JP4908668B2 - 焦点検出装置 - Google Patents

焦点検出装置 Download PDF

Info

Publication number
JP4908668B2
JP4908668B2 JP2000117510A JP2000117510A JP4908668B2 JP 4908668 B2 JP4908668 B2 JP 4908668B2 JP 2000117510 A JP2000117510 A JP 2000117510A JP 2000117510 A JP2000117510 A JP 2000117510A JP 4908668 B2 JP4908668 B2 JP 4908668B2
Authority
JP
Japan
Prior art keywords
focus detection
image
signal
photoelectric conversion
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000117510A
Other languages
English (en)
Other versions
JP2001305415A (ja
Inventor
康夫 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000117510A priority Critical patent/JP4908668B2/ja
Priority to US09/834,790 priority patent/US6597868B2/en
Publication of JP2001305415A publication Critical patent/JP2001305415A/ja
Application granted granted Critical
Publication of JP4908668B2 publication Critical patent/JP4908668B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Focusing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタルカメラ等に用いられる焦点検出装置の改良に関するものである。
【0002】
【従来の技術】
デジタルカラーカメラでは、レリーズボタンの押下に応動して、CCDやCMOSセンサなどの固体撮像素子に被写界の像を所望の時間露光し、これより得られた一つの画面の静止画像を表わす画像信号をデジタル信号に変換して、YC処理などの所定の処理を施し、所定の形式の画像信号を得る。撮像された画像を表わすデジタルの画像信号は、それぞれの画像毎に、半導体メモリに記録される。記録された画像信号は、随時読み出されて表示または印刷可能な信号に再生され、モニターなどに出力されて表示される。
【0003】
従来より、このようなデジタルカラーカメラでは、物体像を取り込むための撮像素子を兼用して撮影レンズの焦点検出を行っている。多くの場合、ここにはコントラスト検出方式の焦点検出装置が用いられる。コントラスト検出方式の焦点検出とは、撮像光学系によって形成された物体像の先鋭度を、固体撮像素子の出力を所定の関数で評価することによって求め、この関数値が極大値をとるように撮像レンズの光軸上の位置を調節するものである。評価関数としては、隣接する輝度信号の差の絶対値を焦点検出領域内について加算するものや、隣接する輝度信号の差の2乗を焦点検出領域内について加算するもの、あるいは、R,G,Bの各画像信号について隣接する信号の差を同様に処理するもの等がある。
【0004】
また、米国特許第4410804号に開示されているような、位相差検出方式の焦点検出装置も知られている。位相差検出方式では、一対あるいは二対の受光部を二次元的に配列したマイクロレンズアレイ毎に設け、このマイクロレンズによって受光部を撮像光学系の瞳に投影する構造を持つ。撮像光学系の瞳の異なる部分を通過した2光束を用いて物体像をそれぞれ形成し、二つの物体像間の位置的位相差を撮像素子の出力に基づいて検出して、これを撮像光学系のデフォーカス量に換算するものである。
【0005】
位相差検出方式の焦点検出では、デフォーカスの方向だけでなく、デフォーカス量そのものを求めることができるので、コントラスト検出方式に比して合焦するまでの時間を大幅に短縮することができるという利点がある。
【0006】
さらには、特開昭59−146010号公報に開示されるように、コントラスト検出方式と位相差検出方式の両方を備えた焦点検出装置も知られている。
【0007】
なお、位相差検出方式やコントラスト検出方式は、何れも物体の輝度分布を捉えて動作するため、パッシブ型焦点検出と呼ばれ、カメラ側から物体に向けて光を照射して焦点検出を行うアクティブ型焦点検出とは区別されている。
【0008】
【発明が解決しようとする課題】
パッシブ型焦点検出においては、その動作の可否は物体となる物体の輝度分布次第である。物体の輝度分布は、ランダムに分布する場合や、縦方向のみにある場合、逆に横方向のみにある場合など様々である。例えば、縦縞の模様の服を着た人を撮影するときに、焦点検出点をその服に合わせれば、縞に沿った縦方向の輝度変化はほとんどなく、縞に直交する横方向の輝度は大きく変化する。もちろん、輝度変化がなければパッシブ型焦点検出から有効な出力を得ることはできない。従って、パッシブ型の焦点検出装置において、感度を持つ輝度分布の方向が極めて重要な要素であることが分かる。
【0009】
先に挙げた米国特許第4410804号は、縦方向と横方向の輝度分布に感度を持つ位相差検出方式の焦点検出装置の開示例でもある。米国特許第4410804号では、一つのマイクロレンズに対して二対4つの光電変換部を設けることによって縦横両方の輝度分布に感度を持つ焦点検出を実現している。しかしながら、一つのマイクロレンズに対して4つの光電変換部を設けることは、極めて高度な固体撮像素子の微細化が必須であり、これをデジタルカメラの撮像素子として安価に供給することは困難である。
【0011】
(発明の目的)
本発明の目的は、異なる二方向の輝度分布に感度を持ち、かつ、物体像を撮像するための撮像素子を兼用することで比較的安価とすると共に、物体により適した焦点検出結果を出力することのできる焦点検出装置を提供しようとするものである。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の焦点検出装置は、二つの光電変換部の信号電荷の加算により、撮影レンズの射出瞳からの光束を受光して該光束に対応する信号を出力する第一の出力モードと、瞳分割された射出瞳の一部から第1および第2の光束を受光して該第1および第2の光束それぞれに対応する信号を出力する第二の出力モードとを切り換え可能な撮像素子と、前記撮像素子から前記第二の出力モードで出力される信号に基づいて前記第1および第2の光束にそれぞれ対応する信号の位相差を検出する第1の焦点検出処理と、前記撮像素子から前記第一の出力モードまたは第二の出力モードで出力される信号に基づいて像のコントラストを検出する第2の焦点検出処理とが可能な信号処理手段とを有し、前記信号処理手段は、前記第1の焦点検出処理をした後、所定の条件を満たさない場合に前記第一の出力モードにおいて画素レベルで加算された信号に基づいて、前記瞳分割の方向と異なる方向のコントラストを検出する前記第2の焦点検出処理を行うことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて詳細に説明する。
【0015】
まず、本発明に用いる撮像光学系について説明する。
【0016】
図1は、本発明の実施の形態に係る撮像光学系の構成図であって、固体撮像素子を用いるデジタルカラーカメラの光学系である。同図の左手が物体側、右手が像面側となっており、撮像光学系24を通過した光束によって固体撮像素子のエリアセンサ部6a上に物体像を形成する。
【0017】
図1において、201は撮像光学系24のうち、絞りSTよりも物体側にある前方レンズ群、202は撮像光学系24のうち、絞りSTよりも像面側にあるレンズ群と光学ローパスフィルタLPFをまとめて示した後方レンズ群である。
【0018】
絞りSTは軸L2を中心にして回転し、不図示のモータの駆動力によって選択的に4つのポジションをとる。また、絞りSTには204から208で示した5つの開口が設けられ、開口204,205,206は撮像のための開口、開口207と208は大デフォーカス検出用開口である。
【0019】
図2は、本発明の実施の形態に係る第一の焦点検出処理と第二の焦点検出処理を行う焦点検出装置を搭載したデジタルカラーカメラの概略構成を示す図である。このカメラは、CCDあるいはCMOSセンサなどの固体撮像素子を用いた単板式のデジタルカラーカメラであり、固体撮像素子を連続的または単発的に駆動して動画像または静止画像を表わす画像信号を得る。ここで、固体撮像素子とは、露光した光を各画素毎に電気信号に変換してその光量に応じた電荷をそれぞれ蓄積し、その電荷を読み出すタイプの撮像デバイスである。
【0020】
図2において、1はカメラ本体、2は内部に結像レンズ3を有した撮影レンズである。撮影レンズ2は、公知のマウントを介してカメラ本体1に電気的、機械的に接続されている。焦点距離の異なる撮影レンズに交換することによって、様々な画角の撮影画面を得ることが可能である。また、撮影レンズ2は不図示の駆動機構を有し、結像レンズ3の一部の要素であるフォーカシングレンズを光軸L1方向に移動させることによって、物体のピント合わせを行う。
【0021】
4は光学ローパスフィルタ、5はメカニカルシャッタ、6は固体撮像素子である。光学ローパスフィルタ4は固体撮像素子6上に必要以上に高い空間周波数の物体像が形成されないように結像レンズ3のカットオフ周波数を制限する。また、光学ローパスフィルタ4上には赤外線カットフィルタも形成されている。図1では、結像レンズ3とローパスフィルタ4を合わせて、撮像光学系24とした。
【0022】
固体撮像素子6で捉えられた物体像は液晶ディスプレー7上に表示される。固体撮像素子6は、増幅型固体撮像装置の一つであるCMOSプロセスコンパチブルのセンサ(以下、CMOSセンサと記す)である。CMOSセンサの特徴の一つに、エリアセンサ部のMOSトランジスタと周辺回路のMOSトランジスタを同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できるということが挙げられる。この特徴を利用すると、二つの光電変換部の電荷を同時、または、別々にフローティングディフュージョン領域(以下、FD部と記す)へ転送でき、FD部に接続した転送MOSトランジスタのタイミングだけで、二つの光電変換部の信号電荷の加算、非加算を簡単に行うことができる。
【0023】
固体撮像素子6は、この構造を利用して、撮影レンズの射出瞳全体からの光束を受光する第一の出力モードと、撮影レンズの射出瞳の一部からの光束を受光する第二の出力モードとを切り換え可能とし、撮像の他に、固体撮像素子6の出力を用いて第一の焦点検出処理および第二の焦点検出処理を行う。
【0024】
詳しくは、第一の出力モードは、撮像と第二の焦点検出処理とファインダ出力に、また、第二の出力モードは、第一および第二の焦点検出処理とファインダ出力に、それぞれ用いられる。画素レベルで信号の加算を行う第一の出力モードでは、信号を読み出した後で加算する方式に比べてノイズの少ない信号を得ることが可能である。
【0025】
8,9は液晶ディスプレー7を観察するための凹レンズと凸レンズであって、総合的に正のパワーを有する。10はファインダ光学系の保護を兼ねた眼球照明プリズムであって、ファインダ光路部分は平行平板で構成され、ファインダ光学系の窓部材となっている。これらはファインダ光学系を構成している。凸レンズ9をファインダ光軸L2に沿って移動させることにより視度を調節し、観察者に適切な液晶ディスプレー7の見え具合を得ることができる。12および13は眼球照明プリズム10からの射出光を特定の面方向に拡散する拡散板である。
【0026】
眼球照明プリズム10の側方には、図3に示す発光特性の赤色光を発する複数のLEDが取り付けられており、例えばLED11を発した光は眼球照明プリズム10の内部を透過し、さらに、拡散板12を透過してカメラの外部に射出する。これらは観察者の眼部を照明する眼球照明系である。
【0027】
LED11の発光中心波長は720nmであって、この波長における比視感度はかなり低い。しかし、発光強度の裾が短波長側に延びていることもあって十分に視認可能である。したがって、観察者が意識すれば、LED11の発光を通して視線検出装置の作動状態を知ることができる。
【0028】
凹レンズ8,凸レンズ9,眼球照明プリズム10のファインダ光路の有効部には、LED11の発光波長を含むように可視域から760nm程度の波長に対して増透コートが施されている。これは、眼部の照明がファインダ光学系で反射して再び眼に戻り、赤いゴーストとして見えてしまうのを防ぐことと、視線センサ18にゴーストが重畳するのを可能な限り防ぐためである。
【0029】
ファインダ光学系の光路中、液晶ディスプレー7と凹レンズ8の間には、ダイクロイックミラー14が配置され、ファインダから逆に入ってくる光を上方に分割している。
【0030】
図4は上記ダイクロイックミラー14の分光反射率特性であり、670nmを半値としたシャープカット特性を示す。したがって、図3に示したLED11の発光波長域の光は反射し、LED11で照らされた観察者の眼部からの反射光は、眼球照明プリズム10,凸レンズ9,凹レンズ8を逆に通った後、ダイクロイックミラー14で上方に反射する。
【0031】
また、液晶ディスプレー7に表示された画像の670nmよりも短波長の成分はダイクロイックミラー14を透過し、凹レンズ8,凸レンズ9,ファインダ光学系の窓部材である眼球照明プリズム10を経て射出する。このとき、厳密には670nmよりも長波長の成分がカットされているわけであるが、この波長域は比視感度が低いためにファインダ画像に不自然さを生じることはない。
【0032】
ダイクロイックミラー14の上方に位置する15はミラー、16はプリズム、17はレンズ、18は視線センサである。観察者の眼部からの反射光はミラー15で光路を直角に曲げた後、プリズム16,レンズ17を通って視線センサ18上に観察者の眼部の画像を形成する。眼部の画像を処理することによって、注視点の検出を行っている。19はメインスイッチ、20はレリーズボタンである。
【0033】
図5は、デジタルカラーカメラの電気的構成を示すブロック図である。
【0034】
まず、カメラの撮像,記録に関する部分から説明する。カメラは、撮像系,画像処理系,記録再生系,制御系を有する。撮像系は、結像レンズ3、メカニカルシャッタ5および固体撮像素子6を含み、画像処理系は、A/D変換器30,RGB画像処理回路31およびYC処理回路32を含む。また、記録再生系は、記録処理回路33および再生処理回路34を含み、制御系は、カメラシステム制御回路35,操作検出回路36および固体撮像素子駆動回路37を含む。38は外部のコンピュータ等に接続して、データの送受信をするための規格化された接続端子である。
【0035】
撮像系は、物体からの光を結像レンズ3を介して固体撮像素子6の撮像面に結像する光学処理系であり、撮影レンズ2の絞りSTと、必要に応じてさらにメカニカルシャッタ5を調節し、適切な光量の物体像を固体撮像素子6に露光する。固体撮像素子6は、長辺方向に3700画素、短辺方向にそれぞれ2800画素の合計約1000万の画素数を有する撮像デバイスが適用されて、画素の前面には赤色(R)、緑色(G)、青色(B)の3原色の光学フィルタがモザイク状に配置されている。
【0036】
固体撮像素子6から読み出された画像信号は、それぞれA/D変換器30を介して画像処理系に供給される。A/D変換器30は、露光した各画素の信号の振幅に応じた、たとえば10ビットのデジタル信号に変換して出力する信号変換回路であり、以降の画像信号処理はデジタル処理にて実行される。画像処理系は、R,G,Bのデジタル信号から所望の形式の画像信号を得る信号処理回路であり、R,G,Bの色信号を輝度信号Yおよび色差信号(R−Y),(B−Y)にて表わされるYC信号などに変換する。
【0037】
RGB画像処理回路31は、A/D変換器30を介して固体撮像素子6から受けた「3700×2800画素」の画像信号を処理する信号処理回路であり、ホワイトバランス回路,ガンマ補正回路,補間演算による高解像度化を行う補間演算回路を有する。
【0038】
YC処理回路32は、輝度信号Yおよび色差信号R−Y,B−Yを生成する信号処理回路である。高域輝度信号YHを生成する高域輝度信号発生回路,低域輝度信号YLを生成する低域輝度信号発生回路、および、色差信号R−Y,B−Yを生成する色差信号発生回路で構成されている。輝度信号Yは高域輝度信号YHと低域輝度信号YLを合成することによって形成される。
【0039】
記録再生系は、メモリへの画像信号の出力と、液晶ディスプレー7への画像信号の出力とを行う処理系であり、記録処理回路33はメモリへの画像信号の書き込み処理および読み出し処理を行ない、再生処理回路34はメモリから読み出した画像信号を再生して、液晶ディスプレー7に出力する。
【0040】
また、記録処理回路33は、静止画像および動画像を表わすYC信号を所定の圧縮形式にて圧縮し、また、圧縮データを読み出した際に伸張する圧縮伸張回路を内部に有する。圧縮伸張回路は、信号処理のためのフレームメモリなどを含み、このフレームメモリに画像処理系20からのYC信号をフレーム毎に蓄積して、それぞれ複数のブロック毎に読み出して圧縮符号化する。圧縮符号化は、たとえば、ブロック毎の画像信号を2次元直交変換,正規化およびハフマン符号化することにより行なわれる。
【0041】
再生処理回路34は、輝度信号Yおよび色差信号R−Y,B−Yをマトリックス変換して、例えばRGB信号に変換する回路である。再生処理回路34によって変換された信号は液晶ディスプレー7に出力され、可視画像が表示再生される。
【0042】
一方、制御系は、レリーズボタン20等の操作を検出する操作検出回路36と、その検出信号に応動して各部を制御し、撮像の際のタイミング信号などを生成して出力するカメラシステム制御回路35と、このカメラシステム制御回路35の制御の下に固体撮像素子6を駆動する駆動信号を生成する固体撮像素子駆動回路37とを含む。また、制御系は、外部操作に応動して、撮像系,画像処理系,記録再生系をそれぞれ制御し、例えば、レリーズボタン20の押下を検出して、固体撮像素子6の駆動、RGB画像処理回路31の動作、記録処理回路33の圧縮処理などを制御する。
【0043】
次に、視線検出と焦点調節に関する部分について説明する。
【0044】
カメラシステム制御回路35には、さらに視線検出・AF制御回路40とレンズシステム制御回路41が接続されている。これらはカメラシステム制御回路35を中心にして各々の処理に必要とするデータを相互に通信している。
【0045】
視線検出・AF制御回路40は、ファインダ光学系42を通して視線センサ18に投影されたファインダ観察者の眼画像からファインダ視野上の観察者の注視点を検出する。ファインダ光学系42は、図2に示した凹レンズ8,凸レンズ9および眼球照明プリズム10で構成されている。
【0046】
ファインダ視野上の注視点情報からはさらに注視位置の物体像に結像レンズ3のピントを合わせるべく、注視点上に焦点検出点を設定し、この点での結像状態を検出する。デフォーカスが検出されると、これを結像レンズ3の一部の要素であるフォーカシングレンズの駆動量に変換し、カメラシステム制御回路35を中継してレンズシステム制御回路41に送信する。
【0047】
レンズシステム制御回路41はフォーカシングレンズの駆動量を受信すると、撮影レンズ2の不図示の駆動機構によってフォーカシングレンズを光軸L1方向に移動させることによって、注視点上の物体にピントを合わせる。また、視線検出・AF制御回路40によって、注視点上の物体にピントが合っていることが検出されると、この情報はカメラシステム制御回路35に伝えられ、カメラシステム制御回路35による撮像が許可される。このとき、レリーズボタン20が押下されれば、前述のごとく撮像系,画像処理系,記録再生系による撮像制御が成される。
【0048】
さて、固体撮像素子6の構成について説明する。
【0049】
固体撮像素子6は物体像を撮像するための素子であると同時に、焦点検出を行うための信号を得るための素子でもある。焦点検出処理は、位相差検出方式を用いた第一の焦点検出処理と、コントラスト検出方式を用いた第二の焦点検出処理より成る。
【0050】
図6は、固体撮像素子6内のエリアセンサ部6aの回路構成図である。同図は、「2列×2行」画素の2次元エリアセンサを示したものであるが、実際は、「2800列×3700行」等と画素数を多くし、実用的な解像度を得る。
【0051】
図6において、301および351はpnフォトダイオードからなる第一,第二光電変換部、303および353は転送スイッチMOSトランジスタ、304はリセット用MOSトランジスタ、305はソースフォロワアンプMOSトランジスタ、306は垂直選択スイッチMOSトランジスタ、307はソースフォロワの負荷MOSトランジスタ、308は暗出力転送MOSトランジスタ、309は明出力転送MOSトランジスタ、310は暗出力蓄積容量CTN、311は明出力蓄積容量CTS、312および354は垂直転送MOSトランジスタ、313および355は垂直出力線リセットMOSトランジスタ、314は差動出力アンプ、315は垂直走査部、316は水平走査部である。
【0052】
図7に、受光部(例えば330−11)の断面図を示す。なお、受光部330−21,330−12,330−22等も同一の構造である。
【0053】
図7において、317はP型ウェル、318,358はゲート酸化膜、320、350はポリSi、321はn+ FD部(フローティングディフュージョン領域)である。
【0054】
340と390はn層であり、完全空乏化できる濃度である。FD部321は転送MOSトランジスタ303,353を介して第一光電変換部301および第二光電変換部351と接続される。制御パルスφTXにより発生した電荷をFD部321へ完全転送させ、信号の加算,非加算が可能である。なお、同図では、第一光電変換部301と第二光電変換部351を離して描いたが、実際にはその境界部は極めて小さく、実用上は第一光電変換部301と第二光電変換部351は接しているとみなして良い。以降、隣接した第一光電変換部と第二光電変換部をひとまとめにして受光部と呼ぶことにする。また、受光部とMOSトランジスタを含む各画素はほぼ正方形にレイアウトされ、格子状に隣接して配置されている。
【0055】
322は特定の波長の光を透過するカラーフィルタ、323は撮像光学系324からの光束を効率的に第一,第二光電変換部に導くためのマイクロレンズである。各画素において受光部の占める割合はおおよそ数10%程度であって、結像レンズ3から射出した光束を有効に利用するためには、各受光部毎に集光用のマイクロレンズを設けて、受光部以外に到達しようとする光を受光部に偏向ことが必要となる。
【0056】
図8は、固体撮像素子前面に設けたマイクロレンズと受光部との位置関係を示す平面図である。
【0057】
図6を用いて先に説明した受光部330−21,330−22,330−11,330−12は、この図8では、72−11,72−21,72−12,72−22として表している。マイクロレンズ71−11から71−44は受光部の中心と光軸とがおおよそ一致した軸対称型の球面レンズあるいは非球面レンズであって、各々矩形の有効部を持ち、光入射側を凸形状として格子状に密に並べられている。
【0058】
前述したように1画素はそれぞれ二つの光電変換部を有している。図8に付した、R,G,B(不図示)は赤色,緑色,青色のカラーフィルタを備えた光電変換部であることを、R,G,Bに続く1あるいは2は、第一光電変換部か第二光電変換部かの区別を表している。例えば、R1は赤色カラーフィルタを備えた第一光電変換部であり、G2は緑色カラーフィルタを備えた第二光電変換部を意味する。1画素には、第一光電変換部と第二光電変換部の二つの光電変換部を有するだけなので、高度な固体撮像素子の微細化は不要であり、デジタルカメラの撮像素子として安価に供給することができる。
【0059】
このエリアセンサ部6aは、各画素にR(赤色)G(緑色)B(青色)のカラーフィルタを交互に配して、4画素が一組となる所謂ベイヤー配列を形成している。ベイヤー配列では、観察者が画像を見たときに強く感じやすいGの画素をRやBの画素よりも多く配置する事で、総合的な像性能を上げている。一般に、この方式の撮像素子では、輝度信号は主にGから生成し、色信号はR,G,Bから生成する。
【0060】
次に、マイクロレンズの作用について述べる。
【0061】
マイクロレンズは、画像の位相差を検出する第一の焦点検出処理を行うために必要な要素である。
【0062】
図9は、エリアセンサ部6aの断面図である。前述の結像レンズ3は、図9の左側に位置し、該結像レンズ3を射出した光束は、光学ローパスフィルタ4を通って、先ずマイクロレンズ71−11,71−21,71−31,71−41に入射する。各マイクロレンズの後方にはカラーフィルタが配置され、ここで所望の波長域のみが選択されて72−11〜72−41の各受光部に到達する。カラーフィルタは図8を用いて説明したようにベイヤー配列を構成しており、RGBの3種がある。また、ベイヤー配列であることから、断面に現れるのはこのうちの2種であって、この場合は緑色透過カラーフィルタと赤色透過カラーフィルタである。
【0063】
各マイクロレンズのパワーは固体撮像素子6の各受光部を結像レンズ3の射出瞳に投影するように設定されている。このとき、各受光部の投影像が結像レンズ3の絞り開放時の射出瞳よりも大きくなるように投影倍率を設定し、受光部に入射する光量と結像レンズ3の絞りSTの開口面積との関係をおおよそ線形にすると良い。
【0064】
固体撮像素子6のエリアセンサ部6a全体で考えたとき、エリアセンサ部6a上のどの位置であっても第二光電変換部に入射する光束は、マイクロレンズの作用によって結像レンズ3の射出瞳の上半分を通過することとなる。一方、固体撮像素子全体の第一光電変換部に入射する光束は結像レンズ3の光軸L1を対称軸として上下を反転したものとして考えればよい。
【0065】
以上のような光学系にあっては、例えば固体撮像素子6よりも手前に物体像が形成されているとき、射出瞳の上側を通る半光束は、図9の固体撮像素子6上で下側にシフトし、射出瞳の下側を通る半光束は上側にシフトする。つまり、結像レンズ3の瞳の半分ずつを通った光束で形成される一対の画像信号は物体像の結像状態に応じて図9の上下方向に相対的位置変化したものとなる。第一の焦点検出処理はこの原理を用いたものであって、エリアセンサ部6a上に焦点検出点を設定し、この点の周囲について一対の画像信号の相対的位置変化を調べれば、この位置における結像レンズ3の結像状態を知ることができる。
【0066】
この構成によれば、第一の焦点検出処理による焦点検出点を撮影画面内のどこにでも置くことが可能である。さらに、焦点検出領域を撮像光学系の瞳の分割方向を長手方向とした長方形にすれば、長く連続した画像信号を用いて相対的位置変化量を検出することとなり、より検出の正確さを増すことができる。
【0067】
一方、コントラスト検出方式の第二の焦点検出処理は、第一光電変換部の出力からでも、第二光電変換部の出力からでも、さらには、第一光電変換部と第二光電変換部の加算出力からでも、焦点検出出力を得ることができる。像の鮮鋭度を検出するには、簡単には緑色透過カラーフィルタを有する画素に注目して、隣り合う画素出力の差の絶対値を加算し、これを評価量として、フォーカシングレンズの駆動に伴う評価量の変化からその極大値を見つければよい。このような処理によれば、第一の焦点検出処理と同様に焦点検出点を撮影画面内のどこにでも置くことが可能である。
【0068】
第一の焦点検出を縦方向の輝度分布について行い、第二の焦点検出を少なくとも横方向の輝度分布について行うように構成すれば、第一の焦点検出と第二の焦点検出が感度を持つ輝度分布の方向が直交する。したがって、第一の焦点検出処理の焦点検出領域と第二の焦点検出処理の焦点検出領域を組み合わせれば、縦横どちらの輝度分布でも検知できる焦点検出点となり、しかも、これは撮影画面の任意の位置に配置することが可能である。
【0069】
また、第一の焦点検出と第二の焦点検出の焦点検出用画像信号を簡単に得るため、固体撮像素子駆動回路37のコマンドの一つとして出力位置指定コマンドを用意する。エリアセンサ部6aのうち、図10に示した焦点検出点61から67の何れか、あるいは、これらの組み合わせをコマンドによって指定するように構成すると良好な操作性が得られる。さらには、あらかじめ定められた焦点検出点から選択するのではなく、トラックボールなどのポインティングデバイスを用意することにより、任意に指定するようにしてもよい。なお、焦点検出点61から67のそれぞれは、さらに二つの領域から構成されており、焦点検出領域61a,62a,63a,64a,65a,66a,67aは第一の焦点検出処理に、焦点検出領域61b,62b,63b,64b,65b,66b,67bは第二の焦点検出処理に用いられる。
【0070】
CCD型の撮像素子は全ての画素の電荷蓄積時間が同じであるが、固体撮像素子6はCMOSセンサの特長を生かして、画素単位、あるいはライン単位、あるいはブロック単位での読み出しを行う構造をとることが容易にでき、さらに、蓄積時間の始まりと終りを単位毎に異ならせることができる。各焦点検出領域内で適切な信号レベルを得るため、焦点検出領域別に電子シャッタ設定を行って、その指定された特定領域を含むラインについては焦点検出用として電荷蓄積レベルが最適化された画像を出力するように構成する。
【0071】
固体撮像素子6の電荷蓄積動作について、図6及び図7を用いて説明する。
【0072】
先ず、FD部321は蓄積中、ブルーミング防止のために制御パルスφR0をハイにして電源VDDに固定しておく。光子hνが照射されるとpnフォトダイオード301、351に電子が蓄積されていき、正孔はP型ウェル317を通して排出される。
【0073】
光電変換部301とFD部321の間には転送MOSトランジスタ303によるエネルギー障壁が、光電変換部351とFD部321の間には転送MOSトランジスタ353によるエネルギー障壁が、それぞれ形成されている。このため、光電荷蓄積中は電子はpnフォトダイオード301,351に存在する。この後、水平走査部を走査させ、同様に電荷蓄積動作を行えば全光電変換部について電荷の蓄積が成される。
【0074】
読み出し状態になると転送MOSトランジスタ303と353下の障壁をなくし、pnフォトダイオード301,351の電子をFD部321へ完全に転送させる様に出力モードに応じて制御パルスφTX00,φTXe0を設定する。
【0075】
第二の出力モードによる、画像の読み出しは次のようなものである。
【0076】
まず、制御パルスφR0 をHレベルとしてFD部321を電源VDDにリセットし、制御パルスφS0 をHレベルとして暗出力を蓄積容量310に蓄積し、次に制御パルスφTX00をHレベルとして、pnフォトダイオード301に蓄積された光電荷をソースフォロワMOSトランジスタ305、選択スイッチMOSトランジスタ306を介して蓄積容量311に転送して、ノイズ成分を差動増幅器314によってキャンセルし、第一光電変換部からの第一の画像信号VOUT を出力する。
【0077】
さらに、制御パルスφR0 をHレベルとしてFD部321を電源VDDにリセットし、次に制御パルスφTXe0をHレベルとして、pnフォトダイオード351に蓄積された光電荷をソースフォロワMOSトランジスタ305、選択スイッチMOSトランジスタ306を介して蓄積容量311に転送して、ノイズ成分を差動増幅器314によってキャンセルし、第二光電変換部からの第二の画像信号VOUT を出力する。
【0078】
一方、第一の出力モードによる画像信号の読み出しでは、同時に転送MOSトランジスタ303と353下の障壁をなくして、二つのpnフォトダイオード301と351の電荷をFD部321へ完全に転送させる様に制御パルスφTX00,φTXe0を設定する。第一光電変換部の電荷と第二光電変換部の電荷を加算した画像信号の読み出しを行うことが可能である。
【0079】
さて、焦点検出のための信号処理について説明する。
【0080】
前述のように焦点検出処理は、焦点検出点において縦方向のコントラスト分布と横方向のコントラスト分布の両方に対して感度を持たせるべく、第一の焦点検出処理と第二の焦点検出処理より成る。第一の焦点検出処理のための焦点検出領域と第二の焦点検出処理のための焦点検出領域は直交する長方形状の領域である。
【0081】
先ず、第一の焦点検出処理は、結像レンズ3の射出瞳を分離した領域を通過した光束による第一の画像信号と、前記結像レンズ3の射出瞳を分離した他の領域を通過した光束による第二の光電変換出力の相対的位置変化を検出する第一の演算手段を用いる。
【0082】
図11は、焦点検出点61のうち第一の焦点検出処理に用いる焦点検出領域61aの拡大図である。他の焦点検出領域62a,63a,64a,65a,66a,67aも同様の構造である。また、図12〜図19は、視線検出・AF制御部40に入力された画像のデジタル信号を表す図である。
【0083】
第一の焦点検出処理での焦点検出用画像信号は、第二の出力モードによって形成された一対の物体像を実質的に同一タイミングで光電変換し、第一の光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号とに分けて独立に出力されたものである。
【0084】
図11に示すように、焦点検出領域61aは12個の受光部で構成された画素列を2組備えている。画素列82は受光部80−1,80−2,・・・・,80−12で構成され、画素列83は受光部81−1,81−2,・・・・,81−12で構成されている。エリアセンサ部6aのカラーフィルタはベイヤー配列をなしているので、各画素列には2種類のカラーフィルタが交互に配列されることになる。そこで、焦点検出のために、各画素列をカラーフィルタの種類で分類し、さらに、それぞれから、第一光電変換部からの信号と第二光電変換部からの信号とからなる一対の画像信号を生成する。したがって、焦点検出領域61aからは全部で4対の画像信号ができる。なお、前述のように一つの焦点検出領域については実質的に一律の蓄積時間とする。
【0085】
図12〜図15は、この4対の画像信号を示している。
【0086】
図12は、画素列82のうち緑色カラーフィルタを備えた受光部80−1,80−3,・・・,80−11からの画像信号で、そのうち、84はG1で示した第一光電変換部からの第一の画像信号、85はG2で示した第二光電変換部からの第二の画像信号である。
【0087】
図13は、画素列83のうち緑色カラーフィルタを備えた受光部81−2,81−4,・・・,81−12からの画像信号で、そのうち、86はG1で示した第一光電変換部からの第一の画像信号、87はG2で示した第二光電変換部からの第二の画像信号である。
【0088】
図14は、画素列82のうち赤色カラーフィルタを備えた受光部80−2,80−4,・・・,80−12からの画像信号で、88はR1で示した第一光電変換部からの第一の画像信号、89はR2で示した第二光電変換部からの第二の画像信号である。
【0089】
図15は、画素列83のうち青色カラーフィルタを備えた受光部81−1,81−3,・・・,81−11からの画像信号で、90はB1で示した第一光電変換部からの第一の画像信号、91はB2で示した第二光電変換部からの第二の画像信号である。
【0090】
これらは、撮像光学系24によって焦点検出領域61a上に成された物体像が、オレンジ色と黄色の濃淡である場合の例で、図12と図13に示した緑色のコントラストが高く、図14に示した赤色は低コントラストであるものの強度は強く、さらに、図15に示した青色はコントラストも強度も低くなっている。各図は物体像がデフォーカスした状態を示し、図12及び図13の矢印A,Bで示すように、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号とは相対的に位置がずれていることが分かる。この程度からデフォーカス量を知ることができるため、位相差検出方式と呼ばれている。
【0091】
また、図16〜図19は、物体像にピントがあった状態での信号であり、図12〜図15に示した信号が結像レンズ3の移動によって、それぞれ変化する様子を表している。
【0092】
図16は、画素列82のうち緑色カラーフィルタを備えた受光部80−1,80−3,・・・,80−11からの画像信号で、184はG1で示した第一光電変換部からの第一の画像信号、185はG2で示した第二光電変換部からの第二の画像信号である。
【0093】
図17は、画素列83のうち緑色カラーフィルタを備えた受光部81−2,81−4,・・・,81−12からの画像信号で、186はG1で示した第一光電変換部からの第一の画像信号、187はG2で示した第二光電変換部からの第二の画像信号である。
【0094】
図18は、画素列82のうち赤色カラーフィルタを備えた受光部80−2,80−4,・・・,80−12からの画像信号で、188はR1で示した第一光電変換部からの第一の画像信号、189はR2で示した第二光電変換部からの第二の画像信号である。
【0095】
図19は、画素列83のうち青色カラーフィルタを備えた受光部81−1,81−3,・・・,81−11からの画像信号で、190はB1で示した第一光電変換部からの第一の画像信号、191はB2で示した第二光電変換部からの第二の画像信号である。
【0096】
物体にピントがあった状態では、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号とは位相が一致する。したがって、一対の信号の同一性を判定することで合焦検知を行うことができる。さらには、相関演算を用いた公知の手法、例えば特公平5−88445号に開示されている手法を用いて相対的位置変化量を検出することにより、デフォーカス量を求めることができる。得られたデフォーカス量を結像光学系24のフォーカシングレンズを駆動すべき量に換算すれば、自動焦点調節が可能である。レンズの駆動量をあらかじめ知ることができるので、通常、合焦位置までのレンズ駆動はほぼ一回で済み、極めて高速な焦点調節が実現できる。
【0097】
なお、ここでは色分解した信号を用いたが、色分解しない場合はこれらを足しあわせた信号を得ることに相当するために低コントラストになりやすく、この結果、検出不能状態に陥りやすい。これに対して、色分解した信号を用いれば、ここに示したようにRGBすべての信号に高いコントラストが現れるとは限らないが、逆にRGBの何れかには高コントラストな信号が得られ、ほとんどの場合、焦点検出が可能となる。
【0098】
さらには、固体撮像素子6には光学ローパスフィルタLPFを通過した物体像が入射しているものの、光学系の特性上、焦点検出系のナイキスト周波数「νn=1/(2×2P)」を上回る高周波成分を全く取り込まないわけではない。したがって、物体のパターンによっては物体像の位相が信号の位相に反映されず、焦点検出結果には若干の誤差が含まれることがある。
【0099】
像の位相差がない場合には、一対の信号に均等に位相エラーが乗るため、この現象が生じても焦点検出誤差にはならない。すなわち、図16,図17にあるような信号では、合焦判定に誤差は生じないが、図12,図13にあるような信号では、デフォーカス量検出に誤差が生じるということになる。
【0100】
図12及び図13より分かるように、信号84,85に対して、信号86,87は物体像のサンプリング位置が半ピッチずれているため、信号84,85から算出された焦点検出結果と、信号86,87から算出された焦点検出結果を平均して最終的な焦点検出結果を得ることで、焦点検出誤差を低減することができ、上記の不具合を解決することができる。
【0101】
同様に、信号88,89に対して、信号90,91は物体像のサンプリング位置が半ピッチずれているため、信号88,89から算出された焦点検出結果と、信号90,91から算出された焦点検出結果を平均して最終的な焦点検出結果を得ることで、焦点検出誤差を低減することができる。この場合には赤色と青色に注目した焦点検出結果を平均することになり、結果的に撮像光学系24の色収差をも平均することになって好ましい。
【0102】
また、信号84,85から算出された焦点検出結果、信号86,87から算出された焦点検出結果、信号88,89から算出された焦点検出結果、信号90,91から算出された焦点検出結果のうち、信頼性が高いものだけを選択して平均すれば、より高い焦点検出精度を得ることが可能である。例えば、図14や図15の場合のように低コントラストな信号では、その焦点検出結果を焦点調節に用いないようにすればよい。
【0103】
以上は、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号とは相対的に位置変化した関係にあることを前提に説明してきた。この前提が成り立つのは、比較的デフォーカス量が小さい場合である。
【0104】
次に、大デフォーカスへの対応について説明する。
【0105】
図1に示した撮像装置において、絞りSTには204から208で示した5つの開口が設けられ、開口204,205,206は撮像のための開口、開口207と208は大デフォーカス検出用開口である。撮像時は、撮影する物体の輝度に応じて自動的に開口204,205,206のうちの一つが選択される。あるいは、使用者が任意に開口204,205,206のうちの一つを選択するようにしても良い。開口の大きさを小さくするにしたがって、すなわち、開口204よりも開口205を、開口205よりも開口206を選択すると、被写界側でピントが合う範囲が深くなるとともに、電子シャッタによる電荷蓄積時間は長くなる。
【0106】
固体撮像素子6上に設けられたマイクロレンズは固体撮像素子6の各受光部を撮像光学系24の射出瞳に投影するが、固体撮像素子6の各受光部に入射する光量と絞りSTの開口面積との関係を線形にするために、そのパワーは各受光部の投影像が撮像光学系の絞り開放時の射出瞳よりも大きくなるように設定してある。すなわち、絞りST上で受光部の投影像と開口とを比較すると、受光部の投影像は最も大きい開口204よりもさらに大きい。こうすれば、固体撮像素子への入射光量が絞りの開口面積におおよそ比例し、物体輝度、撮像素子の感度が与えられたときに、フィルムカメラと同様の手法で絞り値とシャッタ速度を算出することができる。つまり、入射光量が絞りの開口面積に比例するようになり、APEX方式の演算が成り立つ。
【0107】
開口204,205,206の何れを用いて撮像した場合でも、形成された画像は射出瞳を2分割した半円状の領域を通過した半光束によるものとなる。一般に、物体像は点像と物体の輝度分布のコンボルーションで与えられるが、物体像のデフォーカス量が大きくなると、点像には射出瞳の形が現れてくる。この結果、画像には円を2分割した形のボケが重畳することになる。
【0108】
一対の焦点検出用画像信号の形成が平行移動で重なる形状の一対の射出瞳を介して成されていれば、個々の瞳形状がどういうものであっても、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号の関係は相対的位置変化したものになる。ところが、開口204,205,206を使用しているときは、射出瞳を分割した領域の形状は2つの半円形であって互いに裏返しの関係となり、一方の分割領域を平行移動することで他方に重なるわけではない。したがって、画像に重畳するボケ形状も同様に裏返しの関係になり、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号は形状を異ならせながら相対的に位置変化したものになってしまう。この結果、大デフォーカス時には画像の位相差検出がうまく行かず、デフォーカス量検出誤差は大きい。
【0109】
また、大デフォーカス時にデフォーカス量検出誤差を大きくする他の要因として、マイクロレンズの製造誤差が挙げられる。前述のように、マイクロレンズは受光部を撮像光学系の射出瞳に投影している。仮に、この投影位置が画素毎にバラバラであると、デフォーカス時の相対的位置変化量が画素毎に異なることになってしまう。この影響はデフォーカス量が大きいほど深刻である。しかしながら、マイクロレンズは非常に微細であるために、実際にはある程度の製造ばらつきを許容せざるを得ない。そこで、大デフォーカス検出時には、大デフォーカス検出用である絞りSTの開口207と208を用いる。開口207と208で分割された射出瞳上の領域はマイクロレンズによる瞳投影精度の影響を受けない。したがって、マイクロレンズの製造誤差があっても、確定した射出瞳上の分割領域を得ることができる。
【0110】
しかも、ここで開口207と208を例えば楕円や円とすれば、平行移動で重なる同一の形状であるために、第一光電変換部からの第一の画像信号と第二光電変換部からの第二の画像信号の関係は完全に位相のみがシフトしたものとなる。したがって、大デフォーカスであってもデフォーカス量の検出誤差を極めて小さく抑えることが可能である。
【0111】
また、開口207と208の重心の入射高さを開放絞り径の 0.7倍程度に選べば、一般的な球面収差特性を有する撮像光学系について最良解像までのデフォーカス量を収差レベルで正確に検出することができる。なお、撮像光学系24のズーム動作が行われると、一般には開放Fナンバーが変化するが、開放絞りに対する開口207と208の重心位置の関係は一定の比率を維持するので、開口207と208の重心の入射高さはズーム位置に拘らず常に開放絞り径の 0.7倍程度になって都合がよい。
【0112】
物体にピントがあっている可能性が低い初回の焦点調節動作時には、先ず開口207と208を使用して、仮に大デフォーカスであってもこれに対応できる焦点調節と物体観察用のファインダ表示を行い、これに続く2回目以降の焦点調節動作では開口204,205,206の何れかを用いて残る焦点調節とファインダ表示を行うとともに、続く撮像に備えるように撮像装置のシーケンスを構成すると良い。
【0113】
この撮像装置では、撮像光学系のデフォーカス量を検出するための専用の焦点検出装置を必要としないので、光路分割のためのミラーやプリズムが要らない。したがって、撮像系を小型化することができる。
【0114】
次に、第二の焦点検出処理について説明する。
【0115】
第二の焦点検出処理では、第一の演算手段が用いた第一,第二の画像信号の相対的位置変化方向とは異なる方向について物体像のコントラストを検出する第二の演算手段を用いる。
【0116】
図20は、図10に示した焦点検出点61のうち、第二の焦点検出処理に用いる焦点検出領域61bの拡大図である。他の焦点検出領域62b,63b,64b,65b,66b,67bも同様の構造である。
【0117】
第二の焦点検出処理での焦点検出用画像信号は、第一の出力モードによって形成された一対の物体像を実質的に同一タイミングで光電変換し、第一の光電変換部と第二光電変換部の電荷を加算して得た画像信号である。第一の出力モードによる焦点検出用画像信号は結像レンズ3の射出瞳全体を通った光束から形成されているため、結像レンズ3の光学収差を考慮した最適ピント位置を検出することが可能である。
【0118】
図20に示すように、焦点検出領域61bは「4行8列」の画素で構成されている。ゼロおよび自然数m、nを用い、受光部を配列S(m、n)で表すこととする。エリアセンサ部6aのカラーフィルタはベイヤー配列をなしているので、焦点検出領域61bにはR,G,Bの3種類のカラーフィルタが配列されることになる。そこで、焦点検出のために、各画素列をカラーフィルタの種類で分類し、各色毎にコントラスト評価値を演算する。
【0119】
詳しくは、緑色カラーフィルタを備えた受光部S(1、0),S(3、0),S(5、0),S(7、0),S(0、1),S(2、1),S(4、1),S(6、1),S(1、3),S(3、3),S(5、3),S(7、3),S(0、3),S(2、3),S(4、3),S(6、3)、赤色カラーフィルターを備えた受光部S(0、0),S(2、0),S(4、0),S(6、0),S(0、3),S(2、3),S(4、3),S(6、3)、青色カラーフィルターを備えた受光部S(1、1),S(3、1),S(5、1),S(7、1),S(1、3),S(3、3),S(5、3)、S(7、3)について、隣り合う画素出力の差の絶対値の和を算出し、さらにR,G,B各色の和を求める。
【0120】
ところが、焦点検出領域61bの横方向のコントラストをR,G,B各色について求め、これを加算するということは、一画素おきの画素出力の差の絶対値の和に等しいので、コントラスト評価値Cの実際の計算式は、簡単に図23示す式(1)で表すことができる。
【0121】
図23に示す式(1)の第一項は横方向について検出を行ったときのコントラスト値、第二項は縦方向について検出を行ったときのコントラスト値である。したがって、コントラストの検出方向を横方向のみとする場合は、図23に示す式(1)の第一項のみを使用して、図23に示す式(2)のようにすればよい。
【0122】
さらに、以上の説明では、簡単のために一つの焦点検出領域を「4行×8列」の画素で構成したが、さらに多くの画素を使用することによって、コントラストの検出精度を上げることができる。
【0123】
このような手法によって、物体像のコントラスト評価値を算出した後は、結像レンズ3のフォーカシングレンズの繰り出し量を制御しながらコントラスト評価値をモニターし、そのピーク位置を探すことによって合焦位置を検出すればよい。
【0124】
第二の焦点検出処理では、第一の焦点検出処理で用いた第一,第二の画像信号の相対的位置変化方向とは異なる方向、すなわち物体輝度分布の横方向成分について像のコントラストを検出する。
【0125】
次に、図21及び図22に示すフローチャートを用いて、カメラの動作を説明する。
【0126】
図21のフローチャートは、カメラシステム制御回路35内のROMに書き込まれている制御プログラムである。
【0127】
図21において、制御プログラムがスタートすると、先ず、ステップ#201において、操作検出回路36を介してメインスイッチ19がONかどうかを調べる。OFFであれば、再びステップ#201を繰り返し、ONであれば次のステップ#202に移行する。そして、このステップ#202において、固体撮像素子駆動回路37を介して固体撮像素子6を駆動し、連続的な表示用画像の取り込みを開始する。続くステップ#203においては、固体撮像素子6により撮像した画像を再生処理回路34を介して液晶ディスプレー7上に動画像として表示するファインダ表示処理を開始する。
【0128】
ステップ#205においては、視線検出・AF制御回路40に対して、ファインダ観察者の注視点位置を検出するように指示する。そして、次のステップ#207において、視線検出・AF制御回路40に対して、AF制御サブルーチンを起動するように指示する。続くステップ#208においては、操作検出回路36を介してレリーズボタン20がONかどうかを調べる。OFFであれば、先のステップ#205に戻り、ONであれば次のステップ#209に移行し、ここではレリーズボタン20が押下されたので、固体撮像素子駆動回路37を介して固体撮像素子6を第一の出力モードで駆動し、高精細な画像の取り込みを行う。そして、次のステップ#210において、RGB画像処理,YC処理の施されたデータを記録処理回路33を介して内部のメモリに記録し、一連の制御を終了する。
【0129】
図22のフローチャートは、視線検出・AF制御回路40内のROMに書き込まれている制御プログラムであって、位相差検出方式を用いた第一の焦点検出処理と、コントラスト検出方式を用いた第二の焦点検出処理を含む。
【0130】
焦点検出処理の概略は、先ず第一の焦点検出処理による焦点検出を行って、この結果信頼性良くデフォーカス量が検出できれば、このデフォーカス量に基づいた焦点調節を行い、もし、信頼性良くデフォーカス量が検出できなければ、第二の焦点検出処理による焦点検出を試みる、というものである。図22において、ステップ#403が第一の焦点検出処理、ステップ#408が第二の焦点検出処理である。
【0131】
図22において、AF制御サブルーチンがスタートすると、先ずステップ#401において、図21のステップ#205で行った視線検出結果に基づいて注視点上に焦点検出点を指定し、固体撮像素子6上の焦点検出点を取り囲む矩形領域を焦点検出用画像信号を取得すべき領域とし、さらに、焦点検出演算の対象領域とする。ここで、焦点検出点を取り囲む矩形領域は、図10に示した、61a,61b等である。
【0132】
ステップ#402においては、固体撮像素子6を第一の焦点検出処理に適した射出瞳の一部を用いる第二の出力モードで駆動し、焦点検出用画像信号を取得する。そして、次のステップ#403において、上記ステップ#402にて取得した焦点検出用画像信号を用いて、第一の焦点検出処理による焦点検出演算を行い、第一の演算手段によって結像レンズ3の射出瞳を分割した領域を通過した光束による第一の画像信号と、結像レンズ3の射出瞳を分割した他の領域を通過した光束による第二の光電変換出力との相対的位置変化を算出する。得られたデフォーカス量はフォーカシングレンズの駆動量に変換する。
【0133】
ステップ#404においては、上記ステップ#403にて得られた焦点検出演算結果の信頼性を判定する。信頼性判定には、画像のコントラスト,出力レベル,位相をシフトさせたときの一致の度合いなどの少なくとも一つを評価関数として用いる。この評価関数は、特公平5−88445号に開示されているものを用いればよい。信頼性があればステップ#405に移行し、信頼性がなければステップ#407に分岐する。
【0134】
ステップ#405へ移行すると、ここでは上記ステップ#404にて得られた焦点検出演算の結果が合焦であるかを判定する。合焦であれば、サブルーチンをリターンし、合焦でなければ、ピント位置を変えるためにステップ#406に移行する。ステップ#406へ移行すると、カメラシステム制御回路35を介して、レンズシステム制御回路41にフォーカシングレンズの駆動量を伝達する。これを受けて、レンズシステム制御回路41はフォーカシングレンズを結像レンズ3の光軸L1方向に移動させ、焦点調節を行う。焦点調節の結果さらなる焦点調節が必要かを調べるためにステップ#402に戻る。
【0135】
次に、上記ステップ#404からステップ#407へ移行した場合について説明する。ステップ#407以降では、先のステップ#404にて第一の焦点検出処理が失敗であったので、少なくとも第一の焦点検出処理とは異なる方向のコントラストに感度を有する第二の焦点検出処理を行う。
【0136】
ステップ#407においては、固体撮像素子6を第一の出力モードで駆動し、焦点検出用画像信号を取得する。第二の焦点検出処理を行うためには固体撮像素子6の第一,第二どちらの出力モードの信号であっても良いが、結像レンズ3の射出瞳全体を用いる第一の出力モードの信号を用いる方が高精度な焦点検出が可能である。次のステップ#408においては、上記ステップ#407にて取得した焦点検出用画像信号を用いて、第二の焦点検出処理による焦点検出演算を行い、第二の演算手段によってコントラスト評価値Cを算出する。
【0137】
次のステップ#409においは、合焦判定を行う。第二の焦点検出処理ではコントラスト評価値Cが極大値をとったかどうかを調べるので、データの蓄積のために合焦判定の初回と2回目は無条件に非合焦の判定を下す。過去3回以上のデータが蓄積されると、フォーカシングレンズの繰り出しとコントラスト評価値Cの関係に基づいて、コントラスト評価値Cの極大値が見つかったかどうかを調べる。ここで、極大値を捉えていれば、コントラスト評価値Cの極大値が合焦位置に相当するとして、フォーカシングレンズの繰り出しを極大値が見つかった位置まで戻し、サブルーチンをリターンする。
【0138】
一方、コントラスト評価値Cの値が単調増加しているか単調減少していれば、非合焦と判定して、ステップ#410に移行する。そして、このステップ#410において、フォーカシングレンズの繰り出しとコントラスト評価値Cの関係において、コントラスト評価値Cの増加方向の延長上に極大値があると仮定し、次回フォーカシングレンズの駆動すべき方向を設定する。そして、次のステップ#411において、上記ステップ#410にて設定した方向にフォーカシングレンズを駆動する。上記ステップ#408で求めたコントラスト評価値Cが小さいときはこの駆動量を大きくし、コントラスト評価値Cが大きいときは駆動量を小さくすると、早くコントラスト評価値Cの極大値を見つけることができる。次に、コントラスト評価値Cを再び評価するためステップ#407に戻る。
【0139】
以上の実施の形態によれば、縦方向の輝度分布を持ち、固体撮像素子の出力を用いて位相差検出方式により焦点検出を行う第一の焦点検出処理と、横方向に輝度分布を持ち、固体撮像素子の出力を用いてコントラスト方式により焦点検出を行う第二の焦点検出処理とにより焦点検出を可能とする構成にし、先ず第一の焦点検出処理による焦点検出を行い、この結果信頼性良くデフォーカス量が検出できれば、このデフォーカス量に基づいた焦点調節を行い、もし、信頼性良くデフォーカス量が検出できなければ、第二の焦点検出処理による焦点検出を行うようにしているので、縦横両方の輝度分布に感度を持つパッシブ型焦点検出装置を、物体像を撮像するための撮像素子を兼用する形で実現することができた。
【0140】
また、この事により、焦点検出装置にとって苦手な物体パターンを低減することができた。さらび、焦点検出方式の一つに、上記のように位相差検出方式を採用しているため、高いデフォーカス検出能力を実現することができた。この結果、交換レンズ式のシステムカメラ用の焦点検出装置として最適なものとなった。しかも、固体撮像素子の1画素には二つの光電変換部を具備する事で足りるので、高度な微細化は必要く、比較的安価に提供することができた。
【0141】
【発明の効果】
以上説明したように、本発明によれば、異なる二方向の輝度分布に感度を持ち、かつ、物体像を撮像するための撮像素子を兼用することで比較的安価とすると共に、物体により適した焦点検出結果を出力することができる
【0142】
また、請求項2に記載の発明によれば、縦横両方の輝度分布に感度を持ち、かつ、物体像を撮像するための撮像素子を兼用することで比較的安価とすると共に、物体により適した焦点検出結果を出力することができる焦点検出装置を提供できるものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係る撮像光学系の構成図である。
【図2】本発明の実施の一形態に係る視線検出機能を搭載したデジタルカラーカメラの構成図である。
【図3】本発明の実施の一形態においてLEDの発光特性を示す図である。
【図4】本発明の実施の一形態においてダイクロイックミラーの分光反射率特性を示す図である。
【図5】図2のデジタルカラーカメラの電気的構成を示すブロック図である。
【図6】本発明の実施の一形態に係る固体撮像素子内のエリアセンサ部の回路構成図である。
【図7】本発明の実施の一形態に係る受光部の断面図である。
【図8】本発明の実施の一形態に係るマイクロレンズと受光部との位置関係を示す平面図である。
【図9】本発明の実施の一形態に係るエリアセンサ部の断面図である。
【図10】本発明の実施の一形態に係る撮像領域と焦点検出領域の説明図である。
【図11】図10の焦点検出領域61aの拡大図である。
【図12】図11の画素列82のうち緑色カラーフィルタを備えた受光部80−1,80−3,・・・,80−11からの画像信号である。
【図13】図11の画素列83のうち緑色カラーフィルタを備えた受光部81−2,81−4,・・・,81−12からの画像信号である。
【図14】図11の画素列82のうち赤色カラーフィルタを備えた受光部80−2,80−4,・・・,80−12からの画像信号である。
【図15】図11の画素列83のうち青色カラーフィルタを備えた受光部81−1,81−3,・・・,81−11からの画像信号である。
【図16】図11の画素列82のうち緑色カラーフィルタを備えた受光部80−1,80−3,・・・,80−11からの画像信号である。
【図17】図11の画素列83のうち緑色カラーフィルタを備えた受光部81−2,81−4,・・・,81−12からの画像信号である。
【図18】図11の画素列82のうち赤色カラーフィルタを備えた受光部80−2,80−4,・・・,80−12からの画像信号である。
【図19】図11の画素列83のうち青色カラーフィルタを備えた受光部81−1,81−3,・・・,81−11からの画像信号である。
【図20】図10の焦点検出点61のうち、第二の焦点検出処理に用いる焦点検出領域61bの拡大図である。
【図21】本発明の実施の一形態に係るデジタルカラーカメラの動作を示すフローチャートである。
【図22】図21のAF制御の詳細を示すフローチャートである。
【図23】本発明の実施の一形態においてコントラスト評価値の実際の計算式を示す図である。
【符号の説明】
3 結像レンズ
6 固体撮像素子
6a エリアセンサ部
30 A/D変換器
35 カメラシステム制御回路
36 操作検出回路
37 固体撮像素子駆動回路
61〜67 焦点検出点
61a,61b 焦点検出領域

Claims (3)

  1. 二つの光電変換部の信号電荷の加算により、撮影レンズの射出瞳からの光束を受光して該光束に対応する信号を出力する第一の出力モードと、瞳分割された射出瞳の一部から第1および第2の光束を受光して該第1および第2の光束それぞれに対応する信号を出力する第二の出力モードとを切り換え可能な撮像素子と、
    前記撮像素子から前記第二の出力モードで出力される信号に基づいて前記第1および第2の光束にそれぞれ対応する信号の位相差を検出する第1の焦点検出処理と、前記撮像素子から前記第一の出力モードまたは第二の出力モードで出力される信号に基づいて像のコントラストを検出する第2の焦点検出処理とが可能な信号処理手段とを有し、
    前記信号処理手段は、前記第1の焦点検出処理をした後、所定の条件を満たさない場合に前記第一の出力モードにおいて画素レベルで加算された信号に基づいて、前記瞳分割の方向と異なる方向のコントラストを検出する前記第2の焦点検出処理を行うことを特徴とする焦点検出装置。
  2. 前記所定の条件を満たしているか否かの判定は、画像信号のコントラスト、出力レベル、各画像信号の位相をシフトさせたときの一致度の度合いの少なくとも一つを評価関数として用いて行うことを特徴とする請求項1に記載の焦点検出装置。
  3. 前記撮像素子は複数画素より成り、各画素にそれぞれ二つの光電変換部を有し、該二つの光電変換部より前記第一の出力モードあるいは前記第二の出力モードで信号が出力されることを特徴とする請求項1または2に記載の焦点検出装置。
JP2000117510A 2000-04-19 2000-04-19 焦点検出装置 Expired - Fee Related JP4908668B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000117510A JP4908668B2 (ja) 2000-04-19 2000-04-19 焦点検出装置
US09/834,790 US6597868B2 (en) 2000-04-19 2001-04-13 Focus detecting device determining focusing state based on phase difference information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117510A JP4908668B2 (ja) 2000-04-19 2000-04-19 焦点検出装置

Publications (2)

Publication Number Publication Date
JP2001305415A JP2001305415A (ja) 2001-10-31
JP4908668B2 true JP4908668B2 (ja) 2012-04-04

Family

ID=18628821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117510A Expired - Fee Related JP4908668B2 (ja) 2000-04-19 2000-04-19 焦点検出装置

Country Status (2)

Country Link
US (1) US6597868B2 (ja)
JP (1) JP4908668B2 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002086B2 (ja) * 1999-10-28 2012-08-15 キヤノン株式会社 焦点検出装置と撮像装置
JP2002365517A (ja) 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd 撮影レンズのピント状態検出装置
US7385636B2 (en) * 2004-04-30 2008-06-10 Eastman Kodak Company Low noise sample and hold circuit for image sensors
JP4599116B2 (ja) * 2004-08-26 2010-12-15 富士フイルム株式会社 オートフォーカスシステム
JP2006154393A (ja) * 2004-11-30 2006-06-15 Toppan Printing Co Ltd オートフォーカス方法
JP2007248782A (ja) * 2006-03-15 2007-09-27 Olympus Imaging Corp 焦点調節装置およびカメラ
US7582854B2 (en) * 2006-07-28 2009-09-01 Canon Kabushiki Kaisha Focus detection apparatus for detecting a relative positional relationship between a pair of object images
JP4321579B2 (ja) * 2006-11-28 2009-08-26 ソニー株式会社 撮像装置
US8023037B2 (en) * 2006-12-28 2011-09-20 Victor Company Of Japan, Ltd. Focus-adjustment signal generating apparatus and method, and imaging apparatus and method with manual focus adjustments
DE102007001010A1 (de) * 2007-01-02 2008-07-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Bilderfassungssystem zur achromatisierten Bildaufnahme von Objekten
JP5028154B2 (ja) 2007-06-20 2012-09-19 キヤノン株式会社 撮像装置及びその制御方法
US8525917B2 (en) 2007-08-06 2013-09-03 Canon Kabushiki Kaisha Image sensing apparatus with plural focus detection pixel groups
JP5264131B2 (ja) 2007-09-14 2013-08-14 キヤノン株式会社 撮像装置
JP2009115893A (ja) 2007-11-02 2009-05-28 Canon Inc 撮像装置
JP5219865B2 (ja) * 2008-02-13 2013-06-26 キヤノン株式会社 撮像装置及び焦点制御方法
JP5380857B2 (ja) * 2008-02-21 2014-01-08 株式会社ニコン 焦点検出装置および撮像装置
JP5050928B2 (ja) * 2008-02-28 2012-10-17 ソニー株式会社 撮像装置および撮像素子
JP5451111B2 (ja) 2008-03-11 2014-03-26 キヤノン株式会社 焦点検出装置およびそれを有する撮像装置
JP5552214B2 (ja) 2008-03-11 2014-07-16 キヤノン株式会社 焦点検出装置
JP5147474B2 (ja) * 2008-03-14 2013-02-20 キヤノン株式会社 撮像装置及びその制御方法
JP2010020015A (ja) 2008-07-09 2010-01-28 Canon Inc 撮像装置
JP5276371B2 (ja) 2008-07-09 2013-08-28 キヤノン株式会社 撮像装置
JP5241355B2 (ja) 2008-07-10 2013-07-17 キヤノン株式会社 撮像装置とその制御方法
KR101510104B1 (ko) * 2008-09-26 2015-04-08 삼성전자주식회사 위상 차 자동 초점 제어 방법 및 장치
JP5147645B2 (ja) * 2008-10-30 2013-02-20 キヤノン株式会社 撮像装置
JP5300414B2 (ja) * 2008-10-30 2013-09-25 キヤノン株式会社 カメラ及びカメラシステム
JP5489641B2 (ja) 2008-11-11 2014-05-14 キヤノン株式会社 焦点検出装置及びその制御方法
JP5146295B2 (ja) * 2008-12-15 2013-02-20 ソニー株式会社 撮像装置および合焦制御方法
KR101786069B1 (ko) * 2009-02-17 2017-10-16 가부시키가이샤 니콘 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
JP5455397B2 (ja) 2009-03-02 2014-03-26 キヤノン株式会社 光学機器
CN102422216B (zh) * 2009-05-15 2014-10-22 株式会社尼康 测距装置以及摄像装置
JP5517514B2 (ja) 2009-07-16 2014-06-11 キヤノン株式会社 撮像装置及びその制御方法
JP5421829B2 (ja) 2010-03-18 2014-02-19 富士フイルム株式会社 撮像装置
JP5834398B2 (ja) * 2010-11-22 2015-12-24 株式会社ニコン 撮像素子及び撮像装置
JP5776210B2 (ja) * 2011-02-17 2015-09-09 株式会社ニコン 焦点調節装置および撮像装置
JP5917051B2 (ja) 2011-09-08 2016-05-11 キヤノン株式会社 半導体装置
JP5914055B2 (ja) 2012-03-06 2016-05-11 キヤノン株式会社 撮像装置
JP6041871B2 (ja) * 2012-05-15 2016-12-14 キヤノン株式会社 撮像装置及び撮像装置の制御方法
JP5942697B2 (ja) * 2012-08-21 2016-06-29 株式会社ニコン 焦点検出装置および撮像装置
JP5900257B2 (ja) * 2012-09-11 2016-04-06 ソニー株式会社 処理装置、処理方法、及び、プログラム
JP6033038B2 (ja) 2012-10-26 2016-11-30 キヤノン株式会社 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
JP6271952B2 (ja) 2013-01-23 2018-01-31 キヤノン株式会社 撮像装置
JP6271842B2 (ja) * 2013-02-18 2018-01-31 キヤノン株式会社 測距装置、測距方法、および撮像装置
JP6172978B2 (ja) 2013-03-11 2017-08-02 キヤノン株式会社 撮像装置、撮像システム、信号処理装置、プログラム、および、記憶媒体
JP6317548B2 (ja) * 2013-04-10 2018-04-25 キヤノン株式会社 撮像装置及びその制御方法
JP6234054B2 (ja) * 2013-04-25 2017-11-22 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP6347581B2 (ja) * 2013-07-17 2018-06-27 キヤノン株式会社 焦点検出装置およびその制御方法
JP6274788B2 (ja) 2013-08-28 2018-02-07 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP2015081846A (ja) * 2013-10-23 2015-04-27 オリンパス株式会社 撮像装置及び位相差検出方法
JP6017399B2 (ja) * 2013-10-23 2016-11-02 オリンパス株式会社 撮像装置及び位相差検出方法
JP2014063190A (ja) * 2013-11-22 2014-04-10 Fujifilm Corp 撮像装置
CN104750234B (zh) * 2013-12-27 2018-12-21 中芯国际集成电路制造(北京)有限公司 可穿戴智能设备及可穿戴智能设备的互动方法
JP6186498B2 (ja) * 2014-03-25 2017-08-23 富士フイルム株式会社 撮像装置及び合焦制御方法
JP6338436B2 (ja) 2014-04-25 2018-06-06 キヤノン株式会社 撮像装置及びその制御方法
JP6465562B2 (ja) 2014-04-30 2019-02-06 キヤノン株式会社 撮像装置及び撮像方法
JP6381274B2 (ja) * 2014-05-07 2018-08-29 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP6530593B2 (ja) * 2014-08-11 2019-06-12 キヤノン株式会社 撮像装置及びその制御方法、記憶媒体
JP6588702B2 (ja) * 2015-01-05 2019-10-09 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP6571939B2 (ja) * 2015-01-26 2019-09-04 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP6557499B2 (ja) * 2015-04-09 2019-08-07 キヤノン株式会社 焦点検出装置およびその制御方法、撮像装置、プログラム、ならびに記憶媒体
JP2017049318A (ja) 2015-08-31 2017-03-09 キヤノン株式会社 焦点調節装置及びそれを用いた撮像装置及び焦点調節方法
JP6304286B2 (ja) * 2016-02-25 2018-04-04 株式会社ニコン 焦点検出装置およびカメラ
JP6960745B2 (ja) * 2017-02-16 2021-11-05 キヤノン株式会社 焦点検出装置及びその制御方法、プログラム、記憶媒体
JP6946045B2 (ja) * 2017-04-28 2021-10-06 キヤノン株式会社 焦点検出装置及び撮像システム
US11314150B2 (en) * 2020-01-08 2022-04-26 Qualcomm Incorporated Phase detection autofocus (PDAF) optical system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216306A (ja) * 1988-02-24 1989-08-30 Canon Inc 撮像手段を有した焦点検出装置
US5428420A (en) * 1991-08-28 1995-06-27 Canon Kabushiki Kaisha Focus detecting apparatus having photoelectric area sensors
JP3446287B2 (ja) * 1994-03-15 2003-09-16 富士通株式会社 縮小投影露光装置と光軸ずれ補正方法
JPH07270674A (ja) * 1994-03-29 1995-10-20 Canon Inc 合焦検出装置

Also Published As

Publication number Publication date
US20010036361A1 (en) 2001-11-01
US6597868B2 (en) 2003-07-22
JP2001305415A (ja) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4908668B2 (ja) 焦点検出装置
US10560669B2 (en) Image sensor and image-capturing device
JP3774597B2 (ja) 撮像装置
JP5002086B2 (ja) 焦点検出装置と撮像装置
JP5066851B2 (ja) 撮像装置
JP3977062B2 (ja) 撮像装置及び焦点調節方法
JP5552214B2 (ja) 焦点検出装置
JP5176959B2 (ja) 撮像素子および撮像装置
JP5322561B2 (ja) 撮像装置及びその制御方法
JP5028154B2 (ja) 撮像装置及びその制御方法
RU2585235C2 (ru) Устройство захвата изображения
JP4973273B2 (ja) デジタルカメラ
JP5675157B2 (ja) 焦点検出装置
JP5276374B2 (ja) 焦点検出装置
JP5207797B2 (ja) 撮像装置およびその制御方法
JPWO2005081020A1 (ja) 光学機器およびビームスプリッター
JP5133533B2 (ja) 撮像装置
JP4983271B2 (ja) 撮像装置
JPWO2012073729A1 (ja) 撮像装置及びその合焦位置検出方法
US20120099006A1 (en) Image pickup apparatus
JP4858179B2 (ja) 焦点検出装置および撮像装置
JP5348258B2 (ja) 撮像装置
JP7091053B2 (ja) 撮像装置および焦点検出方法
JP5609232B2 (ja) 撮像装置
JP6207293B2 (ja) 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees