acid having a molecular weight of 100 to 1000 or an amine compound can be used. Examples of fatty acids include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, arachidonic acid and the like. As amino compounds, ethylamine, allylamine, isopropylamine, propylamine, ethylenediamine, 2-aminoethanol, 2-butaneamine, n-butylamine, t-butylamine, 3-hydroxypropylamine, 3- (methylamino) propylamine, 3- Methoxypropylamine, cyclohexylamine, hexylamine, 3- (dimethylamino) propylamine, hexanolamine, piperazine, benzylamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 1,6-hexadiamine, hexa Methylenediamine, 2-methyl-1,3-phenylenediamine, tolylene-3,4-diamine, anisidine, 2-ethylhexylamine, M-xylene-αα'diamine, xylylenediamine , Toluidine, 3- (2-ethylhexyl oxy) propylamine, etc. oleylamine and the like.

有機保護剤としてのこれらは単独で使用しても良く、2種以上を併用しても良い。特に銀に配位性の金属配位性化合物であるのが良い。銀に配位性がないか又は低い化合物を使用した場合、銀ナノ粒子を作成するのに大量の保護剤が必要となり実用的でない。アミン化合物の中でも第1級アミンが好ましい。アミン化合物は、分子量が100〜1000のものであるのがよく、分子量が100未満のものでは粒子の凝集抑制効果が低く、分子量が1000を超えるものでは凝集抑制力は高くても銀粉末の分散液を塗布して焼成するときに粒子間の焼結を阻害して配線の抵抗が高くなってしまい、場合によっては、導電性をもたなくなることもある。第1級アミンがより好ましく、さらに好ましくは1分子中に1個以上の不飽和結合を有するアミノ化合物が好ましい。これらの中でも特にオレイルアミンが好ましい。   These as an organic protective agent may be used independently and may use 2 or more types together. In particular, a metal coordinating compound coordinated with silver is preferable. When a compound having no or low coordination property is used for silver, a large amount of protective agent is required to produce silver nanoparticles, which is not practical. Of the amine compounds, primary amines are preferred. The amine compound should have a molecular weight of 100 to 1000. If the molecular weight is less than 100, the effect of suppressing aggregation of particles is low. If the molecular weight exceeds 1000, the dispersion of silver powder is high even if the aggregation suppression power is high. When the liquid is applied and fired, sintering between the particles is hindered and the resistance of the wiring is increased, and in some cases, the electric conductivity may be lost. Primary amines are more preferable, and amino compounds having one or more unsaturated bonds in one molecule are more preferable. Among these, oleylamine is particularly preferable.

還元補助剤としては、分子量100〜1000のアミン化合物を使用することができ、例えばジイソプロピルアミン、ジエチレントリアミン、N−(2−アミノエチル)エタノールアミン、ジエタノールアミン、ビス(2−シアノエチル)アミン、イミノビス(プロピルアミン)、N−nブチルアニリン、ジフェニルアミン、ジ−2−エチルヘキシルアミン、ジオクチルアミン、トリメチルアミン、ジメチルエチルアミン、ジメチルエチルアミン、N−ニトロソジメチルアミン、2−ジメチルアミノエタノール、ジメチルアミノエタノール、トリエチルアミン、テトラメチルエチレンジアミン、ジエチルエタノールアミン、メチルジエタノールアミン、トリアリルアミン、N−メチル−3、3’−イミノビス(プロピルアミン)、トリエタノールアミン、N、N−ジブチルエタノールアミン、3−(ジブチルアミノ)プロピルアミン、N−ニトロソジフェニルアミン、トリフェニルアミン、トリ−n−オクチルアミンなどが挙げられる。   As the reduction aid, an amine compound having a molecular weight of 100 to 1000 can be used. For example, diisopropylamine, diethylenetriamine, N- (2-aminoethyl) ethanolamine, diethanolamine, bis (2-cyanoethyl) amine, iminobis (propyl). Amine), Nnbutylaniline, diphenylamine, di-2-ethylhexylamine, dioctylamine, trimethylamine, dimethylethylamine, dimethylethylamine, N-nitrosodimethylamine, 2-dimethylaminoethanol, dimethylaminoethanol, triethylamine, tetramethylethylenediamine , Diethylethanolamine, methyldiethanolamine, triallylamine, N-methyl-3,3′-iminobis (propylamine), triethanol Triethanolamine, N, N- dibutyl ethanolamine, 3- (dibutylamino) propylamine, N- nitrosodiphenylamine, triphenylamine, tri -n- octyl amine.

還元補助剤としてのこれらのアミン化合物は単独で使用しても良く、2種以上を併用しても良い。還元補助剤についても有機保護剤と同様、分子量が100未満のものでは粒子の凝集抑制効果が低く、分子量が1000を超えるものでは凝集抑制力は高くても銀粉末の分散液を塗布して焼成するときに粒子間の焼結を阻害して配線の抵抗が高くなってしまい、場合によっては、導電性をもたなくなることもあるので、分子量100〜1000のアミン化合物を使用するのがよい。アミン化合物の中でも還元力の強い第2級、第3級アミンが良く、これらのうちジエタノールアミン、トリエタノールアミンを用いるのが特に好ましい。   These amine compounds as a reducing aid may be used alone or in combination of two or more. Similarly to the organic protective agent, the reduction auxiliary agent has a low particle aggregation inhibiting effect when the molecular weight is less than 100, and when the molecular weight exceeds 1000, the silver powder dispersion is applied and baked even if the aggregation inhibiting force is high. In this case, the sintering of the particles is hindered to increase the resistance of the wiring, and in some cases, the conductivity may be lost. Therefore, an amine compound having a molecular weight of 100 to 1000 is preferably used. Among amine compounds, secondary and tertiary amines having strong reducing power are good, and among these, diethanolamine and triethanolamine are particularly preferable.

別法として、1級アミン中で、銀塩を、2級アミンまたは3級アミンの一方または両方の共存下で且つ温度80〜200℃の範囲で還元処理することによって、極性の低い液状有機媒体への分散性の優れた銀粒子粉末を製造することもできる。この場合には、沸点が前記方法の80℃〜150℃のアルコールまたは沸点が150〜300℃のポリオールに代えて、1級アミンを銀イオンの反応媒体兼還元剤として使用するものであり、使用する1級アミン、2級アミン、3級アミンは、前掲のものを使用することができる。   Alternatively, a liquid organic medium having a low polarity can be obtained by reducing the silver salt in a primary amine in the presence of one or both of a secondary amine and a tertiary amine and at a temperature in the range of 80 to 200 ° C. It is also possible to produce a silver particle powder having excellent dispersibility. In this case, instead of the alcohol having a boiling point of 80 ° C. to 150 ° C. or a polyol having a boiling point of 150 to 300 ° C., a primary amine is used as a silver ion reaction medium and reducing agent. As the primary amine, secondary amine, and tertiary amine to be used, those described above can be used.

いずれにしても、本発明法で得られる銀粒子粉末は好ましくは平均粒径DTEMが50nm以下であることができ、結晶粒子径DXは50nm以下、単結晶化度((DTEM)/(DX50))は好ましくは2.0以下である。 In any case, the silver particle powder obtained by the method of the present invention can preferably have an average particle diameter D TEM of 50 nm or less, a crystal particle diameter D X of 50 nm or less, and a single crystallinity ((D TEM ) / (D X 50)) is preferably 2.0 or less.

また、本発明法によると前記の有機保護剤で覆われたナノ銀粒子粉末が得られ、この有機保護剤で覆われたナノ銀粒子粉末は極性の低い液状有機媒体に対して非常に分散性が優れる。ここで、極性の低い液状有機媒体とは、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体を意味し、「非極性もしくは極性の小さい」というのは25℃での比誘電率が15以下であることを指す。より好ましく5以下のものを指す。比誘電率が15を超える場合、銀粒子の分散性が悪化し沈降することがあり、好ましくない。分散液の用途に応じて各種の液状有機媒体が使用できるが、炭化水素系が好適に使用でき、とくに、イソオクタン、n−デカン、イソドデカン、イソヘキサン、n−ウンデカン、n−テトラデカン、n−ドデカン、トリデカン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、デカリン、テトラリン等の芳香族炭化水素等が使用できる。これらの液状有機媒体は1種類または2種類以上を使用することができ、ケロシンのような混合物であっても良い。更に、極性を調整するために、混合後の液状有機媒体の25℃での比誘電率が15以下となる範囲でアルコール系、ケトン系、エーテル系、エステル系等の極性有機媒体を添加しても良い。   In addition, according to the method of the present invention, nano silver particle powder covered with the organic protective agent is obtained, and the nano silver particle powder covered with the organic protective agent is very dispersible in a liquid organic medium having low polarity. Is excellent. Here, the low-polarity liquid organic medium means a non-polar or low-polarity liquid organic medium having a boiling point of 60 to 300 ° C., and “non-polar or low-polarity” means a relative dielectric constant at 25 ° C. Is 15 or less. More preferably 5 or less. When the relative dielectric constant exceeds 15, the dispersibility of silver particles may deteriorate and settle, which is not preferable. Various liquid organic media can be used depending on the use of the dispersion, but hydrocarbons can be preferably used, in particular, isooctane, n-decane, isododecane, isohexane, n-undecane, n-tetradecane, n-dodecane, Aliphatic hydrocarbons such as tridecane, hexane and heptane, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, decalin and tetralin can be used. These liquid organic media may be used alone or in combination of two or more, and may be a mixture such as kerosene. Further, in order to adjust the polarity, polar organic media such as alcohols, ketones, ethers, esters, etc. are added within a range where the relative permittivity at 25 ° C. of the mixed liquid organic media is 15 or less. Also good.

このような液状有機媒体に本発明の銀粒子粉末を分散させてなる分散液は、高沸点のバインダー等を含んでおらず、強熱減量(300℃熱処理時の減量−1000℃熱処理時の減量)が分散液の5%以内である銀粒子粉末分散液となり得る。
この分散液は、
pH:6.5以上
分散液中の銀濃度:5〜90wt%、
粘度:50mPa・s以下、
表面張力:80mN/m以下
のニュートン流体としての性質を有することができる。また、この分散液は、液中の銀粒子粉末の平均粒径+20nmの孔径を有するメンブランフィルターを通過するほどの良好な分散性を具備できる。
The dispersion obtained by dispersing the silver particle powder of the present invention in such a liquid organic medium does not contain a high-boiling binder or the like, and is reduced in ignition (reduction in heat treatment at 300 ° C.−reduction in heat treatment at 1000 ° C. ) Can be a silver particle powder dispersion with 5% or less of the dispersion.
This dispersion is
pH: 6.5 or more Silver concentration in the dispersion: 5-90 wt%,
Viscosity: 50 mPa · s or less,
Surface tension: It can have properties as a Newtonian fluid of 80 mN / m or less. Moreover, this dispersion liquid can have the dispersibility so favorable that it passes the membrane filter which has the average particle diameter of the silver particle powder in a liquid + the hole diameter of 20 nm.

以下に本発明で用いている用語を説明する。
〔還元率〕
還元率とは、反応開始時に仕込んだ銀の重量(a)に対する還元反応終了時に銀ナノ粒子として生成した銀の重量(b)を次式によって表したものである。
還元率(%)=(b/a)×100
The terms used in the present invention will be described below.
[Reduction rate]
The reduction ratio is the weight (b) of silver produced as silver nanoparticles at the end of the reduction reaction with respect to the weight (a) of silver charged at the start of the reaction, expressed by the following formula.
Reduction rate (%) = (b / a) × 100

〔単分散率〕
単分散率とは、還元反応によって得られた銀ナノ粒子の銀量(b)に対する分散液中の銀ナノ粒子の重量(c)を次式によって表したものである。
単分散率(%)=(c/b)×100
[Monodispersion]
The monodispersion rate represents the weight (c) of the silver nanoparticles in the dispersion with respect to the silver amount (b) of the silver nanoparticles obtained by the reduction reaction, by the following formula.
Monodispersion rate (%) = (c / b) × 100

