JP2007197836A - Nickel powder - Google Patents

Nickel powder Download PDF

Info

Publication number
JP2007197836A
JP2007197836A JP2007056264A JP2007056264A JP2007197836A JP 2007197836 A JP2007197836 A JP 2007197836A JP 2007056264 A JP2007056264 A JP 2007056264A JP 2007056264 A JP2007056264 A JP 2007056264A JP 2007197836 A JP2007197836 A JP 2007197836A
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
particle size
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007056264A
Other languages
Japanese (ja)
Inventor
Junichi Kashiwagi
淳一 柏木
Yasuhide Yamaguchi
靖英 山口
Hisao Hayashi
尚男 林
Hiroyuki Shimamura
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007056264A priority Critical patent/JP2007197836A/en
Publication of JP2007197836A publication Critical patent/JP2007197836A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide nickel powder suitable for electrically conductive paste used for forming an internal electrode. <P>SOLUTION: In the nickel powder, the number of particles having the particle diameter 1.5 times the average particle diameter (D<SB>50</SB>value) by laser diffraction scattering type particle size distribution measurement is ≤20% of the number of all the particles, the number of particles having a particle diameter of ≤0.5 times the average particle diameter (D<SB>50</SB>value) is ≤5% of the number of all the particles, and the average crystallite diameter in the nickel particles is ≥400 Å. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はニッケル粉に関し、より詳しくは、導電ペースト用途に特に適しており、凝集が少なく単分散状態に近いことに起因して導電ペーストの製造の際の有機ビヒクル中での分散性が優れており且つニッケル粒子内の平均結晶子径が大きいことに起因して熱収縮が抑制された内部電極を形成することができるニッケル粉に関する。   The present invention relates to nickel powder. More specifically, the present invention is particularly suitable for use in conductive paste, and has excellent dispersibility in an organic vehicle during the production of conductive paste due to low aggregation and close to a monodispersed state. In addition, the present invention relates to nickel powder that can form an internal electrode in which thermal shrinkage is suppressed due to a large average crystallite diameter in nickel particles.

積層セラミックコンデンサは交互に積層された複数のセラミック誘電体層と内部電極層とが一体化したものであり、このような積層セラミックコンデンサの内部電極を形成させる方法としては、内部電極材料である金属微粉末をペースト化して導電ペーストを調製し、該導電ペーストを用いてセラミック誘電体グリーンシート上に印刷し、このセラミック誘電体グリーンシートと導体ペースト層とを交互に層状に複数層積層し、加熱圧着して一体化させた後、還元性雰囲気中、高温で焼成してセラミック誘電体層と内部電極層とを一体化させることが一般的である。   A multilayer ceramic capacitor is formed by integrating a plurality of alternately laminated ceramic dielectric layers and internal electrode layers. As a method of forming the internal electrodes of such a multilayer ceramic capacitor, a metal which is an internal electrode material is used. A conductive paste is prepared by pasting fine powder, printed on the ceramic dielectric green sheet using the conductive paste, and a plurality of layers of the ceramic dielectric green sheet and the conductive paste layer are alternately laminated and heated. In general, after the pressure bonding and integration, the ceramic dielectric layer and the internal electrode layer are integrated by firing at a high temperature in a reducing atmosphere.

この内部電極材料として、従来は白金、パラジウム、銀−パラジウム等の貴金属が使用されていたが、コスト低減のために、近時にはこれらの貴金属の代わりにニッケル等の卑金属を用いる技術が開発され、進歩してきている。また、一般的には、積層セラミックコンデンサの内部電極を形成するのに用いる導電ペーストは、導電性を付与するニッケル粉等の金属粉の他に、必要に応じてガラス物質等の無機材料やその他の添加剤を有機ビヒクル中に添加し、均一に混合、分散させて製造される。   Conventionally, noble metals such as platinum, palladium and silver-palladium have been used as the internal electrode material, but recently, a technique using a base metal such as nickel instead of these noble metals has been developed for cost reduction. Progressing. In general, the conductive paste used to form the internal electrode of the multilayer ceramic capacitor is not limited to metal powder such as nickel powder that imparts conductivity, but may be an inorganic material such as a glass substance or the like, if necessary. Are added to an organic vehicle and uniformly mixed and dispersed.

近年、導電ペーストを用いて製造される電子部品、例えば積層セラミックコンデンサ等はますます小型化しており、それで、必然的に、セラミック誘電体層及び内部電極層の薄膜化、多層化が進み、現在積層部品、特に積層セラミックコンデンサでは誘電体層2μm以下、内部電極膜厚1.5μm以下、積層数100層以上の部品が作られている。   In recent years, electronic parts manufactured using conductive paste, such as multilayer ceramic capacitors, have become increasingly smaller, and inevitably, the ceramic dielectric layers and internal electrode layers have become thinner and multilayered. In a multilayer component, particularly a multilayer ceramic capacitor, a component having a dielectric layer of 2 μm or less, an internal electrode film thickness of 1.5 μm or less, and a stacking number of 100 layers or more is produced.

薄い内部電極層を得るためにはそれに見合った平均粒子径の小さい金属粉、例えばニッケル粉を用いればよいと考えられるが、特に積層セラミックコンデンサの内部電極を形成するのに用いる導電ペーストの用途のニッケル粉においては、ニッケル粉の有機ビヒクル中への分散性は、形成される内部電極の善し悪しに多大な影響を及ぼす。即ち、分散性が悪いニッケル粉を用いて得た導電ペーストでは、当然導電ペースト中に凝集粉が残留してしまうので、そのような導電ペーストを用いて内部電極を形成すると内部電極層上に凹凸が生じたり、隣接する内部電極間で短絡が生じたりするという不具合が起きやすい。従って、導電ペースト中でのニッケル粉の分散性については、有機ビヒクル中へのニッケル粉の分散性が高いことが重要である。   In order to obtain a thin internal electrode layer, it is considered to use a metal powder having a small average particle diameter corresponding to the internal electrode layer, for example, nickel powder. In the nickel powder, the dispersibility of the nickel powder in the organic vehicle greatly affects the quality of the formed internal electrode. That is, in a conductive paste obtained using nickel powder having poor dispersibility, naturally, agglomerated powder remains in the conductive paste. Therefore, when an internal electrode is formed using such a conductive paste, irregularities are formed on the internal electrode layer. Or a short circuit between adjacent internal electrodes is likely to occur. Therefore, it is important for the dispersibility of the nickel powder in the conductive paste that the dispersibility of the nickel powder in the organic vehicle is high.

ニッケル粉は湿式法、乾式法の何れの方法によっても製造可能である。液相還元析出法に代表される湿式法の場合には、粒度分布がシャープなニッケル粉が容易に得られる。そのような製法で得られたニッケル粉を導電ペースト化し、得られた導電ペーストを用いて積層セラミックコンデンサの内部電極を形成させた場合には、粗粉の混入が少ないので内部電極層上に突起が形成されることがほとんどなく、従って、内部電極間の短絡が発生することはほとんどない。しかし、この湿式法により得られるニッケル粉の粒子形状は多面体形状を呈する場合が多いので、粒子間の凝集や粉末の流動性の面で劣っている。   Nickel powder can be produced by either a wet method or a dry method. In the case of a wet method represented by a liquid phase reduction precipitation method, nickel powder having a sharp particle size distribution can be easily obtained. When nickel powder obtained by such a manufacturing method is made into a conductive paste and the internal electrode of the multilayer ceramic capacitor is formed using the obtained conductive paste, there is little mixing of coarse powder, so there is a protrusion on the internal electrode layer. Is hardly formed, and therefore, a short circuit between the internal electrodes hardly occurs. However, since the particle shape of the nickel powder obtained by this wet method often exhibits a polyhedral shape, it is inferior in terms of aggregation between particles and powder fluidity.

一方、気相還元法に代表される乾式法の場合には、粒子間の凝集や粉末の流動性の面では良好なニッケル粉が得易いものの、粒子形状を制御するために硫黄等の添加を必要とする(例えば、特許文献1参照)。また、そのような製法で得られたニッケル粉を導電ペースト化し、得られた導電ペーストを用いて積層セラミックコンデンサの内部電極を形成させた場合には、内部電極にボイド(膨れ)等の発生が生じる他に、粒度分布がブロードであることに起因して粗粉による悪影響や分散性への影響も免れない。   On the other hand, in the case of the dry method represented by the gas phase reduction method, it is easy to obtain good nickel powder in terms of aggregation between particles and fluidity of the powder, but addition of sulfur or the like is required to control the particle shape. Necessary (see, for example, Patent Document 1). In addition, when the nickel powder obtained by such a manufacturing method is made into a conductive paste and the internal electrode of the multilayer ceramic capacitor is formed using the obtained conductive paste, generation of voids (swells) or the like occurs in the internal electrode. In addition to the occurrence, the particle size distribution is broad, and the adverse effects of the coarse powder and the influence on the dispersibility are unavoidable.

以上に述べたように、従来技術においては粒度分布がよりシャープで、凝集がより少なく且つ分散性に優れたニッケル粉を得ることは困難であった。また、積層セラミックコンデンサの内部電極材料としてニッケル粉を用いる場合には、セラミック基材と金属ニッケルとの熱収縮特性の相違に起因して、焼成の際にデラミネーションやクラック等の欠陥が発生し易いので、このニッケル粉の熱収縮も抑制する必要がある。   As described above, in the prior art, it has been difficult to obtain nickel powder having a sharper particle size distribution, less aggregation, and excellent dispersibility. Also, when nickel powder is used as the internal electrode material of a multilayer ceramic capacitor, defects such as delamination and cracks occur during firing due to the difference in thermal shrinkage characteristics between the ceramic substrate and metallic nickel. Since it is easy, it is necessary to suppress the thermal shrinkage of this nickel powder.

以上に述べた従来のニッケル粉の問題点を改善する技術、即ち粒度分布がよりシャープで、凝集がより少なくて分散性に優れ、且つ熱収縮特性にも優れたニッケル粉を得る技術については、例えば、平均粒子径が0.1〜1.0μmの範囲で個数基準の粒度分布における50%粒子径(D50)と積算ふるい下84.3%粒子径(D84.3)との比(D84.3/D50)で求められた幾何標準偏差が2.0以下で、平均結晶子径が平均粒子径の0.2倍以上であるニッケル超微粉が開示されている(例えば、特許文献2参照)。 Regarding the technology for improving the problems of the conventional nickel powder described above, that is, the technology for obtaining nickel powder with a sharper particle size distribution, less aggregation, excellent dispersibility, and excellent heat shrinkage characteristics, For example, when the average particle size is in the range of 0.1 to 1.0 μm, the ratio (D 84.3 ) of 50% particle size (D 50 ) and 84.3% particle size (D 84.3 ) under integrated sieving in the number-based particle size distribution / D 50 geometric standard deviation is 2.0 or less obtained by), the ultrafine nickel powder average crystallite diameter is more than 0.2 times the average particle size is disclosed (for example, see Patent Document 2) .

上記の特許文献2に記載のニッケル超微粉は、凝集したニッケル粉が少ないという点で粒度分布に優れ、平均結晶子径が比較的大きく、金属ニッケルの過焼結が抑制されることから熱収縮特性に優れているものの、ニッケル粉の一次粒子に関する粒度分布、特に微粉の粒度については何ら改善がなされていないので、上記の問題点を充分に解決し得る技術とは言い難い。   The nickel ultrafine powder described in Patent Document 2 is excellent in particle size distribution in that there are few aggregated nickel powders, has a relatively large average crystallite diameter, and suppresses oversintering of metallic nickel, thereby causing heat shrinkage. Although it has excellent characteristics, no improvement has been made with respect to the particle size distribution relating to the primary particles of nickel powder, particularly the particle size of the fine powder, so it is difficult to say that the technique can sufficiently solve the above problems.

また、熱収縮特性を改善する技術として、塩化ニッケル粉からなる原料粉末を、特定のアルカリ金属又は特定のアルカリ土類金属からなる還元剤粉体と、これらのアルカリ金属塩化物又は特定のアルカリ土類金属塩化物の粉粒体とに混合して固相還元する微細ニッケル粉の製造方法(特許文献3参照)等も開示されている。この製造方法においては、結晶性や分散性に優れたニッケル粉が得られると記載されている。   Further, as a technique for improving heat shrinkage characteristics, a raw material powder made of nickel chloride powder, a reducing agent powder made of a specific alkali metal or a specific alkaline earth metal, and these alkali metal chlorides or a specific alkaline earth Also disclosed is a method for producing fine nickel powder (see Patent Document 3) which is mixed with a powder of a metal oxide chloride and subjected to solid phase reduction. In this production method, it is described that nickel powder excellent in crystallinity and dispersibility can be obtained.

しかしながら、上記の製造方法により得られるニッケル粉では、熱収縮特性はある程度改善されるものの、出発原料がニッケル塩であることにより還元速度の制御が困難であるのみならず、粒度分布がよりシャープで、凝集がより少なくて分散性に優れたニッケル粉とは言い難かった。
特開平11−80817号公報 特開平8−246001号公報 特開平11−236631号公報
However, in the nickel powder obtained by the above manufacturing method, although the heat shrinkage characteristics are improved to some extent, not only is the reduction rate controlled difficult because the starting material is a nickel salt, but also the particle size distribution is sharper. It was difficult to say nickel powder with less aggregation and excellent dispersibility.
Japanese Patent Laid-Open No. 11-80817 JP-A-8-246001 Japanese Patent Application Laid-Open No. 11-236631

本発明は、上記した従来技術の問題点に鑑み、導電ペーストの製造の際の有機ビヒクル中での分散性が優れており、熱収縮が抑制された内部電極の形成に用いる導電ペースト用途に特に適したニッケル粉を提供することを課題としている。   In view of the above-mentioned problems of the prior art, the present invention is excellent in dispersibility in an organic vehicle during the production of a conductive paste, and particularly for use in a conductive paste used for forming an internal electrode in which thermal shrinkage is suppressed. It is an object to provide a suitable nickel powder.

本発明者等は上記の課題を達成するために鋭意検討した結果、凝集が少なくて単分散状態に近く且つニッケル粒子内の平均結晶子径が大きいニッケル粉は導電ペーストの製造の際の有機ビヒクル中での分散性が優れており、熱収縮が抑制された内部電極の形成に用いる導電ペースト用途に特に適していることを見いだし、発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that nickel powder with little aggregation, close to a monodispersed state and a large average crystallite size in nickel particles is an organic vehicle in the production of a conductive paste. The present invention has been completed by finding that it is particularly suitable for use as a conductive paste used for forming an internal electrode having excellent dispersibility in the inside and suppressing thermal shrinkage.

即ち、本発明のニッケル粉は、レーザ回折散乱式粒度分布測定による平均粒子径(D50値)の1.5倍以上の粒子径を持つ粒子個数が全粒子個数の20%以下であり、該平均粒子径(D50値)の0.5倍以下の粒子径を持つ粒子個数が全粒子個数の5%以下であり、且つニッケル粒子内の平均結晶子径が400Å以上であることを特徴とする。 That is, the nickel powder of the present invention, the particle number with a particle size of 1.5 times or more the average particle diameter measured by a laser diffraction scattering particle size distribution measurement (D 50 value) is not more than 20% of the total number of particles, the The number of particles having a particle size of 0.5 times or less of the average particle size (D 50 value) is 5% or less of the total number of particles, and the average crystallite size in the nickel particles is 400 mm or more. To do.

本発明のニッケル粉は、凝集が少なく単分散状態に近いことに起因して導電ペーストの製造の際の有機ビヒクル中での分散性が優れており且つニッケル粒子内の平均結晶子径が大きいことに起因して熱収縮が抑制された内部電極を形成することができ、導電ペースト用途に特に適している。   The nickel powder of the present invention is excellent in dispersibility in an organic vehicle during the production of a conductive paste and has a large average crystallite size in the nickel particles due to the fact that the nickel powder is less agglomerated and close to a monodispersed state. It is possible to form an internal electrode in which thermal shrinkage is suppressed due to the above, and it is particularly suitable for use as a conductive paste.

本発明のニッケル粉においては、レーザ回折散乱式粒度分布測定による平均粒子径(D50値)の1.5倍以上の粒子径を持つ粒子個数が全粒子個数の20%以下、好ましくは15%以下、より好ましくは10%以下であり、平均粒子径(D50値)の0.5倍以下の粒子径を持つ粒子個数が全粒子個数の5%以下、好ましくは3%以下、より好ましくは1%以下である。 In the nickel powder of the present invention, 20% of the average particle diameter of the total number of particles is the particle number with a particle size of 1.5 times or more of (D 50 value) by a laser diffraction scattering particle size distribution measurement less, preferably 15% or less, more preferably 10% or less, 5% of the particles number is the total number of particles having a particle size of 0.5 times or less the average particle diameter (D 50 value) or less, preferably 3% or less, more preferably 1% or less.

このような粒度分布を有するニッケル粉であれば、ニッケル粉の各粒子間の凝集が抑制されているので、導電ペーストの製造時において有機ビヒクル中への分散性に優れている。また、このニッケル粉においては、上記の条件に加えて、ニッケル粒子内の平均結晶子径が400Å以上であること、好ましくは450Å以上であることが重要である。即ち、本発明のニッケル粉は平均結晶子径が大きいことにより、結晶性が改善されており、従って積層セラミックコンデンサを製造する際の焼成時において、過焼結による収縮を抑制することができる。   If the nickel powder has such a particle size distribution, the aggregation between the particles of the nickel powder is suppressed, so that it is excellent in dispersibility in the organic vehicle during the production of the conductive paste. Moreover, in this nickel powder, in addition to the above conditions, it is important that the average crystallite diameter in the nickel particles is 400 mm or more, preferably 450 mm or more. That is, the nickel powder of the present invention has improved crystallinity due to the large average crystallite size, and therefore, shrinkage due to oversintering can be suppressed during firing when manufacturing a multilayer ceramic capacitor.

また、本発明のニッケル粉においては、下記の式(1)により求められる変動係数(CV)が好ましくは40%未満、より好ましくは35%未満、最も好ましくは30%未満である。   In the nickel powder of the present invention, the coefficient of variation (CV) obtained by the following formula (1) is preferably less than 40%, more preferably less than 35%, and most preferably less than 30%.

CV(%)=(σ/D50値)×100 ‥‥‥(1)
(式中、D50値はレーザ回折散乱式粒度分布測定による平均粒子径であり、σはレーザ回折散乱式粒度分布測定による個数分布の標準偏差である)。
CV (%) = (σ / D 50 value) × 100 (1)
(In the formula, the D 50 value is an average particle diameter by laser diffraction scattering type particle size distribution measurement, and σ is a standard deviation of the number distribution by laser diffraction scattering type particle size distribution measurement).

このような変動係数を有するニッケル粉を含む導電ペーストを用いて積層セラミックコンデンサの内部電極を形成する場合には、上記のような粒度分布を有するニッケル粉を含む導電ペーストを用いて積層セラミックコンデンサの内部電極を形成する場合と同等、又はそれ以上の薄層化、高容量化が達成できる。   When forming an internal electrode of a multilayer ceramic capacitor using a conductive paste containing nickel powder having such a coefficient of variation, the multilayer ceramic capacitor is made of a conductive paste containing nickel powder having the above particle size distribution. It is possible to achieve a thinner layer and a higher capacity equivalent to or higher than those in the case of forming the internal electrode.

導電ペーストに用いるニッケル粉中のアルカリ金属の含有量が高い場合には、例えば、導電ペースト中のニッケル粉を加熱溶融させて積層セラミックコンデンサの内部電極を形成する際に、アルカリ金属が金属ニッケル表面に析出し、またそのアルカリ金属不純物が電解質成分であるので、近隣の電極間で導通が生じ、遂には絶縁破壊を生じせしめることがある。   When the content of alkali metal in the nickel powder used for the conductive paste is high, for example, when the nickel powder in the conductive paste is heated and melted to form the internal electrode of the multilayer ceramic capacitor, the alkali metal is on the surface of the nickel metal In addition, since the alkali metal impurity is an electrolyte component, conduction may occur between neighboring electrodes, which may eventually cause dielectric breakdown.

従って、本発明のニッケル粉においては、ニッケル粉中のアルカリ金属の総量、特にリチウム、ナトリウム及びカリウムの1種又は2種以上の合計量はなるべく低い方が好ましく、総量が500ppm以下であることが好ましく、400ppm以下であることがより好ましく、300ppm以下であることが一層好ましい。   Therefore, in the nickel powder of the present invention, the total amount of alkali metals in the nickel powder, in particular, the total amount of one or more of lithium, sodium and potassium is preferably as low as possible, and the total amount is 500 ppm or less. Preferably, it is 400 ppm or less, more preferably 300 ppm or less.

導電ペーストに用いるニッケル粉中の塩素の含有量が高い場合には、この塩素不純物が電解質成分であるので、上記のアルカリ金属の場合と同様に絶縁破壊が生じることがある。従って、本発明のニッケル粉においては、ニッケル粉中の塩素含有量はなるべく低い方が好ましく、100ppm以下であることが好ましく、50ppm以下であることがより好ましく、10ppm以下であることが一層好ましい。   When the content of chlorine in the nickel powder used for the conductive paste is high, since this chlorine impurity is an electrolyte component, dielectric breakdown may occur as in the case of the alkali metal. Accordingly, in the nickel powder of the present invention, the chlorine content in the nickel powder is preferably as low as possible, preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less.

導電ペーストに用いるニッケル粉中の硫黄の含有量が高い場合には、積層セラミックコンデンサ製造時の焼成の際に、この硫黄成分が酸素と反応して亜硫酸ガスを発生してボイド(膨れ)を惹き起こすのみならず、この硫黄成分が誘電体成分と反応し、その硫化物は半導体としての挙動を示すので、絶縁特性が著しく劣化する。   When the content of sulfur in the nickel powder used in the conductive paste is high, this sulfur component reacts with oxygen to generate sulfurous acid gas and cause voids (blowing) during firing during the production of multilayer ceramic capacitors. Not only does this occur, but this sulfur component reacts with the dielectric component, and the sulfide behaves as a semiconductor, so that the insulating properties are significantly degraded.

従って、本発明のニッケル粉においては、ニッケル粉中の硫黄含有量はなるべく低い方が好ましく、10000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、200ppm以下であることが一層好ましい。   Therefore, in the nickel powder of the present invention, the sulfur content in the nickel powder is preferably as low as possible, preferably 10,000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.

また、本発明のニッケル粉は、SEM観察による平均粒子径が0.05〜1μmであることが好ましく、0.1〜0.8μmであることが一層好ましい。このようなニッケル粉を含む導電ペーストは積層セラミックコンデンサの内部電極を形成するのに特に適している。なお、本発明のニッケル粉は純ニッケル粉であっても、ニッケル粉の各微粒子の内部に金属酸化物を含有するニッケル粉であってもよい。   In addition, the nickel powder of the present invention preferably has an average particle size of 0.05 to 1 μm, more preferably 0.1 to 0.8 μm, as observed by SEM. Such a conductive paste containing nickel powder is particularly suitable for forming an internal electrode of a multilayer ceramic capacitor. The nickel powder of the present invention may be pure nickel powder or nickel powder containing a metal oxide inside each fine particle of nickel powder.

次に、本発明のニッケル粉の製造方法について述べる。
本発明のニッケル粉の製造方法においては、例えば、ニッケル粉とアルカリ土類金属の酸化物、水酸化物、炭酸塩及び炭酸水素塩よりなる群から選ばれたアルカリ土類金属化合物の微粉末とを混合した後、またはニッケル粉の各粒子表面に該アルカリ土類金属化合物を被覆させた後、不活性ガス又は微還元性ガス雰囲気中で、該アルカリ土類金属化合物の溶融温度未満の温度で熱処理を実施する。
Next, the manufacturing method of the nickel powder of this invention is described.
In the method for producing nickel powder of the present invention, for example, a fine powder of an alkaline earth metal compound selected from the group consisting of nickel powder and an alkaline earth metal oxide, hydroxide, carbonate and bicarbonate Or after coating the surface of each particle of nickel powder with the alkaline earth metal compound, in an inert gas or slightly reducing gas atmosphere at a temperature lower than the melting temperature of the alkaline earth metal compound. Perform heat treatment.

前記したように、特許文献3等に記載の公知技術においては、出発原料として塩化ニッケル等のニッケルの塩や化合物を用いている。かかる方法によれば、直接還元でニッケル粉を製造することができるが、均一な還元反応を進め、粒径制御を行い且つ焼結を防止するためには充分に注意を払う必要がある。従って、原料混合から反応に至るまでの操作や制御が非常に煩雑であり、製品の出来ばえにバラツキが生じ易い。   As described above, in the known technique described in Patent Document 3, etc., a nickel salt or compound such as nickel chloride is used as a starting material. According to such a method, nickel powder can be produced by direct reduction, but sufficient care must be taken to advance a uniform reduction reaction, control the particle size, and prevent sintering. Therefore, the operation and control from the raw material mixing to the reaction is very complicated, and the product quality tends to vary.

これに対し、本発明のニッケル粉の上記の製造方法においては、出発原料としてニッケル粉を用いるので、焼結の防止のみを制御すればよく、熱処理の際に共存させるアルカリ土類金属化合物の溶融温度未満の温度で熱処理することによりニッケル粒子内の平均結晶子径を効率よく大きくすることが可能である。   On the other hand, in the above-described method for producing nickel powder of the present invention, since nickel powder is used as a starting material, it is only necessary to control the prevention of sintering, and the melting of the alkaline earth metal compound that coexists in the heat treatment. By heat-treating at a temperature lower than the temperature, it is possible to efficiently increase the average crystallite size in the nickel particles.

本発明のニッケル粉の上記の製造方法で出発原料として用いるニッケル粉は、液相還元析出法、気相化学反応法、ガス中蒸発法等の湿式法、乾式法の何れの製造方法で得られたものでもよい。湿式法で得られるニッケル粉は粒度分布に優れているので、湿式法で得られるニッケル粉を出発原料として用いれば既に粒度分布に優れた状態になっており、また、乾式法で得られるニッケル粉は形状が球形に近いので、乾式法で得られるニッケル粉を出発原料として用いれば既に形状が球形に近い状態になっており、従って、本発明で目的とする効果の何れに重点を置くかによって出発原料を適宜選択すればよく、また両者を配合したり、前処理として風力分級を行って粒度分布をよりシャープにしたりすることができる。   The nickel powder used as a starting material in the above-described production method of the nickel powder of the present invention can be obtained by any production method of a wet method such as a liquid phase reduction deposition method, a gas phase chemical reaction method, a gas evaporation method, or a dry method. May be good. Since the nickel powder obtained by the wet method is excellent in particle size distribution, if the nickel powder obtained by the wet method is used as a starting material, the particle size distribution is already excellent, and the nickel powder obtained by the dry method Since the shape is close to a sphere, if nickel powder obtained by a dry method is used as a starting material, the shape is already close to a sphere, so depending on which of the effects intended by the present invention is to be emphasized What is necessary is just to select a starting material suitably, and also can mix | blend both and can perform an air classification as pre-processing, and can make a particle size distribution sharper.

本発明のニッケル粉の上記の製造方法で用いることのできるアルカリ土類金属化合物は、アルカリ土類金属の酸化物、水酸化物、炭酸塩及び炭酸水素塩よりなる群から選ばれたものであり、その例としては酸化マグネシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素マグネシウム、炭酸水素カルシウム等を挙げることができ、それらは単独で又は2種以上の混合物として使用することができる。   The alkaline earth metal compound that can be used in the above-described method for producing the nickel powder of the present invention is selected from the group consisting of alkaline earth metal oxides, hydroxides, carbonates and bicarbonates. Examples thereof include magnesium oxide, calcium oxide, magnesium hydroxide, calcium hydroxide, magnesium carbonate, calcium carbonate, barium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate, etc., and these may be used alone or in combination of two or more. Can be used as a mixture.

本発明のニッケル粉の上記の製造方法においては、先ず、ニッケル粉とアルカリ土類金属化合物の微粉末とを良く混合するか、又はニッケル粉の個々の粒子の表面にアルカリ土類金属化合物を被覆させることが重要である。   In the above method for producing nickel powder of the present invention, first, nickel powder and fine powder of alkaline earth metal compound are mixed well, or the surface of each particle of nickel powder is coated with alkaline earth metal compound. It is important to let

上記のアルカリ土類金属化合物は融点が高く且つニッケル粉との反応性も殆どない上、両者が焼結してしまうこともないので、熱処理によりニッケル粒子内の平均結晶子径を大きくさせる際の焼結防止剤として極めて有効である。従って、アルカリ土類金属化合物の微粉末がニッケル粉中に比較的均一に混合されているか、又はアルカリ土類金属化合物がニッケル粉の個々の粒子の表面を被覆していると、この効果が一層良く発揮される。   The above alkaline earth metal compound has a high melting point and little reactivity with nickel powder, and both of them do not sinter, so when the average crystallite diameter in the nickel particles is increased by heat treatment. It is extremely effective as a sintering inhibitor. Therefore, if the alkaline earth metal compound fine powder is mixed relatively uniformly in the nickel powder, or the alkaline earth metal compound covers the surface of the individual particles of the nickel powder, this effect is further enhanced. It is well demonstrated.

上記の混合方法としては、例えばヘンシェルミキサー等の圧縮作用の少ない混合機を使用する乾式法を採用することができ、また上記の被覆方法としては、アルカリ土類金属化合物の水溶液中にニッケル粉を分散させたニッケル粉含有スラリーを中和処理して共沈させる方法、スプレードライヤーで造粒する方法によりニッケル粉表面にアルカリ土類金属化合物を被覆化する方法等の湿式法を採用することができる。特に、乾式法ではアルカリ土類金属化合物の微粉末の粒子形状が板状である場合、湿式法ではアルカリ土類金属化合物が水溶性、又は酸もしくはアルカリに可溶で溶液として用いることによりアルカリ土類金属化合物がニッケル粉の表面を薄く均一に被覆している場合、ニッケル粉同士の焼結が一層有効に防止される。   As the above-mentioned mixing method, for example, a dry method using a mixer having a small compression action such as a Henschel mixer can be adopted, and as the above-mentioned coating method, nickel powder is added in an aqueous solution of an alkaline earth metal compound. Wet methods such as a method of neutralizing the co-precipitated nickel powder-containing slurry and a method of granulating with a spray dryer and a method of coating an alkaline earth metal compound on the surface of the nickel powder can be adopted. . In particular, in the dry method, when the particle shape of the fine powder of the alkaline earth metal compound is plate-like, in the wet method, the alkaline earth metal compound is water-soluble or soluble in acid or alkali and used as a solution. When the metal compound covers the surface of the nickel powder thinly and uniformly, the sintering of the nickel powder is more effectively prevented.

また、ニッケル粉同士の融着を防止するためにはアルカリ土類金属化合物の均一な付着が必要であるので、少量のアルカリ土類金属化合物の微粉末を用いてこの効果を達成するためには、アルカリ土類金属化合物の微粉末のSEM観察による平均粒子径がニッケル粉のSEM観察による平均粒子径の1/5以下であることが好ましく、1/8以下であることが一層好ましい。   In order to prevent the fusion between nickel powders, uniform adhesion of the alkaline earth metal compound is necessary, so in order to achieve this effect using a small amount of fine powder of the alkaline earth metal compound. The average particle size of the alkaline earth metal compound fine powder by SEM observation is preferably 1/5 or less, more preferably 1/8 or less of the average particle size of nickel powder by SEM observation.

このようにして得られたニッケル粉とアルカリ土類金属化合物の微粉末との混合物又はアルカリ土類金属化合物で被覆されたニッケル粉を、引き続き、不活性ガス又は微還元性ガス雰囲気中で、該アルカリ土類金属化合物の溶融温度未満の温度で熱処理を実施する。この熱処理の際に用いることのできる不活性ガス又は微還元性ガスとしては、窒素、アルゴン、ヘリウムや、一酸化炭素、水素含有窒素等がある。   A mixture of the nickel powder thus obtained and a fine powder of an alkaline earth metal compound or a nickel powder coated with an alkaline earth metal compound is subsequently used in an inert gas or a slightly reducing gas atmosphere. Heat treatment is performed at a temperature lower than the melting temperature of the alkaline earth metal compound. Examples of the inert gas or slightly reducing gas that can be used in the heat treatment include nitrogen, argon, helium, carbon monoxide, and hydrogen-containing nitrogen.

上記のように不活性ガス又は微還元性ガス雰囲気中で熱処理することによりニッケル粉の酸化を防止しながら、ニッケル粒子内の平均結晶子径を効率よく大きくすることができ、また、アルカリ土類金属化合物の微粉末がニッケル粉の個々の粒子の表面に存在しているので、ニッケル粉同士の無用の焼結を抑制することができる。   While preventing oxidation of nickel powder by heat treatment in an inert gas or slightly reducing gas atmosphere as described above, the average crystallite diameter in the nickel particles can be increased efficiently, and alkaline earths Since the fine powder of the metal compound is present on the surface of each particle of the nickel powder, unnecessary sintering of the nickel powder can be suppressed.

なお、熱処理はアルカリ土類金属化合物の溶融温度未満の温度、好ましくは300〜800℃、より好ましくは400〜600℃で実施する。また、熱処理の際の保持時間は好ましくは0.1〜2時間、より好ましくは0.5〜1時間である。このように熱処理して得られるニッケル粉においては、ニッケル粒子内の平均結晶子径が大きくなっている。   In addition, heat processing is implemented at the temperature below the melting temperature of an alkaline-earth metal compound, Preferably it is 300-800 degreeC, More preferably, it is implemented at 400-600 degreeC. The holding time during the heat treatment is preferably 0.1 to 2 hours, more preferably 0.5 to 1 hour. In the nickel powder obtained by such heat treatment, the average crystallite size in the nickel particles is large.

なお、熱処理はアルカリ土類金属化合物の溶融温度未満の温度で実施するので、アルカリ土類金属化合物が溶融してニッケル粒子の微細な窪みや微細な亀裂中に入り込むことがなく、従ってアルカリ土類金属化合物は希硫酸等での洗浄、水洗により完全に除去され、ニッケル粉を汚染する危険性は極めて少ない。   In addition, since the heat treatment is performed at a temperature lower than the melting temperature of the alkaline earth metal compound, the alkaline earth metal compound does not melt and enter into the fine dents and fine cracks of the nickel particles. The metal compound is completely removed by washing with dilute sulfuric acid or the like and washing with water, and there is very little risk of contaminating the nickel powder.

この熱処理の後、ニッケル粉とアルカリ土類金属化合物の微粉末との混合物又はアルカリ土類金属化合物で被覆されたニッケル粉からアルカリ土類金属化合物を溶解させて除去する。この溶解処理には、アルカリ土類金属化合物を溶解することができるものであればいかなる液体でもよく、例えば希硫酸等の酸溶液、アンモニア水等のアルカリ溶液を用いることができる。従って、アルカリ土類金属化合物が水溶性、又は酸もしくはアルカリに可溶であることが好ましい。この溶解処理の後充分に水洗し、乾燥して本発明のニッケル粉を得る。   After this heat treatment, the alkaline earth metal compound is dissolved and removed from the mixture of the nickel powder and the fine powder of the alkaline earth metal compound or the nickel powder coated with the alkaline earth metal compound. For the dissolution treatment, any liquid can be used as long as it can dissolve the alkaline earth metal compound. For example, an acid solution such as dilute sulfuric acid or an alkaline solution such as aqueous ammonia can be used. Accordingly, it is preferable that the alkaline earth metal compound is water-soluble or soluble in acid or alkali. After this dissolution treatment, it is sufficiently washed with water and dried to obtain the nickel powder of the present invention.

以下に実施例及び比較例に基づいて本発明を具体的に説明する。
比較例1
硫酸ニッケル・六水和物(品位22.2質量%)44.8kgを純水80Lに溶解して得た水溶液を、水酸化ナトリウム濃度200g/Lの水溶液100Lにその液温を60℃に維持しながらゆっくりと滴下して、ニッケルの水酸化物を析出させた。
The present invention will be specifically described below based on examples and comparative examples.
Comparative Example 1
An aqueous solution obtained by dissolving 44.8 kg of nickel sulfate hexahydrate (quality 22.2 mass%) in 80 L of pure water was maintained in 100 L of an aqueous solution having a sodium hydroxide concentration of 200 g / L, and the liquid temperature was maintained at 60 ° C. While dropping slowly, nickel hydroxide was precipitated.

この懸濁液にその液温を60℃に維持しながらヒドラジン・一水和物30kgを30分間にわたって添加してニッケルの水酸化物をニッケルに還元した。この生成ニッケル粒子含有スラリーを濾過した後、洗浄液のpHが9以下になるまで純水で洗浄し、その後乾燥してニッケル粉を得た。   While maintaining the liquid temperature at 60 ° C., 30 kg of hydrazine monohydrate was added to the suspension over 30 minutes to reduce the nickel hydroxide to nickel. After this produced nickel particle-containing slurry was filtered, it was washed with pure water until the pH of the washing liquid became 9 or less, and then dried to obtain nickel powder.

このニッケル粉について、下記の方法によって各特性を求めた。
(1)平均結晶子径
自動X線回折装置RINT2200(株式会社リガク製)を用いて、X線回折ピークの半値幅から平均結晶子径を求めた。
About this nickel powder, each characteristic was calculated | required with the following method.
(1) Average crystallite diameter Using an automatic X-ray diffraction apparatus RINT2200 (manufactured by Rigaku Corporation), the average crystallite diameter was determined from the half-value width of the X-ray diffraction peak.

(2)レーザ回折散乱式粒度分布測定による平均粒子径(D50値)、粗粒比率、微粒比率及びCV(%)
試料0.1gをSNディスパーサント5468(サンノプコ社製)0.1%水溶液と混合し、超音波ホモジナイザで5分間分散させた後、レーザ回折散乱式粒度分布測定装置 Micro Trac HRA 9320-X100型(Leeds & Northrup製)を用いて平均粒子径(D50値)、D50値の1.5倍以上の粒子径を持つ粒子の比率、D50値の0.5倍以下の粒子径を持つ粒子の比率、及び個数分布の標準偏差を測定した。CVはD50値及び個数分布の標準偏差を用いて前記の式(1)に従って計算した。
(2) Average particle diameter (D 50 value) by a laser diffraction scattering particle size distribution measurement, coarse ratio, fine proportions and CV (%)
A 0.1 g sample was mixed with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) and dispersed with an ultrasonic homogenizer for 5 minutes. leeds & Northrup Ltd.) average particle diameter (D 50 value using a), the proportion of particles having a particle diameter of 1.5 times the D 50 value, particles having a particle size of 0.5 times or less of the D 50 value And the standard deviation of the number distribution were measured. CV was calculated according to the above formula (1) using the D 50 value and the standard deviation of the number distribution.

(3)化学分析値
試料を溶解し、Na及びSはICPによって測定し、Clは比濁法によって測定した。 上記(1)〜(3)の測定、計算結果は第1表に示す通りであった。
(3) Chemical analysis value A sample was dissolved, Na and S were measured by ICP, and Cl was measured by a turbidimetric method. The measurement and calculation results of the above (1) to (3) were as shown in Table 1.

実施例1
比較例1で得たニッケル粉100gと板状炭酸水素マグネシウム100gとをヘンシェルミキサーで混合した後、窒素通気量1L/分の窒素雰囲気中で、600℃で1時間加熱した。その後、希硫酸で洗浄してマグネシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
Example 1
After mixing 100 g of nickel powder obtained in Comparative Example 1 and 100 g of plate-like magnesium hydrogen carbonate with a Henschel mixer, the mixture was heated at 600 ° C. for 1 hour in a nitrogen atmosphere with a nitrogen flow rate of 1 L / min. Thereafter, the magnesium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, it carried out similarly to the case of the comparative example 1, and calculated | required each characteristic. The results were as shown in Table 1.

実施例2
比較例1で得たニッケル粉100gと酸化マグネシウム(一次粒子径50nm)30gとをヘンシェルミキサーで混合した後、アルゴン通気量1L/分のアルゴン雰囲気中で、800℃で1時間加熱した。その後、希硫酸で洗浄してマグネシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
Example 2
After mixing 100 g of the nickel powder obtained in Comparative Example 1 and 30 g of magnesium oxide (primary particle diameter 50 nm) with a Henschel mixer, the mixture was heated at 800 ° C. for 1 hour in an argon atmosphere with an argon flow rate of 1 L / min. Thereafter, the magnesium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.

実施例3
比較例1で得たニッケル粉100gを水1L中に良く分散させた後、この分散スラリーに硝酸カルシウム・四水和物236gを添加し、攪拌して均一に溶解させた。更に、この分散スラリーに水酸化ナトリウム水溶液を添加してpHを8に調整し、1時間攪拌した後、濾過し、乾燥した。このようにして得た水酸化カルシウム被覆ニッケル粉を窒素通気量1L/分の窒素雰囲気中で、500℃で1時間加熱した。その後、希硫酸で洗浄してカルシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
Example 3
After 100 g of the nickel powder obtained in Comparative Example 1 was well dispersed in 1 L of water, 236 g of calcium nitrate tetrahydrate was added to this dispersed slurry, and the mixture was stirred and dissolved uniformly. Further, an aqueous sodium hydroxide solution was added to the dispersion slurry to adjust the pH to 8, stirred for 1 hour, filtered and dried. The calcium hydroxide-coated nickel powder thus obtained was heated at 500 ° C. for 1 hour in a nitrogen atmosphere with a nitrogen flow rate of 1 L / min. Thereafter, the calcium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, it carried out similarly to the case of the comparative example 1, and calculated | required each characteristic. The results were as shown in Table 1.

比較例2
板状炭酸水素マグネシウムを使用しなかった以外は実施例1の場合と同様に処理してニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
Comparative Example 2
A nickel powder was obtained by the same treatment as in Example 1 except that plate-like magnesium hydrogen carbonate was not used. About this nickel powder, it carried out similarly to the case of the comparative example 1, and calculated | required each characteristic. The results were as shown in Table 1.

比較例3
特開平11−236631号公報に記載の実施例2の方法に準じて、無水塩化ニッケル粉221g、還元剤としてマグネシウム金属27g(1.1当量)及び無水塩化カルシウム151gをグローボックス中で充分に混合した後、純ニッケル製の反応容器に入れ、蓋をし、その後ステンレス製の反応容器に入れてアルゴンガスで置換した後、30分間で1000℃まで昇温させ、1000℃に30分間保持した後800℃まで降温させ、次いで電気炉から反応容器を取り出して室温まで空冷した。
Comparative Example 3
In accordance with the method of Example 2 described in JP-A-11-266331, 221 g of anhydrous nickel chloride powder, 27 g (1.1 equivalents) of magnesium metal as a reducing agent and 151 g of anhydrous calcium chloride are sufficiently mixed in a glow box. After putting in a reaction vessel made of pure nickel, capping, and then putting in a reaction vessel made of stainless steel and replacing with argon gas, the temperature was raised to 1000 ° C. in 30 minutes and held at 1000 ° C. for 30 minutes The temperature was lowered to 800 ° C., then the reaction vessel was taken out of the electric furnace and air-cooled to room temperature.

その後、その還元生成物をクラッシャーで数ミリ程度の粒状に粉砕後、レパルプ、沈降を繰り返すことにより水洗し、塩化カルシウムを除去した後、固液分離することにより微細ニッケル粉を回収した。固液分離で回収したスラリー又はケーキ状の湿潤な微細ニッケル粉を150℃の気流中で解砕しながら乾燥した。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。   Thereafter, the reduced product was pulverized to a few millimeters with a crusher, washed with water by repeating repulping and sedimentation, calcium chloride was removed, and solid nickel was recovered by solid-liquid separation. The slurry or cake-like wet fine nickel powder recovered by solid-liquid separation was dried while being crushed in an air stream at 150 ° C. About this nickel powder, it carried out similarly to the case of the comparative example 1, and calculated | required each characteristic. The results were as shown in Table 1.

第1表のデータから明らかなように、実施例1〜3で得られたニッケル粉は、出発原料のニッケル粉と比較して平均結晶子径が大きくなっており、また平均粒子径(D50値)に対する粗粒、微粒の比率が少なく、粒度分布がシャープである。また、ナトリウム、硫黄、塩素等の不純物の含有量も充分に低い。 As is apparent from the data in Table 1, the nickel powders obtained in Examples 1 to 3 have a larger average crystallite diameter than that of the starting nickel powder, and the average particle diameter (D 50). Value) is small and the particle size distribution is sharp. In addition, the content of impurities such as sodium, sulfur and chlorine is sufficiently low.

これに対して、比較例1で得られたニッケル粉は熱処理を加えていないため、平均結晶子径が小さいものであった。比較例2で得られたニッケル粉は、平均結晶子径がかなり大きいものの、アルカリ土類金属化合物の微粉末を使用していないため、出発原料のニッケル粉の焼結が進み、導電ペースト用途には全く適さないニッケル粉になっていた。また、比較例3で得られたニッケル粉は、平均結晶子径がかなり大きいものの、出発原料としてニッケル塩を用いたことに起因して還元生成されたニッケルの粒径を制御しきれずにバラツキが大きかった。   On the other hand, since the nickel powder obtained in Comparative Example 1 was not subjected to heat treatment, the average crystallite size was small. Although the nickel powder obtained in Comparative Example 2 has a considerably large average crystallite diameter, since the fine powder of the alkaline earth metal compound is not used, the sintering of the starting nickel powder proceeds, and the conductive paste is used. Was a nickel powder that was totally unsuitable. Moreover, although the nickel powder obtained in Comparative Example 3 has a considerably large average crystallite size, the particle size of the nickel produced by reduction due to the use of the nickel salt as a starting material cannot be controlled, and variation is not achieved. It was big.

Claims (3)

レーザ回折散乱式粒度分布測定による平均粒子径(D50値)の1.5倍以上の粒子径を持つ粒子個数が全粒子個数の20%以下であり、該平均粒子径(D50値)の0.5倍以下の粒子径を持つ粒子個数が全粒子個数の5%以下であり、且つニッケル粒子内の平均結晶子径が400Å以上であることを特徴とするニッケル粉。 The number of particles having a particle size of 1.5 times or more of the average particle size (D 50 value) measured by laser diffraction / scattering particle size distribution measurement is 20% or less of the total particle number, and the average particle size (D 50 value) A nickel powder characterized in that the number of particles having a particle size of 0.5 times or less is 5% or less of the total number of particles, and the average crystallite size in the nickel particles is 400 mm or more. 下記の式(1)により求められる変動係数(CV)が40%未満であることを特徴とする請求項1記載のニッケル粉。
CV(%)=(σ/D50値)×100 ‥‥‥(1)
(式中、D50値はレーザ回折散乱式粒度分布測定による平均粒子径であり、σはレーザ回折散乱式粒度分布測定による個数分布の標準偏差である)。
The nickel powder according to claim 1, wherein the coefficient of variation (CV) obtained by the following formula (1) is less than 40%.
CV (%) = (σ / D 50 value) × 100 (1)
(In the formula, the D 50 value is an average particle diameter by laser diffraction scattering type particle size distribution measurement, and σ is a standard deviation of the number distribution by laser diffraction scattering type particle size distribution measurement).
ニッケル粉中のアルカリ金属の総量が500ppm以下であり、塩素量が100ppm以下であり、硫黄量が10000ppm以下であることを特徴とする請求項1又は2記載のニッケル粉。   The nickel powder according to claim 1 or 2, wherein the total amount of alkali metals in the nickel powder is 500 ppm or less, the chlorine content is 100 ppm or less, and the sulfur content is 10,000 ppm or less.
JP2007056264A 2007-03-06 2007-03-06 Nickel powder Pending JP2007197836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056264A JP2007197836A (en) 2007-03-06 2007-03-06 Nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056264A JP2007197836A (en) 2007-03-06 2007-03-06 Nickel powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000341649A Division JP3945740B2 (en) 2000-11-09 2000-11-09 Nickel powder

Publications (1)

Publication Number Publication Date
JP2007197836A true JP2007197836A (en) 2007-08-09

Family

ID=38452710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056264A Pending JP2007197836A (en) 2007-03-06 2007-03-06 Nickel powder

Country Status (1)

Country Link
JP (1) JP2007197836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189252A (en) * 2010-03-19 2011-09-21 住友金属矿山株式会社 Nickel micro powder and manufacturing method thereof
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
US20140049875A1 (en) * 2012-08-16 2014-02-20 Samsung Electro-Mechanics Co., Ltd. Nickel powder for internal electrode, method of producing the same, and multilayer ceramic electronic component including the same
WO2014041706A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing nickel microparticles
WO2014042227A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing metal microparticles
JP2021139050A (en) * 2016-12-28 2021-09-16 日鉄ケミカル&マテリアル株式会社 Metal particle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156324A (en) * 1991-12-09 1993-06-22 Mitsubishi Gas Chem Co Inc Production of superfine nickel aggregated powder
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JPH10102109A (en) * 1996-09-30 1998-04-21 Tanaka Kikinzoku Kogyo Kk Production of nickel powder
JPH11140514A (en) * 1997-11-12 1999-05-25 Toho Titanium Co Ltd Production of nickel powder
JPH11152507A (en) * 1997-09-11 1999-06-08 Mitsui Mining & Smelting Co Ltd Production of nickel fine powder
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
JPH11236606A (en) * 1998-02-23 1999-08-31 Sumitomo Metal Mining Co Ltd Production of fine nickel powder by vapor phase reducing method, and fine nickel powder obtained thereby
JP2001040401A (en) * 1999-07-29 2001-02-13 Dowa Mining Co Ltd Treatment of metal powder
JP2001191702A (en) * 2000-01-12 2001-07-17 Topy Ind Ltd Disc wheel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156324A (en) * 1991-12-09 1993-06-22 Mitsubishi Gas Chem Co Inc Production of superfine nickel aggregated powder
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JPH10102109A (en) * 1996-09-30 1998-04-21 Tanaka Kikinzoku Kogyo Kk Production of nickel powder
JPH11152507A (en) * 1997-09-11 1999-06-08 Mitsui Mining & Smelting Co Ltd Production of nickel fine powder
JPH11140514A (en) * 1997-11-12 1999-05-25 Toho Titanium Co Ltd Production of nickel powder
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
JPH11236606A (en) * 1998-02-23 1999-08-31 Sumitomo Metal Mining Co Ltd Production of fine nickel powder by vapor phase reducing method, and fine nickel powder obtained thereby
JP2001040401A (en) * 1999-07-29 2001-02-13 Dowa Mining Co Ltd Treatment of metal powder
JP2001191702A (en) * 2000-01-12 2001-07-17 Topy Ind Ltd Disc wheel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189252A (en) * 2010-03-19 2011-09-21 住友金属矿山株式会社 Nickel micro powder and manufacturing method thereof
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
US20140049875A1 (en) * 2012-08-16 2014-02-20 Samsung Electro-Mechanics Co., Ltd. Nickel powder for internal electrode, method of producing the same, and multilayer ceramic electronic component including the same
WO2014041706A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing nickel microparticles
WO2014042227A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing metal microparticles
KR20150054715A (en) 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
KR20150054714A (en) 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing nickel microparticles
US9744594B2 (en) 2012-09-12 2017-08-29 M. Technique Co., Ltd. Method for producing nickel microparticles
US9827613B2 (en) 2012-09-12 2017-11-28 M. Technique Co., Ltd. Method for producing metal microparticles
JP2021139050A (en) * 2016-12-28 2021-09-16 日鉄ケミカル&マテリアル株式会社 Metal particle
JP7430664B2 (en) 2016-12-28 2024-02-13 日鉄ケミカル&マテリアル株式会社 metal particles

Similar Documents

Publication Publication Date Title
TWI580800B (en) Copper powder
TWI517914B (en) Nickel powder and its manufacturing method
US7618475B2 (en) Metal powder for electrically conductive paste and electrically conductive paste
US7534283B2 (en) Method of producing copper powder and copper powder
JP5519938B2 (en) Method for producing copper powder for conductive paste
CN108602129B (en) Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP6135935B2 (en) Method for producing wet nickel powder
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
TWI716526B (en) Nickel powder
JP2007197836A (en) Nickel powder
TW201323338A (en) Cuprous oxide powder and method for producing same
JP7050756B2 (en) Copper particles and their manufacturing method
JP2010053409A (en) Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP2009024197A (en) Method for producing nickel powder
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP3945740B2 (en) Nickel powder
JP5046044B2 (en) Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles
JP5530270B2 (en) Cobalt powder and method for producing the same
JP2011174121A (en) Nickel powder and production method therefor
JP3474170B2 (en) Nickel powder and conductive paste
JP2014231643A (en) Method of producing metal powder, metal powder and conductive paste for laminated ceramic capacitor
JP5088458B2 (en) Nickel powder for multilayer ceramic capacitor external electrode and method for producing the same
JP5942791B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100818