JP2007321215A5 - - Google Patents

Download PDF

Info

Publication number
JP2007321215A5
JP2007321215A5 JP2006154510A JP2006154510A JP2007321215A5 JP 2007321215 A5 JP2007321215 A5 JP 2007321215A5 JP 2006154510 A JP2006154510 A JP 2006154510A JP 2006154510 A JP2006154510 A JP 2006154510A JP 2007321215 A5 JP2007321215 A5 JP 2007321215A5
Authority
JP
Japan
Prior art keywords
copper
dispersion
mass
nanoparticle dispersion
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006154510A
Other languages
Japanese (ja)
Other versions
JP2007321215A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006154510A priority Critical patent/JP2007321215A/en
Priority claimed from JP2006154510A external-priority patent/JP2007321215A/en
Publication of JP2007321215A publication Critical patent/JP2007321215A/en
Publication of JP2007321215A5 publication Critical patent/JP2007321215A5/ja
Pending legal-status Critical Current

Links

Description

銅ナノ粒子分散体および銅被膜Copper nanoparticle dispersion and copper coating

本発明はナノ粒子分散体および被膜に関し、詳しくは電極、配線、回路などの導電性被膜を形成するに好適なナノ粒子分散体、およびこの分散体を用いて得られる被膜に関する。 The present invention relates to a copper nanoparticle dispersion and a copper coating, and more particularly to a copper nanoparticle dispersion suitable for forming a conductive coating such as an electrode, a wiring, and a circuit, and a copper coating obtained using the dispersion.

平均粒子径が1〜100nmの範囲にある金属ナノ粒子を含む金属ナノ粒子分散体を用いて導電性被膜を形成することはよく知られている。例えば、特許文献1には、平均粒子径が1〜100nmの範囲にある金属ナノ粒子をアミン化合物などで被覆し、特定の有機溶媒に分散してなる導電性金属ナノ粒子ペーストが記載されている。しかし、このペーストは、金属が銀の場合、導電性銀被膜を形成するのにそれなりに有効ではあるが、銅の場合には、同様の効果が得られるとはいえない。   It is well known to form a conductive film using a metal nanoparticle dispersion containing metal nanoparticles having an average particle diameter in the range of 1 to 100 nm. For example, Patent Document 1 describes a conductive metal nanoparticle paste obtained by coating metal nanoparticles having an average particle diameter in the range of 1 to 100 nm with an amine compound and dispersing in a specific organic solvent. . However, this paste is effective to form a conductive silver coating when the metal is silver, but it cannot be said that the same effect can be obtained when copper is used.

特開2004−273205号公報JP 2004-273205 A

本発明の目的は、基板に塗布した後、焼成することにより導電性に優れた、すなわち比抵抗値の低い被膜を形成し、さらには粘性が低く、取扱い性に優れたナノ粒子分散体を提供することにある。もう一つの目的は、上記ナノ粒子分散体を基板に塗布した後、焼成することにより得られる被膜を提供することにある。 An object of the present invention, after application to the substrate, excellent conductivity by firing, i.e. to form a low copper film resistivity value, more low viscosity, handling properties excellent copper nanoparticle dispersion Is to provide. Another object is to provide a copper coating obtained by applying the copper nanoparticle dispersion to a substrate and then firing the dispersion.

本発明者らの研究によれば、ナノ粒子分散体中の元素と窒素元素との割合を特定の範囲に調整することにより、上記目的が達成できることがわかった。すなわち、本発明は次のとおりである。
(1)平均粒子径が1〜100nmであるナノ粒子とアミン化合物とを含むナノ粒子分散体であって、該分散体中のの質量(M)と窒素の質量(N)との比(M/N)が5/1〜40/1の範囲にあることを特徴とするナノ粒子分散体。
(2)比(M/N)が10/1〜25/1である上記(1)のナノ粒子分散体。
(3)ナノ粒子含有量が10〜80質量%である上記(1)または(2)ナノ粒子分散体。
(4)上記(1)ないし(3)のいずれかのナノ粒子分散体を基板に塗布した後、100〜600℃の温度で焼成して得られる被膜。
According to the studies by the present inventors, it has been found that the above object can be achieved by adjusting the ratio of the copper element and the nitrogen element in the copper nanoparticle dispersion to a specific range. That is, the present invention is as follows.
(1) A copper nanoparticle dispersion having an average particle diameter and a copper nanoparticles and the amine compound is 1 to 100 nm, the copper of the dispersion in the mass (M) and nitrogen mass (N) and the The copper nanoparticle dispersion, wherein the ratio (M / N) is in the range of 5/1 to 40/1.
(2) The copper nanoparticle dispersion according to (1), wherein the ratio (M / N) is 10/1 to 25/1.
(3) The copper nanoparticle dispersion according to (1) or (2) , wherein the copper nanoparticle content is 10 to 80% by mass.
(4) A copper coating obtained by applying the copper nanoparticle dispersion according to any one of (1) to (3 ) above to a substrate and firing at a temperature of 100 to 600 ° C.

本発明のナノ粒子分散体は取扱い性に優れ、しかも焼成により導電性に優れた被膜を形成することができる。 The copper nanoparticle dispersion of the present invention is excellent in handleability and can form a copper film excellent in conductivity by firing.

本発明のナノ粒子分散体とは、アミン化合物とともに、平均粒子径が1〜100nmの範囲にあるナノ粒子を有機溶媒に分散したナノ粒子コロイドまたはナノ粒子ペーストであって、分散体中のの質量(M)と窒素の質量(N)との比(M/N)が5/1〜40/1の範囲にあるものである。 The copper nanoparticle dispersion of the present invention, together with an amine compound, an average particle diameter of a copper nanoparticle colloid or copper nanoparticle paste copper nanoparticles dispersed in an organic solvent in the range of 1 to 100 nm, the dispersion The ratio (M / N) of the mass (M) of copper and the mass (N) of nitrogen is in the range of 5/1 to 40/1.

本発明のナノ粒子とは、(0価)のナノ粒子、酸化物のナノ粒子、およびこれらの混合物を包含するものである。 The copper nanoparticles of the present invention include copper (zero valent) nanoparticles, copper oxide nanoparticles, and mixtures thereof.

上記有機溶媒としては、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、ドデカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノールなどを挙げることができる。これらは単独でも、あるいは2種以上混合して使用することもできる。   Examples of the organic solvent include normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, and terpineol. , Decane, dodecane, tridecane, tetradecane, hexadecane, methanol, ethanol, propanol, butanol and the like. These may be used alone or in combination of two or more.

ナノ粒子分散体における上記比(M/N)は、5/1〜40/1であり、好ましくは5/1〜30/1、より好ましくは5/1〜25/1である。特に、10/1〜25/1の範囲にあるのが、ナノ粒子分散体が分散安定性に優れ、しかも比抵抗値の低い被膜を形成する点で好ましい。上記比(M/N)が5/1未満では、このナノ粒子分散体を焼成して得られる被膜の導電性が低下する。すなわち、比抵抗値が高くなる。一方、40/1を超えると、ナノ粒子が分散体中で安定した分散状態を維持できなくなるか、あるいは分散体の粘性が高まり、配線などの微細な被膜を形成するのが困難となる。この傾向は、銅ナノ粒子分散体の場合に特に顕著である。 The ratio (M / N) in the copper nanoparticle dispersion is 5/1 to 40/1, preferably 5/1 to 30/1, more preferably 5/1 to 25/1. In particular, the range of 10/1 to 25/1 is preferable in that the copper nanoparticle dispersion is excellent in dispersion stability and forms a copper film having a low specific resistance value. When the ratio (M / N) is less than 5/1, the conductivity of the copper coating obtained by firing the copper nanoparticle dispersion is lowered. That is, the specific resistance value increases. On the other hand, if the ratio exceeds 40/1, the copper nanoparticles cannot maintain a stable dispersion state in the dispersion, or the dispersion becomes highly viscous and it becomes difficult to form a fine copper film such as a wiring. . This tendency is particularly remarkable in the case of a copper nanoparticle dispersion.

ナノ粒子分散体中のナノ粒子の含有量は10〜80質量%、好ましくは20〜70質量%、より好ましくは25〜65質量%である。10質量%未満では、分散体の焼成時にナノ粒子同士の融着が円滑に進行しなくなり、得られる被膜の導電性が著しく低下する。また、80質量%を超えると分散体の粘性が高くなり、配線などの微細な被膜を形成するのが困難となる。 The content of the copper nanoparticles copper nanoparticles dispersion is 10 to 80% by weight, preferably 20 to 70 wt%, more preferably 25 to 65 wt%. If it is less than 10% by mass, the fusion between the copper nanoparticles does not proceed smoothly during the firing of the dispersion, and the conductivity of the resulting copper coating is significantly reduced. Moreover, when it exceeds 80 mass%, the viscosity of a dispersion body will become high and it will become difficult to form fine copper coatings, such as wiring.

本発明のナノ粒子分散体における、の質量(M)および窒素の質量(N)は、電子線マイクロアナライザー(島津製作所製EPMA−1610)を用い、分散体の表面にカーボンを蒸着させた後、下記条件下に、分散体の定性、それにと窒素の定量を行うことにより、求めた。
<条件>
加速電圧:15kV
ビームサイズ:100μmΦ
試料電流:0.1μA
また、ナノ粒子の含有量については、熱重量・示差熱同時分析装置(TG−DTA)(マックサイエンス社製、TG−DTA2000S)を用い、下記条件下に、分散体を室温から800℃まで昇温した際の質量変化から算出した。
<条件>
空気供給量:50mL/min
サンプリング間隔:1.0秒
昇温速度:10.0deg/min
本発明のナノ粒子分散体は、例えば、有機酸塩とアミン化合物とを含む溶液に還元剤を作用させて、有機酸塩を還元処理することにより調製することができる(特願2005−275097号明細書参照)。
In the copper nanoparticle dispersion of the present invention, the mass of copper (M) and the mass of nitrogen (N) were obtained by depositing carbon on the surface of the dispersion using an electron beam microanalyzer (EPMA-1610 manufactured by Shimadzu Corporation). Then, it calculated | required by performing the qualitative of a dispersion and fixed_quantity | quantitative_assay of copper and nitrogen on the following conditions.
<Conditions>
Acceleration voltage: 15 kV
Beam size: 100μmΦ
Sample current: 0.1 μA
Moreover, about content of a copper nanoparticle, a thermogravimetric / differential-thermal simultaneous analyzer (TG-DTA) (the TG-DTA2000S by the MacScience company) was used, and the dispersion was made from room temperature to 800 degreeC on the following conditions. It calculated from the mass change at the time of heating up.
<Conditions>
Air supply amount: 50 mL / min
Sampling interval: 1.0 second heating rate: 10.0 deg / min
The copper nanoparticle dispersion of the present invention can be prepared, for example, by reducing the organic acid copper salt by causing a reducing agent to act on a solution containing the organic acid copper salt and the amine compound (Japanese Patent Application No. 2005). -275097).

上記有機酸塩としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、オレイン酸、リノール酸、リノレイン酸、ステアリン酸、シュウ酸、酒石酸、フタル酸、メタクリル酸、クエン酸、アクリル酸、安息香酸などのカルボン酸やスルホン酸などの塩を挙げることができる。なかでも、カルボン酸銅塩、例えば、ギ酸銅、酢酸銅、シュウ酸銅、オレイン酸銅、ステアリン酸銅およびテトラデカ酸銅が好適に用いられる。 Examples of the organic acid copper salt include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, oleic acid, linoleic acid, linolenic acid, Specific examples include carboxylic acids such as stearic acid, oxalic acid, tartaric acid, phthalic acid, methacrylic acid, citric acid, acrylic acid, and benzoic acid, and copper salts such as sulfonic acid. Among them, carboxylic acid copper salts, such as copper formate, copper acetate, copper oxalate, copper oleate, copper stearate and tetradeca acid copper is preferably used.

上記アミン化合物としては、モノエタノールアミン、エチレンジアミン、プロピルアミン、ブチルアミン、トリメチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、トリオクチルアミン、ブチルエタノールアミンなどを挙げることができる。これらのなかでも、炭素数8〜16のモノアミンである、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ドデシルアミンおよびトリオクチルアミンが好適に用いられる。特に、炭素数8〜12のオクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミンおよびドデシルアミンがより好適に用いられる。これらは1種でも、あるいは2種以上混合して使用してもよい。   Examples of the amine compound include monoethanolamine, ethylenediamine, propylamine, butylamine, trimethylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, Examples include pentadecylamine, hexadecylamine, trioctylamine, and butylethanolamine. Among these, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, dodecylamine and trioctyl, which are monoamines having 8 to 16 carbon atoms. Amines are preferably used. In particular, octylamine, nonylamine, decylamine, undecylamine and dodecylamine having 8 to 12 carbon atoms are more preferably used. These may be used alone or in combination of two or more.

有機酸塩とアミン化合物との割合については、特に限定されるものではないが、通常、アミン化合物を有機酸塩1モルに対し0.5〜30モル、好ましくは3〜15モルの割合で使用する。0.5モル未満では、有機酸塩とアミン化合物との均一な混合物が調製できないため、還元時に凝集が生じやすくなる。一方、30モル以上添加しても微粒子化には作用せず余分なコストが必要となる。 The ratio of the organic acid copper salt and an amine compound, is not particularly limited, usually, 0.5 to 30 mol organic acid copper salt 1 mol of amine compound, preferably 3 to 15 molar proportions of Used in. When the amount is less than 0.5 mol, a uniform mixture of the organic acid copper salt and the amine compound cannot be prepared, and thus aggregation easily occurs during reduction. On the other hand, addition of 30 mol or more does not affect the microparticulation and requires extra cost.

上記還元剤としては、ジメチルアミンボラン、tert−ブチルアミンボラン、水素化ホウ素ナトリウム、シュウ酸、アスコルビン酸、ホルムアルデヒド、アセトアルデヒドなどを挙げることができる。これらは2種以上混合して使用することもできる。なかでも、ジメチルアミンボランおよび水素化ホウ素ナトリウムが好適に用いられる。還元剤は、有機酸塩1モルに対して、0.1モル以上10モル未満、好ましくは0.3モル以上5モル未満の割合で用いるのが一般的である。10モル以上では、還元力が強すぎるため粒子が凝集しナノ粒子が得られなくなり、一方、0.1モルより少ないと十分に還元できないため所望のナノ粒子を得ることができなくなる。 Examples of the reducing agent include dimethylamine borane, tert-butylamine borane, sodium borohydride, oxalic acid, ascorbic acid, formaldehyde, and acetaldehyde. These may be used in combination of two or more. Of these, dimethylamine borane and sodium borohydride are preferably used. Reducing agent, an organic acid copper salt 1 mole, less than 10 mol 0.1 mol or more, preferably common to use a ratio of less than 5 mol 0.3 mol. If the amount is 10 mol or more, the reducing power is too strong and the particles aggregate and copper nanoparticles cannot be obtained. On the other hand, if the amount is less than 0.1 mol, sufficient reduction cannot be achieved and desired copper nanoparticles cannot be obtained.

上記還元処理は、100℃未満、好ましくは0〜80℃、より好ましくは10〜55℃の温度範囲で、液温変化ΔT(温度変化範囲)が20℃以下、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは実質的に一定の温度に維持しながら、必要時間、具体的には、例えば、0.1〜5時間、好ましくは0.2〜3時間行うのがよい。この還元処理の間に、金属核の形成およびその成長が進み、平均粒子径が1〜100nmの範囲にあるナノ粒子、特に平均粒子径が10nm以下で、σ/D(σ:標準偏差値、D:平均粒子径)が0.2以下のナノ粒子を得ることができる。 The reduction treatment is performed at a temperature range of less than 100 ° C., preferably 0 to 80 ° C., more preferably 10 to 55 ° C., and a liquid temperature change ΔT (temperature change range) of 20 ° C. or less, preferably 10 ° C. or less. While maintaining at a temperature of 5 ° C. or less, particularly preferably a substantially constant temperature, the necessary time, specifically, for example, 0.1 to 5 hours, preferably 0.2 to 3 hours may be performed. During this reduction treatment, the formation and growth of metal nuclei progressed, and copper nanoparticles having an average particle diameter in the range of 1 to 100 nm, particularly an average particle diameter of 10 nm or less, σ / D (σ: standard deviation value) , D: average particle diameter) can obtain copper nanoparticles of 0.2 or less.

上記還元処理により得られるナノ粒子は、未反応のアミン化合物や還元剤から生成する生成物などとともに反応液中に含まれているので、アセトン、エタノール、メタノール、水などを加えて静置した後、メンブレンフィルターなどを用いてろ過することにより、ナノ粒子をアミン化合物とともに沈殿物として回収することができる。次に、上記沈殿物を再度溶媒に分散させてナノ粒子分散体とする。この溶媒としては、前記した有機溶媒、すなわち、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、ドデカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノールなどが用いられる。
上記のようにして得られたナノ粒子分散体を、冷却、例えば、5℃以下にまで冷却した後、再度メンブランフィルターなどによりろ過することにより、あるいは、さらに、このろ過により得られるろ過液中の溶媒を減圧除去した後、再度上記溶媒に分散させることにより、分散体中の不純物を除去できるとともに、ナノ粒子の含有量を10〜80質量%の範囲に、また、分散体中のの質量(M)と窒素の質量(N)との比(M/N)を5/1〜40/1の範囲に調整することができる。つまり、分散体中のナノ粒子含有量および比(M/N)を前記した方法により測定しながら、上記操作を適宜選択し、あるいは繰り返すことにより、ナノ粒子分散体中のナノ粒子含有量および比(M/N)を本発明で規定する範囲に調整することができる。
The copper nanoparticles obtained by the above reduction treatment are contained in the reaction solution together with the unreacted amine compound and the product produced from the reducing agent, and thus left to stand by adding acetone, ethanol, methanol, water, etc. Thereafter, the copper nanoparticles can be collected together with the amine compound as a precipitate by filtering using a membrane filter or the like. Next, the precipitate is again dispersed in a solvent to obtain a copper nanoparticle dispersion. As this solvent, the above-mentioned organic solvents, i.e. normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, Ethylbenzene, trimethylbenzene, terpineol, decane, dodecane, tridecane, tetradecane, hexadecane, methanol, ethanol, propanol, butanol and the like are used.
The copper nanoparticle dispersion obtained as described above is cooled, for example, cooled to 5 ° C. or lower, and then filtered again with a membrane filter or the like, or further in the filtrate obtained by this filtration. After removing the solvent under reduced pressure, the impurities in the dispersion can be removed again by dispersing in the solvent, and the content of the copper nanoparticles is in the range of 10 to 80% by mass, and the copper in the dispersion The ratio (M / N) of the mass (M) of nitrogen to the mass (N) of nitrogen can be adjusted to a range of 5/1 to 40/1. In other words, while measuring by methods copper nanoparticles content and ratio of (M / N) described above in the dispersion, by appropriately selecting the operation, or repeatedly, copper nanoparticles containing copper nanoparticles dispersion The amount and ratio (M / N) can be adjusted within the range defined in the present invention.

本発明のナノ粒子分散体を基板に塗布した後、焼成することにより導電性に優れた被膜を形成することができる。 After applying the copper nanoparticle dispersion of the present invention to a substrate, firing can form a copper film having excellent conductivity.

ナノ粒子分散体を基板に塗布する方法については特に制限はなく、この種の分散体の塗布に一般に用いられている方法にしたがって行うことができる。具体的には、例えば、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法などを採用することができる。また、インクジェットヘッドを用いて分散体を基板上の必要な部分のみに塗布し、配線や回路となる被膜を形成させることもできる。 There is no restriction | limiting in particular about the method of apply | coating a copper nanoparticle dispersion to a board | substrate, It can carry out according to the method generally used for application | coating of this kind of dispersion. Specifically, for example, a screen printing method, a dip coating method, a spray method, a spin coating method, or the like can be employed. Alternatively, the dispersion can be applied only to a necessary portion on the substrate using an ink jet head to form a copper film to be a wiring or a circuit.

上記基板としては、電極、配線、回路などを構成するのに一般に用いられている、焼成によって焼失、劣化しない耐熱性のものであればいずれでもよい。具体的には、例えば、鉄、銅、アルミニウムなどの金属基板、ポリイミドフィルムなどの耐熱性樹脂基板、ガラス基板などを挙げることができる。   As the substrate, any substrate may be used as long as it has a heat resistance generally used for constituting electrodes, wirings, circuits, etc. and does not burn and deteriorate due to firing. Specific examples include metal substrates such as iron, copper, and aluminum, heat resistant resin substrates such as polyimide films, and glass substrates.

上記焼成方法については、特に制限はなく、ナノ粒子分散体を用いて被膜を形成するのに一般に用いられている方法にしたがって実施することができる。例えば、ナノ粒子分散体を基板に塗布した後、酸化性雰囲気中において100〜600℃の温度で焼成し、次いで還元性雰囲気中において100〜600℃で焼成すればよい(特願2006−16579号明細書参照)。具体的に説明すると、焼却炉内に塗布基板をセットし、焼却炉内に酸化性雰囲気、例えば、酸素、あるいは酸素ガスと窒素ガスやヘリウムガスなどの不活性ガスとの混合ガス、代表的には、空気を充満または流通させながら100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成する。この酸化性雰囲気中での焼成の目的は、基板に塗布した分散体中に含まれている有機物を燃焼除去することにあり、この酸化性雰囲気中での焼成を実施することにより、最終的に得られる被膜の導電性が向上する。この酸化性雰囲気中での焼成を行わないと、微量の有機物または炭素分が不純物として被膜中に残存するため、被膜の導電性が低下する。 For the baking process is not particularly limited and may be carried out in accordance with methods using copper nanoparticle dispersion is generally used to form a copper coating. For example, after the copper nanoparticle dispersion is applied to the substrate, it is fired at a temperature of 100 to 600 ° C. in an oxidizing atmosphere, and then fired at 100 to 600 ° C. in a reducing atmosphere (Japanese Patent Application No. 2006-16579). No. description). Specifically, a coated substrate is set in an incinerator, and an oxidizing atmosphere in the incinerator, for example, oxygen or a mixed gas of oxygen gas and inert gas such as nitrogen gas or helium gas, typically Is fired at a temperature of 100 to 600 ° C., preferably 100 to 450 ° C., more preferably 100 to 350 ° C. while being filled or circulated with air. The purpose of firing in this oxidizing atmosphere is to burn and remove the organic substances contained in the dispersion applied to the substrate, and finally by firing in this oxidizing atmosphere, The conductivity of the resulting copper coating is improved. If firing in this oxidizing atmosphere is not performed, a trace amount of organic matter or carbon remains as impurities in the film, so that the conductivity of the copper film decreases.

次に、上記酸化性雰囲気中での焼成に引き続き、焼成炉内に還元性雰囲気、例えば、水素、あるいは水素ガスと窒素ガスやヘリウムガスなどの不活性ガスとの混合ガス(水素濃度:2〜10%)を充満または流通させながら、100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成すればよい。この還元性雰囲気中での焼成の目的は、上記酸化性雰囲気中での焼成によりの一部または全部が酸化物の状態になっている被膜を還元して金属とし、被膜に導電性を持たせるためである。 Next, following the firing in the oxidizing atmosphere, a reducing atmosphere in the firing furnace, for example, hydrogen or a mixed gas of hydrogen gas and an inert gas such as nitrogen gas or helium gas (hydrogen concentration: 2 to 2). 10%) may be baked at a temperature of 100 to 600 ° C, preferably 100 to 450 ° C, more preferably 100 to 350 ° C. The purpose of firing in the reducing atmosphere, by reducing a coating part of the copper or the whole is in the state of the copper oxide by firing in the oxidizing atmosphere as copper metal, conductivity coating It is for having.

上記酸化性雰囲気中での焼成、それに続く還元性雰囲気中での焼成は、必ずしも連続的に行う必要はなく、上記焼成処理の間に、別の処理などを実施してもよい。例えば、還元性雰囲気中での焼成を、水素ガスを用いて行うときには、酸化性雰囲気中での焼成の後、水素ガスを流通させる前に、数分間の窒素による雰囲気置換処理(Nパージ)を実施することが安全上好ましいものである。 The firing in the oxidizing atmosphere and the subsequent firing in the reducing atmosphere are not necessarily performed continuously, and another treatment or the like may be performed between the firing treatments. For example, when firing in a reducing atmosphere using hydrogen gas, after the firing in an oxidizing atmosphere, before the hydrogen gas is circulated, the atmosphere is replaced with nitrogen for several minutes (N 2 purge). It is preferable from the viewpoint of safety.

基板上に塗布した直後のナノ微粒子分散体には多量の有機物が含まれているため、塗布基板を直ちに酸化性雰囲気中で焼成すると、この多量の有機物が燃焼して、急激に発熱し、その結果、被膜のひび割れや基板からの被膜の剥離などが起こりやすくなる。このため、基板へのナノ微粒子分散体の塗布直後に酸化性雰囲気中で焼成を行う場合には、昇温をゆっくり行うなどのコントロールが必要となり、結果的に、操作時間が長期化するという問題が生じる。そこで、前記酸化性雰囲気中での焼成の前に、塗布基板を不活性雰囲気中または還元性雰囲気中で100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成するのが好ましい。なかでも、還元性雰囲気中で上記焼成を行うのが好ましい。 Since the copper nanoparticle dispersion immediately after coating on the substrate contains a large amount of organic matter, when the coated substrate is immediately baked in an oxidizing atmosphere, this large amount of organic matter burns and rapidly generates heat, As a result, cracking of the coating film or peeling of the coating film from the substrate is likely to occur. For this reason, when firing in an oxidizing atmosphere immediately after application of the copper nanoparticle dispersion to the substrate, it is necessary to control the temperature rise slowly, resulting in a prolonged operation time. Problems arise. Therefore, before firing in the oxidizing atmosphere, the coated substrate is fired at a temperature of 100 to 600 ° C., preferably 100 to 450 ° C., more preferably 100 to 350 ° C. in an inert atmosphere or a reducing atmosphere. It is preferable to do this. Especially, it is preferable to perform the said baking in a reducing atmosphere.

したがって、ナノ粒子分散体を基板に塗布した後、不活性雰囲気中または還元性雰囲気中において100〜600℃で焼成し、次に酸化性雰囲気中において100〜600℃の温度で焼成し、さらに還元性雰囲気中において100〜600℃の温度で焼成するのが好ましいものである。 Therefore, after the copper nanoparticle dispersion is applied to the substrate, it is fired at 100 to 600 ° C. in an inert atmosphere or a reducing atmosphere, and then fired at a temperature of 100 to 600 ° C. in an oxidizing atmosphere. Baking is preferably performed at a temperature of 100 to 600 ° C. in a reducing atmosphere.

上記不活性雰囲気中または還元性雰囲気中での焼成は、前記した酸化性雰囲気中での焼成と同様に、塗布基板を焼成炉内にセットし、焼成炉内に不活性ガス、例えば、窒素ガス、あるいは還元性ガス、例えば、水素ガスまたは水素ガスと窒素ガスとの混合ガス(水素濃度:2〜10%)を充満または流通させて焼成させればよい。このような不活性雰囲気中または還元性雰囲気中での焼成により、酸化性雰囲気中での焼成に際に、燃焼による急な発熱を生じさせない程度まで、有機物を除去することができる。このため、工程を短時間化できる、との工業的実施に際し有利な効果が得られる。   In the inert atmosphere or reducing atmosphere, the firing is performed in the same manner as in the oxidizing atmosphere described above. The coated substrate is set in a firing furnace, and an inert gas such as nitrogen gas is placed in the firing furnace. Alternatively, a reducing gas such as hydrogen gas or a mixed gas of hydrogen gas and nitrogen gas (hydrogen concentration: 2 to 10%) may be filled or circulated and fired. By such firing in an inert atmosphere or a reducing atmosphere, organic substances can be removed to such an extent that no sudden heat generation due to combustion occurs during firing in an oxidizing atmosphere. For this reason, an advantageous effect can be obtained in industrial implementation that the process can be shortened.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。なお、FE−SEMとは電界放射型走査電子顕微鏡、またTOF−SIMSとは飛行時間型二次イオン質量分析装置である。
(実施例1)
酢酸銅一水和物(和光純薬工業株式会社製)31.4g、ドデシルアミン(和光純薬工業株式会社)291.7gおよびオクチルアミン(和光純薬工業株式会社製)81.4gを40℃にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液29.8gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention. Note that FE-SEM is a field emission scanning electron microscope, and TOF-SIMS is a time-of-flight secondary ion mass spectrometer.
Example 1
Copper acetate monohydrate (Wako Pure Chemical Industries, Ltd.) 31.4 g, dodecylamine (Wako Pure Chemical Industries, Ltd.) 291.7 g and octylamine (Wako Pure Chemical Industries, Ltd.) 81.4 g were added at 40 ° C. The mixture was stirred and mixed for 20 minutes, and then a reduction treatment was carried out by gradually adding 29.8 g of a 20% by mass aqueous sodium borohydride solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径6nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にドデシルアミンおよびオクチルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ36.6質量%および6.0質量%であり、M/Nは6.1/1であった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 6 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of dodecylamine and octylamine was confirmed in the copper fine particle paste. Furthermore, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 36.6% by mass and 6.0% by mass, respectively, and M / N was 6.1 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散性が良好であり、一晩放置後であっても銅ナノ粒子は均一な分散状態を維持しており、沈降物などは見られなかった。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had good particle dispersibility, and the copper nanoparticles maintained a uniform dispersed state even after being left overnight, and no sediment was observed.

得られた銅ナノ粒子分散体を1cm×3cmの面積でガラス基板上に塗布した後、ガラス基板を焼成炉に入れた。焼成炉内に5%の水素(残り95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから、同温度に0.5時間保持し還元性雰囲気中での焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は10μΩ・cmであった。M/Nと比抵抗値とを表1に示す。
(実施例2)
酢酸銅一水和物(和光純薬工業株式会社製)31.4gおよびオクチルアミン(和光純薬工業株式会社製)203.4gを40℃にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液29.8gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
After apply | coating the obtained copper nanoparticle dispersion on a glass substrate by the area of 1 cm x 3 cm, the glass substrate was put into the baking furnace. The temperature was raised from room temperature to 300 ° C. over 1 hour while flowing 5% hydrogen (the remaining 95% was nitrogen) in the firing furnace. After the temperature reached 300 ° C., it was held at the same temperature for 0.5 hours and baked in a reducing atmosphere to obtain a copper film having a thickness of 0.5 μm. The obtained copper film had a specific resistance value of 10 μΩ · cm. Table 1 shows M / N and specific resistance values.
(Example 2)
After stirring and mixing 31.4 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 203.4 g of octylamine (manufactured by Wako Pure Chemical Industries, Ltd.) at 40 ° C. for 20 minutes, 20% by mass hydrogenation Reduction treatment was carried out by gradually adding 29.8 g of an aqueous sodium boron solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径5nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にオクチルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ58.9質量%および4.3質量%であり、M/Nは13.7/1であった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 5 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of octylamine was confirmed in the copper fine particle paste. Further, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 58.9% by mass and 4.3% by mass, respectively, and M / N was 13.7 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散性が良好であり、一晩放置後であっても銅ナノ粒子は均一な分散状態を維持しており、沈降物などは見られなかった。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had good particle dispersibility, and the copper nanoparticles maintained a uniform dispersed state even after being left overnight, and no sediment was observed.

得られた銅ナノ粒子分散体を1cm×3cmの面積でガラス基板上に塗布した後、ガラス基板を焼成炉に入れた。焼成炉内に5%の水素(残り95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから、同温度に0.5時間保持し還元性雰囲気中での焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は6μΩ・cmであった。M/Nと比抵抗値とを表1に示す。
(実施例3)
酢酸銅一水和物(和光純薬工業株式会社製)31.4gおよびドデシルアミン(和光純薬工業株式会社製)145.8gを40℃にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液29.8gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
After apply | coating the obtained copper nanoparticle dispersion on a glass substrate by the area of 1 cm x 3 cm, the glass substrate was put into the baking furnace. The temperature was raised from room temperature to 300 ° C. over 1 hour while flowing 5% hydrogen (the remaining 95% was nitrogen) in the firing furnace. After the temperature reached 300 ° C., it was held at the same temperature for 0.5 hours and baked in a reducing atmosphere to obtain a copper film having a thickness of 0.5 μm. The obtained copper film had a specific resistance value of 6 μΩ · cm. Table 1 shows M / N and specific resistance values.
(Example 3)
After stirring and mixing 31.4 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 145.8 g of dodecylamine (manufactured by Wako Pure Chemical Industries, Ltd.) at 40 ° C. for 20 minutes, 20% by mass hydrogenation Reduction treatment was carried out by gradually adding 29.8 g of an aqueous sodium boron solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径9nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にドデシルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ64.6質量%および2.7質量%であり、M/Nは23.9/1であった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 9 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of dodecylamine was confirmed in the copper fine particle paste. Furthermore, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 64.6% by mass and 2.7% by mass, respectively, and M / N was 23.9 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散性が良好であり、一晩放置後であっても銅ナノ粒子は均一な分散状態を維持しており、沈降物などは見られなかった。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had good particle dispersibility, and the copper nanoparticles maintained a uniform dispersed state even after being left overnight, and no sediment was observed.

得られた銅ナノ粒子分散体を1cm×3cmの面積でガラス基板上に塗布した後、ガラス基板を焼成炉に入れた。焼成炉内に5%の水素(残り95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから、同温度に0.5時間保持し還元性雰囲気中での焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は8μΩ・cmであった。M/Nと比抵抗値とを表1に示す。
(実施例4)
酢酸銅一水和物(和光純薬工業株式会社製)31.4gおよびオクチルアミン(和光純薬工業株式会社製)142.4gを40℃にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液29.8gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
After apply | coating the obtained copper nanoparticle dispersion on a glass substrate by the area of 1 cm x 3 cm, the glass substrate was put into the baking furnace. The temperature was raised from room temperature to 300 ° C. over 1 hour while flowing 5% hydrogen (the remaining 95% was nitrogen) in the firing furnace. After the temperature reached 300 ° C., it was held at the same temperature for 0.5 hours and baked in a reducing atmosphere to obtain a copper film having a thickness of 0.5 μm. The obtained copper film had a specific resistance value of 8 μΩ · cm. Table 1 shows M / N and specific resistance values.
Example 4
After stirring and mixing 31.4 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 142.4 g of octylamine (manufactured by Wako Pure Chemical Industries, Ltd.) at 40 ° C. for 20 minutes, 20% by mass hydrogenation Reduction treatment was carried out by gradually adding 29.8 g of an aqueous sodium boron solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径15nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にオクチルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ75.5質量%および2.6質量%であり、M/Nは29.0/1であった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 15 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of octylamine was confirmed in the copper fine particle paste. Further, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 75.5% by mass and 2.6% by mass, respectively, and M / N was 29.0 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散性が良好であり、一晩放置後であっても銅ナノ粒子は均一な分散状態を維持しており、沈降物などは見られなかった。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had good particle dispersibility, and the copper nanoparticles maintained a uniform dispersed state even after being left overnight, and no sediment was observed.

得られた銅ナノ粒子分散体を1cm×3cmの面積でガラス基板上に塗布した後、ガラス基板を焼成炉に入れた。焼成炉内に5%の水素(残り95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから、同温度に0.5時間保持し還元性雰囲気中での焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は14μΩ・cmであった。M/Nと比抵抗値とを表1に示す。
(比較例1)
酢酸銅一水和物(和光純薬工業株式会社製)31.4gとオクチルアミン(和光純薬工業株式会社製)406.8gを40℃にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液44.7gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、10℃以下の温度まで冷却した後、ろ過により銅および有機物からなる沈殿物を分離した。
After apply | coating the obtained copper nanoparticle dispersion on a glass substrate by the area of 1 cm x 3 cm, the glass substrate was put into the baking furnace. The temperature was raised from room temperature to 300 ° C. over 1 hour while flowing 5% hydrogen (the remaining 95% was nitrogen) in the firing furnace. After the temperature reached 300 ° C., it was held at the same temperature for 0.5 hours and baked in a reducing atmosphere to obtain a copper film having a thickness of 0.5 μm. The obtained copper film had a specific resistance value of 14 μΩ · cm. Table 1 shows M / N and specific resistance values.
(Comparative Example 1)
After stirring and mixing 31.4 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 406.8 g of octylamine (manufactured by Wako Pure Chemical Industries, Ltd.) at 40 ° C. for 20 minutes, 20% by mass hydrogenation The reduction treatment was carried out by gradually adding 44.7 g of an aqueous sodium boron solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and cooled to a temperature of 10 ° C. or lower, and then a precipitate made of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径5nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にオクチルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ31.1質量%および7.2質量%であり、M/Nは4.3/1であった。   After toluene was added to the precipitate and redissolved, excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 5 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of octylamine was confirmed in the copper fine particle paste. Furthermore, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 31.1% by mass and 7.2% by mass, respectively, and M / N was 4.3 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散性が良好であり、一晩放置後であっても銅ナノ粒子は均一な分散状態を維持しており、沈降物などは見られなかった。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had good particle dispersibility, and the copper nanoparticles maintained a uniform dispersed state even after being left overnight, and no sediment was observed.

得られた銅ナノ粒子分散体を1cm×3cmの面積でガラス基板上に塗布した後、ガラス基板を焼成炉に入れた。焼成炉内に5%の水素(残り95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから、同温度に0.5時間保持し還元性雰囲気中での焼成を行い、膜厚0.5μmの同被膜を得た。得られた銅被膜の比抵抗値は65μΩ・cmであった。M/Nと比抵抗値とを表1に示す。
(比較例2)
酢酸銅一水和物(和光純薬工業株式会社製)31.4g、ドデシルアミン(和光純薬工業株式会社)58.3gおよびアセトン400gを室温にて20分間攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液29.8gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを1000g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
After apply | coating the obtained copper nanoparticle dispersion on a glass substrate by the area of 1 cm x 3 cm, the glass substrate was put into the baking furnace. The temperature was raised from room temperature to 300 ° C. over 1 hour while flowing 5% hydrogen (the remaining 95% was nitrogen) in the firing furnace. After the temperature reached 300 ° C., the same temperature was maintained for 0.5 hour and firing in a reducing atmosphere was performed to obtain the same film having a thickness of 0.5 μm. The obtained copper film had a specific resistance value of 65 μΩ · cm. Table 1 shows M / N and specific resistance values.
(Comparative Example 2)
Copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 31.4 g, dodecylamine (Wako Pure Chemical Industries, Ltd.) 58.3 g and acetone 400 g were stirred and mixed at room temperature for 20 minutes, and then 20 mass% hydrogen. Reduction treatment was carried out by gradually adding 29.8 g of an aqueous sodium borohydride solution. While stirring the solution after the reduction treatment, 1000 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅微粒子がトルエンに分散された分散液を得た。次に、この銅微粒子−トルエン分散液からトルエンを留去させることにより、銅微粒子ペーストを調製した。銅微粒子ペーストをFE−SEMで測定したところ、平均粒子径85nmの銅微粒子が観察された。また、銅微粒子ペーストをTOF−SIMSにて測定したところ、銅微粒子ペースト中にドデシルアミンの存在が確認された。さらに、銅微粒子ペーストを電子線マイクロアナライザーにて測定したところ、ペースト中の銅濃度および窒素濃度はそれぞれ77.6質量%および1.8質量%であり、M/Nは43.1/1であった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid matter was removed by filtration to obtain a dispersion in which copper fine particles were dispersed in toluene. Next, a copper fine particle paste was prepared by distilling toluene from the copper fine particle-toluene dispersion. When the copper fine particle paste was measured by FE-SEM, copper fine particles having an average particle diameter of 85 nm were observed. Moreover, when the copper fine particle paste was measured by TOF-SIMS, the presence of dodecylamine was confirmed in the copper fine particle paste. Furthermore, when the copper fine particle paste was measured with an electron beam microanalyzer, the copper concentration and the nitrogen concentration in the paste were 77.6 mass% and 1.8 mass%, respectively, and M / N was 43.1 / 1. there were.

続いて、この銅微粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅を30質量%含有する銅ナノ粒子分散体を得た。この銅ナノ粒子分散体は、粒子の分散安定性が悪く、数時間放置後には容器の底部に多量の沈降物が見られた。   Subsequently, an appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this copper fine particle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper. This copper nanoparticle dispersion had poor particle dispersion stability, and a large amount of sediment was observed at the bottom of the container after standing for several hours.

Figure 2007321215
Figure 2007321215

(注)分散安定性が悪く、沈降物が生成。 (Note) Dispersion stability is poor and sediment is formed.

Claims (4)

平均粒子径が1〜100nmであるナノ粒子とアミン化合物とを含むナノ粒子分散体であって、該分散体中のの質量(M)と窒素の質量(N)との比(M/N)が5/1〜40/1の範囲にあることを特徴とするナノ粒子分散体。 A copper nanoparticle dispersion having an average particle diameter and a copper nanoparticles and the amine compound is 1 to 100 nm, the ratio of the mass of the copper of the dispersion and (M) and nitrogen mass (N) (M / N) is in the range of 5/1 to 40/1, the copper nanoparticle dispersion. 比(M/N)が10/1〜25/1の範囲にある請求項1記載のナノ粒子分散体。 The copper nanoparticle dispersion according to claim 1, wherein the ratio (M / N) is in the range of 10/1 to 25/1. ナノ粒子含有量が10〜80質量%である請求項1または2に記載のナノ粒子分散体。 The copper nanoparticle dispersion according to claim 1 or 2 , wherein the copper nanoparticle content is 10 to 80 mass%. 請求項1ないしのいずれかのナノ粒子分散体を基板に塗布した後、100〜600℃の温度で焼成して得られる被膜。 The copper film obtained by baking at the temperature of 100-600 degreeC, after apply | coating the copper nanoparticle dispersion in any one of Claim 1 thru | or 3 to a board | substrate.
JP2006154510A 2006-06-02 2006-06-02 Dispersion of metallic nanoparticle and metallic coating film Pending JP2007321215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154510A JP2007321215A (en) 2006-06-02 2006-06-02 Dispersion of metallic nanoparticle and metallic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154510A JP2007321215A (en) 2006-06-02 2006-06-02 Dispersion of metallic nanoparticle and metallic coating film

Publications (2)

Publication Number Publication Date
JP2007321215A JP2007321215A (en) 2007-12-13
JP2007321215A5 true JP2007321215A5 (en) 2009-02-12

Family

ID=38854288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154510A Pending JP2007321215A (en) 2006-06-02 2006-06-02 Dispersion of metallic nanoparticle and metallic coating film

Country Status (1)

Country Link
JP (1) JP2007321215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP5234252B2 (en) * 2008-03-28 2013-07-10 古河電気工業株式会社 Method for producing copper fine particle dispersion
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
US20100000762A1 (en) * 2008-07-02 2010-01-07 Applied Nanotech Holdings, Inc. Metallic pastes and inks
JP5858374B2 (en) 2010-09-27 2016-02-10 国立大学法人山形大学 Method for producing coated copper fine particles
JP6051165B2 (en) 2011-11-15 2016-12-27 日油株式会社 Composition for forming copper pattern and method for producing copper pattern
KR101376913B1 (en) 2011-12-27 2014-03-20 삼성전기주식회사 Copper organic metal, manufacturing mehtod for copper organic metal and copper paste
TW201419315A (en) 2012-07-09 2014-05-16 Applied Nanotech Holdings Inc Photosintering of micron-sized copper particles
JP5827203B2 (en) 2012-09-27 2015-12-02 三ツ星ベルト株式会社 Conductive composition
JP6099472B2 (en) * 2013-04-26 2017-03-22 Dowaエレクトロニクス株式会社 Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
JP6099160B2 (en) * 2015-09-18 2017-03-22 国立大学法人山形大学 Complex compounds and suspensions
SG11202002760YA (en) * 2017-11-08 2020-05-28 Hitachi Chemical Co Ltd Method for producing joined body, and joining material
CN109273137B (en) * 2018-09-30 2021-11-19 东莞市银屏电子科技有限公司 Low-temperature conductive silver paste for solar HIT (heterojunction with intrinsic thin layer) battery and preparation method thereof
CL2021000106A1 (en) * 2021-01-13 2021-07-19 Nano Biotechnology Chile S P A Copper nanoparticles and preparation method, nanopolymers that comprise them, disinfectant composition and antimicrobial adhesive film / film for surface protection.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942816B2 (en) * 2000-10-25 2007-07-11 ハリマ化成株式会社 Brazing joining method between metals
JP4428085B2 (en) * 2004-02-26 2010-03-10 住友金属鉱山株式会社 Method for producing copper fine particles
JP4449676B2 (en) * 2004-03-25 2010-04-14 住友金属鉱山株式会社 Method for producing copper fine particles
JP4428138B2 (en) * 2004-05-21 2010-03-10 住友金属鉱山株式会社 Copper fine particles, production method thereof, and copper fine particle dispersion
JP2006097116A (en) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd High concentration metal particulate-dispersed liquid and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering

Similar Documents

Publication Publication Date Title
JP2007321215A5 (en)
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
KR100905214B1 (en) Method for forming metal thin film, and metal thin film
JP5002478B2 (en) Metal nanoparticle paste and pattern forming method
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP4995492B2 (en) Method for producing copper nanoparticles, copper nanoparticles, copper nanoparticle dispersion, and electronic device
US20080011125A1 (en) Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
JP2009097074A (en) Metal nanoparticle paste, and pattern forming method
JP2008176951A (en) Silver-based particulate ink paste
JP2007321216A5 (en)
JP5084145B2 (en) Method for storing and transporting nanoparticle dispersion
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
TWI813559B (en) Nickel powder and nickel paste
TW201719678A (en) Nickel powder and nickel paste
JP2007200660A (en) Method of manufacturing metal film
KR20160120716A (en) Method for producing metal nanoparticles
JP2014029845A (en) Method for producing conductive paste
JP4624743B2 (en) Method for producing silver thin film and method for producing copper-silver alloy thin film
JP5461796B2 (en) Method for producing metal nanoparticle dispersion excellent in film formability and metal coating
JP4995491B2 (en) Method for producing copper coating
JP2009024193A (en) Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film
JP2007197754A (en) Nanoparticle-dispersed body, and ink composition and wiring using the dispersed body
JP2014029017A (en) Method for producing metal fine particle composition