〔収率〕
収率とは、還元率と単分散率を積算したもので、反応開始時に仕込んだ銀の重量(a)に対する分散液中の銀ナノ粒子の重量(c)を意味し、次式で表される。
収率(%)=還元率(%)×単分散率(%)×100
=(b/a)×(c/b)×100
=(c/a)×100
〔yield〕
The yield is the sum of the reduction rate and the monodispersion rate, and means the weight (c) of silver nanoparticles in the dispersion relative to the weight of silver (a) charged at the start of the reaction. The
Yield (%) = reduction rate (%) × monodispersion rate (%) × 100
= (B / a) x (c / b) x 100
= (C / a) x 100

還元反応終了時に銀粒子として生成した銀の重量(b)および単分散液中の銀ナノ粒子の重量(c)については、次の洗浄、分散および分級工程を経て、下記の手順によって算出する。   The weight (b) of silver produced as silver particles at the end of the reduction reaction and the weight (c) of silver nanoparticles in the monodispersed liquid are calculated by the following procedure through the following washing, dispersion, and classification steps.

洗浄工程:
(1) 反応後のスラリー40mLを日立工機(株)製の遠心分離器CF7D2を用い、3000rpmで30分固液分離を実施し、上澄みを廃棄する。
(2) 沈殿物にメタノール40mLを加えて超音波分散機で分散させる。
(3) 前記の(1) →(2) を3回繰り返す。
(4) 前記の(1) を実施して上澄み廃棄し沈殿物を得る。
Cleaning process:
(1) Using a centrifuge CF7D2 manufactured by Hitachi Koki Co., Ltd., 40 mL of the slurry after the reaction is subjected to solid-liquid separation at 3000 rpm for 30 minutes, and the supernatant is discarded.
(2) Add 40 mL of methanol to the precipitate and disperse with an ultrasonic disperser.
(3) Repeat (1) → (2) above three times.
(4) Carry out the above (1) and discard the supernatant to obtain a precipitate.

分散工程:
(1) 前記の洗浄工程を得た沈殿物にケロシン(沸点180〜270℃)を40mL添加する。
(2) 次いで超音波分散機にかける。
Dispersion process:
(1) 40 mL of kerosene (boiling point 180-270 ° C.) is added to the precipitate obtained from the washing step.
(2) Then apply to an ultrasonic disperser.

分級工程:
(1) 分散工程を経た銀粒子とケロシンの混濁液40mLを前記と同様の遠心分離器を用い、3000rpmで30分間固液分離を実施する。
(2) 上澄み液を回収する。この上澄み液が最終的な銀粒子粉末分散液となる。この重量をdとする。
Classification process:
(1) Using a centrifuge similar to the above, 40 mL of a turbid solution of silver particles and kerosene that has undergone the dispersion step is subjected to solid-liquid separation at 3000 rpm for 30 minutes.
(2) Collect the supernatant. This supernatant becomes the final silver particle powder dispersion. Let this weight be d.

還元反応終了時に銀ナノ粒子として生成した銀の重量の算出法:
(1) 反応終了時、得られた全スラリー重量(e)、および前記洗浄工程で分取したスラリー40mlの重量(f)を測定する。
(2) 前記の洗浄工程で得られた沈殿物を重量既知の容器に入れ、yamato科学(株)製の角型真空乾燥機ADP−200を用いて200℃で12時間真空乾燥する。
(3) 室温まで冷却した後に真空乾燥機より取り出して重量を測定する。
(4) 前記(3) の重量から容器重量を減じて、反応後のスラリー40mLに含まれる銀ナノ粒子として生成した銀の重量(g)が得られる。
(5) 還元反応終了時に銀ナノ粒子として生成した銀の質量(b)は、以下の式によって算出することができる。
b=(g/f)×e
Method for calculating the weight of silver produced as silver nanoparticles at the end of the reduction reaction:
(1) At the end of the reaction, the total slurry weight (e) obtained and the weight (f) of 40 ml of the slurry fractionated in the washing step are measured.
(2) The precipitate obtained in the above washing step is put in a container of known weight and vacuum dried at 200 ° C. for 12 hours using a square vacuum dryer ADP-200 manufactured by Yamato Scientific Co., Ltd.
(3) After cooling to room temperature, remove from the vacuum dryer and measure the weight.
(4) By subtracting the container weight from the weight of (3), the weight (g) of silver produced as silver nanoparticles contained in 40 mL of the slurry after the reaction can be obtained.
(5) The mass (b) of silver produced as silver nanoparticles at the end of the reduction reaction can be calculated by the following equation.
b = (g / f) × e

銀粒子粉末分散液中の銀粒子粉末濃度の算出法:
(1) 前記の分級工程で得られた銀粒子粉末分散液を、重量既知の容器に移す。
(2) 真空乾燥機に該容器をセットして突沸しないように十分注意しながら真空度と温度を上げて濃縮・乾燥を行い、液体が観察されなくなってから、真空状態240℃で12時間乾燥を行う。
(3) 室温まで冷却した後に真空乾燥機より取り出して重量を測定する。
(4) 前記(3) の重量から容器重量を減じて銀粒子粉末分散液中の銀粒子の重量(h)を求める。
(5)分散液中の銀粒子濃度を次式から求める。
h/d×100
また、単分散率c/b×100は、以下の式で置き換えられる。
c/b×100=h/g×100
よって、分散液中の銀ナノ粒子の重量(c)は次式で求められる。
c=b×h/g
Calculation method of silver particle powder concentration in silver particle powder dispersion:
(1) Transfer the silver particle powder dispersion obtained in the classification step to a container of known weight.
(2) Set up the container in a vacuum dryer and increase the degree of vacuum and temperature while paying careful attention to prevent bumping. Concentrate and dry, and after the liquid is no longer observed, dry at 240 ° C in vacuum for 12 hours I do.
(3) After cooling to room temperature, remove from the vacuum dryer and measure the weight.
(4) The container weight is subtracted from the weight of (3) to determine the weight (h) of silver particles in the silver particle powder dispersion.
(5) The silver particle concentration in the dispersion is determined from the following equation.
h / d × 100
The monodispersion rate c / b × 100 is replaced by the following formula.
c / b × 100 = h / g × 100
Therefore, the weight (c) of the silver nanoparticles in the dispersion is obtained by the following formula.
c = b × h / g

〔平均粒径DTEM
本発明で得られる銀粒子粉末は、TEM(透過電子顕微鏡)観察により測定される平均粒径(DTEMと記す)が200nm以下、好ましくは100nm以下、さらに好ましくは50nm以下、さらに好ましくは30nm以下、場合によっては20nm以下である。このため、本発明の銀粒子粉末分散液は微細な配線を形成するのに適する。TEM観察では60万倍に拡大した画像から重なっていない独立した粒子300個の径を測定して平均値を求める。
[Average particle diameter D TEM ]
Silver particle powder obtained in the present invention, TEM (referred to as D TEM) average particle size measured by (transmission electron microscope) observation 200nm or less, preferably 100nm or less, more preferably 50nm or less, more preferably 30nm or less In some cases, it is 20 nm or less. For this reason, the silver particle powder dispersion of the present invention is suitable for forming fine wiring. In TEM observation, the average value is obtained by measuring the diameter of 300 independent particles that are not overlapped from an image magnified 600,000 times.

〔X線結晶粒径DX
本発明の銀粒子粉末は、結晶粒子径(DXと記す)が50nm以下である。銀粒子粉末のX線結晶粒径はX線回折結果から Scherrer の式を用いて求めることができる。その求め方は、次のとおりである。
Scherrer の式は、次の一般式で表現される。
X=K・λ/β COSθ
式中、K:Scherrer定数、DX:結晶粒子径、λ:測定X線波長、β:X線回折で得られたピークの半価幅、θ:回折線のブラッグ角をそれぞれ表す。Kは0.94の値を採用し、X線の管球はCuを用いると、前式は下式のように書き換えられる。
X=0.94×1.5405/β COSθ
[X-ray crystal grain size D X ]
The silver particle powder of the present invention has a crystal particle diameter (denoted as D X ) of 50 nm or less. The X-ray crystal grain size of the silver particle powder can be determined from the X-ray diffraction result using the Scherrer equation. How to find it is as follows.
Scherrer's formula is expressed by the following general formula.
D X = K · λ / β COSθ
In the formula, K: Scherrer constant, D X : crystal particle diameter, λ: measured X-ray wavelength, β: half width of peak obtained by X-ray diffraction, θ: Bragg angle of diffraction line. If K adopts a value of 0.94 and the X-ray tube uses Cu, the previous equation can be rewritten as the following equation.
D X = 0.94 × 1.5405 / β COSθ

〔単結晶化度〕
本発明の銀粒子粉末は単結晶化度(DTEM/ DX)が2.0以下である。このため、緻密な配線を形成でき、耐マイグレーション性も優れている。単結晶化度が2.0より大きくなると、多結晶化度が高くなって多結晶粒子間に不純物を含み易くなり、焼成時にポアが生じ易くなり、緻密な配線を形成できなくなるので、好ましくない。また、多結晶粒子間の不純物のために耐マイグレーション性も低下する
[Single crystallinity]
The silver particle powder of the present invention has a single crystallinity (D TEM / D X ) of 2.0 or less. For this reason, dense wiring can be formed, and migration resistance is also excellent. If the single crystallinity is larger than 2.0, the degree of polycrystallinity is high, and impurities are easily contained between the polycrystalline particles, and pores are easily generated during firing, so that it is impossible to form a dense wiring. . Also, migration resistance decreases due to impurities between polycrystalline grains

〔粘度〕
本発明に従う銀粒子粉末を液状有機媒体に分散させた分散液はニュートン流体であり、温度25℃における粘度が50mPa・s以下である。このため、本発明の銀粒子分散液はインクジェット法による配線形成用材料として好適である。インクジェット法で配線形成を行う場合には、配線の平坦性を維持するために基板上に着弾する液滴の量的な均一性が求められるが、本発明の銀粒子分散液はニュートン流体で且つ粘度が50mPa・s以下であるために、ノズル詰まりなく円滑な液滴の吐出ができるので、この要求を満たすことができる。粘度測定は、東機産業株式会社製のR550形粘度計RE550Lにコーンロータ0.8°のものを取り付け、25℃の恒温にて行うことができる。
〔viscosity〕
A dispersion obtained by dispersing silver particle powder according to the present invention in a liquid organic medium is a Newtonian fluid, and has a viscosity of 50 mPa · s or less at a temperature of 25 ° C. For this reason, the silver particle dispersion liquid of the present invention is suitable as a wiring forming material by an ink jet method. When wiring is formed by the ink jet method, the uniformity of the amount of droplets that land on the substrate is required to maintain the flatness of the wiring, but the silver particle dispersion of the present invention is a Newtonian fluid and Since the viscosity is 50 mPa · s or less, the liquid droplets can be smoothly discharged without clogging the nozzle, so that this requirement can be satisfied. Viscosity can be measured at a constant temperature of 25 ° C. with a cone rotor of 0.8 ° attached to an R550 viscometer RE550L manufactured by Toki Sangyo Co., Ltd.

〔表面張力〕
本発明の銀粒子分散液は25℃での表面張力が80mN/m以下である。このためインクジェット法による配線形成用材料として好適である。表面張力の大きい分散液ではノズル先端でのメニスカスの形状が安定しないので吐出量や吐出タイミングの制御が困難になり、基板上に着弾した液滴の濡れが悪く、配線の平坦性が劣る結果となるが、本発明の銀粒子分散液は表面張力が80mN/m以下であるから、このようなことがなく、品質のよい配線ができる。表面張力の測定は、協和界面科学株式会社製のCBVP-Zを使用し、25℃の恒温にて測定できる。
〔surface tension〕
The silver particle dispersion of the present invention has a surface tension at 25 ° C. of 80 mN / m or less. For this reason, it is suitable as a wiring forming material by the ink jet method. In the dispersion liquid with large surface tension, the shape of the meniscus at the nozzle tip is not stable, so it becomes difficult to control the discharge amount and discharge timing, the wetted droplets landing on the substrate are poor, and the flatness of the wiring is poor. However, since the silver particle dispersion of the present invention has a surface tension of 80 mN / m or less, such a situation does not occur and a high-quality wiring can be obtained. The surface tension can be measured at a constant temperature of 25 ° C. using CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.

〔メンブランフィルターの通過径〕
本発明の銀粒子の分散液は銀粒子粉末の平均粒径(DTEM)+20nmの孔径を有するメンブランフィルターを通過する。銀粒子の平均粒径DTEMより20nmだけ大きい孔径を通過するのであるから、その分散液中の銀粒子は凝集することなく、個々の粒子ごとに液中に流動できる状態にあること、すなわちほぼ完全に単分散していることを意味する。このことも、本発明の銀粒子の分散液はインクジェット法による配線形成用材料として極めて好適である。粒子が凝集した部分があると、ノズル詰まりが起きやすいばかりでなく、形成される配線の充填性が悪くなって焼成時にポアが発生して高抵抗化や断線の原因となるが、このようなことが本発明の分散液では回避できる。メンブランフィルター通過試験において、最も孔径が小さいフィルターとして、Whatman社製アノトッププラス25シリンジフィルタ(孔径20nm)を使用できる。
[Passing diameter of membrane filter]
The dispersion of silver particles of the present invention passes through a membrane filter having a mean particle diameter (D TEM ) of silver particle powder + 20 nm. Since the average particle diameter D of the silver particles passes through a pore size that is 20 nm larger than the TEM , the silver particles in the dispersion are in a state of being able to flow into the liquid for each individual particle without agglomeration. It means completely monodispersed. Again, the silver particle dispersion of the present invention is extremely suitable as a wiring forming material by the ink jet method. If there is a part where the particles are aggregated, not only nozzle clogging is likely to occur, but the filling property of the formed wiring deteriorates and pores are generated during firing, leading to high resistance and disconnection. This can be avoided with the dispersion of the invention. In the membrane filter passage test, Whatman Anotop Plus 25 syringe filter (pore diameter 20 nm) can be used as the filter having the smallest pore diameter.

〔pH〕
本発明の銀粒子分散液はpH(水素イオン濃度)が6.5以上である。このため、配線形成用材料としたときに回路基板上の銅箔を腐食させることがなく、また配線間でのマイグレーションが起こり難いという特徴がある。当該分散液のpHの測定は、HORIBA株式会社製pHメーターD−55Tと、低導電性水・非水溶媒用pH電極6377−10Dを用いて行うことができる。この方法で測定した分散液のpHが6.5未満の場合には、酸成分による回路基板上の銅箔腐食を起こし、また配線間でのマイグレーションが起こり易くなり、回路の信頼性が低下する。
[PH]
The silver particle dispersion of the present invention has a pH (hydrogen ion concentration) of 6.5 or more. For this reason, when used as a wiring forming material, the copper foil on the circuit board is not corroded and migration between wirings hardly occurs. The pH of the dispersion can be measured using a pH meter D-55T manufactured by HORIBA Ltd. and a pH electrode 6377-10D for low conductivity water / non-aqueous solvent. When the pH of the dispersion measured by this method is less than 6.5, corrosion of the copper foil on the circuit board due to the acid component occurs, and migration between the wirings easily occurs, and the reliability of the circuit decreases. .

〔強熱減量〕
銀粒子分散液の強熱減量(%)は次の式で示される値をいう。
強熱減量(%)=100×〔(W50−W300)/W50−(W50−W1000)/W50
ここで、W50、W300およびW1000は、温度が50℃、300℃および1000℃における分散液の重量を表す。
本発明の銀粒子分散液の強熱減量は5%未満である。強熱減量が5%未満であるから、配線を焼成する際に有機保護剤が短時間で燃焼して、焼結を抑制することがなく、良好な導電性を有する配線が得られる。強熱減量が5%以上であると、焼成時に有機保護剤が焼結抑制剤として働き、配線の抵抗が高くなってしまい、場合によっては導電性を阻害するので好ましくない。
[Loss on ignition]
The ignition loss (%) of the silver particle dispersion is a value represented by the following formula.
Loss on ignition (%) = 100 × [(W 50 −W 300 ) / W 50 − (W 50 −W 1000 ) / W 50 ]
Here, W 50 , W 300 and W 1000 represent the weight of the dispersion at temperatures of 50 ° C., 300 ° C. and 1000 ° C.
The loss on ignition of the silver particle dispersion of the present invention is less than 5%. Since the loss on ignition is less than 5%, the organic protective agent burns in a short time when the wiring is fired, and the wiring having good conductivity is obtained without suppressing the sintering. When the ignition loss is 5% or more, the organic protective agent acts as a sintering inhibitor during firing, and the resistance of the wiring becomes high.

強熱減量はマックサイエンス/ブルカーエイエックス社製TG−DTA2000型測定器により、以下の測定条件で測定できる。
試料重量20±1mg、
昇温速度10℃/min、
雰囲気:大気(通気なし)、
標準試料:アルミナ20.0mg、
測定皿:株式会社理学製アルミナ測定皿、
温度範囲:50℃〜1000℃。
The ignition loss can be measured with a TG-DTA2000 type measuring instrument manufactured by Mac Science / Bruker Ax Co. under the following measurement conditions.
Sample weight 20 ± 1 mg,
Temperature rising rate 10 ° C / min,
Atmosphere: air (no ventilation),
Standard sample: 20.0 mg of alumina,
Measuring dish: Alumina measuring dish manufactured by Rigaku Corporation
Temperature range: 50 ° C to 1000 ° C.

本発明で得られる銀粒子粉末は、LSI基板の配線やFPD(フラットパネルディスプレイ)の電極、配線用途、さらには微細なトレンチ、ビアホール、コンタクトホールの埋め込みなど等の配線形成材料としても好適である。車の塗装などの色材としても適用でき、医療・診断・バイオテクノロジー分野において生化学物質等を吸着させるキャリヤーにも適用できる。   The silver particle powder obtained by the present invention is also suitable as a wiring forming material for LSI substrate wiring, FPD (flat panel display) electrodes, wiring applications, and for embedding fine trenches, via holes, contact holes, and the like. . It can also be used as a coloring material for car paints, and can also be applied to carriers that adsorb biochemicals in the medical, diagnostic, and biotechnology fields.

また、本発明で得られる銀粒子粉末は、低温焼成が可能なため、フレキシブルなフィルム上への電極形成材料として、エレクトロニクス実装に於いては接合材として用いることも出来る。また、導電性皮膜として電磁波シールド膜、透明導電膜などの用途として、光学特性を利用して赤外線反射シールドなどとして好適である。さらに、低温焼結性と導電性を利用して、ガラス基板上へ印刷・焼成し、自動車ウインドウの防曇用熱線などにも好適である。一方、分散液としては、液体(分散媒)とほぼ同様の挙動を示すため、上に挙げたインクジェット法に限らず、スピンコート、ディッピング、ブレードコート、ディスペンサーなど各種塗布方法、およびスクリーン印刷などにも容易に適用可能である。   Further, since the silver particle powder obtained in the present invention can be fired at a low temperature, it can also be used as an electrode forming material on a flexible film and as a bonding material in electronic packaging. Moreover, it is suitable as an electromagnetic wave shielding film, a transparent conductive film, etc. as a conductive film, and as an infrared reflection shield using optical characteristics. Furthermore, using low-temperature sintering and conductivity, it is suitable for printing on a glass substrate and firing, and for anti-fogging heat rays for automobile windows. On the other hand, since the dispersion exhibits almost the same behavior as the liquid (dispersion medium), it is not limited to the above-described ink jet methods, but various coating methods such as spin coating, dipping, blade coating, and dispenser, and screen printing. Is also easily applicable.

〔実施例1〕
反応媒体兼還元剤としてイソブタノール(和光純薬株式会社製の特級)140mLに、有機保護剤としてオレイルアミン(和光純薬株式会社 Mw=267)185.83mLと、銀化合物としての硝酸銀結晶(関東化学株式会社製)19.218gとを添加し、マグネットスターラーにて攪拌して硝酸銀を溶解させる。
[Example 1]
140 mL of isobutanol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a reaction medium and reducing agent, 185.83 mL of oleylamine (Mw = 267) as an organic protective agent, and silver nitrate crystals as a silver compound (Kanto Chemical) (Made by Co., Ltd.) 19.218 g is added and stirred with a magnetic stirrer to dissolve the silver nitrate.

この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱した。100℃に至るまでの昇温速度は2℃/minとした。   The solution was transferred to a container equipped with a refluxer and placed on an oil bath. The nitrogen gas was blown into the container as an inert gas at a flow rate of 400 mL / min, and the solution was stirred with a magnetic stirrer at a rotation speed of 100 rpm. While heating. The heating rate up to 100 ° C. was 2 ° C./min.

100℃の温度で5時間の還流を行なった後、還元補助剤として2級アミンのジエタノールアミン(和光純薬株式会社 Mw=105.64)12.01g(対Agモル比1.0)を添加した。その後、1時間保持した後、反応を終了した。   After refluxing at a temperature of 100 ° C. for 5 hours, 12.01 g (second molar ratio of Ag to 1.0) of secondary ethanol diethanolamine (Wako Pure Chemical Industries, Ltd. Mw = 105.64) was added as a reducing auxiliary agent. . Thereafter, after holding for 1 hour, the reaction was terminated.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級を実施し、本文に記載した方法で還元率、単分散率および収率を算出した。その結果、還元率100%、単分散率89.8%、収率89.8%であった。   The slurry after the reaction was washed, dispersed and classified as described in the text, and the reduction rate, monodispersed rate and yield were calculated by the method described in the text. As a result, the reduction rate was 100%, the monodispersion rate was 89.8%, and the yield was 89.8%.

〔実施例2〕
還元補助剤として、2級アミンのジエタノールアミンに代えて、3級アミンのトリエタノールアミン(和光純薬株式会社 Mw=149.2)を17.05g(対Agモル比1.0)添加した以外は、実施例1を繰り返した。
[Example 2]
As a reducing aid, in place of secondary ethanol diethanolamine, tertiary amine triethanolamine (Wako Pure Chemical Industries, Ltd. Mw = 149.2) was added except 17.05 g (1.0 mole ratio to Ag). Example 1 was repeated.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級を実施し、本文に記載した方法で還元率、単分散率および収率を算出した。その結果、還元率97.4%、単分散率94.7%、収率92.2%であった。   The slurry after the reaction was washed, dispersed and classified as described in the text, and the reduction rate, monodispersed rate and yield were calculated by the method described in the text. As a result, the reduction rate was 97.4%, the monodispersion rate was 94.7%, and the yield was 92.2%.

〔比較例1〕
還元補助剤を添加しなかった以外は、実施例1を繰り返した。ただし、還元補助剤の添加は行なわないので、100℃で5時間の還流を持って反応終了とした。
[Comparative Example 1]
Example 1 was repeated except that no reducing aid was added. However, since the addition of the reducing aid was not performed, the reaction was completed after refluxing at 100 ° C. for 5 hours.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級を実施し、本文に記載した方法で還元率、単分散率および収率を算出した。その結果、還元率70.1%、単分散率83.5%、収率58.5%であった。実施例1、2に比べると還元率が低く、単分散率も若干低くなって結果的に低い収率となった。   The slurry after the reaction was washed, dispersed and classified as described in the text, and the reduction rate, monodispersed rate and yield were calculated by the method described in the text. As a result, the reduction rate was 70.1%, the monodispersion rate was 83.5%, and the yield was 58.5%. Compared to Examples 1 and 2, the reduction rate was low, and the monodispersion rate was slightly lower, resulting in a lower yield.

Claims (8)

沸点80℃〜200℃のアルコール中または沸点150〜300℃のポリオール中で、銀塩を、有機保護剤および還元補助剤の共存下で且つ温度80℃〜200℃の範囲で還元処理する、極性の低い液状有機媒体への分散性に優れた銀粒子粉末の製造法。   Polarity in which silver salt is reduced in the range of 80 ° C. to 200 ° C. in the presence of an organic protective agent and a reducing auxiliary agent in alcohol having a boiling point of 80 ° C. to 200 ° C. or in a polyol having a boiling point of 150 to 300 ° C. A method for producing a silver particle powder excellent in dispersibility in a liquid organic medium having a low particle size. 有機保護剤は分子量100〜1000で構造内に不飽和結合をもつ1級アミンであり、還元補助剤は2級アミンおよび/または3級アミンである請求項1に記載の銀粒子粉末の製造法。   The method for producing a silver particle powder according to claim 1, wherein the organic protective agent is a primary amine having a molecular weight of 100 to 1000 and having an unsaturated bond in the structure, and the reducing aid is a secondary amine and / or a tertiary amine. . 粒子表面に該有機保護剤が被着している請求項1または2に記載の銀粒子粉末の製造法。   The method for producing a silver particle powder according to claim 1 or 2, wherein the organic protective agent is deposited on the particle surface. 還元処理は、
Agイオン濃度:0.05〜5.0モル/L、
有機保護剤/Agのモル比:0.05〜5.0、
還元補助剤/Agのモル比:0.1〜20、
アルコールまたはポリオール/Agのモル比:0.5〜50
の量比で行う請求項1、2または3に記載の銀粒子粉末の製造法。
The reduction process
Ag ion concentration: 0.05 to 5.0 mol / L,
Organic protective agent / Ag molar ratio: 0.05 to 5.0,
Reduction auxiliary agent / Ag molar ratio: 0.1-20,
Alcohol or polyol / Ag molar ratio: 0.5-50
The manufacturing method of the silver particle powder of Claim 1, 2 or 3 performed by the quantity ratio of these.
銀粒子の平均粒径DTEMが50nm以下である請求項1〜4のいずれかに記載の銀粒子粉末の製造法。 The method for producing a silver particle powder according to any one of claims 1 to 4, wherein the average particle diameter DTEM of the silver particles is 50 nm or less. 1級アミン中で、銀塩を、2級アミンまたは3級アミンの一方または両方の共存下で且つ温度80〜200℃の範囲で還元処理する、極性の低い液状有機媒体への分散性の優れた銀粒子粉末の製造法。   In primary amine, silver salt is reduced in the presence of one or both of secondary amine and tertiary amine and at a temperature in the range of 80 to 200 ° C. Excellent dispersibility in liquid organic medium with low polarity A method for producing silver particle powder. 平均粒径DTEMが50nm以下の銀粒子粉末を極性の低い液状有機媒体に分散させた銀粒子の分散液であって、
pH:6.5以上
分散液中の銀濃度:5〜90wt%、
粘度:50mPa・s以下、
表面張力:80mN/m以下
のニュートン流体としての性質を具備する銀粒子の分散液。
A dispersion of silver particles in which silver particle powder having an average particle diameter D TEM of 50 nm or less is dispersed in a liquid organic medium having low polarity,
pH: 6.5 or more Silver concentration in the dispersion: 5-90 wt%,
Viscosity: 50 mPa · s or less,
Surface tension: A dispersion of silver particles having properties as a Newtonian fluid of 80 mN / m or less.
液中の銀粒子粉末の平均粒径+20nmの孔径を有するメンブランフィルターを通過する請求項7
に記載の分散液。
8. A membrane filter having an average particle size of silver particle powder in the liquid + a pore size of 20 nm.
The dispersion liquid described in 1.
JP2005222855A 2005-08-01 2005-08-01 Method for producing silver particle powder Expired - Fee Related JP4674375B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005222855A JP4674375B2 (en) 2005-08-01 2005-08-01 Method for producing silver particle powder
TW96105883A TWI331059B (en) 2005-08-01 2007-02-16 Method for making fine silver powder and silver particles dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222855A JP4674375B2 (en) 2005-08-01 2005-08-01 Method for producing silver particle powder

Publications (2)

Publication Number Publication Date
JP2007039718A true JP2007039718A (en) 2007-02-15
JP4674375B2 JP4674375B2 (en) 2011-04-20

Family

ID=37797985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222855A Expired - Fee Related JP4674375B2 (en) 2005-08-01 2005-08-01 Method for producing silver particle powder

Country Status (1)

Country Link
JP (1) JP4674375B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149870A1 (en) * 2007-05-30 2008-12-11 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
JP2009068035A (en) * 2007-09-11 2009-04-02 Dowa Electronics Materials Co Ltd Low-temperature sintering fine powder of silver, silver paint, and method for manufacturing thereof
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
JP2009084396A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Metal film-forming paint and metal film
JP2009138242A (en) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd Low-temperature-sinterable silver fine powder and silver coating material, and their producing methods
JP2009144197A (en) * 2007-12-13 2009-07-02 Toda Kogyo Corp Silver fine particle, method for producing the same, and method for producing conductive film
WO2009087919A1 (en) 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009161808A (en) * 2008-01-06 2009-07-23 Dowa Electronics Materials Co Ltd Silver fine powder, silver ink, silver paint and method for producing them
CN101804458A (en) * 2009-02-12 2010-08-18 施乐公司 Through organic amine stabilized silver nanoparticles and preparation method thereof
WO2013105530A1 (en) * 2012-01-11 2013-07-18 国立大学法人山形大学 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013105531A1 (en) * 2012-01-11 2013-07-18 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2014021461A1 (en) 2012-08-02 2014-02-06 国立大学法人山形大学 Process for producing covered silver fine particles and covered silver fine particles produced by said process
JP2014029018A (en) * 2012-06-28 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Method for producing dispersive nickel fine particle slurry
JP2014034709A (en) * 2012-08-09 2014-02-24 Furukawa Electric Co Ltd:The Method for manufacturing metal particulate dispersion and method for forming conductor
WO2014054550A1 (en) 2012-10-01 2014-04-10 Dowaエレクトロニクス株式会社 Method for producing fine silver particles
CN104520034A (en) * 2012-08-07 2015-04-15 株式会社大赛璐 Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
CN104540622A (en) * 2012-08-07 2015-04-22 株式会社大赛璐 Method for producing silver nano-particles and silver nano-particles
JP2015129351A (en) * 2007-12-26 2015-07-16 Dowaエレクトロニクス株式会社 metal particle dispersion
CN105170998A (en) * 2015-10-29 2015-12-23 无锡桥阳机械制造有限公司 Preparation process of nano silver powder
CN105522165A (en) * 2015-12-17 2016-04-27 雷春生 Preparation method for nano-silver particles
JP5923608B2 (en) * 2012-08-02 2016-05-24 株式会社ダイセル Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
EP2420336A4 (en) * 2009-04-17 2017-07-19 Yamagata University Coated silver nanoparticles and manufacturing method therefor
WO2018199644A1 (en) * 2017-04-28 2018-11-01 한국전기연구원 Silver ink for 3d printing and 3d printing method using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
JP2004185952A (en) * 2002-12-03 2004-07-02 Ricoh Co Ltd Manufacturing method of conductive material and ink composition containing conductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
JP2004185952A (en) * 2002-12-03 2004-07-02 Ricoh Co Ltd Manufacturing method of conductive material and ink composition containing conductive material

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149870A1 (en) * 2007-05-30 2008-12-11 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
US8420165B2 (en) 2007-05-30 2013-04-16 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
JP2009068035A (en) * 2007-09-11 2009-04-02 Dowa Electronics Materials Co Ltd Low-temperature sintering fine powder of silver, silver paint, and method for manufacturing thereof
JP2009084396A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Metal film-forming paint and metal film
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
JP2009138242A (en) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd Low-temperature-sinterable silver fine powder and silver coating material, and their producing methods
JP2009144197A (en) * 2007-12-13 2009-07-02 Toda Kogyo Corp Silver fine particle, method for producing the same, and method for producing conductive film
JP2015129351A (en) * 2007-12-26 2015-07-16 Dowaエレクトロニクス株式会社 metal particle dispersion
WO2009087919A1 (en) 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
EP2233230A4 (en) * 2008-01-06 2012-02-01 Dowa Electronics Materials Co Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP2009161808A (en) * 2008-01-06 2009-07-23 Dowa Electronics Materials Co Ltd Silver fine powder, silver ink, silver paint and method for producing them
US8486307B2 (en) 2008-01-06 2013-07-16 Dowa Electroncis Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
US8916068B2 (en) 2008-01-06 2014-12-23 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
CN101804458A (en) * 2009-02-12 2010-08-18 施乐公司 Through organic amine stabilized silver nanoparticles and preparation method thereof
EP2420336A4 (en) * 2009-04-17 2017-07-19 Yamagata University Coated silver nanoparticles and manufacturing method therefor
WO2013105530A1 (en) * 2012-01-11 2013-07-18 国立大学法人山形大学 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
JP2013142173A (en) * 2012-01-11 2013-07-22 Daicel Corp Method for producing silver nanoparticle, silver nanoparticle, and silver coating composition
US9860983B2 (en) 2012-01-11 2018-01-02 National University Corporation Yamagata University Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
CN104136154A (en) * 2012-01-11 2014-11-05 株式会社大赛璐 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013105531A1 (en) * 2012-01-11 2013-07-18 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
JP2014029018A (en) * 2012-06-28 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Method for producing dispersive nickel fine particle slurry
JPWO2014021270A1 (en) * 2012-08-02 2016-07-21 株式会社ダイセル Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
JP5923608B2 (en) * 2012-08-02 2016-05-24 株式会社ダイセル Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
KR20150038340A (en) 2012-08-02 2015-04-08 국립대학법인 야마가타대학 Process for producing covered silver fine particles and covered silver fine particles produced by said process
WO2014021461A1 (en) 2012-08-02 2014-02-06 国立大学法人山形大学 Process for producing covered silver fine particles and covered silver fine particles produced by said process
CN104520034A (en) * 2012-08-07 2015-04-15 株式会社大赛璐 Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
CN104540622A (en) * 2012-08-07 2015-04-22 株式会社大赛璐 Method for producing silver nano-particles and silver nano-particles
JP2014034709A (en) * 2012-08-09 2014-02-24 Furukawa Electric Co Ltd:The Method for manufacturing metal particulate dispersion and method for forming conductor
WO2014054550A1 (en) 2012-10-01 2014-04-10 Dowaエレクトロニクス株式会社 Method for producing fine silver particles
CN105170998A (en) * 2015-10-29 2015-12-23 无锡桥阳机械制造有限公司 Preparation process of nano silver powder
CN105522165A (en) * 2015-12-17 2016-04-27 雷春生 Preparation method for nano-silver particles
CN105522165B (en) * 2015-12-17 2017-05-24 华星美科新材料(江苏)有限公司 Preparation method for nano-silver particles
US11597225B2 (en) 2017-04-28 2023-03-07 Korea Electrotechnology Research Institute Silver ink for 3D printing and 3D printing method using same
WO2018199644A1 (en) * 2017-04-28 2018-11-01 한국전기연구원 Silver ink for 3d printing and 3d printing method using same

Also Published As

Publication number Publication date
JP4674375B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4674375B2 (en) Method for producing silver particle powder
KR101371269B1 (en) Process for producing silver powder
JP4660780B2 (en) Method for producing silver particle powder
JP4284283B2 (en) Silver particle powder manufacturing method
JP5108502B2 (en) Silver particle powder and method for producing the same
JP5164239B2 (en) Silver particle powder, dispersion thereof, and method for producing silver fired film
WO2009087918A1 (en) Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP5213420B2 (en) Copper powder with excellent dispersibility in liquid and corrosion resistance and method for producing the same
KR20120038878A (en) Metal nanoparticles dispersion
JP5176060B2 (en) Method for producing silver particle dispersion
JP4674376B2 (en) Method for producing silver particle powder
JP2006348345A (en) Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid
TW201542731A (en) Bonding composition and metal bonded article using the same
JP5274000B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP5232016B2 (en) Wiring forming material
JP2010275580A (en) Method for producing low-temperature-sinterable metal nanoparticle, metal nanoparticle and method for producing dispersion liquid using the same
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
JP5064423B2 (en) Silver particle powder and dispersion
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
JP2014029017A (en) Method for producing metal fine particle composition
TWI342247B (en) Producing method of ag particle powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees