JP5392884B2 - Method for producing copper powder - Google Patents

Method for producing copper powder Download PDF

Info

Publication number
JP5392884B2
JP5392884B2 JP2007246083A JP2007246083A JP5392884B2 JP 5392884 B2 JP5392884 B2 JP 5392884B2 JP 2007246083 A JP2007246083 A JP 2007246083A JP 2007246083 A JP2007246083 A JP 2007246083A JP 5392884 B2 JP5392884 B2 JP 5392884B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
slurry
cuprous oxide
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246083A
Other languages
Japanese (ja)
Other versions
JP2009074152A (en
Inventor
晃 青木
芳信 中村
貴彦 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007246083A priority Critical patent/JP5392884B2/en
Priority to TW097136051A priority patent/TWI455777B/en
Priority to KR20107004861A priority patent/KR101510369B1/en
Priority to PCT/JP2008/067078 priority patent/WO2009038207A1/en
Priority to CN2008801074240A priority patent/CN101801568B/en
Publication of JP2009074152A publication Critical patent/JP2009074152A/en
Application granted granted Critical
Publication of JP5392884B2 publication Critical patent/JP5392884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution

Description

本発明は、湿式法による銅粉の製造方法に関し、特に、銅塩水溶液を出発液として、二段還元により銅粉を得る製造方法に関するThe present invention relates to a method for producing copper powder by a wet method, and more particularly to a method for producing copper powder by two-stage reduction using a copper salt aqueous solution as a starting solution.

銅粉は、銅ペーストや銅インクの原料として広く用いられてきた。例えば、銅ペーストは、粒径数μmの微小な粒子からなる銅粉に樹脂成分を適宜配合してなるものであり、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、焼成または固化させ導体膜として導電性を発揮するものである。   Copper powder has been widely used as a raw material for copper paste and copper ink. For example, a copper paste is formed by appropriately mixing a resin component with copper powder composed of fine particles having a particle diameter of several μm, forming a circuit on a printed wiring board using a screen printing method, various electrical contact portions, etc. Applied and is fired or solidified to exhibit conductivity as a conductor film.

プリント配線板等の小型化を受けて、当該銅ペーストにより形成された回路の導電性、信頼性等の点で、銅粉の更なる改良が市場において求められている。例えば、微細配線では、電気的特性に関する微少な変動が製品に影響を及ぼす場合があるので、導電性フィラーについても電気的安定性が高精度なレベルで求められている。また、微細配線のファインライン化のために、微粒な導電性フィラーが求められている。しかし、銅粉は微粒になる程表面エネルギーが高くなり、凝集しやすいので、粒度分布幅が広くなり、微粒均一な銅粉を得るのは難しい。そこで、微粒均一な銅粉が求められている。   In response to the miniaturization of printed wiring boards and the like, further improvements in copper powder are required in the market in terms of the conductivity and reliability of circuits formed from the copper paste. For example, in a fine wiring, since a slight variation regarding electrical characteristics may affect a product, electrical stability is also required for a conductive filler with a high accuracy level. In addition, a fine conductive filler is required to make fine wiring finer. However, the finer the copper powder, the higher the surface energy and the easier it is to agglomerate. Therefore, it is difficult to obtain a uniform copper powder with a wide particle size distribution range. Therefore, there is a demand for copper powder that is uniform in size.

また、導体形成の際、銅粉粒子に含まれる炭素成分により、高温焼成時に炭酸ガスが発生し、導体が不均一となり安定した導体形成の妨げとなる点が課題となっている。具体的には、銅粉粒子内部に炭素を多く含有する銅粉を銅ペーストの材料に用いると、高温焼成時に、形成された焼結膜の内部において炭酸ガスが発生する。この炭酸ガスにより、焼結膜の表面にクラックが発生したり、導体の内部欠陥が発生しやすくなる。このように、炭素、その他の不純物を含む銅粉は、抵抗値等の電気的特性に品質変動が生じる。このため、不純物が極力少ない純度の高い銅粉が求められていた。   Moreover, the carbon component contained in the copper powder particles during the formation of the conductor generates carbon dioxide gas at the time of high-temperature firing, causing the conductor to be non-uniform and hindering stable conductor formation. Specifically, when copper powder containing a large amount of carbon in the copper powder particles is used as the material for the copper paste, carbon dioxide gas is generated inside the formed sintered film during high-temperature firing. This carbon dioxide gas tends to cause cracks on the surface of the sintered film and internal defects of the conductor. Thus, the quality of the copper powder containing carbon and other impurities varies in electrical characteristics such as resistance value. For this reason, the copper powder with high purity with few impurities was calculated | required.

銅粉の製造方法の例として特許文献1には、湿式還元法を用いて、良好な粒径に制御されたフレーク銅粉が開示されている。また、特許文献2には、リン含有量が0.01〜0.10質量%であり、且つ、酸素含有量が0.30質量%以下である銅粉末を用いる外部電極用銅ペースト組成物が開示されている。この特許文献2には、外部電極用銅ペースト組成物に用いられる球状の銅粉末として平均粒径を1〜4μmとしており、外部電極用銅ペースト組成物に適度な粘性及び塗布性を得るために、有機ビヒクルを使用している。なお、この特許文献2に開示の銅粉末の製造方法は、湿式還元法、乾式法等、特に限定しておらず、水アトマイズ法により得られるものが好適であることが記載されている。   As an example of a method for producing copper powder, Patent Document 1 discloses a flake copper powder that is controlled to have a good particle size using a wet reduction method. Patent Document 2 discloses a copper paste composition for an external electrode using a copper powder having a phosphorus content of 0.01 to 0.10% by mass and an oxygen content of 0.30% by mass or less. It is disclosed. In Patent Document 2, an average particle diameter of 1 to 4 μm is used as a spherical copper powder used in a copper paste composition for external electrodes, and in order to obtain an appropriate viscosity and coatability for the copper paste composition for external electrodes. , Using organic vehicles. In addition, the manufacturing method of the copper powder disclosed by this patent document 2 is not specifically limited, such as a wet reduction method and a dry method, It describes that what is obtained by the water atomization method is suitable.

特開2005−314755号公報JP 2005-314755 A 特開2005−222737号公報JP 2005-222737 A 特開2005−314755号公報JP 2005-314755 A 特許3570591号公報Japanese Patent No. 3705591

微粒均一且つ低不純物な銅粉へのニーズに対し、アトマイズ法により製造された微粒銅粉の場合、炭素量が低く、分散性の点でも優れた銅粉を製造することができるが、粗粒を含み、微細配線などには不向きであるとともに他の不純物を含む傾向がある。そして、粗粒を解消するために分級を強化すれば製造長期化や収率の低下により、製造コストが高くなるといった問題があった。   In the case of fine copper powder produced by the atomization method for the need for fine, uniform and low-impurity copper powder, it is possible to produce copper powder with low carbon content and excellent dispersibility. It is not suitable for fine wiring and tends to contain other impurities. And if classification was strengthened in order to eliminate coarse grains, there was a problem that the production cost was increased due to the prolonged production and the decrease in yield.

一方、従来の湿式還元法による銅粉は、一次粒子自体は微粒で均一になる傾向があるものの、反応性の観点から有機系の還元剤を用いることが多かった(例えば、特許文献3)。この結果、銅粉における有機剤吸着量が多くなるため、炭素の含有量が多くなる傾向がある。   On the other hand, the copper powder obtained by the conventional wet reduction method has a tendency that the primary particles themselves are fine and uniform, but an organic reducing agent is often used from the viewpoint of reactivity (for example, Patent Document 3). As a result, since the organic agent adsorption amount in the copper powder increases, the carbon content tends to increase.

また、無機還元剤を用いた湿式還元法の場合(例えば、特許文献4)、炭素含有量についての上記課題は解消されるものの、凝集が生じやすく、得られる銅粉の粒度は分布が広くブロードなものであった。   Further, in the case of a wet reduction method using an inorganic reducing agent (for example, Patent Document 4), although the above-mentioned problem with respect to the carbon content is solved, aggregation is likely to occur, and the resulting copper powder has a broad distribution and a broad particle size. It was something.

本発明は上記課題を受けて、粒度分布幅が極めて狭く、且つ不純物の含有量が少なく、導電率を高め、均質で高品質な銅粉と、このような銅粉を安定的且つ効率良く得られる銅粉の製造方法を提供することを目的とする。   In response to the above-mentioned problems, the present invention has a very narrow particle size distribution width, a small impurity content, an increased electrical conductivity, and a homogeneous and high-quality copper powder, and such a copper powder can be obtained stably and efficiently. It aims at providing the manufacturing method of the copper powder manufactured.

そこで、本発明者等は、鋭意研究を行った結果、湿式還元法を用いた以下の銅粉の製造方法を採用することで上記課題を達成する銅粉を得るに到った。   Therefore, as a result of intensive studies, the present inventors have come to obtain a copper powder that achieves the above problems by adopting the following method for producing a copper powder using a wet reduction method.

銅粉の製造方法:本発明に係る銅粉の製造方法は、銅塩水溶液にアルカリ溶液を添加して得られた銅塩化合物スラリーに、ヒドラジン系還元剤を添加して亜酸化銅スラリーとし、当該亜酸化銅スラリーを水洗し、再スラリー化した洗浄亜酸化銅スラリーに再びヒドラジン系還元剤を添加する銅粉の製造方法において、最終還元反応が終了するまでに、リンと銅のモル比がP/Cu=0.0001〜0.003となるように、リン化合物を反応スラリーに添加することを特徴とする。 Copper powder manufacturing method: The copper powder manufacturing method according to the present invention is a copper salt compound slurry obtained by adding an alkaline solution to a copper salt aqueous solution, to add a hydrazine-based reducing agent to make a cuprous oxide slurry, In the copper powder manufacturing method in which the cuprous oxide slurry is washed with water and the hydrazine-based reducing agent is added again to the reslurried washed cuprous oxide slurry, the molar ratio of phosphorus and copper is increased until the final reduction reaction is completed. A phosphorus compound is added to the reaction slurry so that P / Cu = 0.0001 to 0.003.

更に、本発明に係る銅粉の製造方法は、前記銅塩化合物スラリーの銅濃度を1mol/L〜3mol/Lとすることが好ましい。   Furthermore, in the method for producing copper powder according to the present invention, the copper concentration of the copper salt compound slurry is preferably 1 mol / L to 3 mol / L.

本発明に係る銅粉の製造方法は、前記アルカリ溶液がアンモニア水溶液であることが好ましい。   In the method for producing copper powder according to the present invention, the alkaline solution is preferably an aqueous ammonia solution.

本発明に係る銅粉の製造方法は、前記銅塩化合物スラリーに、ヒドラジン系還元剤を添加し、還元反応を行う際のpHを3.5〜6.0に調整することが好ましい。   It is preferable that the manufacturing method of the copper powder which concerns on this invention adjusts pH at the time of adding a hydrazine type reducing agent to the said copper salt compound slurry, and performing a reductive reaction to 3.5-6.0.

本発明に係る銅粉の製造方法は、前記銅塩化合物スラリーに、ヒドラジン系還元剤を添加し、還元反応を行う際のpH調整をアンモニア水溶液で行うことが好ましい。   In the method for producing copper powder according to the present invention, it is preferable to add a hydrazine-based reducing agent to the copper salt compound slurry and perform pH adjustment with an aqueous ammonia solution when performing the reduction reaction.

本発明に係る銅粉の製造方法は、前記洗浄亜酸化銅スラリーに再びヒドラジン系還元剤添加前のスラリーのpHを4.1〜6.0に調整することが好ましい。   In the method for producing copper powder according to the present invention, it is preferable to adjust the pH of the slurry before addition of the hydrazine-based reducing agent to the washed cuprous oxide slurry again to 4.1 to 6.0.

本発明に係る銅粉の製造方法は、不純物の含有を極力排除しながら、粒度分布幅が極めて狭い銅粉を製造することができる。 The method for producing copper powder according to the present invention can produce copper powder having a very narrow particle size distribution width while eliminating impurities as much as possible .

以下、本発明に係る銅粉の製造方法最良の実施の形態に関して説明する。 Hereinafter, the best embodiment of the method for producing copper powder according to the present invention will be described.

銅粉の製造方法:まず、本発明に係る銅粉の製造方法の前提となる工程の概略を説明する。最初に、銅塩水溶液にアルカリ溶液を添加して銅塩化合物スラリーにする。この銅塩化合物スラリーにヒドラジン系還元剤を添加して亜酸化銅スラリーとする(第1還元処理)。次に、亜酸化銅スラリーを水洗し再スラリー化して洗浄亜酸化銅スラリーとし、この洗浄亜酸化銅スラリーに再びヒドラジン系還元剤を添加する工程(第2還元処理)を経て銅粉を還元析出させて銅粉を得るのである。 Method for producing copper powder: First, an outline of the process as a premise of the method for producing copper powder according to the present invention will be described. First, an alkali solution is added to a copper salt aqueous solution to form a copper salt compound slurry. A hydrazine-based reducing agent is added to the copper salt compound slurry to form a cuprous oxide slurry (first reduction treatment). Next, the cuprous oxide slurry is washed with water and reslurried to obtain a washed cuprous oxide slurry, and the copper powder is reduced and precipitated through a step of adding a hydrazine-based reducing agent to the washed cuprous oxide slurry again (second reduction treatment). To obtain copper powder.

そして、本発明に係る銅粉の製造方法では、上記工程において、最終還元反応終了時までに、モル比でP/Cu=0.0001〜0.003となる量のリン化合物を反応スラリーに添加することを特徴とする。即ち、上記方法において、銅に対して極めて微量のリン成分を添加することより析出粒子の成長過程での凝集を抑えて、粒度分布幅が極めて狭く且つ低不純物である高品質な銅粉を製造することができるのである。以下、銅粉の製造方法を詳述する。   And in the manufacturing method of the copper powder which concerns on this invention, in the said process, the phosphorus compound of the quantity used as P / Cu = 0.0001-0.003 by molar ratio is added to reaction slurry by the time of completion | finish of final reduction reaction. It is characterized by doing. That is, in the above method, by adding a very small amount of phosphorus component to copper, the aggregation in the growth process of the precipitated particles is suppressed, and high-quality copper powder having a very narrow particle size distribution width and low impurities is produced. It can be done. Hereinafter, the manufacturing method of copper powder is explained in full detail.

まず、銅塩水溶液にアルカリ溶液を添加することにより、銅塩と反応させて銅塩化合物が生成し、これを銅塩化合物スラリーとする。例えば、銅塩水溶液にアルカリ溶液を30分掛けて徐々に添加し、その後30分静置して熟成させることにより、銅塩と反応させて、二価の銅化合物を得る。   First, an alkaline solution is added to an aqueous copper salt solution to react with the copper salt to produce a copper salt compound, which is used as a copper salt compound slurry. For example, an alkaline solution is gradually added to an aqueous copper salt solution over 30 minutes, and then allowed to stand for 30 minutes for aging to react with the copper salt to obtain a divalent copper compound.

ここで、銅塩水溶液は、水に水溶性銅塩を加え、部分溶解させたものである。水溶性銅塩は、硫酸銅、硝酸銅、酢酸銅、塩化銅等が考えられ、中でも硫酸銅、硝酸銅が好ましい。また、アルカリ溶液としては、アンモニア水溶液、水酸化カリウム、水酸化ナトリウム等が挙げられる。特に、アンモニア水溶液を用いると、不純物を排除し、純度の高い銅粉が得られる点で好ましい。   Here, the copper salt aqueous solution is obtained by adding a water-soluble copper salt to water and partially dissolving it. Examples of the water-soluble copper salt include copper sulfate, copper nitrate, copper acetate, copper chloride and the like, and among them, copper sulfate and copper nitrate are preferable. Examples of the alkaline solution include an aqueous ammonia solution, potassium hydroxide, and sodium hydroxide. In particular, it is preferable to use an aqueous ammonia solution in terms of eliminating impurities and obtaining high-purity copper powder.

銅塩化合物スラリーの銅濃度は、1mol/L〜3mol/Lとすることが好ましい。銅塩化合物スラリーの銅濃度が1mol/L未満であると、従来と比べ生産の効率化を図るという効果が得られない。一方、銅塩化合物スラリーの銅濃度が3mol/Lを上回ると、凝集が生じやすくなり、粒度分布の制御が難しく製造安定性が望めない。そして、より好ましい銅塩化合物スラリーの銅濃度は、1.5mol/L〜2.5mol/Lである。   The copper concentration of the copper salt compound slurry is preferably 1 mol / L to 3 mol / L. If the copper concentration of the copper salt compound slurry is less than 1 mol / L, the effect of increasing the production efficiency compared to the conventional case cannot be obtained. On the other hand, when the copper concentration of the copper salt compound slurry exceeds 3 mol / L, aggregation tends to occur, and it is difficult to control the particle size distribution and production stability cannot be expected. And the copper concentration of a more preferable copper salt compound slurry is 1.5 mol / L-2.5 mol / L.

アルカリ溶液は、中和生成物としての銅塩化合物を得られる量であれば良く、後の工程におけるpHとの関係を考慮する。例えば、アルカリ溶液としてアンモニア水溶液を用いる場合、その添加量は、銅1molに対してアンモニア成分が1.0mol〜3.8molとなるように用いる。アンモニア成分がこの範囲を外れると、後の還元工程における適正なpH範囲へのコントロールが困難となる。   The alkaline solution should just be the quantity which can obtain the copper salt compound as a neutralization product, and considers the relationship with pH in a subsequent process. For example, when an aqueous ammonia solution is used as the alkaline solution, the added amount is such that the ammonia component is 1.0 mol to 3.8 mol with respect to 1 mol of copper. When the ammonia component is out of this range, it becomes difficult to control the pH to an appropriate pH range in the subsequent reduction step.

本発明に係る銅粉の製造方法は、銅塩化合物スラリーの銅濃度を比較的高濃度となるように液量を調整するのが好ましい。従来の湿式還元法では、還元前の銅塩化合物スラリーの銅濃度を高くすると、析出粒子の凝集が生じやすく、粒度分布幅が狭い銅粉を効率良く製造することが出来なかった。しかし、本発明に係る銅粉の製造方法では、pH変動範囲の調整、使用物質の混合条件等を種々調整することで、還元反応前の銅塩化合物スラリーの銅濃度を上記範囲としても、粒度分布幅が極めて狭い銅粉を得ることができる。   In the method for producing copper powder according to the present invention, the amount of the liquid is preferably adjusted so that the copper concentration of the copper salt compound slurry is relatively high. In the conventional wet reduction method, if the copper concentration of the copper salt compound slurry before reduction is increased, the precipitated particles are likely to aggregate and copper powder having a narrow particle size distribution width cannot be efficiently produced. However, in the method for producing copper powder according to the present invention, it is possible to adjust the pH fluctuation range, the mixing conditions of the substances used, and the like, so that the copper concentration of the copper salt compound slurry before the reduction reaction is within the above range. Copper powder with a very narrow distribution width can be obtained.

次に、前記銅塩化合物スラリーにヒドラジン系還元剤を添加して亜酸化銅スラリーとする(第1還元)。本発明に係る銅粉の製造方法では、銅塩化合物を亜酸化銅に還元する程度にヒドラジン系還元剤の添加量を調整して亜酸化銅スラリーとする。即ち、第1還元処理により、亜酸化銅スラリーを調製し、後の第2還元処理時の反応を安定化させ、還元析出させる粒子の均一化を図るのである。   Next, a hydrazine-based reducing agent is added to the copper salt compound slurry to form a cuprous oxide slurry (first reduction). In the method for producing copper powder according to the present invention, the amount of the hydrazine-based reducing agent is adjusted so as to reduce the copper salt compound to cuprous oxide to obtain a cuprous oxide slurry. That is, a cuprous oxide slurry is prepared by the first reduction treatment, the reaction during the subsequent second reduction treatment is stabilized, and the particles to be reduced and precipitated are made uniform.

この第1還元処理時にヒドラジン系還元剤を用いると、亜酸化銅粒子の表面に対して還元剤成分が残留する可能性が低く、汚染物質となりにくい。   When a hydrazine-based reducing agent is used during the first reduction treatment, the possibility that the reducing agent component remains on the surface of the cuprous oxide particles is low, and it is difficult to become a contaminant.

ヒドラジン系還元剤としては、抱水ヒドラジン、硫酸ヒドラジン、無水ヒドラジン等種々のものが考えられるが、抱水ヒドラジンが最も好ましい。これらのヒドラジン系還元剤は、単独または混合して用いることが可能である。そして、ヒドラジン系還元剤は、反応系の溶液に迅速に拡散し、均一な反応を得るために、溶液の状態で反応に用いることが好ましい。   As the hydrazine-based reducing agent, various substances such as hydrazine hydrate, hydrazine sulfate, and anhydrous hydrazine can be considered, and hydrazine hydrate is most preferable. These hydrazine-based reducing agents can be used alone or in combination. The hydrazine-based reducing agent is preferably used in the reaction in the form of a solution in order to quickly diffuse into the reaction system solution and obtain a uniform reaction.

ヒドラジン系還元剤の添加量は、銅塩化合物スラリー中の銅1molに対して0.3mol〜0.5molとするのが好ましい。ヒドラジン系還元剤の添加量が、上記銅1molに対して0.3mol未満の場合には、未反応の銅塩化合物が多く残留するため好ましくない。一方、ヒドラジン系還元剤の添加量が上記銅1molに対して0.5molを超えるように添加すると、亜酸化銅の段階で還元反応を止めることができない。   The amount of the hydrazine-based reducing agent added is preferably 0.3 mol to 0.5 mol with respect to 1 mol of copper in the copper salt compound slurry. When the addition amount of the hydrazine-based reducing agent is less than 0.3 mol with respect to 1 mol of copper, a large amount of unreacted copper salt compound remains, which is not preferable. On the other hand, when the addition amount of the hydrazine-based reducing agent exceeds 0.5 mol with respect to 1 mol of copper, the reduction reaction cannot be stopped at the cuprous oxide stage.

なお、銅塩化合物スラリーにヒドラジン系還元剤を添加し還元反応を行う際のpHを3.5〜6.0に調整する。この溶液pHが上記範囲を外れると、得られる亜酸化銅粒子の粒径のバラツキが大きくなり、最終的製品である銅粉粒子の粒度分布幅が広くなる。   In addition, the pH at the time of performing a reductive reaction by adding a hydrazine type reducing agent to a copper salt compound slurry is adjusted to 3.5-6.0. When the solution pH is out of the above range, the variation in the particle size of the obtained cuprous oxide particles becomes large, and the particle size distribution width of the copper powder particles as the final product becomes wide.

この銅塩化合物スラリーから亜酸化銅スラリーにする第1還元処理では、ヒドラジン系還元剤を添加しつつ、pH調整剤としてアンモニア水溶液を用いて、pH変動を制御しながら還元処理を行うのが好ましい。このように、pH調整剤としてアンモニア水溶液を用いるのは、銅塩化合物スラリーの生成時にアルカリ溶液としてアンモニアを用いて中和したことを考慮すると、使用物質を同一にして、異種成分の使用を可能な限り排除して、残留不純物を極力排除するためである。この結果、得られる銅粉の純度コントロールが容易となる。   In the first reduction treatment from the copper salt compound slurry to the cuprous oxide slurry, it is preferable to carry out the reduction treatment while controlling the pH fluctuation using an aqueous ammonia solution as a pH adjuster while adding a hydrazine-based reducing agent. . As described above, the aqueous ammonia solution is used as the pH adjusting agent, considering that neutralization was performed using ammonia as the alkaline solution during the production of the copper salt compound slurry. This is to eliminate as much as possible and to eliminate residual impurities as much as possible. As a result, purity control of the obtained copper powder becomes easy.

上述の第1還元処理においては、銅塩化合物スラリー中の銅1molに対し、添加終了時において、ヒドラジン系還元剤が0.3mol〜0.5molとし、アンモニア水溶液が(アンモニアとして)0.2mol〜0.4molの割合となるように連続添加することが好ましい。こうして添加された反応スラリーのpHは、還元剤及びpH調整剤の添加開始時の始点pHと添加終了時の終点pHとの差が3.0以下となるように調整すればよい。   In the first reduction treatment described above, with respect to 1 mol of copper in the copper salt compound slurry, at the end of addition, the hydrazine-based reducing agent is 0.3 mol to 0.5 mol, and the aqueous ammonia solution (as ammonia) is 0.2 mol to It is preferable to add continuously so that it may become a ratio of 0.4 mol. The pH of the reaction slurry thus added may be adjusted so that the difference between the starting point pH at the start of the addition of the reducing agent and the pH adjusting agent and the end point pH at the end of the addition is 3.0 or less.

ここで、亜酸化銅スラリーは亜酸化銅を含有するスラリーを意味し、亜酸化銅以外の構成成分を含む場合もある。後述する洗浄亜酸化銅スラリーについても同様である。   Here, the cuprous oxide slurry means a slurry containing cuprous oxide, and may contain components other than cuprous oxide. The same applies to the washed cuprous oxide slurry described later.

そして、得られた亜酸化銅スラリーのpHを3.5〜6.0の範囲にすると、以降の工程において反応スラリーのpH変動を好適な範囲に抑えられる。この結果、得られる銅粉の粒径の均一化を図ることができる。亜酸化銅スラリーをpH6.0よりアルカリ性側とすると、亜酸化銅スラリー中の銅成分が亜酸化銅に止まらずメタルを形成して凝集が生じる。一方、亜酸化銅スラリーをpH3.5より酸性側とすると、亜酸化銅の還元が不十分となり、製造効率が低下する。   And when pH of the obtained cuprous oxide slurry is made into the range of 3.5-6.0, the pH fluctuation | variation of the reaction slurry can be restrained in a suitable range in subsequent processes. As a result, the particle size of the obtained copper powder can be made uniform. When the cuprous oxide slurry is set to an alkaline side from pH 6.0, the copper component in the cuprous oxide slurry does not stop at the cuprous oxide but forms a metal and agglomerates. On the other hand, when the cuprous oxide slurry is set to the acidic side from pH 3.5, the reduction of cuprous oxide becomes insufficient and the production efficiency is lowered.

そして、第1還元処理時の反応スラリー温度は、40℃〜60℃の範囲を採用することが好ましい。40℃未満の温度では、還元反応速度が遅く工業的生産性を満足しない。一方、反応スラリーの温度が60℃を超えると、還元速度が速くなりすぎて不均一な還元反応が起こるため、得られる銅粉の粉体特性が劣化する。   And it is preferable to employ | adopt the range of 40 to 60 degreeC as the reaction slurry temperature at the time of a 1st reduction process. At temperatures below 40 ° C., the reduction reaction rate is slow and industrial productivity is not satisfied. On the other hand, when the temperature of the reaction slurry exceeds 60 ° C., the reduction rate becomes too fast and a non-uniform reduction reaction occurs, so that the powder characteristics of the obtained copper powder deteriorate.

次に、亜酸化銅スラリーを水洗し、再スラリー化して洗浄亜酸化銅スラリーとする。まず、亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させる。亜酸化銅粒子の沈殿後、上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し、再スラリー化して洗浄亜酸化銅スラリーとする。洗浄亜酸化銅スラリーのpHが4.1〜6.0であると、以降の工程におけるpH変動を好適な範囲に抑えられ、得られる銅粉の粒径を精度良く揃えることができる。   Next, the cuprous oxide slurry is washed with water and reslurried to obtain a washed cuprous oxide slurry. First, a cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles. After precipitation of the cuprous oxide particles, the supernatant is removed and water is added to wash the cuprous oxide particles and reslurry to obtain a washed cuprous oxide slurry. When the pH of the washed cuprous oxide slurry is 4.1 to 6.0, the pH fluctuation in the subsequent steps can be suppressed within a suitable range, and the particle size of the obtained copper powder can be accurately aligned.

亜酸化銅粒子の洗浄方法に関しては、特段の限定はなく、公知の洗浄方法を採用することが可能である。しかし、以下に示すリパルプ洗浄を採用して、洗浄レベルを洗浄中の亜酸化銅スラリーのpH値で管理することが好ましい。リパルプ洗浄は、亜酸化銅を沈殿させて上澄みを廃棄し、洗浄水を注ぎ足すという操作を複数回行う。そして、リパルプ洗浄は、洗浄水を注ぎ足した洗浄亜酸化銅スラリーのpHが4.1〜6.0の範囲のいずれか一定のpH値になるまで繰り返し洗浄するのが好ましい。洗浄亜酸化銅スラリーのpHが4.1より酸性側にあると、還元効率が悪くなる。一方、洗浄亜酸化銅スラリーのpHが6.0よりアルカリ性側にあると、その後、銅粉を得るために還元剤を添加する際の反応のバラツキが大きく、分散性が劣る等粉体特性が悪くなる。   There is no particular limitation on the cleaning method for the cuprous oxide particles, and a known cleaning method can be employed. However, it is preferable to employ the following repulp washing and manage the washing level with the pH value of the cuprous oxide slurry being washed. In the repulp washing, the operation of precipitating cuprous oxide, discarding the supernatant, and adding washing water is performed a plurality of times. The repulp washing is preferably carried out repeatedly until the pH of the washed cuprous oxide slurry into which washing water has been added reaches a certain pH value in the range of 4.1 to 6.0. When the pH of the washed cuprous oxide slurry is on the acidic side from 4.1, the reduction efficiency is deteriorated. On the other hand, when the pH of the washed cuprous oxide slurry is more alkaline than 6.0, the powder characteristics such as the dispersion of the reaction when the reducing agent is added to obtain copper powder and the dispersibility are poor. Deteriorate.

そして、より好ましくは、洗浄亜酸化銅スラリーは、pH4.3〜4.7の範囲のいずれか一定のpHになるまで洗浄する。洗浄亜酸化銅スラリーのpHをこの範囲とすることにより、工程安定性に最も優れる。   More preferably, the washed cuprous oxide slurry is washed until a certain pH in the range of pH 4.3 to 4.7 is reached. By setting the pH of the washed cuprous oxide slurry within this range, the process stability is most excellent.

こうして調製された洗浄亜酸化銅スラリーにヒドラジン系還元剤を添加して銅粉を還元析出させる(第2還元処理)。そして、析出粒子を濾過、洗浄、乾燥させて銅粉を得る。添加するヒドラジン系還元剤の量は、添加終了時において、洗浄亜酸化銅スラリーに含まれる銅1molに対して0.3mol〜1.5molの割合で添加することが好ましい。そして、銅塩化合物スラリーに添加するヒドラジン系還元剤と、洗浄亜酸化銅スラリーに添加するヒドラジン系還元剤は、トータルで銅1molに対して0.6mol〜2.0molの割合にする。   A hydrazine-based reducing agent is added to the washed cuprous oxide slurry thus prepared to reduce and precipitate copper powder (second reduction treatment). Then, the precipitated particles are filtered, washed and dried to obtain copper powder. The amount of the hydrazine-based reducing agent to be added is preferably 0.3 to 1.5 mol with respect to 1 mol of copper contained in the washed cuprous oxide slurry at the end of the addition. The hydrazine-based reducing agent added to the copper salt compound slurry and the hydrazine-based reducing agent added to the washed cuprous oxide slurry are in a ratio of 0.6 mol to 2.0 mol with respect to 1 mol of copper in total.

ヒドラジン系還元剤の添加により還元反応を行う直前のスラリーpHを4.1〜6.0の範囲に調整するのが好ましい。還元反応時のpHが4.1より酸性側であると、粗粒が増えて分散性が悪くなる。一方、還元反応時のpHが6.0よりアルカリ性側にあると、還元剤が多くなり微粒な析出粒子数が過剰に多くなる。   It is preferable to adjust the slurry pH immediately before performing the reduction reaction to a range of 4.1 to 6.0 by adding a hydrazine-based reducing agent. If the pH during the reduction reaction is more acidic than 4.1, coarse particles increase and dispersibility deteriorates. On the other hand, if the pH during the reduction reaction is more alkaline than 6.0, the reducing agent is increased and the number of fine precipitated particles is excessively increased.

なお、銅塩化合物スラリーにヒドラジン系還元剤を添加する(第1還元処理)と同様に、ヒドラジン系還元剤を添加する(第2還元処理)前の洗浄亜酸化銅スラリーの銅濃度を、1mol/L〜3mol/Lとなるように液量調整すると、粒度分布幅が狭い銅粉を得ることができる。なお、より好ましい銅濃度は、1.5mol/L〜2.5mol/Lである。   In addition, similarly to adding a hydrazine-based reducing agent to the copper salt compound slurry (first reduction treatment), the copper concentration of the washed cuprous oxide slurry before adding the hydrazine-based reducing agent (second reduction treatment) is 1 mol. When the liquid volume is adjusted to be / L to 3 mol / L, copper powder having a narrow particle size distribution width can be obtained. A more preferable copper concentration is 1.5 mol / L to 2.5 mol / L.

添加するヒドラジン系還元剤の温度は40℃〜60℃の範囲の一定温度レベルに保つことが好ましい。ヒドラジン系還元剤の温度が40℃より低いと、還元反応が鈍くなり、工業上望ましい生産性を満たさない。一方、ヒドラジン系還元剤の温度が60℃より高いと、還元反応が早くなりすぎて粒径が不揃いとなりやすい。   The temperature of the hydrazine-based reducing agent to be added is preferably maintained at a constant temperature level in the range of 40 ° C to 60 ° C. When the temperature of the hydrazine-based reducing agent is lower than 40 ° C., the reduction reaction becomes dull and the industrially desirable productivity is not satisfied. On the other hand, when the temperature of the hydrazine-based reducing agent is higher than 60 ° C., the reduction reaction becomes too fast, and the particle size tends to be uneven.

第1還元処理と第2還元処理で用いる還元剤は、同種のヒドラジン系還元剤を用いるので、還元剤としてのヒドラジン類の還元能が粉体特性の良好な銅粉を得るのに適している。加えて、銅粉の還元に用いる異種成分を可能な限り少なくし、銅粉の粒子表面への不純物質の混入を抑制することができる。   The reducing agent used in the first reduction treatment and the second reduction treatment uses the same type of hydrazine-based reducing agent, so that it is suitable for obtaining copper powder with good reducing properties of the hydrazines as the reducing agent. . In addition, it is possible to reduce the number of different components used for the reduction of the copper powder as much as possible, and to suppress contamination of impurities on the surface of the copper powder particles.

なお、第2還元処理が終了した段階の反応スラリーの状態のまま、流体ミル法(ファインロールミル等)、層流混合法(T.K.フィルミックス等)を用いて、高速で遠心流動するスラリー内で、粒子同士を衝突させて解砕し、一次粒子に近付け、同時に粒子表面の平滑化を行う解粒処理を施し、粒子分散性を更に向上させることも好ましい。   In addition, the slurry which carries out the centrifugal flow at high speed using the fluid mill method (fine roll mill etc.) and the laminar flow mixing method (TK fill mix etc.) with the state of the reaction slurry in the stage which the 2nd reduction process was complete | finished. Among them, it is also preferable to further improve the particle dispersibility by pulverizing particles by colliding them, bringing them closer to the primary particles, and simultaneously performing a pulverization treatment for smoothing the particle surface.

リン化合物の添加:本発明に係る銅粉の製造方法は、上述の製造方法において、最終還元反応が終了するまでに、リンと銅のモル比がP/Cu=0.0001〜0.003となるように、リン化合物を反応スラリーに添加することが特徴である。リン化合物を添加することにより、リン化合物が立体障害として作用し、析出粒子の凝集成長を防ぎ、単分散化を図ることができる。その結果、得られた銅粉の粒度分布は飛躍的に狭くすることができる。 Addition of phosphorus compound: The method for producing copper powder according to the present invention is such that the molar ratio of phosphorus and copper is P / Cu = 0.0001 to 0.003 before the final reduction reaction is completed in the above production method. Thus, the phosphorus compound is added to the reaction slurry. By adding the phosphorus compound, the phosphorus compound acts as a steric hindrance, preventing the aggregated growth of the precipitated particles and achieving monodispersion. As a result, the particle size distribution of the obtained copper powder can be dramatically narrowed.

リン化合物は、反応スラリー中のリンと銅のモル比がP/Cu=0.0001〜0.003と、極めて微量を添加する。不純物含有量を抑えて、高純度の銅粉を得るためには、製造工程における添加物質の量や種類を極力抑える必要がある。しかし、微粒化を図ると、凝集しやすくなるので、微粒且つ粒度分布幅の極めて狭い銅粉を得るためには、リン化合物の添加が有効である。本発明者等は、リン化合物の添加量を最小限とすべく検討した結果、上記割合でリン化合物を添加すると、最も効果的であることに想到したのである。   The phosphorus compound is added in a very small amount such that the molar ratio of phosphorus and copper in the reaction slurry is P / Cu = 0.0001 to 0.003. In order to suppress the impurity content and obtain high-purity copper powder, it is necessary to suppress the amount and type of additive substances in the manufacturing process as much as possible. However, since atomization tends to agglomerate, the addition of a phosphorus compound is effective to obtain finely divided copper powder having a very narrow particle size distribution width. The inventors of the present invention have studied to minimize the addition amount of the phosphorus compound, and as a result, have found that it is most effective to add the phosphorus compound at the above ratio.

ここで、図1に、リン化合物の添加割合と、粒度分布幅との相関を示す。図1のグラフでは、横軸にリン化合物の添加割合を示すP/Cuをとり、縦軸には銅粉の粒度分布幅の広さを示す値として、体積累積平均粒径D50及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標準偏差SDを用いて表されるSD/D50の値をとった。 Here, FIG. 1 shows the correlation between the addition ratio of the phosphorus compound and the particle size distribution width. In the graph of FIG. 1, P / Cu indicating the addition ratio of the phosphorus compound is taken on the horizontal axis, and the volume cumulative average particle diameter D 50 and laser diffraction are taken on the vertical axis as values showing the width of the particle size distribution width of the copper powder. using the standard deviation SD of the particle size distribution measured by scattering particle size distribution measuring method took the value of SD / D 50 represented.

ここでいう標準偏差SDとは、レーザー回折散乱式粒度分布測定法を用いて得られる全粒径データのバラツキを表す指標であり、この値が大きな程、バラツキが大きなものとなる。そして、標準偏差SDと、体積累積平均粒径D50との比であるSD/D50により粒度分布幅の程度を示す。この値が大きい程、粒度分布幅が広いと言える。 The standard deviation SD here is an index representing the variation of the total particle size data obtained using the laser diffraction / scattering particle size distribution measuring method, and the larger this value, the larger the variation. The degree of the particle size distribution width is indicated by SD / D 50 which is a ratio of the standard deviation SD and the volume cumulative average particle diameter D 50 . It can be said that the larger this value, the wider the particle size distribution width.

図1を見ると、リンを添加しない場合(P/Cu=0)からP/Cu=0.0001より少ないリン添加量の場合は、SD/D50の値が0.55を上回る値となり、リンを添加することによる単分散化の効果が十分に得られない。これに対し、リン添加割合が、P/Cu=0.0001以上にすると、SD/D50の値が顕著に低下する。そして、本発明の上限であるP/Cu=0.003を上回る量のリンを添加しても、SD/D50の値に変化が見られない。そもそも、本発明は、不純物含有量を抑えた高純度の銅粉を得ることを目的としているので、リンの添加量は最小限に抑えたい。したがって、リンの添加量の上限をP/Cu=0.003とする。 Referring to FIG. 1, when phosphorus is not added (P / Cu = 0) to phosphorus addition amount less than P / Cu = 0.0001, the SD / D 50 value exceeds 0.55. The effect of monodispersing by adding phosphorus cannot be sufficiently obtained. On the other hand, when the phosphorus addition ratio is P / Cu = 0.0001 or more, the value of SD / D 50 is significantly reduced. Even with the addition of phosphorus in an amount in excess of P / Cu = 0.003 which is the upper limit of the present invention, not change was observed in the value of SD / D 50. In the first place, the purpose of the present invention is to obtain high-purity copper powder with a reduced impurity content, so it is desirable to minimize the amount of phosphorus added. Therefore, the upper limit of the addition amount of phosphorus is set to P / Cu = 0.003.

リン化合物の添加時期は、洗浄亜酸化銅スラリーにヒドラジン系還元剤を添加し、その還元反応が終了するまでのいずれかの段階でリン化合物を上記割合で添加すれば良い。特に、洗浄亜酸化銅スラリーを調製した後に添加すると、洗浄後になるので、リン化合物の添加量を少量に抑えることができるので、不純物含有量を抑える点で好ましい。   The phosphorus compound may be added at the above ratio at any stage until the hydrazine-based reducing agent is added to the washed cuprous oxide slurry and the reduction reaction is completed. In particular, when the cleaning cuprous oxide slurry is prepared and then added, it is after the cleaning, so that the amount of the phosphorus compound added can be suppressed to a small amount, which is preferable in terms of suppressing the impurity content.

リン化合物としては、反応スラリーにおいてリン成分を効率良く分散させるためには水溶性リン化合物が好ましい。水溶性リン化合物としては、リン酸ナトリウム、リン酸、次亜リン酸アンモニウムのいずれかを用いることが好ましい。特に、次亜リン酸アンモニウムを用いると、微粒且つ均一な粒径の粒子の析出に好適である。   As the phosphorus compound, a water-soluble phosphorus compound is preferable in order to efficiently disperse the phosphorus component in the reaction slurry. As the water-soluble phosphorus compound, it is preferable to use any one of sodium phosphate, phosphoric acid, and ammonium hypophosphite. In particular, when ammonium hypophosphite is used, it is suitable for precipitation of fine particles having a uniform particle size.

以上のようにして得た銅粉は、濾過、洗浄、乾燥等の一般的工程を経て、銅粉として製品化される。そして、この銅粉は、耐酸化性を向上させるため、有機表面処理を施すことが好ましい。表面処理剤としては、必要に応じて脂肪酸又はアミン類のいずれかを含むのが好ましく、具体的には、オレイン酸、ステアリン酸等の脂肪酸やオクタデシルアミン、オレイルアミン等のアミン類が好ましい。また、乾燥した銅粉の状態でも、必要に応じて分級装置、ハイブリタイザー、ターボクラシファイア等の粒子同士の衝突処理が可能な装置を用いて解粒処理を行い、粒子分散性を向上させることも可能である。   The copper powder obtained as described above is commercialized as copper powder through general steps such as filtration, washing, and drying. The copper powder is preferably subjected to an organic surface treatment in order to improve oxidation resistance. The surface treatment agent preferably contains either a fatty acid or an amine as required. Specifically, fatty acids such as oleic acid and stearic acid, and amines such as octadecylamine and oleylamine are preferred. In addition, even in the state of dried copper powder, it is possible to improve the particle dispersibility by performing a pulverization process using an apparatus capable of collision processing between particles such as a classifier, a hybridizer, and a turbo classifier as necessary. Is possible.

本発明の製造方法により得られる銅粉:本発明に係る銅粉の製造方法によれば、レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が0.1μm〜5.0μmであり、粒度分布幅の広さを示す前記SD/D50の値が0.2〜0.5という粒度分布幅が狭い状態で製造可能となる。 Copper powder obtained by the production method of the present invention: According to the production method of the copper powder according to the present invention, the volume accumulated average particle diameter D 50 by laser diffraction scattering particle size distribution measuring method be 0.1μm~5.0μm The SD / D 50 value indicating the width of the particle size distribution width can be produced in a state where the particle size distribution width is 0.2 to 0.5 .

本発明に係る銅粉の製造方法により得られる銅粉は、D50が0.1μm未満となると、微粒化に伴う凝集が生じる。その一方で、凝集を抑えるためにリン化合物の添加量を増やすと、微細配線の形成回路の導電不良を起こさないレベルの低不純物量にするという本発明の目的が達成できない。一方、D50が5.0μmを上回るレベルとなると、微細配線の形成には適さない。なお、より好ましい平均粒径D50は0.5〜3.5μmである。 Copper powder obtained by the production method of the copper powder according to the present invention, when D 50 is less than 0.1 [mu] m, aggregation associated with atomization occurs. On the other hand, when the addition amount of the phosphorus compound is increased in order to suppress aggregation, the object of the present invention, that is, a low impurity amount at a level that does not cause poor conductivity in the formation circuit of the fine wiring, cannot be achieved. On the other hand, if the level of D 50 is greater than 5.0 .mu.m, not suitable for the formation of fine wiring. A more preferred average particle size D 50 is 0.5~3.5Myuemu.

そして、一般に、微粒粉は凝集しやすいが、本発明に係る銅粉の製造方法により得られる銅粉は、D50が0.1μm〜5.0μmという微粒な範囲の粒径でありながら、SD/D50=0.2〜0.5という粒度分布幅が極めて狭いシャープな銅粉である。上述の通り、SD/D50は、銅粉の粒度分布幅の程度を示す。そして、SD/D50の値が0.2〜0.5という範囲であると、凝集が少なく、0.5を上回ると、粒子のバラツキが多く、微細配線の形成に適さない。 And, in general, fine powder tends to aggregate, but copper powder obtained by the production method of the copper powder according to the present invention, D 50 is yet particle size of fine range of 0.1Myuemu~5.0Myuemu, SD / D 50 = A sharp copper powder having a very narrow particle size distribution width of 0.2 to 0.5. As described above, SD / D 50 indicates the degree of the particle size distribution width of the copper powder. And when the value of SD / D 50 is in the range of 0.2 to 0.5, there is little aggregation, and when it exceeds 0.5, there are many particle variations and it is not suitable for forming fine wiring.

また、本発明に係る銅粉の製造方法により得られる銅粉は、大気雰囲気中、400℃で30分熱処理した後の炭素含有量が0.01質量%未満であり、炭素含有量が極めて低い。ここで、本発明に係る銅粉の製造方法により得られる銅粉は酸化防止のための有機表面処理を施しているが、この表面処理剤は、200℃〜300℃付近で銅粉の表面から消失する。したがって、400℃で30分焼成後の銅粉は、表面処理剤が除去された状態であり、この状態で測定した銅粉の炭素含有量は、焼成により導体膜が形成される温度下の銅粉の炭素含有量を推定できるのである。なお、本明細書における銅粉の炭素含有量は、炭素分析装置(堀場製作所社製 EMIA−320V)を用いて測定した。 Moreover, the copper powder obtained by the copper powder manufacturing method according to the present invention has a carbon content of less than 0.01% by mass after being heat-treated at 400 ° C. for 30 minutes in the air atmosphere, and the carbon content is extremely low. . Here, the copper powder obtained by the method for producing copper powder according to the present invention has been subjected to an organic surface treatment for oxidation prevention, but this surface treatment agent is from the surface of the copper powder at around 200 ° C to 300 ° C. Disappear. Therefore, the copper powder after firing at 400 ° C. for 30 minutes is in a state where the surface treatment agent has been removed, and the carbon content of the copper powder measured in this state is the copper under the temperature at which the conductor film is formed by firing. The carbon content of the powder can be estimated. In addition, the carbon content of the copper powder in this specification was measured using the carbon analyzer (EMIA-320V by Horiba Ltd.).

本発明に係る銅粉の製造方法により得られる銅粉を銅ペースト等に用いた場合、銅ペーストの焼成時に、導体表面の焼結開始温度以前に表面処理剤は消失し、その後、銅体表面に焼結膜が形成された後は、導体内部に炭酸ガスが発生しないので、導体表面のクラックの発生を防止し、高品質な導体を形成することができる。 When the copper powder obtained by the method for producing copper powder according to the present invention is used for a copper paste or the like, the surface treatment agent disappears before the sintering start temperature of the conductor surface when firing the copper paste, and then the surface of the copper body After the sintered film is formed, carbon dioxide gas is not generated inside the conductor, so that generation of cracks on the conductor surface can be prevented and a high-quality conductor can be formed.

以下、実施例及び比較例を示して本件発明を具体的に説明する。本発明は以下の実施例に制限されるものではない。なお、以下の実施例及び比較例2における銅粉の製造条件が対比しやすいように、製造条件の概略を表1に掲載する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. In addition, the outline of manufacturing conditions is listed in Table 1 so that the manufacturing conditions of the copper powder in the following Examples and Comparative Examples 2 can be easily compared.

まず、純水6.5Lに硫酸銅6000gを投入して撹拌し、その後、液温を50℃に保持しつつ、硫酸銅水溶液(銅塩水溶液)の液量が9Lとなるように、更に水を添加して、濃度を調整した。当該硫酸銅水溶液に、アンモニア水溶液(濃度25wt%)2537mlを30分で添加して中和し、銅塩化合物スラリーを得た。そして、銅塩化合物スラリーを30分静置して熟成させた。ここまでは銅塩化合物スラリーの液温を50℃に保持したが、熟成後は液温を45℃に調整した。   First, 6000 g of copper sulfate was added to 6.5 L of pure water and stirred, and then water was further added so that the liquid volume of the copper sulfate aqueous solution (copper salt aqueous solution) was 9 L while maintaining the liquid temperature at 50 ° C. Was added to adjust the concentration. To this copper sulfate aqueous solution, 2537 ml of an aqueous ammonia solution (concentration 25 wt%) was added in 30 minutes for neutralization to obtain a copper salt compound slurry. The copper salt compound slurry was allowed to stand for 30 minutes for aging. Up to this point, the liquid temperature of the copper salt compound slurry was maintained at 50 ° C., but after aging, the liquid temperature was adjusted to 45 ° C.

次に、銅塩化合物スラリーの銅濃度が2.0mol/Lとなるように水を添加して液量を調整した。この銅塩化合物スラリーをpH6.3、液温50℃の条件に保ち、ここに、ヒドラジン1水和物(ヒドラジン系還元剤)450gとpH調整剤としてのアンモニア水溶液(濃度25wt%)591mlとを30分間かけて連続添加し、亜酸化銅スラリーとした(第1還元処理)。そして、還元反応を完全に行うため、更に30分間撹拌を続けた。   Next, the amount of liquid was adjusted by adding water so that the copper concentration of the copper salt compound slurry was 2.0 mol / L. This copper salt compound slurry was maintained at a pH of 6.3 and a liquid temperature of 50 ° C., and 450 g of hydrazine monohydrate (hydrazine reducing agent) and 591 ml of an aqueous ammonia solution (concentration 25 wt%) as a pH adjuster were added. It added continuously over 30 minutes and was set as the cuprous oxide slurry (1st reduction process). Then, in order to complete the reduction reaction, stirring was continued for another 30 minutes.

その後、リパルプ洗浄のため、亜酸化銅スラリーに純水を加えて18Lに液量調整した後、静置して亜酸化銅粒子を沈殿させ、静置後の上澄液を14L抜く操作を、pHが4.7になるまで繰り返した。そして、温めた純水8Lを加えて全液量を12Lにし、液温を45℃に維持して、銅濃度を2.0mol/Lに調整し、これを洗浄亜酸化銅スラリーとした。   Then, for repulp washing, after adding pure water to the cuprous oxide slurry and adjusting the liquid volume to 18 L, the operation is performed by allowing to stand and precipitating cuprous oxide particles, and removing 14 L of the supernatant after standing, Repeated until pH was 4.7. Then, 8 L of warm pure water was added to make the total liquid volume 12 L, the liquid temperature was maintained at 45 ° C., the copper concentration was adjusted to 2.0 mol / L, and this was used as a washed cuprous oxide slurry.

銅濃度調整後の洗浄亜酸化銅スラリーに、次亜リン酸アンモニウム3.02gを添加し、5分間撹拌した(リン化合物添加工程)。   To the washed cuprous oxide slurry after adjusting the copper concentration, 3.02 g of ammonium hypophosphite was added and stirred for 5 minutes (phosphorus compound addition step).

再び、洗浄亜酸化銅スラリーの銅濃度が2.0mol/Lとなるように水を添加して液量を調整した。この洗浄亜酸化銅スラリーに、ヒドラジン1水和物(ヒドラジン系還元剤)1200gを30分間で添加した。次に、更に15分間撹拌を行い、還元反応を完全に行わせ銅粉を還元析出させた(第2還元処理)。   Again, the amount of liquid was adjusted by adding water so that the copper concentration of the washed cuprous oxide slurry was 2.0 mol / L. To this washed cuprous oxide slurry, 1200 g of hydrazine monohydrate (hydrazine reducing agent) was added over 30 minutes. Next, the mixture was further stirred for 15 minutes to complete the reduction reaction, thereby reducing and precipitating copper powder (second reduction treatment).

析出した銅粒子を濾過して採取した。そして、洗浄後、当該銅粉に、オクタデシルアミン1.5gを溶解させたメタノール溶液5Lに入れ有機表面処理を施し、濾別分離後、70℃、5時間の加熱乾燥を行い、更に解砕処理を施して銅粉を得た。   The precipitated copper particles were collected by filtration. And after washing | cleaning, it puts in the methanol solution 5L which dissolved 1.5 g of octadecylamine in the said copper powder, and performs organic surface treatment, and after separating by filtration, it heat-drys at 70 degreeC for 5 hours, and also crushes. To obtain copper powder.

実施例1で得られた銅粉について、D10、D50、D90、BET比表面積、タップ充填密度、炭素含有量を測定した。また、得られた銅粉のBET比表面積に基づいて比表面積径DBETを算出した。また、実施例1で得られた有機表面処理後の銅粉を、大気雰囲気、400℃で30分焼成した後の炭素含有量を測定した。この結果を表2に示す。また、粒度体積基準分布図を図2に示し、走査型電子顕微鏡(SEM)像を図3に示す。以下、それぞれの測定方法について示す。 For copper powder obtained in Example 1 was measured D 10, D 50, D 90 , BET specific surface area, tap packing density, the carbon content. Moreover, the specific surface area diameter D BET was calculated based on the BET specific surface area of the obtained copper powder. Moreover, the carbon content after baking the copper powder after the organic surface treatment obtained in Example 1 at 400 degreeC in air | atmosphere for 30 minutes was measured. The results are shown in Table 2. Moreover, a particle size volume reference distribution diagram is shown in FIG. 2, and a scanning electron microscope (SEM) image is shown in FIG. Hereinafter, each measurement method will be described.

レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50:銅粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて、流量速度50cm/minで測定した。体積累積50%における粒径をD50とし、同様にして、体積累積10%ならびに90%の粒径D10、D90を測定した。 Volume cumulative average particle diameter D 50 by laser diffraction scattering particle size distribution measurement method: 0.1 g of copper powder is mixed with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco), and an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho). (US-300T) for 5 minutes, and measurement was performed at a flow rate of 50 cm 3 / min using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup). The particle size and D 50 in the volume cumulative 50% in the same manner, the particle size was determined D 10, D 90 volume cumulative 10% and 90%.

タップ充填密度(TD):パウダースターPT−E(ホソカワミクロン株式会社製)を用いて測定した。 Tap filling density (TD): Measured using Powder Star PT-E (manufactured by Hosokawa Micron Corporation).

比表面積:試料2.00gを75℃で10分間の脱気処理を行った後、モノソーブ(カンタクロム社製)を用いてBET1点法で測定した。そして、比表面積径DBETは、得られた銅粉を真球と仮定し、BET1点法で測定した比表面積SSAと、銅の真比重8.92とを用いた式DBET=6/(8.92×SSA)を用いて算出した。 Specific surface area: A sample of 2.00 g was degassed at 75 ° C. for 10 minutes, and then measured by a BET one-point method using a monosorb (manufactured by Cantachrome). The specific surface area diameter D BET is obtained by using the formula D BET = 6 / () using the specific surface area SSA measured by the BET one -point method and the true specific gravity of copper 8.92, assuming that the obtained copper powder is a true sphere. 8.92 × SSA).

炭素含有量:400℃で30分保持後の炭素含有量を炭素分析装置(堀場製作所社製 EMIA−320V)を用いて測定した。 Carbon content: The carbon content after being held at 400 ° C. for 30 minutes was measured using a carbon analyzer (EMIA-320V, manufactured by Horiba, Ltd.).

実施例2は、実施例1と比べて、リン化合物の添加時期が異なる例である。   Example 2 is an example in which the addition time of the phosphorus compound is different from that in Example 1.

即ち、洗浄亜酸化銅スラリーに次亜リン酸アンモニウムを添加する代わりに、硫酸銅水溶液の液温を50℃に保持しつつ、リン化合物としてリン酸三ナトリウム12水和物11.06gを添加する以外は実施例1と同様の方法で銅粉を得た。   That is, instead of adding ammonium hypophosphite to the washed cuprous oxide slurry, 11.06 g of trisodium phosphate dodecahydrate is added as a phosphorus compound while maintaining the temperature of the copper sulfate aqueous solution at 50 ° C. Except for the above, copper powder was obtained in the same manner as in Example 1.

実施例2で得られた銅粉について、実施例1と同様のデータを測定、算出した。この結果を表2に示す。また、体積基準粒度分布図を図4に示し、走査型電子顕微鏡(SEM)像を図5に示す。   About the copper powder obtained in Example 2, the same data as Example 1 were measured and calculated. The results are shown in Table 2. Further, a volume-based particle size distribution diagram is shown in FIG. 4, and a scanning electron microscope (SEM) image is shown in FIG.

比較例Comparative example

[比較例1]
比較例1は、湿式還元法による銅粉の製造に際し、有機系還元剤を用いる例である。
[Comparative Example 1]
Comparative Example 1 is an example in which an organic reducing agent is used in the production of copper powder by a wet reduction method.

まず、60℃の純水3Lに硫酸銅5水和物400gを添加し、二価の銅イオンを含む銅塩水溶液を準備する。そして、温度60℃に保持した銅塩水溶液に、純水を加え、銅濃度を2mol/Lとした。   First, 400 g of copper sulfate pentahydrate is added to 3 L of pure water at 60 ° C. to prepare a copper salt aqueous solution containing divalent copper ions. And the pure water was added to the copper salt aqueous solution hold | maintained at the temperature of 60 degreeC, and copper concentration was 2 mol / L.

次に、銅塩水溶液の液温を60℃に保ち、25%水酸化ナトリウム水溶液460mlとを順に添加し、銅塩化合物スラリーを得た。   Next, the liquid temperature of the copper salt aqueous solution was kept at 60 ° C., and 460 ml of a 25% aqueous sodium hydroxide solution was added in order to obtain a copper salt compound slurry.

次に、銅塩化合物スラリーの液温を50℃に維持して、ヒドラジン1水和物100gを30分間で添加した。更に60分間撹拌を行い、還元反応を完全に行わせ銅粉を還元析出させた。   Next, the liquid temperature of the copper salt compound slurry was maintained at 50 ° C., and 100 g of hydrazine monohydrate was added over 30 minutes. The mixture was further stirred for 60 minutes to complete the reduction reaction and reduce the copper powder.

このようにして得た銅粉を濾過して採取した。そして、当該銅粉に、オクタデシルアミン1.5gを溶解させたメタノール溶液5Lに入れ有機表面処理を施し、30分間撹拌し、80℃、5時間の加熱乾燥を行って粉体を得た。得られた銅粉の粉体特性について、実施例1と同様のデータを測定した。この結果、粒度分布はシャープであるものの、400℃で30分焼成後の炭素含有量が0.07wt%となった。   The copper powder thus obtained was collected by filtration. Then, the copper powder was put into 5 L of a methanol solution in which 1.5 g of octadecylamine was dissolved, subjected to organic surface treatment, stirred for 30 minutes, and heated and dried at 80 ° C. for 5 hours to obtain a powder. About the powder characteristic of the obtained copper powder, the same data as Example 1 were measured. As a result, although the particle size distribution was sharp, the carbon content after firing at 400 ° C. for 30 minutes was 0.07 wt%.

[比較例2]
比較例2は、湿式還元法による銅粉の製造に際し、リン化合物を添加しない例である。即ち、リン化合物を全く添加しない点以外は、実施例1と同様の方法で銅粉を得た。得られた銅粉の粉体特性について、実施例1と同様のデータを測定、算出した。この結果を表2に示す。また、比較例2で得られた銅粉の体積基準粒度分布図を図6に示す。
[Comparative Example 2]
Comparative Example 2 is an example in which no phosphorus compound is added when copper powder is produced by a wet reduction method. That is, copper powder was obtained in the same manner as in Example 1 except that no phosphorus compound was added. About the powder characteristic of the obtained copper powder, the same data as Example 1 were measured and computed. The results are shown in Table 2. Moreover, the volume reference | standard particle size distribution figure of the copper powder obtained by the comparative example 2 is shown in FIG.

[比較例3]
比較例3は、特許文献4に開示の方法を用いて、銅含有溶液の濃度を実施例1の銅塩含有スラリーと同等の濃度とした例である。まず、硫酸銅五水和物395gと純水0.05Lとを混合し、更に、ピロリン酸ナトリウム40gを添加して銅含有溶液を作製した。次に、この銅含有溶液中に、濃アンモニア水(濃度28%)500gを加え、混合して銅アンモニア錯イオン溶液を作製した。この銅アンモニア錯イオン溶液中に純水を加えて全液量を0.79Lにし、実施例1と同じ銅濃度とした。この銅アンモニア錯イオン溶液に、還元剤として飽水ヒドラジン200gを30℃の温度下で添加して混合した後、液温を80℃まで上昇させて2時間維持することにより反応を十分に行わせた。その後、金属銅として得られた銅粉末を溶液中から回収し、洗浄した。
[Comparative Example 3]
Comparative Example 3 is an example in which the concentration of the copper-containing solution was set to the same concentration as that of the copper salt-containing slurry of Example 1 using the method disclosed in Patent Document 4. First, 395 g of copper sulfate pentahydrate and 0.05 L of pure water were mixed, and 40 g of sodium pyrophosphate was further added to prepare a copper-containing solution. Next, 500 g of concentrated ammonia water (concentration 28%) was added to this copper-containing solution and mixed to prepare a copper ammonia complex ion solution. Pure water was added to the copper ammonia complex ion solution to make the total liquid volume 0.79 L, and the same copper concentration as in Example 1 was obtained. To this copper ammonia complex ion solution, 200 g of saturated hydrazine as a reducing agent was added and mixed at a temperature of 30 ° C., and then the temperature of the solution was raised to 80 ° C. and maintained for 2 hours to sufficiently perform the reaction. It was. Thereafter, the copper powder obtained as metallic copper was recovered from the solution and washed.

なお、上述の通り、比較例3では、リン化合物であるピロリン酸ナトリウムを銅含有溶液作製時に添加し、その後、還元反応を行わせている。得られた銅粉の粉体特性について、実施例1と同様のデータを測定、算出した。この結果を表2に示す。また、比較例3で得られた銅粉の体積基準粒度分布図を図7に示し、走査型電子顕微鏡(SEM)像を図8に示す。   In addition, as above-mentioned, in the comparative example 3, sodium pyrophosphate which is a phosphorus compound is added at the time of copper-containing solution preparation, and a reduction reaction is performed after that. About the powder characteristic of the obtained copper powder, the same data as Example 1 were measured and computed. The results are shown in Table 2. Moreover, the volume reference | standard particle size distribution figure of the copper powder obtained by the comparative example 3 is shown in FIG. 7, and a scanning electron microscope (SEM) image is shown in FIG.

以下、実施例で得られた銅粉と比較例で得られた銅粉とを対比する。   Hereinafter, the copper powder obtained in the example and the copper powder obtained in the comparative example will be compared.

まず、実施例について、図2の粒度体積基準分布図を見ると、粒径1μmを頻度ピークとして、粒度分布幅が狭くシャープな分布を示している。それは、SD/D50、D90/D10の値が低いことからも明らかである。タップ充填密度(TD)は低い値を示した。更に、収率は96%と高い値を示している。大気雰囲気、400℃で30分焼成後の炭素含有量については、測定装置で検出可能な下限である0.01wt%に達する量とはならなかったので、0.01wt%未満とした。 First, regarding the example, the particle size volume reference distribution diagram of FIG. 2 shows a sharp distribution with a narrow particle size distribution width with a particle size of 1 μm as a frequency peak. This is also clear from the low values of SD / D 50 and D 90 / D 10 . The tap packing density (TD) showed a low value. Furthermore, the yield is as high as 96%. The carbon content after firing at 400 ° C. for 30 minutes in the air atmosphere was not less than 0.01 wt% because it did not reach 0.01 wt%, which is the lower limit detectable by the measuring device.

次に、実施例1及び実施例2と比較例1とを対比すると、実施例1及び実施例2の炭素含有量は0.01wt%未満であるのに対し、比較例1は0.07wt%であり、炭素含有量が多い。有機還元剤を使用した比較例1の銅粉は、本発明に係る銅粉の炭素含有量を大きく上回る値を示し、このような炭素含有量レベルの銅粉は、本発明の課題である微粒且つ、導体の安定した形成と導電性向上を図ることが難しい。   Next, when Example 1 and Example 2 are compared with Comparative Example 1, the carbon content of Example 1 and Example 2 is less than 0.01 wt%, while that of Comparative Example 1 is 0.07 wt%. And has a high carbon content. The copper powder of the comparative example 1 which uses an organic reducing agent shows the value which exceeds the carbon content of the copper powder which concerns on this invention greatly, The copper powder of such a carbon content level is a fine particle which is a subject of this invention In addition, it is difficult to stably form the conductor and improve the conductivity.

次に、実施例2と比較例2とを対比すると、平均粒径ならびに炭素含有量は同等である。しかし、SD/D50、D90/D10は実施例が著しく低く、SD/D50に至っては、約3割程度の顕著な差が見られ、実施例の粒度分布幅が狭いことが明白である。 Next, when Example 2 and Comparative Example 2 are compared, the average particle diameter and the carbon content are the same. However, SD / D 50 and D 90 / D 10 are remarkably low in the examples, and when SD / D 50 is reached, a remarkable difference of about 30% is seen, and it is clear that the particle size distribution width of the examples is narrow. It is.

比較例3で得られた銅粉は、図7に示す銅粉の走査型電子顕微鏡(SEM)像を見ると、凝集が多く発生していることが明らかである。また、図7に示す走査型電子顕微鏡像の画像解析により得られる一次粒子の平均径は2μm程度であるものの凝集が激しく、その結果、D50=34.68μm程度となっている。また、SD/D50は低いものの上記のとおり、凝集粒子の大きさは実施例に比べ、はるかに大きく、微粒銅粉としての粒度分布を呈したものとは言い難い。したがって、粗粒が多く含まれ微細配線の形成には不適である。また、収率も実施例に劣ることは明らかである。即ち、比較例3の方法では、粒度分布がシャープな微粒銅粉を高収率で製造することは難しいことが示された。 When the copper powder obtained in Comparative Example 3 is viewed by a scanning electron microscope (SEM) image of the copper powder shown in FIG. Moreover, although the average diameter of the primary particles obtained by the image analysis of the scanning electron microscope image shown in FIG. 7 is about 2 μm, aggregation is severe, and as a result, D 50 = 34.68 μm. Further, SD / D 50 is as low in the size of the agglomerated particles is compared with the embodiment, much larger, it is hard to say that those exhibiting a particle size distribution of the fine copper powder. Therefore, many coarse grains are contained and it is not suitable for forming fine wiring. It is also clear that the yield is inferior to that of the example. That is, with the method of Comparative Example 3, it was shown that it was difficult to produce a fine copper powder with a sharp particle size distribution in a high yield.

本発明に係る銅粉の製造方法は、粒子の均一化を図り、従来品より不純物が少ない銅粉を製造することができる。そして、得られた銅粉は、スクリーン印刷法による導体形成用の材料として用いると、微細配線の形成不良を防ぎ、且つ電気的安定性に優れた導体形成が可能となる。したがって、本発明に係る銅粉の製造方法により得られる銅粉は、微細配線の形成材料に好適である。 The method for producing copper powder according to the present invention makes it possible to produce uniform copper particles and to produce copper powder with less impurities than conventional products. And when the obtained copper powder is used as a material for forming a conductor by a screen printing method, it is possible to prevent the formation of fine wiring and to form a conductor with excellent electrical stability. Therefore, the copper powder obtained by the copper powder manufacturing method according to the present invention is suitable as a material for forming fine wiring.

本発明に係る銅粉の製造方法におけるリン化合物添加量と粒度分布幅との関係を示す図である。It is a figure which shows the relationship between the phosphorus compound addition amount and the particle size distribution width in the manufacturing method of the copper powder which concerns on this invention. 実施例1で得られた銅粉の粒度体積基準分布図である。2 is a particle size volume distribution chart of the copper powder obtained in Example 1. FIG. 実施例1で得られた銅粉のSEM像である。2 is a SEM image of the copper powder obtained in Example 1. 実施例2で得られた銅粉の粒度体積基準分布図である。It is a particle size volume reference | standard distribution map of the copper powder obtained in Example 2. FIG. 実施例2で得られた銅粉のSEM像である。3 is a SEM image of the copper powder obtained in Example 2. 比較例2で得られた銅粉の粒度体積基準分布図である。It is a particle size volume reference distribution map of the copper powder obtained in Comparative Example 2. 比較例3で得られた銅粉の粒度体積基準分布図である。It is a particle size volume reference | standard distribution map of the copper powder obtained by the comparative example 3. 比較例3で得られた銅粉のSEM像である。4 is a SEM image of the copper powder obtained in Comparative Example 3.

Claims (6)

銅塩水溶液にアルカリ溶液を添加して得られた銅塩化合物スラリーに、ヒドラジン系還元剤を添加して亜酸化銅スラリーとし、当該亜酸化銅スラリーを水洗し、再スラリー化した洗浄亜酸化銅スラリーに再びヒドラジン系還元剤を添加する銅粉の製造方法において、
最終還元反応が終了するまでに、リンと銅のモル比がP/Cu=0.0001〜0.003となるように、リン化合物を反応スラリーに添加することを特徴とする銅粉の製造方法。
To a copper salt compound slurry obtained by adding an alkaline solution to an aqueous copper salt solution, a hydrazine-based reducing agent is added to form a cuprous oxide slurry, and the cuprous oxide slurry is washed with water and reslurried to washed cuprous oxide. In the method for producing copper powder in which a hydrazine reducing agent is added again to the slurry,
Before the final reduction reaction is completed, the phosphorus compound is added to the reaction slurry so that the molar ratio of phosphorus and copper is P / Cu = 0.0001 to 0.003. .
前記銅塩化合物スラリーの銅濃度を1mol/L〜3mol/Lとする請求項1に記載の銅粉の製造方法。 The manufacturing method of the copper powder of Claim 1 which sets the copper concentration of the said copper salt compound slurry to 1 mol / L-3 mol / L. 前記アルカリ溶液がアンモニア水溶液である請求項1または請求項2に記載の銅粉の製造方法。 The method for producing copper powder according to claim 1, wherein the alkaline solution is an aqueous ammonia solution. 前記銅塩化合物スラリーに、ヒドラジン系還元剤を添加し、還元反応を行う際のpHを3.5〜6.0に調整する請求項1〜請求項3のいずれかに記載の銅粉の製造方法。 The production of copper powder according to any one of claims 1 to 3, wherein a hydrazine-based reducing agent is added to the copper salt compound slurry, and the pH at the time of performing the reduction reaction is adjusted to 3.5 to 6.0. Method. 前記銅塩化合物スラリーに、ヒドラジン系還元剤を添加し、還元反応を行う際のpH調整をアンモニア水溶液で行う請求項4に記載の銅粉の製造方法。 The manufacturing method of the copper powder of Claim 4 which adjusts pH at the time of adding a hydrazine type reducing agent to the said copper salt compound slurry, and performing a reductive reaction with ammonia aqueous solution. 前記洗浄亜酸化銅スラリーに再びヒドラジン系還元剤添加前のスラリーのpHを4.1〜6.0に調整することを特徴とする請求項1〜請求項5のいずれかに記載の銅粉の製造方法。 The pH of the slurry before adding a hydrazine-based reducing agent to the washed cuprous oxide slurry is adjusted again to 4.1 to 6.0. The copper powder according to any one of claims 1 to 5, Production method.
JP2007246083A 2007-09-21 2007-09-21 Method for producing copper powder Active JP5392884B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007246083A JP5392884B2 (en) 2007-09-21 2007-09-21 Method for producing copper powder
TW097136051A TWI455777B (en) 2007-09-21 2008-09-19 Copper powder manufacturing method and copper powder
KR20107004861A KR101510369B1 (en) 2007-09-21 2008-09-22 Process for producing copper powder and copper powder
PCT/JP2008/067078 WO2009038207A1 (en) 2007-09-21 2008-09-22 Process for producing copper powder and copper powder
CN2008801074240A CN101801568B (en) 2007-09-21 2008-09-22 Process for producing copper powder and copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246083A JP5392884B2 (en) 2007-09-21 2007-09-21 Method for producing copper powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013172140A Division JP5729842B2 (en) 2013-08-22 2013-08-22 Copper powder

Publications (2)

Publication Number Publication Date
JP2009074152A JP2009074152A (en) 2009-04-09
JP5392884B2 true JP5392884B2 (en) 2014-01-22

Family

ID=40468016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246083A Active JP5392884B2 (en) 2007-09-21 2007-09-21 Method for producing copper powder

Country Status (5)

Country Link
JP (1) JP5392884B2 (en)
KR (1) KR101510369B1 (en)
CN (1) CN101801568B (en)
TW (1) TWI455777B (en)
WO (1) WO2009038207A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476631B2 (en) * 2010-03-05 2014-04-23 株式会社村田製作所 Electronic component and manufacturing method thereof
JP5531691B2 (en) * 2010-03-16 2014-06-25 株式会社村田製作所 Conductive paste and method for manufacturing ceramic electronic component
JP5759688B2 (en) * 2010-08-17 2015-08-05 三井金属鉱業株式会社 Flat copper particles
JP5820202B2 (en) * 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
TWI487581B (en) * 2010-11-12 2015-06-11 Mitsui Mining & Smelting Co Low carbon copper particles and methods for producing the same
KR101239391B1 (en) * 2011-01-05 2013-03-05 한국지질자원연구원 Method of manufacturing fine cupper powders for electronic materials with easily size control
JP5120477B2 (en) * 2011-04-07 2013-01-16 日立化成工業株式会社 Electrode paste composition and solar cell
JP5785433B2 (en) * 2011-04-28 2015-09-30 三井金属鉱業株式会社 Low carbon copper particles
JP6028727B2 (en) * 2011-05-18 2016-11-16 戸田工業株式会社 Copper powder, copper paste, method for producing conductive coating film and conductive coating film
JP6199430B2 (en) * 2011-09-30 2017-09-20 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method for producing the same
EP2923781A4 (en) * 2012-11-26 2016-07-13 Mitsui Mining & Smelting Co Copper powder and method for producing same
JP5700864B2 (en) * 2013-05-15 2015-04-15 石原ケミカル株式会社 Copper fine particle dispersion, conductive film forming method, and circuit board
JP6303022B2 (en) * 2014-10-03 2018-03-28 三井金属鉱業株式会社 Copper powder
JP6698367B2 (en) * 2015-03-31 2020-05-27 山陽特殊製鋼株式会社 Metal powder consisting of spherical particles
JP6256616B2 (en) * 2015-04-22 2018-01-10 日立金属株式会社 Metal particles and production method thereof, coated metal particles, metal powder
CN107921532B (en) * 2015-09-03 2020-05-08 同和电子科技有限公司 Phosphorus-containing copper powder and method for producing same
JP2017179428A (en) * 2016-03-29 2017-10-05 Dowaエレクトロニクス株式会社 Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device
US9975110B1 (en) 2016-11-23 2018-05-22 Honda Motor Co., Ltd. Method for producing metal catalyst nanoparticles
CN108526490B (en) * 2018-05-14 2021-05-25 六盘水中联工贸实业有限公司 Method for producing copper metal powder by using copper chloride or cuprous chloride
CN112296345B (en) * 2019-07-23 2022-02-18 富兰克科技(深圳)股份有限公司 Preparation method of self-dispersible nano-copper with long organic carbon chain, nano-copper preparation and application thereof
CN110773177B (en) * 2019-09-10 2022-05-20 安徽德诠新材料科技有限公司 Preparation method of ternary copper catalyst with high specific surface area
JP6704083B1 (en) * 2019-11-22 2020-06-03 東邦チタニウム株式会社 Copper powder and its manufacturing method
JP7000621B1 (en) * 2021-06-17 2022-01-19 古河ケミカルズ株式会社 Method for manufacturing copper fine particles
CN117651693A (en) * 2021-09-27 2024-03-05 宇部材料工业株式会社 Magnesium oxide powder, vulcanizing agent composition for rubber, rubber composition, and method for producing magnesium oxide powder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JP3570591B2 (en) * 1996-03-22 2004-09-29 株式会社村田製作所 Production method of copper powder
CN1060108C (en) * 1997-01-21 2001-01-03 北京化工大学 Method for preparing superfine copper powder
JP2911429B2 (en) * 1997-06-04 1999-06-23 三井金属鉱業株式会社 Production method of copper fine powder
JP3635451B2 (en) * 1998-09-11 2005-04-06 株式会社村田製作所 Metal powder, method for producing the same, and conductive paste
KR100743844B1 (en) * 1999-12-01 2007-08-02 도와 마이닝 가부시끼가이샤 Copper powder and process for producing copper powder
JP2002363618A (en) * 2001-06-11 2002-12-18 Sumitomo Electric Ind Ltd Copper ultrafine grain and production method therefor
JP4868716B2 (en) * 2004-04-28 2012-02-01 三井金属鉱業株式会社 Flake copper powder and conductive paste
JP4879473B2 (en) * 2004-10-25 2012-02-22 三井金属鉱業株式会社 Flake copper powder, method for producing flake copper powder, and conductive slurry containing flake copper powder
JP4662760B2 (en) * 2004-12-22 2011-03-30 三井金属鉱業株式会社 Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP4651533B2 (en) * 2005-12-26 2011-03-16 三井金属鉱業株式会社 Method for producing copper particles

Also Published As

Publication number Publication date
WO2009038207A1 (en) 2009-03-26
CN101801568B (en) 2012-10-03
TW200932405A (en) 2009-08-01
JP2009074152A (en) 2009-04-09
TWI455777B (en) 2014-10-11
KR20100071970A (en) 2010-06-29
CN101801568A (en) 2010-08-11
KR101510369B1 (en) 2015-04-06

Similar Documents

Publication Publication Date Title
JP5392884B2 (en) Method for producing copper powder
JP5144022B2 (en) Copper powder manufacturing method and copper powder obtained by the manufacturing method
JP6274444B2 (en) Method for producing copper powder
KR101671324B1 (en) Copper powder
JP5941082B2 (en) Copper powder
WO2014080662A1 (en) Copper powder and method for producing same
US20070209475A1 (en) Flaky Copper Powder, Method For Producing The Same, And Conductive Paste
US7534283B2 (en) Method of producing copper powder and copper powder
JP6168837B2 (en) Copper fine particles and method for producing the same
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JP2010077495A (en) Silver-covered copper fine particle, dispersed liquid thereof and method for producing the same
JP4651533B2 (en) Method for producing copper particles
JP2006176836A (en) Slurry of ultrafine copper powder and method for producing the slurry
JP5729842B2 (en) Copper powder
JP4756652B2 (en) Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP4448962B2 (en) Manufacturing method of nickel-coated fine copper powder
JP2017166048A (en) Copper powder and manufacturing method therefor, and conductive paste
JP5785433B2 (en) Low carbon copper particles
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP2009052146A (en) Copper powder and its manufacturing method
JP5985216B2 (en) Silver powder
TWI487581B (en) Low carbon copper particles and methods for producing the same
JP2008223101A (en) Method for producing metal grain
JP5954473B2 (en) Silver powder manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5392884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250