JP2007197755A - Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device - Google Patents

Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device Download PDF

Info

Publication number
JP2007197755A
JP2007197755A JP2006016568A JP2006016568A JP2007197755A JP 2007197755 A JP2007197755 A JP 2007197755A JP 2006016568 A JP2006016568 A JP 2006016568A JP 2006016568 A JP2006016568 A JP 2006016568A JP 2007197755 A JP2007197755 A JP 2007197755A
Authority
JP
Japan
Prior art keywords
metal
metal nanoparticles
less
electronic device
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016568A
Other languages
Japanese (ja)
Other versions
JP5063003B2 (en
Inventor
Takaaki Hashimoto
高明 橋本
Masahide Shima
昌秀 島
Hironobu Ono
博信 小野
Nobufumi Sugio
暢文 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006016568A priority Critical patent/JP5063003B2/en
Publication of JP2007197755A publication Critical patent/JP2007197755A/en
Application granted granted Critical
Publication of JP5063003B2 publication Critical patent/JP5063003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing metal nanoparticles suitable for forming an electrically conductive coating layer in an electronic device or the like, to provide metal nanoparticles, to provide an electrically conductive composition comprising the metal nanoparticles, and to provide an electronic device obtained by using the composition. <P>SOLUTION: When an organic acid metal salt and an amine compound are reacted, so as to produce metal nanoparticles, the formation and growth of metal nuclei are performed at <100°C, thus the metal nanoparticles in which the average particle diameter (D) is ≤10 nm, and also, σ/D (σ: standard deviation value, and D: the average particle diameter) is ≤0.2 can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属ナノ粒子の製造方法、金属ナノ粒子、導電性組成物および電子デバイスに関し、詳しくは金属ナノ粒子の製造方法、この方法によって得られる金属ナノ粒子、ならびにこの金属ナノ粒子を含有する導電性組成物およびこの導電性組成物を用いて形成した被膜層を有する電子デバイスに関する。   The present invention relates to a method for producing metal nanoparticles, metal nanoparticles, a conductive composition, and an electronic device, and more specifically, a method for producing metal nanoparticles, metal nanoparticles obtained by the method, and a conductive material containing the metal nanoparticles. The present invention relates to a conductive composition and an electronic device having a coating layer formed using the conductive composition.

有機酸金属塩とアミン化合物とを反応させて金属微粒子を製造し、この金属微粒子を用いて導電性被覆層を形成することはよく知られているところであり、既に多くの方法が提案されている。例えば、特許文献1には、このような導電性被覆層を形成するに好適なものとされる金属元素含有有機化合物ペースト、およびこのペーストを用いて得られる電子デバイスが提案されている。   It is well known to produce metal fine particles by reacting an organic acid metal salt and an amine compound, and to form a conductive coating layer using the metal fine particles, and many methods have already been proposed. . For example, Patent Document 1 proposes a metal element-containing organic compound paste that is suitable for forming such a conductive coating layer, and an electronic device obtained using this paste.

特開2002−329419号公報JP 2002-329419 A

特許文献1に記載の方法によって得られる金属微粒子は、粒子径が0.1μm(100nm)以下とされているが、その粒度分布についての記載はない。しかし、例えば、導電パターン描画用インク組成物として、導電性被覆層を形成する場合、平均粒子径が10nmを超え、しかも粒子径が均一でなく、粒度分布が広い金属微粒子を用いると、金属微粒子の分散体であるインクの保管時に凝集が生じやすくなり、その結果、インクジェット装置を用いて回路パターンを描画する際につまりなどの問題が生じる可能性がある。さらに、導電性の金属膜を焼成処理などにより形成する場合、粒子間の空隙が大きくなるため、均一な膜の形成が難しくなることや基板との密着性が低くなるなどの問題が生じる。   The metal fine particles obtained by the method described in Patent Document 1 have a particle size of 0.1 μm (100 nm) or less, but there is no description of the particle size distribution. However, for example, when forming a conductive coating layer as an ink composition for drawing a conductive pattern, if metal fine particles having an average particle diameter of more than 10 nm, a non-uniform particle diameter, and a wide particle size distribution are used, the metal fine particles Aggregation is likely to occur during storage of the ink, which is a dispersion of the ink, and as a result, problems such as clogging may occur when drawing a circuit pattern using an ink jet apparatus. Furthermore, when a conductive metal film is formed by firing or the like, voids between particles are increased, which causes problems such as difficulty in forming a uniform film and low adhesion to the substrate.

このように、従来の方法によって得られる金属微粒子は粒子径や粒子の均一性(粒度分布)などの点でなお不十分であり、更なる改善が望まれている。   As described above, the metal fine particles obtained by the conventional method are still insufficient in terms of the particle diameter and particle uniformity (particle size distribution), and further improvement is desired.

本発明の目的は、電子デバイスなどの導電性被覆層の形成に好適な粒子径や粒度分布などの特性を有する金属ナノ粒子およびそのような金属ナノ粒子の製造に好適な金属ナノ粒子の製造方法を提供することにある。また、本発明の目的は、上記金属ナノ粒子を含有する導電性組成物およびこの導電性組成物を用いて得られる被覆層を有する電子デバイスを提供することにある。   An object of the present invention is to provide metal nanoparticles having characteristics such as particle size and particle size distribution suitable for forming a conductive coating layer such as an electronic device, and a method for producing metal nanoparticles suitable for producing such metal nanoparticles. Is to provide. Moreover, the objective of this invention is providing the electronic device which has a conductive layer containing the said metal nanoparticle, and a coating layer obtained using this conductive composition.

本発明者らの研究によれば、前記課題は下記発明により達成できることがわかった。
(1)有機酸金属塩とアミン化合物とを反応させて金属ナノ粒子を製造する方法であって、金属核の形成およびその成長を100℃未満の温度で行うことを特徴とする金属ナノ粒子の製造方法。
(2)有機金属塩とアミン化合物とを含む溶液に還元剤を添加するときの液温変化ΔTが20℃未満である上記(1)の金属ナノ粒子の製造方法。
(3)上記(1)または(2)の金属ナノ粒子の製造方法により調製した金属ナノ粒子。
(4)平均粒子径(D)が10nm以下であり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下である上記(3)の金属ナノ粒子。
(5)金属が白金、パラジウム、ルテニウム、銀、鉄、コバルト、ニッケル、銅、モリブデン、インジウム、イリジウム、チタンおよびアルミニウムから選ばれる少なくとも1種である上記(3)または(4)の金属ナノ粒子。
(6)上記(3)ないし(5)のいずれかの金属ナノ粒子を1ないし80質量%含んでなる導電性組成物。
(7)上記(6)の導電性組成物を用いて形成された被覆層を有する電子デバイス。
According to the studies by the present inventors, it has been found that the above problems can be achieved by the following invention.
(1) A method for producing metal nanoparticles by reacting an organic acid metal salt with an amine compound, characterized in that metal nuclei are formed and grown at a temperature of less than 100 ° C. Production method.
(2) The method for producing metal nanoparticles according to the above (1), wherein the liquid temperature change ΔT when the reducing agent is added to the solution containing the organic metal salt and the amine compound is less than 20 ° C.
(3) Metal nanoparticles prepared by the method for producing metal nanoparticles according to (1) or (2) above.
(4) The metal nanoparticles according to (3), wherein the average particle diameter (D) is 10 nm or less and σ / D (σ: standard deviation value, D: average particle diameter) is 0.2 or less.
(5) The metal nanoparticles according to (3) or (4), wherein the metal is at least one selected from platinum, palladium, ruthenium, silver, iron, cobalt, nickel, copper, molybdenum, indium, iridium, titanium, and aluminum. .
(6) A conductive composition comprising 1 to 80% by mass of the metal nanoparticles according to any one of (3) to (5) above.
(7) An electronic device having a coating layer formed using the conductive composition of (6) above.

本発明の方法によれば、ナノサイズの金属微粒子、具体的には、例えば、平均粒子径が10nm以下であり、かつσ/Dが0.2の微細で、均一性に優れた金属ナノ粒子を容易に製造することができる。   According to the method of the present invention, nano-sized metal fine particles, specifically, for example, metal nanoparticles having an average particle diameter of 10 nm or less and a fine σ / D of 0.2 with excellent uniformity. Can be easily manufactured.

本発明の方法によって得られる金属ナノ粒子を含む導電性組成物を、例えば、回路パターン描画用インクとして使用すると均一な被膜が形成されるため、導電性に優れた金属被膜を得ることができる。   When the conductive composition containing the metal nanoparticles obtained by the method of the present invention is used as, for example, a circuit pattern drawing ink, a uniform film is formed, so that a metal film having excellent conductivity can be obtained.

本発明によれば、有機酸金属塩とアミン化合物とを反応させて金属ナノ粒子を製造する際に、金属核の形成およびその成長を100℃未満の温度で行う。有機酸金属塩とアミン化合物とを反応させて金属微粒子を製造すること自体は公知であり、本発明においても、上記有機酸金属塩およびアミン化合物としては、この種の反応に一般に知られている有機酸金属塩およびアミン化合物を用いることができる(例えば、特許文献1参照)。   According to the present invention, when a metal nanoparticle is produced by reacting an organic acid metal salt and an amine compound, the formation and growth of the metal nucleus is performed at a temperature of less than 100 ° C. It is known per se to produce metal fine particles by reacting an organic acid metal salt with an amine compound. In the present invention, the organic acid metal salt and amine compound are generally known for this kind of reaction. An organic acid metal salt and an amine compound can be used (for example, refer patent document 1).

上記有機酸金属塩の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、シュウ酸、酒石酸、フタル酸、メタクリル酸、クエン酸、アクリル酸、安息香酸などのカルボン酸やスルホン酸などと、白金、パラジウム、ルテニウム、銀、鉄、コバルト、ニッケル、銅、モリブデン、インジウム、イリジウム、チタンまたはアルミニウムとの金属塩を挙げることができる。なかでも、銅のカルボン酸、具体的には、ギ酸銅、酢酸銅、シュウ酸銅、オレイン酸銅、ステアリン酸銅およびテトラデカン酸銅が好適に用いられる。なお、有機酸金属塩として、銅のカルボン酸塩と他の有機酸金属塩、例えば、銀のカルボン酸塩などとを組み合わせ使用することもできる。   Specific examples of the organic acid metal salt include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, oleic acid, Linoleic acid, linolenic acid, stearic acid, oxalic acid, tartaric acid, phthalic acid, methacrylic acid, citric acid, acrylic acid, benzoic acid and other carboxylic acids and sulfonic acids, and platinum, palladium, ruthenium, silver, iron, cobalt, Mention may be made of metal salts with nickel, copper, molybdenum, indium, iridium, titanium or aluminum. Among these, copper carboxylic acids, specifically copper formate, copper acetate, copper oxalate, copper oleate, copper stearate and copper tetradecanoate are preferably used. As the organic acid metal salt, a copper carboxylate and another organic acid metal salt such as a silver carboxylate can be used in combination.

上記アミン化合物の具体例としては、モノエタノールアミン、エチレンジアミン、プロピルアミン、ブチルアミン、トリメチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、トリオクチルアミン、ブチルエタノールアミンなどを挙げることができる。なかでも、炭素数8〜16のモノアミンである、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ドデシルジメチルアミンおよびトリオクチルアミンが好適に用いられる。これらは1種でも、あるいは2種以上混合して使用してもよい。   Specific examples of the amine compound include monoethanolamine, ethylenediamine, propylamine, butylamine, trimethylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetra Examples include decylamine, pentadecylamine, hexadecylamine, trioctylamine, and butylethanolamine. Among them, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, dodecyldimethylamine and trioctylamine which are monoamines having 8 to 16 carbon atoms Are preferably used. These may be used alone or in combination of two or more.

有機酸金属塩とアミン化合物との割合については、特に限定されるものではないが、通常、アミン化合物を有機酸金属塩1モルに対し0.5モル以上30モル未満、好ましくは3モル以上15モル未満の割合で使用する。0.5モルより少ないと、有機酸金属塩とアミン化合物との均一な混合物が調製できないため還元時に凝集が生じやすくなり、一方、30モル以上添加しても微粒子化には作用せず余分なコストが必要となる。   The ratio between the organic acid metal salt and the amine compound is not particularly limited, but usually the amine compound is 0.5 mol or more and less than 30 mol, preferably 3 mol or more and 15 mol per mol of the organic acid metal salt. Use in less than a mole ratio. If the amount is less than 0.5 mol, a uniform mixture of the organic acid metal salt and the amine compound cannot be prepared, so that aggregation is likely to occur during the reduction. Cost is required.

本発明の方法の特徴は、上記の有機酸金属塩とアミン化合物との反応を金属核の形成およびその成長を100℃未満の温度で行う点にある。前記特許文献1においては、40〜80℃で4〜96時間行う前段反応と、前段反応より20〜50℃高い温度で10分〜8時間行う後段反応とからなる二段階反応を経て金属微粒子を製造するに対して、本発明においては、100℃未満、好ましくは0〜80℃、より好ましくは10〜55℃の温度範囲で、液温変化ΔT(温度変化範囲)が20℃以下、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは実質的に一定の温度に維持しながら、必要時間、具体的には、例えば、0.1〜5時間、好ましくは0.2〜3時間反応を行うことにより、金属核の形成とその成長を終了させる。このようにすることにより、平均粒子径が10nm以下であり、かつσ/Dが0.2以下である金属ナノ粒子を効率よく製造することができる。なお、本発明の「金属核の形成およびその成長」とは、金属ナノ粒子の核が形成され、それが成長して目的とする金属ナノ粒子が得られるまでの過程を意味する。   A feature of the method of the present invention is that the reaction between the organic acid metal salt and the amine compound is performed to form a metal nucleus and grow it at a temperature of less than 100 ° C. In Patent Document 1, metal fine particles are obtained through a two-stage reaction consisting of a pre-stage reaction performed at 40 to 80 ° C. for 4 to 96 hours and a post-stage reaction performed at a temperature 20 to 50 ° C. higher than the pre-stage reaction for 10 minutes to 8 hours. In contrast to production, in the present invention, the temperature change ΔT (temperature change range) is 20 ° C. or less, preferably within a temperature range of less than 100 ° C., preferably 0 to 80 ° C., more preferably 10 to 55 ° C., preferably The required time, specifically, for example, 0.1 to 5 hours, preferably 0.2 to 3 hours, while maintaining a substantially constant temperature at 10 ° C. or less, more preferably 5 ° C. or less. By carrying out the reaction, the formation and growth of metal nuclei is terminated. By doing in this way, the metal nanoparticle whose average particle diameter is 10 nm or less and (sigma) / D is 0.2 or less can be manufactured efficiently. The “formation and growth of metal nuclei” in the present invention means a process from formation of nuclei of metal nanoparticles to growth of desired metal nanoparticles.

本発明の方法においては、上記の有機酸金属塩とアミン化合物との混合物と還元剤との反応の際に、液温変化ΔTを20℃以下、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは実質的に一定の温度に調整しながら、還元剤を添加して、金属核およびその成長を完了させるのがよい。上記還元剤としては、ジメチルアミンボラン、tert−ブチルアミンボラン、水素化ホウ素ナトリウム、シュウ酸、アスコルビン酸、ホルムアルデヒドおよびアセトアルデヒドを挙げることができる。これらは2種以上混合して使用することもできる。なかでも、ジメチルアミンボランおよび水素化ホウ素ナトリウムが好適に用いられる。   In the method of the present invention, the liquid temperature change ΔT is 20 ° C. or less, preferably 10 ° C. or less, more preferably 5 ° C. or less, in the reaction of the mixture of the organic acid metal salt and amine compound with the reducing agent. Particularly preferably, while adjusting to a substantially constant temperature, the reducing agent may be added to complete the metal nucleus and its growth. Examples of the reducing agent include dimethylamine borane, tert-butylamine borane, sodium borohydride, oxalic acid, ascorbic acid, formaldehyde, and acetaldehyde. These may be used in combination of two or more. Of these, dimethylamine borane and sodium borohydride are preferably used.

本発明の方法によれば、平均粒子径(D)が10nm以下、好ましくは2〜8nm、より好ましくは3〜7nmであり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下、好ましくは0.01〜0.19、より好ましくは0.02〜0.18である金属ナノ粒子が得られる。本発明においては、電界放射型走査電子顕微鏡(FE−SEM)を使用して金属ナノ粒子の粒子径を測定し、その平均値および標準偏差値を算出した。なお、本発明の「金属ナノ粒子」とは、金属ナノ粒子のほかに、金属酸化物ナノ粒子、あるいは金属ナノ粒子と金属酸化物ナノ粒子との混合物を包含するものである。例えば、銅ナノ粒子の場合、銅はCuO、CuOなどの酸化物の形態で存在する。 According to the method of the present invention, the average particle size (D) is 10 nm or less, preferably 2 to 8 nm, more preferably 3 to 7 nm, and σ / D (σ: standard deviation value, D: average particle size). Is 0.2 or less, preferably 0.01 to 0.19, more preferably 0.02 to 0.18. In the present invention, the particle diameter of the metal nanoparticles was measured using a field emission scanning electron microscope (FE-SEM), and the average value and the standard deviation value were calculated. The “metal nanoparticles” of the present invention include metal oxide nanoparticles or a mixture of metal nanoparticles and metal oxide nanoparticles in addition to metal nanoparticles. For example, in the case of copper nanoparticles, copper exists in the form of oxides such as Cu 2 O and CuO.

上記還元剤は、有機酸金属塩1モルに対し、0.1モル以上10モル未満、好ましくは0.3モル以上5モル未満の割合で用いるのが一般的である。10モル以上では、還元力が強すぎるため粒子が凝集し金属ナノ粒子が得られなくなり、一方、0.1モルより少ないと十分に還元できないため金属ナノ粒子が生成しない。   The reducing agent is generally used in a proportion of 0.1 mol or more and less than 10 mol, preferably 0.3 mol or more and less than 5 mol, with respect to 1 mol of the organic acid metal salt. If the amount is 10 mol or more, the reducing power is too strong and the particles aggregate and metal nanoparticles cannot be obtained. On the other hand, if the amount is less than 0.1 mol, the metal nanoparticles cannot be produced because the reduction cannot be sufficiently achieved.

上記還元剤の添加方法には特に制限はなく、還元剤を水に溶解して水溶液として添加するのが一般的である。具体的には、有機酸金属塩とアミン化合物との混合物に、反応液を100℃未満とし、さらに液温変化ΔTを20℃以下に調整しながら、還元剤を所定時間内に徐々に添加すればよい。   There is no restriction | limiting in particular in the addition method of the said reducing agent, It is common to dissolve a reducing agent in water and to add as aqueous solution. Specifically, the reducing agent is gradually added to the mixture of the organic acid metal salt and the amine compound within a predetermined time while adjusting the reaction temperature to less than 100 ° C. and adjusting the liquid temperature change ΔT to 20 ° C. or less. That's fine.

上記の有機酸金属塩とアミン化合物と還元剤との反応によって得られる金属ナノ粒子は、未反応のアミン化合物や還元剤から生成する生成物などとともに反応液中に含まれているため、アセトン、エタノール、メタノール、水など加えて静置した後、メンブレンフィルターなどを用いてろ過することにより、金属ナノ粒子をアミン化合物とともに沈殿物として回収することができる。   Since the metal nanoparticles obtained by the reaction of the organic acid metal salt, the amine compound and the reducing agent are contained in the reaction solution together with the unreacted amine compound and the product generated from the reducing agent, acetone, After leaving still by adding ethanol, methanol, water, etc., the metal nanoparticles can be recovered as a precipitate together with the amine compound by filtering using a membrane filter or the like.

次に、上記金属ナノ粒子の沈殿物を再度溶媒に分散させる。この溶媒としては、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、ウンデカン、ドデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロピルアルコール、ブチルアルコールなどを用いることができる。溶媒量は、沈殿物に対して質量で1倍以上100倍未満、好ましくは3倍以上50倍未満である。100倍以上使用しても溶解性に変化はなく、1倍未満では金属ナノ粒子の分散体を調製することができない。   Next, the precipitate of the metal nanoparticles is dispersed again in the solvent. As this solvent, normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, Decane, undecane, dodecane, tetradecane, hexadecane, methanol, ethanol, propyl alcohol, butyl alcohol, and the like can be used. The amount of the solvent is 1 to 100 times, preferably 3 to 50 times by mass with respect to the precipitate. Even if it is used 100 times or more, the solubility does not change, and if it is less than 1 time, a dispersion of metal nanoparticles cannot be prepared.

上記溶媒に沈殿物を分散させたものを金属ナノ粒子分散液として使用してもよいが、分散液に含まれる不純物を取り除くとの観点から、分散液を5℃以下にまで冷却した後、再度メンブレンフィルターなどでろ過を行い、そのろ過液を金属ナノ粒子分散液として使用することが好ましい。また、更に好ましくは、上記ろ過液中の溶媒を減圧除去させた後、再度上記溶媒に分散させることにより、不純物が少なく、かつ金属ナノ粒子を高濃度に含有した金属ナノ粒子分散液を調製することができる。   A metal nanoparticle dispersion liquid in which a precipitate is dispersed in the above solvent may be used. However, from the viewpoint of removing impurities contained in the dispersion liquid, the dispersion liquid is cooled to 5 ° C. or lower, and then again. It is preferable to perform filtration with a membrane filter or the like and use the filtrate as a metal nanoparticle dispersion. More preferably, after removing the solvent in the filtrate under reduced pressure, the dispersion is again dispersed in the solvent to prepare a metal nanoparticle dispersion containing a small amount of impurities and containing a high concentration of metal nanoparticles. be able to.

本発明の導電性組成物とは、平均粒子径が10nm以下であり、かつσ/Dが0.2以下である金属ナノ粒子を1〜80質量%、好ましくは30〜60質量%含有するものであり、通常、前記金属ナノ粒子の有機溶剤分散液について、その金属ナノ粒子の含有量を1〜80質量%とすることにより容易に得られる。この導電性組成物は、電子デバイスにおける導電性パターンを作成するための、導電パターン描画用インク組成物として好適に用いられる。   The conductive composition of the present invention contains 1 to 80% by mass, preferably 30 to 60% by mass of metal nanoparticles having an average particle size of 10 nm or less and σ / D of 0.2 or less. Usually, the organic nanoparticle dispersion liquid of the metal nanoparticles is easily obtained by setting the content of the metal nanoparticles to 1 to 80% by mass. This conductive composition is suitably used as a conductive pattern drawing ink composition for creating a conductive pattern in an electronic device.

本発明の導電性組成物を所定の基板に塗布した後、熱処理することにより金属ナノ粒子からなる被覆層が形成される。導電性組成物を基板に塗布する方法については特に制限はなく、この種の分散体の塗布に一般に用いられている方法にしたがって行うことができる。具体的には、例えば、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法などを採用することができる。上記基板としては、電極、配線、回路などを構成するのに一般に用いられている、焼成によって焼失、劣化しない耐熱性のものであればいずれでもよい。具体的には、例えば、鉄、銅、アルミニウムなどの金属基板、ポリイミドフィルムなどの耐熱性樹脂基板、ガラス基板などを挙げることができる。また、上記熱処理は、真空中、不活性ガス中、酸化性ガス、還元性ガス中のいずれかの雰囲気において実施することが好ましく、また、その際の熱処理温度は50℃以上500℃未満であることが好ましい。この被覆層は当該金属成分から構成されるものであり、金属それ自体に相当する導電性を示す。なかでも、銅は、比抵抗値が低いこと、また耐エレクトロマイグレーション性の観点から好適に用いられる。   A coating layer made of metal nanoparticles is formed by applying the conductive composition of the present invention to a predetermined substrate, followed by heat treatment. There is no restriction | limiting in particular about the method of apply | coating a conductive composition to a board | substrate, It can carry out according to the method generally used for application | coating of this kind of dispersion. Specifically, for example, a screen printing method, a dip coating method, a spray method, a spin coating method, or the like can be employed. As the substrate, any substrate may be used as long as it has a heat resistance generally used for constituting electrodes, wirings, circuits, etc. and does not burn and deteriorate due to firing. Specific examples include metal substrates such as iron, copper, and aluminum, heat resistant resin substrates such as polyimide films, and glass substrates. Further, the heat treatment is preferably performed in an atmosphere of any of vacuum, inert gas, oxidizing gas, and reducing gas, and the heat treatment temperature at that time is 50 ° C. or higher and lower than 500 ° C. It is preferable. This coating layer is composed of the metal component and exhibits conductivity corresponding to the metal itself. Among these, copper is preferably used from the viewpoint of low specific resistance and electromigration resistance.

また、本発明の電子デバイスとは、上記導電性組成物を所望の形状に形成した被覆層、具体的には、例えば、金属配線および端子電極を有するものであり、その具体例としては、積層チップキャパシタ、積層チップインダクタ、チップ抵抗器、ビルドアップ基板、フレキシブルプリント基板、ガラス基板、セラミック基板などを挙げることができる。   Further, the electronic device of the present invention has a coating layer formed by forming the conductive composition into a desired shape, specifically, for example, a metal wiring and a terminal electrode. A chip capacitor, a multilayer chip inductor, a chip resistor, a build-up substrate, a flexible printed substrate, a glass substrate, a ceramic substrate, and the like can be given.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
(実施例1)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社)101.6gとを仕込み、40℃で10分間攪拌混合した。次に、前記ガラスビーカーを30℃の恒温水槽に入れ、これに、溶解させたジメチルアミンボラン溶液を液温が40℃付近となるようにし、0.5時間かけて徐々に添加して、還元処理を行い、金属核の形成およびその成長を終了させた。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
Example 1
A 1 L glass beaker was charged with 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 101.6 g of octylamine (Wako Pure Chemical Industries, Ltd.), and stirred and mixed at 40 ° C. for 10 minutes. Next, the glass beaker is placed in a constant temperature water bath at 30 ° C., and the dissolved dimethylamine borane solution is adjusted so that the liquid temperature becomes around 40 ° C. Processing was performed to finish the formation of metal nuclei and their growth.

上記還元処理後の溶液にアセトン200gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を0.1μmの孔径を有するメンブレンフィルターで分離回収した。回収物にトルエンを添加し再溶解した後、10℃まで冷却した後、再度メンブレンフィルターでろ過した。続いて、トルエンを減圧除去した後、テトラデカン溶媒を添加し、銅ナノ粒子を40質量%含有する分散液が得られた。   200 g of acetone was added to the solution after the reduction treatment and left for a while, and then a precipitate made of copper and an organic substance was separated and collected by filtration with a membrane filter having a pore size of 0.1 μm. Toluene was added to the recovered material and redissolved, and then cooled to 10 ° C., and then filtered again with a membrane filter. Subsequently, after toluene was removed under reduced pressure, a tetradecane solvent was added to obtain a dispersion containing 40% by mass of copper nanoparticles.

上記分散液をFE−SEMにより観察したところ、銅ナノ粒子の平均粒子径は5nmであり、σ/Dの値は0.14であった。
(比較例1)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社)101.6gとを仕込み、40℃で10分間攪拌混合した。次に、この混合溶液を120℃まで昇温した後、溶解させたジメチルアミンボラン溶液を添加し還元処理を実施した。還元時の温度は120℃でほぼ安定していた。
When the dispersion was observed by FE-SEM, the average particle diameter of the copper nanoparticles was 5 nm, and the value of σ / D was 0.14.
(Comparative Example 1)
A 1 L glass beaker was charged with 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 101.6 g of octylamine (Wako Pure Chemical Industries, Ltd.), and stirred and mixed at 40 ° C. for 10 minutes. Next, after raising the temperature of this mixed solution to 120 ° C., a dissolved dimethylamine borane solution was added to perform a reduction treatment. The temperature during the reduction was almost stable at 120 ° C.

還元後の溶液を40℃まで冷却した後、実施例1と同様の方法で銅ナノ粒子を40質量%含有する分散液の調製を試みた。実施例1では、0.1μmの孔径を有するメンブレンフィルターのろ過は容易であったが、本調製ではろ過が非常に困難であり、1μmの孔径を有するメンブレンフィルターでろ過を実施したが、10倍の時間を要した。   After the reduced solution was cooled to 40 ° C., an attempt was made to prepare a dispersion containing 40% by mass of copper nanoparticles in the same manner as in Example 1. In Example 1, filtration of a membrane filter having a pore size of 0.1 μm was easy, but in this preparation, filtration was very difficult, and filtration was performed with a membrane filter having a pore size of 1 μm. It took time.

また、分散液をFE−SEMにより観察したところ、銅ナノ粒子の平均粒子径は20nmであり、σ/Dの値は0.40であることが確認された。

Moreover, when the dispersion liquid was observed by FE-SEM, it was confirmed that the average particle diameter of the copper nanoparticles was 20 nm and the value of σ / D was 0.40.

Claims (7)

有機酸金属塩とアミン化合物とを反応させて金属ナノ粒子を製造する方法であって、金属核の形成およびその成長を100℃未満の温度で行うことを特徴とする金属ナノ粒子の製造方法。 A method for producing metal nanoparticles by reacting an organic acid metal salt and an amine compound, wherein the metal nuclei are formed and grown at a temperature of less than 100 ° C. 有機金属塩とアミン化合物とを含む溶液に還元剤を添加するときの液温変化ΔTが20℃未満である請求項1記載の金属ナノ粒子の製造方法。 The method for producing metal nanoparticles according to claim 1, wherein a change in liquid temperature ΔT when adding a reducing agent to a solution containing an organometallic salt and an amine compound is less than 20 ° C. 請求項1または2に記載の金属ナノ粒子の製造方法により調製した金属ナノ粒子。 Metal nanoparticles prepared by the method for producing metal nanoparticles according to claim 1 or 2. 平均粒子径(D)が10nm以下であり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下である請求項3記載の金属ナノ粒子。 The metal nanoparticles according to claim 3, wherein the average particle diameter (D) is 10 nm or less, and σ / D (σ: standard deviation value, D: average particle diameter) is 0.2 or less. 金属が白金、パラジウム、ルテニウム、銀、鉄、コバルト、ニッケル、銅、モリブデン、インジウム、イリジウム、チタンおよびアルミニウムから選ばれる少なくとも1種である請求項3または4記載の金属ナノ粒子。 The metal nanoparticles according to claim 3 or 4, wherein the metal is at least one selected from platinum, palladium, ruthenium, silver, iron, cobalt, nickel, copper, molybdenum, indium, iridium, titanium, and aluminum. 請求項3ないし5のいずれかの金属ナノ粒子を1ないし80質量%含んでなる導電性組成物。 A conductive composition comprising 1 to 80% by mass of the metal nanoparticles according to any one of claims 3 to 5. 請求項6の導電性組成物を用いて形成された被覆層を有する電子デバイス。

The electronic device which has a coating layer formed using the electrically conductive composition of Claim 6.

JP2006016568A 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device Expired - Fee Related JP5063003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016568A JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016568A JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Publications (2)

Publication Number Publication Date
JP2007197755A true JP2007197755A (en) 2007-08-09
JP5063003B2 JP5063003B2 (en) 2012-10-31

Family

ID=38452640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016568A Expired - Fee Related JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Country Status (1)

Country Link
JP (1) JP5063003B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040633A (en) * 2007-08-08 2009-02-26 Sony Corp Method for producing nanoparticle
JP2009545657A (en) * 2006-08-03 2009-12-24 フライズ・メタルズ・インコーポレイテッド Particles and inks and films using them
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP2010244724A (en) * 2009-04-01 2010-10-28 Mitsubishi Materials Corp Method of manufacturing particulate dispersion bodies, and particle dispersion manufactured using the method
WO2013145953A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Liquid composition, metal film, conductive wiring line, and method for producing metal film
WO2013145954A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
KR101671049B1 (en) * 2010-03-17 2016-10-31 신닛테츠 수미킨 가가쿠 가부시키가이샤 Nickel-cobalt nanoparticle and manufacturing method therefor
WO2022059681A1 (en) * 2020-09-15 2022-03-24 Jx金属株式会社 Copper powder, and method for manufacturing copper powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098400A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Field effect transistor, and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP2004285454A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Homogeneous fine particle of inorganic metal, and manufacturing method
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP2004285454A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Homogeneous fine particle of inorganic metal, and manufacturing method
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545657A (en) * 2006-08-03 2009-12-24 フライズ・メタルズ・インコーポレイテッド Particles and inks and films using them
JP2009040633A (en) * 2007-08-08 2009-02-26 Sony Corp Method for producing nanoparticle
JP2013227681A (en) * 2007-12-26 2013-11-07 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP2010244724A (en) * 2009-04-01 2010-10-28 Mitsubishi Materials Corp Method of manufacturing particulate dispersion bodies, and particle dispersion manufactured using the method
KR101671049B1 (en) * 2010-03-17 2016-10-31 신닛테츠 수미킨 가가쿠 가부시키가이샤 Nickel-cobalt nanoparticle and manufacturing method therefor
WO2013145954A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
WO2013145953A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Liquid composition, metal film, conductive wiring line, and method for producing metal film
CN104169462A (en) * 2012-03-28 2014-11-26 富士胶片株式会社 Liquid composition, metal film, conductive wiring line, and method for producing metal film
WO2022059681A1 (en) * 2020-09-15 2022-03-24 Jx金属株式会社 Copper powder, and method for manufacturing copper powder
JPWO2022059681A1 (en) * 2020-09-15 2022-03-24
JP7161630B2 (en) 2020-09-15 2022-10-26 Jx金属株式会社 Copper powder and method for producing copper powder
EP4215300A4 (en) * 2020-09-15 2024-02-28 Jx Nippon Mining & Metals Corp Copper powder, and method for manufacturing copper powder

Also Published As

Publication number Publication date
JP5063003B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
TWI422709B (en) Silver-containing nanoparticles with replacement stabilizer
JP5623861B2 (en) Metal nanoparticle dispersion composition
US20090029148A1 (en) Metal Nanoparticle, Metal Nanoparticle Colloid, Method for Storing Metal Nanoparticle Colloid, and Metal Coating Film
JP2007321215A5 (en)
EP2671655B1 (en) Method for manufacturing coated metal fine particles
JP5002478B2 (en) Metal nanoparticle paste and pattern forming method
JP4995492B2 (en) Method for producing copper nanoparticles, copper nanoparticles, copper nanoparticle dispersion, and electronic device
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP2006169613A (en) Method for depositing metallic thin film, and metallic thin film
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP2009097074A (en) Metal nanoparticle paste, and pattern forming method
JP2007321216A5 (en)
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
KR20140125366A (en) Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
JP2019090110A (en) Structure having conductive pattern region and method for manufacturing the same
WO2019022230A1 (en) Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2005281781A (en) Method for producing copper nanoparticle
JP2009024191A (en) Dispersion of metallic nanoparticle and metallic coating film
TWI754708B (en) Conductive paste for gravure transfer, method for forming conductive pattern, and method for producing conductive substrate
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
JP2009024193A (en) Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film
JP2006322051A (en) Metal powder, and method for producing the same
JP2006322052A (en) Method for producing metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees