JP5222456B2 - Carbon nanotube production method and three-layer structure used therefor - Google Patents

Carbon nanotube production method and three-layer structure used therefor Download PDF

Info

Publication number
JP5222456B2
JP5222456B2 JP2005256632A JP2005256632A JP5222456B2 JP 5222456 B2 JP5222456 B2 JP 5222456B2 JP 2005256632 A JP2005256632 A JP 2005256632A JP 2005256632 A JP2005256632 A JP 2005256632A JP 5222456 B2 JP5222456 B2 JP 5222456B2
Authority
JP
Japan
Prior art keywords
layer
substrate
carbon nanotubes
catalyst
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005256632A
Other languages
Japanese (ja)
Other versions
JP2007070137A (en
Inventor
将明 岸田
二朗 石辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005256632A priority Critical patent/JP5222456B2/en
Publication of JP2007070137A publication Critical patent/JP2007070137A/en
Application granted granted Critical
Publication of JP5222456B2 publication Critical patent/JP5222456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、安価で、生産性が高く、生成後そのまま電子放出源や電極等に適用可能なカーボンナノチューブを生成する方法に関し、さらにこの方法に用いる三層構造体に関する。   The present invention relates to a method for producing a carbon nanotube that is inexpensive, has high productivity, and can be directly applied to an electron emission source or an electrode after production, and further relates to a three-layer structure used in this method.

カーボンナノチューブは、熱化学気相蒸着法(以下熱CVD法と呼ぶ)を始め、種々の方法にて生成が可能であり、電子放出源、電極、触媒等、様々な製品について応用研究がなされている。   Carbon nanotubes can be produced by various methods including thermal chemical vapor deposition (hereinafter referred to as thermal CVD method), and applied research has been conducted on various products such as electron emission sources, electrodes, and catalysts. Yes.

カーボンナノチューブの生成方法については、一般的な熱CVD法によるカーボンナノチューブ生成を例に説明すると、基板上にFe等の金属薄膜からなる触媒層を形成し、この触媒層付きの基板をCVD装置内に導いて600〜800℃で加熱するとともに、アセチレンガス等の原料ガスを供給することで、触媒層上にカーボンナノチューブを生成される(例えば、特許文献1参照)。
特開2001−220674号公報
The method for producing carbon nanotubes will be described by taking as an example the production of carbon nanotubes by a general thermal CVD method. A catalyst layer made of a metal thin film such as Fe is formed on a substrate, and the substrate with the catalyst layer is placed in the CVD apparatus. In addition to heating at 600 to 800 ° C., a raw material gas such as acetylene gas is supplied to generate carbon nanotubes on the catalyst layer (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2001-220684

通常のカーボンナノチューブの生成に用いる基板は、シリコンあるいは石英やアルミナを材料とするものである。これは、熱CVD法の場合、600〜800℃の温度下に晒されるため、耐熱性をもった材料に限られているからである。   A substrate used for producing a normal carbon nanotube is made of silicon, quartz, or alumina. This is because the thermal CVD method is limited to materials having heat resistance because it is exposed to a temperature of 600 to 800 ° C.

一方、カーボンナノチューブを大量生産するには、カーボンナノチューブは安価で生産性が高いことが求められる。また、カーボンナノチューブを生成後そのまま電子放出源や電極等に適用する場合、基板は導電性材料からなることが望ましい。   On the other hand, in order to mass-produce carbon nanotubes, carbon nanotubes are required to be inexpensive and highly productive. In addition, when the carbon nanotube is generated and applied directly to an electron emission source, an electrode, or the like, the substrate is preferably made of a conductive material.

しかし、従来から用いられているシリコンあるいは石英やアルミナからなる耐熱性の基板は、比較的高価であり、熱CVD装置の容量により一度に生成できるカーボンナノチューブ量が制約されるため、大量生産には不利であった。   However, conventional heat-resistant substrates made of silicon, quartz, or alumina are relatively expensive, and the amount of carbon nanotubes that can be generated at one time is limited by the capacity of the thermal CVD apparatus. It was disadvantageous.

また、カーボンナノチューブを生成後にそのまま電子放出源や電極等に適用するには、これを導電性の高い金属材料からなる基板に直接生成することができれば好都合であるが、通常、金属基板上にカーボンナノチューブを生成させることはできない。その理由は、金属基板が触媒反応を不活性化させ、或いは基板を構成する金属材料自体の触媒作用が、アセチレン等の原料ガスを分解しカーボンナノチューブ生成を阻害する働きがあると考えられる。   In addition, in order to apply carbon nanotubes directly to an electron emission source or an electrode after generation, it is convenient if they can be directly generated on a substrate made of a highly conductive metal material. Nanotubes cannot be generated. The reason is considered that the metal substrate inactivates the catalytic reaction, or the catalytic action of the metal material itself constituting the substrate has a function of decomposing a raw material gas such as acetylene and inhibiting the production of carbon nanotubes.

本発明は、上記の点に鑑み、安価で生産性が高く、電子放出源や電極等の導電性部材として使用可能なカーボンナノチューブの生成方法を提供することを課題とする。   In view of the above points, an object of the present invention is to provide a method for producing carbon nanotubes that is inexpensive, has high productivity, and can be used as a conductive member such as an electron emission source or an electrode.

請求項1記載の発明は、
a)基板上に触媒金属を含む触媒層を形成する工程と、
b)該触媒層の金属を微粒化する工程と、
c)該微粒子を触媒として、カーボンナノチューブを形成する工程を有するカーボンナノチューブの生成方法において、
工程a)にて、該基板として導電性材料からなる基板を用い、該基板の上に、触媒金属の活性を妨げない材料からなる中間層を設け、同層の上に上記触媒層を形成して、基板、中間層および触媒層からなる三層構造体を構成することを特徴とするカーボンナノチューブの生成方法である。
The invention described in claim 1
a) forming a catalyst layer containing a catalyst metal on a substrate;
b) the step of atomizing the metal of the catalyst layer;
c) In the method for producing carbon nanotubes, comprising the step of forming carbon nanotubes using the fine particles as a catalyst,
In step a), a substrate made of a conductive material is used as the substrate, an intermediate layer made of a material that does not hinder the activity of the catalytic metal is provided on the substrate, and the catalyst layer is formed on the same layer. And a carbon nanotube production method characterized in that a three-layer structure comprising a substrate, an intermediate layer and a catalyst layer is formed.

請求項2記載の発明は、該基板が導電性の金属またはその合金からなることを特徴とする請求項1記載のカーボンナノチューブの生成方法である。   The invention according to claim 2 is the method for producing carbon nanotubes according to claim 1, wherein the substrate is made of a conductive metal or an alloy thereof.

請求項3記載の発明は、該中間層が、アルミニウム、チタン、シリコン、モリブデン、ニッケル、その酸化物およびその合金よりなる群から選ばれる少なくとも一つを含む材料からなることを特徴とする請求項1記載のカーボンナノチューブの生成方法である。   The invention according to claim 3 is characterized in that the intermediate layer is made of a material containing at least one selected from the group consisting of aluminum, titanium, silicon, molybdenum, nickel, oxides thereof and alloys thereof. 1. A method for producing carbon nanotubes according to 1.

請求項4記載の発明は、工程b)で得られた層状体がフレキシブルであることを特徴とする請求項1記載のカーボンナノチューブの生成方法である。   The invention according to claim 4 is the carbon nanotube production method according to claim 1, wherein the layered body obtained in step b) is flexible.

請求項5記載の発明は、
導電性材料からなる基板と、
該基板の上に設けられ、かつ触媒金属の活性を妨げない材料からなる中間層と、
中間層の上に形成され、かつ触媒金属を含む触媒層とからなる
カーボンナノチューブ生成用の三層構造体である。
The invention according to claim 5
A substrate made of a conductive material;
An intermediate layer made of a material provided on the substrate and does not hinder the activity of the catalytic metal;
It is a three-layer structure for producing carbon nanotubes formed on an intermediate layer and comprising a catalyst layer containing a catalyst metal.

本発明方法によれば、導電性基板および触媒層の間に中間層を介在させることにより、基板と触媒層との反応および基板の合金化を防ぎ触媒活性の低下を防ぐことができると共に、触媒金属の微粒子化を促進して微粒子を密に形成することができる。これにより、導電性基板からブラシ状のカーボンナノチューブを生成することが可能となる。導電性基板に形成されたカーボンナノチューブは、電子放出源や電極等の導電性部材としてそのまま使用することができる。   According to the method of the present invention, by interposing the intermediate layer between the conductive substrate and the catalyst layer, the reaction between the substrate and the catalyst layer and the alloying of the substrate can be prevented, and the catalyst activity can be prevented from being lowered. Fine particles can be formed densely by promoting the formation of fine metal particles. This makes it possible to generate brush-like carbon nanotubes from the conductive substrate. The carbon nanotube formed on the conductive substrate can be used as it is as a conductive member such as an electron emission source or an electrode.

また、基板、中間層、および触媒微粒子を有する触媒層とからなる三層構造体をフレキシブルなものとすることにより、これを筒状、多重同心筒状、コイル状、螺旋状、リボン状、折り畳み状、U字状等の所望の形状に変形し、熱CVD装置の単位断面積当たりのカーボンナノチューブ作製面積を大幅に増すことができる。これにより、大面積カーボンナノチューブの作製が可能になると共に、基板設置法の改良により、大面積のカーボンナノチューブ作製に必要なカーボンナノチューブ製造装置のコンパクト化が図れる。   In addition, by making a three-layer structure composed of a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles flexible, it can be made into a cylindrical shape, a multi-concentric cylindrical shape, a coil shape, a spiral shape, a ribbon shape, a folded shape It is possible to significantly increase the carbon nanotube production area per unit cross-sectional area of the thermal CVD apparatus by deforming into a desired shape such as a shape or a U-shape. As a result, it becomes possible to produce large-area carbon nanotubes, and it is possible to downsize the carbon nanotube production apparatus necessary for producing large-area carbon nanotubes by improving the substrate installation method.

基板は、安価な導電性金属またはその合金、例えばステンレス鋼材(SUSやSS)からなる。基板の厚さは0.3mm程度ないしはそれ以下であってよい。   The substrate is made of an inexpensive conductive metal or an alloy thereof, for example, a stainless steel material (SUS or SS). The thickness of the substrate may be about 0.3 mm or less.

金属基板は熱CVD温度範囲では、熱ひずみを起こすことがあり、触媒微粒子形成に影響する恐れがある。それを解決する方法として、熱間鍛造あるいはホットプレス等で事前に熱ひずみを解消した基板を使用する。これにより熱CVD温度での触媒層の安定化を図ることができる。   The metal substrate may cause thermal distortion in the thermal CVD temperature range, which may affect the formation of catalyst fine particles. As a method for solving this problem, a substrate whose thermal strain has been eliminated in advance by hot forging or hot pressing is used. As a result, the catalyst layer can be stabilized at the thermal CVD temperature.

中間層は、触媒金属の活性を妨げない材料からなり、好ましくはアルミニウム、チタン、シリコン、モリブデン、ニッケルおよびその合金よりなる群から選ばれる少なくとも一つを含む材料からなる。中間層の厚みは好ましくは1〜50nmである。中間層が厚過ぎると、導電性の低い材料からなる中間層の場合、得られたカーボンナノチューブを
電子放出源や電極等の導電性材料に使用すると、その導電性が低下し、融点の低い材料からなる中間層の場合、中間層が熱CVD時に三層構造体から溶出し、カーボンナノチューブが同構造体から剥がれる恐れがあり、好ましくない。中間層の表面を鏡面加工しておくことも好ましい。中間層の形成は、電子ビーム(EB)蒸着法、スパッタリング法、溶液法等によって行ってよい。
The intermediate layer is made of a material that does not hinder the activity of the catalytic metal, and preferably made of a material containing at least one selected from the group consisting of aluminum, titanium, silicon, molybdenum, nickel, and alloys thereof. The thickness of the intermediate layer is preferably 1 to 50 nm. If the intermediate layer is too thick, in the case of an intermediate layer made of a material with low conductivity, if the obtained carbon nanotube is used for a conductive material such as an electron emission source or an electrode, the conductivity is lowered and the material has a low melting point. In the case where the intermediate layer is made of, the intermediate layer may be eluted from the three-layer structure during thermal CVD, and the carbon nanotube may be peeled off from the structure, which is not preferable. It is also preferable to mirror finish the surface of the intermediate layer. The intermediate layer may be formed by an electron beam (EB) vapor deposition method, a sputtering method, a solution method, or the like.

触媒層は、好ましくは鉄、コバルト、ニッケル及びその合金よりなる群から選ばれる材料からなる。触媒層の厚みは好ましくは0.1〜20nmである。触媒層の形成は、電子ビーム(EB)蒸着法、スパッタリング法、溶液法等によって行ってよい。   The catalyst layer is preferably made of a material selected from the group consisting of iron, cobalt, nickel and alloys thereof. The thickness of the catalyst layer is preferably 0.1 to 20 nm. The catalyst layer may be formed by an electron beam (EB) vapor deposition method, a sputtering method, a solution method, or the like.

基板が薄い時には(厚さ約0.3mm以下)、熱CVD温度範囲では中間層を構成する元素によっては、基板との熱膨張、熱収縮の差により、熱CVD時に基板が膨張、収縮する可能性がある。この基板の収縮は触媒の微粒子形成にも影響する恐れがある。これを解決するために、中間層と同じ構成の裏打ち層を基板の裏にも設けて熱膨張の差を相殺することで膨張、収縮を抑制することができる。裏打ち層にも触媒層を形成し基板両面にカーボンナノチューブを生成させることもできる。   When the substrate is thin (thickness of about 0.3 mm or less), depending on the elements constituting the intermediate layer in the thermal CVD temperature range, the substrate can expand and contract during thermal CVD due to the difference in thermal expansion and contraction with the substrate. There is sex. This shrinkage of the substrate may affect the fine particle formation of the catalyst. In order to solve this, expansion and contraction can be suppressed by providing a backing layer having the same configuration as that of the intermediate layer also on the back of the substrate to offset the difference in thermal expansion. A catalyst layer can also be formed on the backing layer to generate carbon nanotubes on both sides of the substrate.

触媒層を好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃に加熱すると、直径1〜50nm程度の触媒微粒子が形成される。   When the catalyst layer is preferably heated to 650 to 800 ° C. under reduced pressure or in a non-oxidizing atmosphere, catalyst fine particles having a diameter of about 1 to 50 nm are formed.

次いで、触媒微粒子を核として高温雰囲気で熱CVD法により原料ガスからカーボンナノチューブを成長させる。カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが触媒微粒子を核として基板上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。   Next, carbon nanotubes are grown from the raw material gas by thermal CVD in a high temperature atmosphere with the catalyst fine particles as nuclei. As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in a brush shape on the substrate with catalyst fine particles as nuclei. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.

基板、中間層、および触媒微粒子を有する触媒層とからなる三層構造体をフレキシブルなものとすることにより、これを筒状、多重同心筒状、コイル状、螺旋状、リボン状、折り畳み状、U字状等の所望の形状に変形することができる。このような形状の三層構造体を用いることにより、熱CVD装置の単位断面積当たりのカーボンナノチューブ作製面積を大幅に増すことができる。これにより、大面積カーボンナノチューブの作製が可能になると共に、基板設置法の改良により、大面積のカーボンナノチューブ作製に必要なカーボンナノチューブ製造装置のコンパクト化が図れる。例えば、石英製の円筒反応管で横方向300mm幅のカーボンナノチューブを作製する場合、従来の基板では、反応管の直径は300mm以上必要であったが、本発明によれば、反応管の直径は100mm以下でも作製が可能になるため、装置全体の小型化が達成できる。   By making a three-layer structure composed of a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles flexible, this is formed into a cylindrical shape, a multi-concentric cylindrical shape, a coil shape, a spiral shape, a ribbon shape, a folded shape, It can be transformed into a desired shape such as a U-shape. By using such a three-layer structure, the carbon nanotube production area per unit cross-sectional area of the thermal CVD apparatus can be greatly increased. As a result, it becomes possible to produce large-area carbon nanotubes, and it is possible to downsize the carbon nanotube production apparatus necessary for producing large-area carbon nanotubes by improving the substrate installation method. For example, when producing a carbon nanotube having a width of 300 mm in a lateral direction using a quartz cylindrical reaction tube, the diameter of the reaction tube is required to be 300 mm or more in the conventional substrate, but according to the present invention, the diameter of the reaction tube is Since the fabrication is possible even at 100 mm or less, the entire apparatus can be reduced in size.

上記のように変形した三層構造体を用いる場合、触媒微粒子を有する触媒層表面に原料ガスの流れを均等に到達させるためには、反応管を横型ではなく縦型にすることが望ましい。縦型反応管では、ガスを下から上に流すことにより、対流効果が大幅に減少し、ガス流れの均一化が図りやすいためである。コイル状でも折り畳み状でも、基板間隔を一定に保つことにより、ガス流れを均一にして均一膜厚のカーボンナノチューブの作製が可能になる。   When the three-layer structure deformed as described above is used, it is desirable that the reaction tube be a vertical type rather than a horizontal type in order to make the flow of the raw material gas uniformly reach the surface of the catalyst layer having the catalyst fine particles. This is because, in the vertical reaction tube, by flowing gas from the bottom to the top, the convection effect is greatly reduced, and it is easy to make the gas flow uniform. Regardless of the coil shape or the folded shape, it is possible to produce a carbon nanotube with a uniform film thickness by making the gas flow uniform by keeping the substrate interval constant.

つぎに、本発明を具体的に説明するために、本発明の実施例をいくつか挙げる。   Next, in order to explain the present invention specifically, some examples of the present invention will be given.

実施例1
図1(a)において、熱間鍛造により事前に熱ひずみを解消したSUS製の基板(1) の上に、EB蒸着法によりアルミニウム製の中間層(2) を形成し、同層(2) の上にEB蒸着法により鉄製の触媒層(3) を形成した。基板(1) の厚さは約0.3mm、中間層(2) の厚さは40nm、触媒層(3) の厚さは5nmとした。触媒層(3) を非酸化雰囲気中で650〜800℃に加熱し、図1(b)に示すように直径1〜50nm程度の触媒微粒子(5) を形成した。こうして、基板(1) 、中間層(2) および、触媒微粒子(5) を有する触媒層(3) からなる三層構造体(4) を構成した。
Example 1
In FIG. 1 (a), an intermediate layer (2) made of aluminum is formed by EB vapor deposition on a SUS substrate (1) whose thermal strain has been eliminated in advance by hot forging. An iron catalyst layer (3) was formed on the substrate by EB vapor deposition. The thickness of the substrate (1) was about 0.3 mm, the thickness of the intermediate layer (2) was 40 nm, and the thickness of the catalyst layer (3) was 5 nm. The catalyst layer (3) was heated to 650 to 800 ° C. in a non-oxidizing atmosphere to form catalyst fine particles (5) having a diameter of about 1 to 50 nm as shown in FIG. 1 (b). Thus, a three-layer structure (4) comprising the substrate (1), the intermediate layer (2), and the catalyst layer (3) having the catalyst fine particles (5) was constructed.

次いで、触媒微粒子を核として650〜800℃で熱CVD法により原料ガス(アセチレン)から長さ5〜100μm、太さ12〜38nmのカーボンナノチューブ(6) をブラシ状に形成させた。   Next, carbon nanotubes (6) having a length of 5 to 100 μm and a thickness of 12 to 38 nm were formed in a brush shape from a raw material gas (acetylene) by a thermal CVD method at 650 to 800 ° C. using the catalyst fine particles as nuclei.

実施例2
図2および図3において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体3枚を互いに径の異なる円筒状に丸めて、大径円筒(7) 、中径円筒(8) 、および小径円筒(9) を形成し、これらを同心状に配して両端において形状保持片(10)で連結した。この同心体(12)を熱CVD装置(11)内の基台(13)上に配し、原料ガス(アセチレン)をキャリアガスと共に装置(11)内にその一端から供給し、ヒータ(15)で加熱し実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を熱CVD装置(11)から取り出し、平板状に広げた。形状保持片(10)は、図7(a)(b)(c)に示すものであってよい。図7(a)のものは垂直棒部(21)とそれの一側に等間隔で設けられた複数の水平突部(22)とからなる。図7(b)のものは垂直棒部(23)とそれの一側に等間隔で設けられた複数のX字状突部(24)とからなる。図7(c)のものは垂直棒部(25)とそれの一側に等間隔で設けられた複数の横T字状突部(26)とからなる。形状保持片(10)は、大径円筒(7) 、中径円筒(8)
、および小径円筒(9) の間隔を一定に保持し、カーボンナノデュープの生成むらを防ぐ役目をする。熱CVD装置(11)内の両端部にはガス流れを整流する整流板(14)が設けられている。
Example 2
2 and 3, three three-layer structures formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles are rolled into cylindrical shapes having different diameters, and a large-diameter cylinder (7 ), A medium-diameter cylinder (8) and a small-diameter cylinder (9) were formed, and these were concentrically arranged and connected to each other by shape-retaining pieces (10). This concentric body (12) is arranged on a base (13) in a thermal CVD apparatus (11), and a source gas (acetylene) is supplied together with a carrier gas into the apparatus (11) from one end thereof, and a heater (15) Then, brush-like carbon nanotubes were formed from the source gas by the thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out from the thermal CVD apparatus (11) and spread into a flat plate shape. The shape holding piece (10) may be as shown in FIGS. 7 (a), (b) and (c). 7 (a) includes a vertical bar portion (21) and a plurality of horizontal protrusions (22) provided at equal intervals on one side thereof. 7 (b) includes a vertical bar portion (23) and a plurality of X-shaped protrusions (24) provided at equal intervals on one side thereof. 7 (c) includes a vertical bar portion (25) and a plurality of horizontal T-shaped protrusions (26) provided at equal intervals on one side thereof. The shape retaining piece (10) consists of a large diameter cylinder (7) and a medium diameter cylinder (8).
, And the interval between the small diameter cylinders (9) is kept constant, and serves to prevent uneven generation of carbon nanodupes. Rectifying plates (14) for rectifying the gas flow are provided at both ends in the thermal CVD apparatus (11).

この構成では、原料ガスの流れる隙間が狭くなるため、ガスの流れが層流となり、均一長さのカーボンナノチューブが得られる。   In this configuration, since the gap through which the source gas flows becomes narrow, the gas flow becomes a laminar flow, and carbon nanotubes having a uniform length can be obtained.

実施例3
実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体(150mm×150mm)を円筒状に丸めて、得られた円筒体を直径50mm、長さ900mmの石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。ほぼ等間隔で離れた3か所においてカーボンナノチューブの走査電子顕微鏡写真を撮った。これらを図14、15および16に示す。
Example 3
The three-layer structure (150 mm × 150 mm) composed of the substrate, the intermediate layer, and the catalyst layer having catalyst fine particles formed in Example 1 was rolled into a cylindrical shape, and the obtained cylindrical body had a diameter of 50 mm and a length of 900 mm. A brush-like carbon nanotube was formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1 while being placed in a quartz reaction tube. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape. Scanning electron micrographs of the carbon nanotubes were taken at three locations that were approximately equally spaced apart. These are shown in FIGS.

実施例4
図4において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体を円筒状に丸めて、重なり部を両端部においてコ字状のクリップ(27)で一体化した。この円筒体(28)を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 4
In FIG. 4, the three-layer structure formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles is rounded into a cylindrical shape, and the overlapping portion has a U-shaped clip (27) at both ends. Integrated. This cylindrical body (28) was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例5
図5において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体3枚を互いに径の異なる円筒状に丸めて、大径円筒(29)、中径円筒(30)、および小径円筒(31)を形成し、これらを同心状に配した。各筒体における重なり部を両端部において、複数のクリップ(32)を等間隔で有する多段コ字状の形状保持片(55)で一体化した。多段コ字状の形状保持片(55)は図7(a)に示すものであってもよい。形状保持片(55)は、大径円筒(29)、中径円筒(30)、および小径円筒(31)の間隔を一定に保持する役目をする。この同心円筒体を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 5
In FIG. 5, three three-layer structures formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles are rolled into cylindrical shapes having different diameters, and a large-diameter cylinder (29), A diameter cylinder (30) and a small diameter cylinder (31) were formed and arranged concentrically. The overlapping portions of each cylindrical body were integrated at both ends with a multistage U-shaped shape holding piece (55) having a plurality of clips (32) at equal intervals. The multi-stage U-shaped shape holding piece (55) may be as shown in FIG. The shape holding piece (55) plays a role of keeping the intervals of the large diameter cylinder (29), the medium diameter cylinder (30), and the small diameter cylinder (31) constant. This concentric cylindrical body was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例6
図6において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体を螺旋状に丸めて、得られた螺旋体(33)の各円筒部を両端において、上部および下部にそれぞれ複数のクリップ(56)を等間隔で有する多段コ字状の形状保持片(34)で一体化した。多段コ字状の形状保持片(34)は図7(a)に示すものであってもよい。形状保持片(34)は、螺旋体(33)を構成する複数の異径部の間隔を一定に保持する役目をする。この螺旋体(33)を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により
原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの螺旋体を反応管から取り出し、平板状に広げた。
Example 6
In FIG. 6, the three-layer structure formed in Example 1 consisting of a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles is rolled up into a spiral shape, and each cylindrical portion of the obtained spiral body (33) is formed at both ends. The upper and lower portions were integrated with a multi-stage U-shaped shape retaining piece (34) having a plurality of clips (56) at equal intervals. The multi-stage U-shaped shape retaining piece (34) may be as shown in FIG. The shape holding piece (34) serves to hold a constant interval between the plurality of different diameter portions constituting the spiral body (33). This helical body (33) was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the spiral body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例7
図8において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体を円筒状に丸めて、得られた円筒体(35)を丸パイプ(36)内に配してその内面に沿わせた。この円筒体(35)内装丸パイプ(36)を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 7
In FIG. 8, the three-layer structure formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles is rolled into a cylindrical shape, and the resulting cylindrical body (35) is rounded pipe (36). It was placed inside and along the inside. This cylindrical body (35) -internal round pipe (36) was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例8
図9において、実施例7と同様の操作で、大径の円筒体(37)内装丸パイプ(40)、中径の円筒体(38)内装丸パイプ(41)、および小径の円筒体(39)内装丸パイプ(42)をそれぞれ形成し、これらを同心状に配し、同心体(54)を構成した。円筒体(37)(38)(39)はいずれも、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体を円筒状に丸めて得られたものである。上記同心体を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 8
In FIG. 9, the large diameter cylindrical body (37) interior round pipe (40), medium diameter cylindrical body (38) interior round pipe (41), and small diameter cylindrical body (39) are operated in the same manner as in the seventh embodiment. ) Inner round pipes (42) were formed and arranged concentrically to form a concentric body (54). The cylindrical bodies (37), (38) and (39) were all obtained by rolling the three-layer structure formed in Example 1 and comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles into a cylindrical shape. It is. The concentric bodies were placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例9
図10において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体をU字状に屈曲して、得られたU字体(43)を角パイプ(44)内に配してその内面に沿わせた。このU字体(43)内装角パイプ(44)を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 9
In FIG. 10, the three-layer structure formed in Example 1 consisting of a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles is bent into a U shape, and the resulting U-shaped body (43) is a square pipe ( 44) It was placed inside and along the inner surface. The U-shaped body (43) and the interior square pipe (44) were placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例10
図11において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体を折り畳み状に屈曲して、得られた折り畳み体(45)を両側において、垂直棒(46)に複数のクリップ(47)が等間隔で設けられてなる一対の形状保持片(48)で保形し、各水平部の間隔を一定にした。一対の形状保持片(48)は枠体(49)に支持した。折り畳み体(45)を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 10
In FIG. 11, the three-layer structure formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles is bent in a folded shape, and the resulting folded body (45) is vertically aligned on both sides. The rod (46) was held by a pair of shape holding pieces (48) in which a plurality of clips (47) were provided at equal intervals, and the interval between the horizontal portions was made constant. The pair of shape holding pieces (48) was supported by the frame (49). The folded body (45) was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例11
図12において、実施例1で形成した、基板、中間層、および触媒微粒子を有する触媒層からなる三層構造体2枚をU字状に屈曲して、得られた2つのU字体(50)(51)を向き合わせ状に配し、一方のU字体(50)の一対の水平部の間に他方のU字体(51)の上位水平部が入るようにし、ダブルU字体を構成した。U字体(50)(51)の各水平部の両側部を複数の垂直支持片(52)(53)(54)で支えた。複数の垂直支持片(52)(53)(54)は枠体(55)に支持されている。このダブルU字体を石英製反応管内に配し、実施例1と同様の条件で熱CVD法により原料ガスからブラシ状カーボンナノチューブを形成させた。その後、カーボンナノチューブ付きの円筒体を反応管から取り出し、平板状に広げた。
Example 11
In FIG. 12, two U-shaped bodies (50) obtained by bending two three-layer structures formed in Example 1 comprising a substrate, an intermediate layer, and a catalyst layer having catalyst fine particles into a U-shape. (51) is arranged in a face-to-face configuration so that the upper horizontal part of the other U-shaped body (51) is inserted between a pair of horizontal parts of one U-shaped body (50) to constitute a double U-shaped body. Both sides of each horizontal portion of the U-shaped body (50) (51) were supported by a plurality of vertical support pieces (52) (53) (54). The plurality of vertical support pieces (52) (53) (54) are supported by the frame (55). This double U-shaped body was placed in a quartz reaction tube, and brush-like carbon nanotubes were formed from a raw material gas by a thermal CVD method under the same conditions as in Example 1. Thereafter, the cylindrical body with carbon nanotubes was taken out of the reaction tube and spread into a flat plate shape.

実施例12
図13において、一対のU字体(50)(51)の各水平部を両側において、垂直棒(46)に複数のクリップ(47)が等間隔で設けられてなる一対の形状保持片(48)で保形し、各水平部の間隔を一定にした。一対の形状保持片(48)は枠体(49)に支持されている。その他の点は実施例12と同じである。
Example 12
In FIG. 13, a pair of shape holding pieces (48) each having a plurality of clips (47) provided at equal intervals on a vertical bar (46) on each side of a pair of U-shaped bodies (50) (51). The shape was held at a constant distance between the horizontal portions. The pair of shape retaining pieces (48) are supported by the frame (49). The other points are the same as those of the twelfth embodiment.

図1(a)(b)は実施例1の工程を示す三層構造体の垂直断面図である。FIGS. 1A and 1B are vertical sectional views of a three-layer structure showing the steps of Example 1. FIG. 実施例2において同心体を収めた熱CVD装置を示す垂直縦断面図である。6 is a vertical longitudinal sectional view showing a thermal CVD apparatus containing a concentric body in Example 2. FIG. 図2中のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line in FIG. 実施例4において形成した円筒体を示す斜視図である。It is a perspective view which shows the cylindrical body formed in Example 4. FIG. 実施例5において形成した同心円筒体を示す斜視図である。10 is a perspective view showing a concentric cylinder formed in Example 5. FIG. 実施例6において螺旋体を示す斜視図である。In Example 6, it is a perspective view which shows a spiral. 図7(a)(b)(c) は形状保持片の例を示す正面図である。FIGS. 7A, 7B, and 7C are front views showing examples of shape holding pieces. 実施例7において形成した同心体を示す斜視図である。It is a perspective view which shows the concentric body formed in Example 7. FIG. 実施例8において形成した同心体を示す斜視図である。It is a perspective view which shows the concentric body formed in Example 8. FIG. 実施例9において形成したU字体内装角パイプを示す斜視図である。It is a perspective view which shows the U-shaped interior square pipe formed in Example 9. 実施例10において形成した折り畳み体を示す側面図である。It is a side view which shows the folding body formed in Example 10. FIG. 実施例11において形成したダブルU字体を示す側面図である。It is a side view which shows the double U character body formed in Example 11. FIG. 実施例12において形成したダブルU字体を示す側面図である。It is a side view which shows the double U character body formed in Example 12. FIG. 実施例3において形成したブラシ状カーボンナノチューブを示す走査電子顕微鏡写真である。4 is a scanning electron micrograph showing brush-like carbon nanotubes formed in Example 3. FIG. 実施例3において形成したブラシ状カーボンナノチューブを示す走査電子顕微鏡写真である。4 is a scanning electron micrograph showing brush-like carbon nanotubes formed in Example 3. FIG. 実施例3において形成したブラシ状カーボンナノチューブを示す走査電子顕微鏡写真である。4 is a scanning electron micrograph showing brush-like carbon nanotubes formed in Example 3. FIG.

符号の説明Explanation of symbols

(1) :基板
(2) :中間層
(3) :触媒層
(4) :三層構造体
(5) :触媒微粒子
(6) :カーボンナノチューブ
(7) :大径円筒
(8) :中径円筒
(9) :小径円筒
(10)(34)(55)(48):形状保持片
(11):熱CVD装置
(12):同心体
(13):基台
(14):整流板
(15):ヒータ
(21)(23)(25):垂直棒部
(22):水平突部
(24):X字状突部
(26):横T字状突部
(27)(47)(56):クリップ
(28):円筒体
(29):大径円筒
(30):中径円筒
(31):小径円筒
(32)(53):クリップ
(33):螺旋体
(35):円筒体
(36):丸パイプ
(37):大径円筒体
(40)(41)(42):丸パイプ
(38):中径円筒体
(39):小径円筒体
(43)(50)(51):U字体
(44):角パイプ
(45):折り畳み体
(46):垂直棒
(49)(55):枠体
(52)(53)(54):垂直支持片
(1): Board
(2): Middle layer
(3): Catalyst layer
(4): Three-layer structure
(5): Catalyst fine particles
(6): Carbon nanotube
(7): Large diameter cylinder
(8): Medium diameter cylinder
(9): Small diameter cylinder
(10) (34) (55) (48): Shape retaining piece
(11): Thermal CVD equipment
(12): Concentric body
(13): Base
(14): Rectifying plate
(15): Heater
(21) (23) (25): Vertical bar
(22): Horizontal protrusion
(24): X-shaped protrusion
(26): Horizontal T-shaped protrusion
(27) (47) (56): Clip
(28): Cylindrical body
(29): Large diameter cylinder
(30): Medium diameter cylinder
(31): Small diameter cylinder
(32) (53): Clip
(33): Spiral
(35): Cylindrical body
(36): Round pipe
(37): Large diameter cylindrical body
(40) (41) (42): Round pipe
(38): Medium diameter cylindrical body
(39): Small-diameter cylindrical body
(43) (50) (51): U character
(44): Square pipe
(45): Folded body
(46): Vertical bar
(49) (55): Frame
(52) (53) (54): Vertical support piece

Claims (3)

a)基板上に触媒金属を含む触媒層を形成する工程と、
b)該触媒層の金属を微粒化する工程と、
c)得られる微粒子を触媒として、カーボンナノチューブを形成する工程を有するカーボンナノチューブの生成方法において、
該基板として導電性の金属またはその合金からなる0.3mm以下であり、熱膨張、収縮を相殺し得る、中間層と同じ構成の裏打ち層を設けた基板を用い、工程a)にて、基板の上に、触媒金属の活性を妨げない材料からなる中間層を設け、同層の上に上記触媒層を形成して、基板、中間層および触媒層からなる三層構造体を構成することを特徴とするカーボンナノチューブの生成方法。
a) forming a catalyst layer containing a catalyst metal on a substrate;
b) the step of atomizing the metal of the catalyst layer;
c) In the method for producing carbon nanotubes, comprising the step of forming carbon nanotubes using the obtained fine particles as a catalyst,
Substrate or less 0.3mm made of a conductive metal or an alloy thereof as a thermal expansion, contraction may offset the, using a substrate provided with a backing layer having the same structure as the middle-layer at step a), An intermediate layer made of a material that does not interfere with the activity of the catalytic metal is provided on the substrate, and the catalyst layer is formed on the same layer to form a three-layer structure including the substrate, the intermediate layer, and the catalyst layer. A method for producing carbon nanotubes characterized by the following.
該中間層が、アルミニウム、チタン、シリコン、モリブデン、ニッケル、その酸化物およびその合金よりなる群から選ばれる少なくとも一つを含む材料からなることを特徴とする請求項1記載のカーボンナノチューブの生成方法。   2. The method for producing carbon nanotubes according to claim 1, wherein the intermediate layer is made of a material containing at least one selected from the group consisting of aluminum, titanium, silicon, molybdenum, nickel, oxides thereof and alloys thereof. . 導電性材料からなる0.3mm以下であり、熱膨張、収縮を相殺し得る、中間層と同じ構成の裏打ち層を設けた基板と、
該基板の上に設けられ、かつ触媒金属の活性を妨げない材料からなる中間層と、
中間層の上に形成され、かつ触媒金属を含む触媒層と
からなるカーボンナノチューブ生成用の三層構造体。
Or less 0.3mm made of a conductive material, a substrate having thermal expansion, contraction may offset the, the backing layer of the same configuration as the middle-layer is provided,
An intermediate layer made of a material provided on the substrate and does not hinder the activity of the catalytic metal;
A three-layer structure for producing carbon nanotubes formed on an intermediate layer and comprising a catalyst layer containing a catalyst metal.
JP2005256632A 2005-09-05 2005-09-05 Carbon nanotube production method and three-layer structure used therefor Active JP5222456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256632A JP5222456B2 (en) 2005-09-05 2005-09-05 Carbon nanotube production method and three-layer structure used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256632A JP5222456B2 (en) 2005-09-05 2005-09-05 Carbon nanotube production method and three-layer structure used therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008153689A Division JP4857308B2 (en) 2008-06-12 2008-06-12 Carbon nanotube production method and three-layer structure used therefor

Publications (2)

Publication Number Publication Date
JP2007070137A JP2007070137A (en) 2007-03-22
JP5222456B2 true JP5222456B2 (en) 2013-06-26

Family

ID=37931917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256632A Active JP5222456B2 (en) 2005-09-05 2005-09-05 Carbon nanotube production method and three-layer structure used therefor

Country Status (1)

Country Link
JP (1) JP5222456B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067598B2 (en) * 2006-02-21 2012-11-07 住友電気工業株式会社 Carbon nanostructure manufacturing method, catalytic metal substrate, and catalytic reaction vessel
JP2009298638A (en) * 2008-06-12 2009-12-24 Hitachi Zosen Corp Apparatus for producing carbon nanotube
JP5183439B2 (en) * 2008-11-25 2013-04-17 日立造船株式会社 Method for producing carbon nanotubes
JP5388776B2 (en) * 2009-09-25 2014-01-15 日立造船株式会社 Carbon nanotube production substrate holder
JP5448708B2 (en) * 2009-10-16 2014-03-19 日立造船株式会社 Carbon nanotube substrate
JP2013001598A (en) * 2011-06-16 2013-01-07 Hitachi Zosen Corp Method and apparatus for manufacturing substrate for producing carbon nanotube
JP6080658B2 (en) * 2013-04-05 2017-02-15 日立造船株式会社 Manufacturing method of carbon nanotube generation substrate, carbon nanotube generation substrate, and carbon nanotube generation substrate reuse method
JP2015143169A (en) * 2013-12-25 2015-08-06 日立造船株式会社 Carbon nano-tube creation substrate, production method thereof, and reuse method thereof
JP6972627B2 (en) * 2017-04-05 2021-11-24 株式会社アイシン Method for manufacturing carbon nanotube composite and laminated body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239387C (en) * 2002-11-21 2006-02-01 清华大学 Carbon nano transistor array and grwoth method thereof
JP4401094B2 (en) * 2003-03-20 2010-01-20 富士通株式会社 Ohmic connection structure to cylindrical structure of carbon element and method for producing the same
WO2005007564A1 (en) * 2003-07-18 2005-01-27 Nec Corporation Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
JP2005314162A (en) * 2004-04-28 2005-11-10 National Institute For Materials Science Conductivity-variable three-layer carbon nanotube, method of synthesizing three-layer carbon nanotube, and method of synthesizing conductivity-variable three-layer carbon nanotube

Also Published As

Publication number Publication date
JP2007070137A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5222456B2 (en) Carbon nanotube production method and three-layer structure used therefor
JP4857308B2 (en) Carbon nanotube production method and three-layer structure used therefor
JP3819382B2 (en) Carbon nanotube matrix and growth method thereof
JP5549984B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
CN1964918B (en) Method for preparing carbon nanostructure
JP2014129222A (en) Reactor
CN101837968A (en) Method for preparing carbon nano-tube film
TW200535093A (en) Catalyst structural body and process for producing carbon nonotube by using the same
Knorr et al. Process specific catalyst supports—selective electron beam melted cellular metal structures coated with microporous carbon
JP2017019718A (en) Manufacturing method of carbon nano-tube
JP5608952B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
US20150361549A1 (en) Scalable CVD Film and Nanomaterial Synthesis
TW201134755A (en) Method for making carbon nanotube film
JP2005213700A (en) Diameter-different composite type fibrous carbon and method for producing the same
JP5540084B2 (en) Film forming equipment and film forming method
JP3443646B1 (en) Carbon nanotube growth method
JPH03166375A (en) Separation of microcrystal solid particles from gas phase by chemical vapor deposition process
JP7272855B2 (en) Multi-walled carbon nanotube, multi-walled carbon nanotube aggregate, and method for producing multi-walled carbon nanotube
JP4781662B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
CN100411980C (en) Method for controlling growth density of carbon nanometer tube
JP6515838B2 (en) Member with carbon nanotube, method for manufacturing the same, and apparatus for manufacturing the same
JP5549983B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
JP2004244252A (en) Carbon nanotube assembly and method of manufacturing the same
JP4664098B2 (en) Method for producing aligned carbon nanotubes
JP2005001936A (en) Method of manufacturing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250