JP4684053B2 - Method for producing carbon nanotube and method for fixing the same - Google Patents

Method for producing carbon nanotube and method for fixing the same Download PDF

Info

Publication number
JP4684053B2
JP4684053B2 JP2005262727A JP2005262727A JP4684053B2 JP 4684053 B2 JP4684053 B2 JP 4684053B2 JP 2005262727 A JP2005262727 A JP 2005262727A JP 2005262727 A JP2005262727 A JP 2005262727A JP 4684053 B2 JP4684053 B2 JP 4684053B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
substrate
metal
producing
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005262727A
Other languages
Japanese (ja)
Other versions
JP2007076925A (en
Inventor
美尚 中野
正明 平川
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005262727A priority Critical patent/JP4684053B2/en
Publication of JP2007076925A publication Critical patent/JP2007076925A/en
Application granted granted Critical
Publication of JP4684053B2 publication Critical patent/JP4684053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブの作製方法及びその固定方法に関し、特に基板上に密着して固定されたカーボンナノチューブの作製方法及び基板上にカーボンナノチューブを固定する方法に関する。   The present invention relates to a method for producing a carbon nanotube and a method for fixing the carbon nanotube, and more particularly, to a method for producing a carbon nanotube which is closely fixed on a substrate and a method for fixing the carbon nanotube on the substrate.

カーボンナノチューブ(本明細書中では、以下、「CNT」と称す)の作製方法には、従来から様々な方法が提案されている。これらの方法に従って基板上にCNTを直接成長させた場合、CNTと基板との密着性は低く、通常は、手で触れたり、風を吹き付けるだけで基板上からCNTが剥がれてしまう。また、印刷法等で基板上にCNT液を塗布してCNTを形成した場合も、粘着テープを貼り付けて引っ張ると簡単に剥がれてしまう。そのため、直接CNTに接触したり、CNTから強い電子放出や放電を起こさせると、基板からCNTが取れてしまい、大電流の電子放出用途や、放電に曝される用途や、CNTとの接触がある用途には使用できないのが現状である。   Various methods have been proposed for producing carbon nanotubes (hereinafter referred to as “CNT” in the present specification). When CNTs are directly grown on a substrate according to these methods, the adhesion between the CNTs and the substrate is low, and usually the CNTs are peeled off from the substrate simply by touching with a hand or blowing wind. In addition, even when a CNT solution is applied on a substrate by a printing method or the like to form CNTs, they are easily peeled off when an adhesive tape is attached and pulled. For this reason, if the CNT is directly contacted or if strong electron emission or discharge is caused from the CNT, the CNT can be removed from the substrate, and there are applications of high current electron emission, exposure to discharge, and contact with the CNT. Currently, it cannot be used for certain purposes.

従って、1本ないし数本のCNTを用いてデバイスを作製する際には、もう一度リソ工程を行い、金等を蒸着せしめて固定する方法が提案され(例えば、非特許文献1参照)、また、束のCNTを用いる場合には、TiN等のバッファー層で密着性を上げようとすることが提案されている(例えば、非特許文献2参照)。   Therefore, when producing a device using one or several CNTs, a method is proposed in which a litho process is performed once again and gold or the like is deposited and fixed (for example, see Non-Patent Document 1). In the case of using a bundle of CNTs, it has been proposed to increase the adhesion with a buffer layer such as TiN (see Non-Patent Document 2, for example).

また、電子放出源を、CNTを導電性物質に埋め込んでなる積層体を用い、加工処理して得る技術も提案されている(例えば、特許文献1参照)。
Cui Xaiodong et al., Nano Letters, Vol. 3, No. 6, 2003, pp. 783-787 M. Hiramatsu et al., Japanese Journal of Applied Physics, Vol. 44, No. 22, 2005, pp. L693-L695 特開2004−127713号公報(特許請求の範囲)
In addition, a technique has been proposed in which an electron emission source is obtained by processing using a laminated body in which CNTs are embedded in a conductive material (see, for example, Patent Document 1).
Cui Xaiodong et al., Nano Letters, Vol. 3, No. 6, 2003, pp. 783-787 M. Hiramatsu et al., Japanese Journal of Applied Physics, Vol. 44, No. 22, 2005, pp. L693-L695 JP 2004-127713 A (Claims)

上記従来技術の場合、CNTの固定のためには追加の工程が必要であるという問題があり、また、バッファー層を用いて固定しても、やはり密着性が乏しく、触れると剥がれてしまうと共に、接触抵抗が増加するという問題がある。   In the case of the above prior art, there is a problem that an additional step is required for fixing CNT, and even if it is fixed using a buffer layer, the adhesion is still poor, and it will peel off when touched, There is a problem that the contact resistance increases.

そこで、本発明の課題は、上述の従来技術の問題点を解決することにあり、CNTと基板との密着性を向上させ、基板表面に触れた程度では剥がれず、さらに強めの衝撃にも密着性が損なわれず、また、導電性も熱伝導性も良く、接触抵抗も減少するCNTの作製方法及びその固定方法を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, improve the adhesion between the CNT and the substrate, and do not peel off to the extent that it touches the substrate surface. It is an object of the present invention to provide a method for producing CNT and a method for fixing the same, in which the properties are not impaired, the conductivity and heat conductivity are good, and the contact resistance is reduced.

本発明の固定されたCNTの作製方法は、基板上にカーボンナノチューブを成長させる際に、基板上にカーボンナノチューブ成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設けた基板を用い、この基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで金属膜をカーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とする。   In the method for producing a fixed CNT of the present invention, when carbon nanotubes are grown on a substrate, a metal film having a melting point higher than the carbon nanotube growth temperature is formed on the substrate, and a catalyst is formed on the metal film. Using the provided substrate, a raw material gas is supplied onto this substrate to grow carbon nanotubes, then the metal film is melted at a temperature higher than the carbon nanotube growth temperature, and the lower end portion of the carbon nanotubes is covered with this molten metal, It is fixed.

このようなプロセスを経ることにより、CNTと基板との密着性が向上する。すなわち、CNT成長後に、その下端部分を溶融金属で被覆し、固定することで、CNTと基板とを強く密着させることができる。本発明の方法によれば、基板表面に触れた程度では、CNTは剥がれず、また、導電性、熱伝導性も良く、接触抵抗も低いので、CNTの特性を損なわないという利点がある。   Through such a process, the adhesion between the CNT and the substrate is improved. That is, after the CNT growth, the lower end portion thereof is covered with a molten metal and fixed, whereby the CNT and the substrate can be strongly adhered. According to the method of the present invention, the CNTs are not peeled off to the extent that they are touched on the substrate surface, and have the advantages that the properties of the CNTs are not impaired because they have good conductivity and thermal conductivity and low contact resistance.

上記溶融金属で被覆されたCNTの下端部分の長さは、成長したCNTの長さの1/3以下であれば良い。この被覆された下端部分の長さが1/3を超えると、CNTを金属で固定したときに、被覆されるCNT表面が多くなりすぎ、その結果、CNTの特性がこの被覆金属の特性により阻害される。この被覆された下端部分の長さの下限は10nm程度であり、これより短いとCNTを十分に固定することができない。   The length of the lower end portion of the CNT covered with the molten metal may be 1/3 or less of the length of the grown CNT. If the length of the coated lower end portion exceeds 1/3, when the CNT is fixed with metal, the surface of the coated CNT becomes too large, and as a result, the properties of the CNT are hindered by the properties of the coated metal. Is done. The lower limit of the length of the coated lower end portion is about 10 nm, and if it is shorter than this, the CNTs cannot be sufficiently fixed.

また、上記金属膜は、5μm以下の膜厚を有するものである。膜厚が5μmを超えると、CNTを金属で固定したときに、金属がこのCNTの上方表面まで覆ってしまい、その結果、CNTの特性がこの金属の特性により阻害される。また、膜厚の下限は、CNTの長さに依存し、長い場合だと多少厚めの方がよいが、いずれにしろCNTを固定することができる値に適宜設定すれば良い。   The metal film has a thickness of 5 μm or less. When the film thickness exceeds 5 μm, when the CNT is fixed with a metal, the metal covers the upper surface of the CNT, and as a result, the characteristics of the CNT are hindered by the characteristics of the metal. Further, the lower limit of the film thickness depends on the length of the CNT, and if it is long, it is better to make it slightly thicker, but in any case, it may be set appropriately to a value that can fix the CNT.

基板上に形成される金属膜は、Al、Sb、Mg、Au、Ag、Cu、及びこれらの金属の少なくとも1種を含む合金から選ばれた金属からなる膜であることが望ましい。この金属膜を構成する金属は上記選ばれた金属の1つ又は2つ以上の金属であればよい。   The metal film formed on the substrate is desirably a film made of a metal selected from Al, Sb, Mg, Au, Ag, Cu, and an alloy containing at least one of these metals. The metal constituting the metal film may be one or more than one of the above selected metals.

カーボンナノチューブ成長温度は、400〜1200℃であることが望ましく、このカーボンナノチューブは、熱CVD法、プラズマCVD法、又はリモートプラズマCVD法により成長させることができる。この成長温度が400℃未満であるとCNTが十分に成長できず、また、上限の温度に関しては、固定のための金属の融点近傍になると金属が溶融、或いはマイグレートして触媒金属を覆ってしまい、CNTが成長しなくなるか又は成長したCNTを覆ってしまうので、使用する金属の種類に応じて適宜設定すればよい。   The carbon nanotube growth temperature is desirably 400 to 1200 ° C., and the carbon nanotubes can be grown by a thermal CVD method, a plasma CVD method, or a remote plasma CVD method. If the growth temperature is less than 400 ° C., the CNTs cannot be grown sufficiently, and the upper limit of the temperature is close to the melting point of the metal for fixation, and the metal melts or migrates to cover the catalyst metal. As a result, the CNT does not grow or covers the grown CNT, so that the CNT may be appropriately set according to the type of metal used.

本発明で用いる触媒は、Fe、Co、Ni及びこれら金属の少なくとも1種を含む合金から選ばれたものであり、EB蒸着法、抵抗加熱蒸着法、又はスパッタ法により上記金属膜上に成膜され得る。また、この触媒は、湿式の塗布法により金属膜上に微粒子形成されていても良い。   The catalyst used in the present invention is selected from Fe, Co, Ni, and an alloy containing at least one of these metals, and is formed on the metal film by EB vapor deposition, resistance heating vapor deposition, or sputtering. Can be done. The catalyst may be formed into fine particles on the metal film by a wet coating method.

本発明においては、金属膜を600〜1500℃で溶融させて、成長したカーボンナノチューブの下端部分の所定の部分を被覆する。600℃未満であるとカーボンナノチューブを十分に固定できず、また、上限の温度に関しては、固定のための金属の融点を大きく超えると、この金属により、カーボンナノチューブ表面がその所定部分を超えて覆われてしまうため、好ましくない。   In the present invention, the metal film is melted at 600 to 1500 ° C. to cover a predetermined portion of the lower end portion of the grown carbon nanotube. If the temperature is lower than 600 ° C., the carbon nanotubes cannot be sufficiently fixed, and the upper limit of the temperature exceeds the melting point of the metal for fixing, and the metal covers the surface of the carbon nanotubes beyond its predetermined portion. It is not preferable because it is broken.

本発明の別の固定されたカーボンナノチューブの作製方法は、基板上にカーボンナノチューブを成長させる際に、カーボンナノチューブ成長温度より高い融点を有する金属からなる基板を用い、この金属基板上に触媒を成膜又は微粒子化形成して設けた後、この金属基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで該金属基板の表面部分を該カーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とする。   In another method for producing a fixed carbon nanotube of the present invention, when a carbon nanotube is grown on a substrate, a substrate made of a metal having a melting point higher than the carbon nanotube growth temperature is used, and a catalyst is formed on the metal substrate. After the film or fine particles are formed, a raw material gas is supplied onto the metal substrate to grow carbon nanotubes, and then the surface portion of the metal substrate is melted at a temperature higher than the carbon nanotube growth temperature. The lower end portion of this is covered with this molten metal and fixed.

この別の発明においては、溶融金属で被覆されたカーボンナノチューブの下端部分の長さは、成長したカーボンナノチューブの長さの1/3以下である。金属基板は、Al、Sb、Mg、Au、Ag、Cu、及びこれらの金属の少なくとも1種を含む合金から選ばれた金属からなる基板である。この基板を構成する金属は上記選ばれた金属の1つ又は2つ以上の金属であればよい。カーボンナノチューブ成長温度は、400〜1200℃であり、カーボンナノチューブを、熱CVD法、プラズマCVD法、リモートプラズマCVD法により成長させることができる。触媒は、Fe、Co、Ni及びこれら金属の少なくとも1種を含む合金から選ばれたものであって、EB蒸着法、抵抗加熱蒸着法、スパッタ法により金属基板上に成膜されているか、又は湿式の塗布法により金属基板上に微粒子形成されている。また、金属基板表面部分を600〜1500℃で溶融させることによりカーボンナノチューブの下端部分の所定の部分を固定する。この温度範囲に関しては上記した通りである。   In this another invention, the length of the lower end portion of the carbon nanotube covered with the molten metal is 1/3 or less of the length of the grown carbon nanotube. The metal substrate is a substrate made of a metal selected from Al, Sb, Mg, Au, Ag, Cu, and an alloy containing at least one of these metals. The metal constituting this substrate may be one or more than one of the above selected metals. The carbon nanotube growth temperature is 400 to 1200 ° C., and the carbon nanotubes can be grown by a thermal CVD method, a plasma CVD method, or a remote plasma CVD method. The catalyst is selected from Fe, Co, Ni, and an alloy containing at least one of these metals, and is formed on a metal substrate by EB vapor deposition, resistance heating vapor deposition, or sputtering, or Fine particles are formed on the metal substrate by a wet coating method. Moreover, the predetermined part of the lower end part of a carbon nanotube is fixed by melting a metal substrate surface part at 600-1500 degreeC. This temperature range is as described above.

本発明のカーボンナノチューブの固定方法は、基板上にカーボンナノチューブを成長させる際に、基板上にカーボンナノチューブ成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設けた基板を用いるか、又はカーボンナノチューブ成長温度より高い融点を有する金属からなる金属基板の上に触媒を設けた基板を用い、この基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで該金属膜又は該金属基板の表面部分をカーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とする。   In the carbon nanotube fixing method of the present invention, when carbon nanotubes are grown on a substrate, a metal film having a melting point higher than the carbon nanotube growth temperature is formed on the substrate, and a catalyst is provided on the metal film. A substrate is used, or a substrate provided with a catalyst on a metal substrate made of a metal having a melting point higher than the carbon nanotube growth temperature is used, and a raw material gas is supplied onto this substrate to grow carbon nanotubes, and then the metal The surface portion of the film or the metal substrate is melted at a temperature higher than the carbon nanotube growth temperature, and the lower end portion of the carbon nanotube is covered with the molten metal and fixed.

本発明によれば、CNT成長後に、その下端部分を溶融金属で被覆し、固定することにより、CNTと基板との密着性を向上させ、基板表面に触れた程度では剥がれず、さらに強めの衝撃にも密着性が損なわれず、また、導電性も熱伝導性も良く、接触抵抗も低い固定されたCNTを提供できるという効果を奏する。   According to the present invention, after the growth of CNT, the lower end portion thereof is coated with a molten metal and fixed, thereby improving the adhesion between the CNT and the substrate. In addition, there is an effect that it is possible to provide a fixed CNT which is not impaired in adhesion, has good conductivity and thermal conductivity, and has low contact resistance.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明のCNTの作製方法によれば、CNT成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設けた基板上にCNT作製用原料ガスを供給して、所定の温度で基板上にCNTを成長させた後、成長したCNTの下に存在させてある金属膜を溶融させ、この溶融金属によりCNTの下端部分の所定の範囲を被覆し、CNTを基板に固定して、基板とCNTとを密着させる。   According to the CNT production method of the present invention, a metal film having a melting point higher than the CNT growth temperature is formed, and a CNT production source gas is supplied onto a substrate provided with a catalyst on the metal film. After growing CNTs on the substrate at a temperature of, the metal film existing under the grown CNTs is melted, and this molten metal covers a predetermined range of the lower end portion of the CNTs, and the CNTs are fixed to the substrate. Then, the substrate and the CNT are brought into close contact with each other.

本発明によれば、CNTの成長を妨げないために、CNT成長後に金属膜を溶融させる必要があるので、この金属としては、CNT成長温度より融点が高い金属を用いることが必要である。   According to the present invention, since the metal film needs to be melted after CNT growth in order not to hinder the growth of CNT, it is necessary to use a metal having a melting point higher than the CNT growth temperature.

CNTと基板との間に設ける金属膜は、成長したCNTの長さの、一般に1/3以下、好ましくは1/10以下、より好ましくは1/100以下の下端部分を被覆するような量の金属を用いて形成する。溶融金属で被覆されたCNTの下端部分の長さが1/3を超えると、上記したように、CNTの特性がこの金属の特性により阻害される。また、CNTを十分に基板に固定するためには、この被覆された下端部分の長さの下限は、好ましくは10nm程度である。   The metal film provided between the CNT and the substrate is of an amount that covers the lower end portion of the grown CNT, which is generally 1/3 or less, preferably 1/10 or less, more preferably 1/100 or less. It is formed using metal. When the length of the lower end portion of the CNT covered with the molten metal exceeds 1/3, the characteristics of the CNT are hindered by the characteristics of the metal as described above. Further, in order to sufficiently fix the CNT to the substrate, the lower limit of the length of the coated lower end portion is preferably about 10 nm.

また、この金属膜の膜厚は、実用的観点から、一般に5μm以下とすれば良い。この膜厚が厚すぎると、上記したように、CNTの特性がこの金属の特性により阻害される。CNTを十分に固定するためには、この膜厚の下限は、好ましくは10nm程度である。   The thickness of the metal film is generally 5 μm or less from a practical viewpoint. If this film thickness is too thick, as described above, the properties of the CNT are hindered by the properties of the metal. In order to sufficiently fix CNTs, the lower limit of the film thickness is preferably about 10 nm.

上記触媒調製方法及びCNTの成長方法における原材料及びプロセス条件は、特に限定されるわけではなく、既知の材料及びプロセス条件を全て使用することができる。例えば、CNT作製プロセスとしては、熱CVD法、プラズマCVD法、リモートプラズマCVD法等が挙げられ、CNT作製用原料ガスとしては、アセチレンやメタン等の炭化水素、一酸化炭素、エタノール等のアルコールが挙げられ、CNT成長温度は400〜1200℃程度及び圧力は1〜760Torr程度である。また、触媒としては、Fe、Co、Ni及びこれら金属の少なくとも1種を含む合金等が挙げられる。この触媒は、膜として設けても微粒子化して設けても良く、例えば、EB蒸着法、抵抗加熱蒸着法、スパッタ法や湿式の塗布法により調製され得る。   The raw materials and process conditions in the catalyst preparation method and the CNT growth method are not particularly limited, and all known materials and process conditions can be used. For example, the CNT production process includes a thermal CVD method, a plasma CVD method, a remote plasma CVD method, and the like. Examples of the source gas for CNT production include hydrocarbons such as acetylene and methane, and alcohols such as carbon monoxide and ethanol. The CNT growth temperature is about 400 to 1200 ° C., and the pressure is about 1 to 760 Torr. Examples of the catalyst include Fe, Co, Ni, and alloys containing at least one of these metals. This catalyst may be provided as a film or in the form of fine particles, and can be prepared, for example, by EB vapor deposition, resistance heating vapor deposition, sputtering, or wet coating.

本発明によれば、基板として、例えば、シリコン基板や、石英、ガラス板、グラファイト板等を用いることができる。この基板上に上記CNT固定用の金属膜を、例えばEB蒸着法、スパッタリング法、又はメッキ法等で、既知のプロセス条件に基づき形成した後、形成された金属膜上に既知のCNT成長用触媒を成膜又は微粒子化形成して、CNT成長用基板を作製する。その後、上記固定用金属の融点より低い温度、好ましくはこの金属原子のマイグレーションが起こる温度より低い温度でCNTの成長を行う。CNTの成長後、この金属の融点まで或いはそれ以上まで昇温させ、CNTの所定の下端部分を溶融した金属で被覆し、固定する。   According to the present invention, for example, a silicon substrate, quartz, a glass plate, a graphite plate, or the like can be used as the substrate. After the metal film for fixing the CNTs is formed on the substrate by, for example, an EB vapor deposition method, a sputtering method, or a plating method based on known process conditions, a known CNT growth catalyst is formed on the formed metal film. Is formed or formed into fine particles to produce a substrate for CNT growth. Thereafter, CNTs are grown at a temperature lower than the melting point of the fixing metal, preferably at a temperature lower than the temperature at which metal atom migration occurs. After the growth of the CNTs, the temperature is raised to the melting point of the metal or higher, and a predetermined lower end portion of the CNT is coated with the molten metal and fixed.

基板として、上記CNT固定用の金属、例えばAl、Sb、Mg、Au、Ag、Cu、及びこれらの金属の少なくとも1種を含む合金等からなる金属基板を用いることもできる。この場合には、この金属基板上に触媒を成膜するか或いは微粒子化形成した後、金属基板の融点より低い温度、好ましくはこの金属原子のマイグレーションが起こる温度より低い温度でCNTの成長を行う。CNTの成長後、この基板を構成する金属の融点まで或いはそれ以上まで昇温させ、CNTの所定の下端部分を溶融した金属で被覆し、固定する。この際、金属基板の表面部分が溶融するように、昇温、降温の速度と保持温度と保持時間とを適宜調整する。これは、金属基板を溶融させすぎると、CNT表面の所定部分以上が覆われてしまい、上記したような問題が生じるからである。反対に、溶融程度が少ないと、CNTを満足に固定することができない。   As the substrate, a metal substrate made of the above-mentioned metal for fixing CNT, such as Al, Sb, Mg, Au, Ag, Cu, and an alloy containing at least one of these metals, can also be used. In this case, after the catalyst is formed on the metal substrate or formed into fine particles, the CNTs are grown at a temperature lower than the melting point of the metal substrate, preferably lower than the temperature at which migration of the metal atoms occurs. . After the growth of the CNTs, the temperature is raised to the melting point of the metal constituting the substrate or higher, and a predetermined lower end portion of the CNT is covered with the molten metal and fixed. At this time, the rate of temperature increase / decrease, the holding temperature, and the holding time are appropriately adjusted so that the surface portion of the metal substrate is melted. This is because, if the metal substrate is melted too much, a predetermined part or more of the CNT surface is covered, and the above-described problems occur. On the other hand, if the degree of melting is small, the CNTs cannot be satisfactorily fixed.

以下、実施例を挙げて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

基板としてシリコン(100)基板、触媒としてFe、CNT成長用反応ガスとしてアセチレンを用い、以下のプロセスに従ってCNTを作製した。   CNTs were produced according to the following process using a silicon (100) substrate as a substrate, Fe as a catalyst, and acetylene as a reactive gas for CNT growth.

成膜室内に載置したシリコン基板上にアルミニウム(融点:660℃)をEB蒸着により1μm程度の膜厚で成膜した後、そのアルミニウム膜上にFe触媒を成膜した。次いで、成膜室内に、1気圧の圧力下、1L/minの窒素ガスを導入し、600℃まで昇温させ、アセチレンを300cc/minで30秒間流して、基板上にCNTを成長せしめた(長さ:10μm)。その後、真空排気してから、750℃まで昇温させて、アルミニウムを溶融せしめ、CNTの下端部分を10nm程度被覆せしめた。かくして得られたCNTの固定された基板の断面SEM写真を図1に示す。図1から明らかなように、基板上に垂直に密集して成長したブラシ状のCNTがその下端部分が固定されて形成されていることが分かる。このCNTは、テープテストによれば1kG/cm以上の強度を有し、手で触れても剥がれず、密着性が良いことが確認できた。また、導電性も熱伝導性も良く、接触抵抗も低いことが確認された。 After depositing aluminum (melting point: 660 ° C.) to a thickness of about 1 μm on the silicon substrate placed in the deposition chamber by EB vapor deposition, an Fe catalyst was deposited on the aluminum film. Next, 1 L / min of nitrogen gas was introduced into the film formation chamber under a pressure of 1 atm, the temperature was raised to 600 ° C., and acetylene was allowed to flow at 300 cc / min for 30 seconds to grow CNTs on the substrate ( Length: 10 μm). Then, after evacuating, it heated up to 750 degreeC, the aluminum was melted, and the lower end part of CNT was coat | covered about 10 nm. A cross-sectional SEM photograph of the CNT-fixed substrate thus obtained is shown in FIG. As is clear from FIG. 1, it can be seen that brush-like CNTs that are densely grown vertically on the substrate are formed with their lower end portions fixed. According to the tape test, this CNT had a strength of 1 kG / cm 2 or more, and even if it was touched by hand, it was confirmed that the adhesion was good. Further, it was confirmed that the conductivity and heat conductivity were good and the contact resistance was low.

アルミニウム板上にFe触媒を5nmの膜厚でEB蒸着により成膜して得た基板を使用したことを除いて、実施例1と同条件でCNTの成長を実施した。基板上に成長したCNTの長さは30μmであった。真空排気後、600℃から750℃まで1分間で昇温して、この温度に10秒間保持し、次いで降温した。この場合、アルミニウム板の表面が溶融してCNTの下端部分が10nm程度被覆された。かくして得られたCNTの固定された基板の断面SEM写真を図2に示す。図2から明らかなように、基板上に垂直に密集して成長したブラシ状のCNTが形成されていることが分かる。このCNTは、テープテストによれば1kG/cm以上の強度を有し、粘着テープを貼って、引っ張った程度では剥がすことができず、強固にアルミニウム板と結合していることが確認できた。また、導電性も熱伝導性も良く、接触抵抗も低いことが確認された。 CNTs were grown under the same conditions as in Example 1 except that a substrate obtained by depositing an Fe catalyst with a thickness of 5 nm on an aluminum plate by EB deposition was used. The length of the CNT grown on the substrate was 30 μm. After evacuation, the temperature was raised from 600 ° C. to 750 ° C. over 1 minute, held at this temperature for 10 seconds, and then lowered. In this case, the surface of the aluminum plate was melted and the lower end portion of the CNT was covered with about 10 nm. A cross-sectional SEM photograph of the CNT-fixed substrate thus obtained is shown in FIG. As is apparent from FIG. 2, it can be seen that brush-like CNTs that grow densely vertically on the substrate are formed. According to the tape test, this CNT had a strength of 1 kG / cm 2 or more, and it was confirmed that the CNT was firmly bonded to the aluminum plate without being peeled to the extent that the adhesive tape was applied and pulled. . Further, it was confirmed that the conductivity and heat conductivity were good and the contact resistance was low.

実施例1と同じシリコン基板上に、Cuを用いて、EB蒸着により1μm成膜した。次いで、実施例1と同様の条件で、触媒を形成し、そしてCNTの成長を実施した。基板上に成長したCNTの長さは、50μmであった。次いで、真空中、1100℃で1秒、10秒、100秒、及び300秒の間、金属膜を溶融し、CNTを基板上に固定した。かくして得られたCNTは、実施例1と同様の形態を有し、上記各溶融時間に応じて、それぞれ、CNTの長さの1/1000、1/100、1/10、及び1/3をCuが被覆し、実施例1の場合と同様の強度を示すことが確認できた。また、導電性も熱伝導性も良く、接触抵抗も低いことが確認された。   A 1 μm film was formed on the same silicon substrate as in Example 1 by EB deposition using Cu. Next, under the same conditions as in Example 1, a catalyst was formed and CNT growth was performed. The length of the CNT grown on the substrate was 50 μm. Next, the metal film was melted at 1100 ° C. for 1 second, 10 seconds, 100 seconds, and 300 seconds in vacuum to fix the CNTs on the substrate. The CNT thus obtained has the same form as in Example 1, and 1/1000, 1/100, 1/10, and 1/3 of the length of the CNT, respectively, according to each melting time. It was confirmed that Cu was coated and showed the same strength as in Example 1. Further, it was confirmed that the conductivity and heat conductivity were good and the contact resistance was low.

実施例1と同じシリコン基板上に、Cuを用いて、EB蒸着により10nm、100nm、500nm及び1μmの膜厚を有するCu膜を形成した。次いで、実施例1と同様の条件で、触媒を形成し、そしてCNTの成長を実施した。基板上に成長したCNTの長さは50μmであった。次いで、1100℃、300秒という条件で金属膜を溶融し、CNTを基板上に固定した。かくして得られたCNTは、上記各膜厚に応じて、それぞれ、金属で被覆された下端部分の長さが成長したCNTの長さの1/500、1/50、1/10、及び1/3であり、また、実施例1と同様の形態を有し、同様の強度を示すことが確認できた。また、導電性も熱伝導性も良く、接触抵抗も低いことが確認された。   On the same silicon substrate as in Example 1, Cu was used to form Cu films having thicknesses of 10 nm, 100 nm, 500 nm, and 1 μm by EB vapor deposition. Next, under the same conditions as in Example 1, a catalyst was formed and CNT growth was performed. The length of the CNT grown on the substrate was 50 μm. Next, the metal film was melted under the conditions of 1100 ° C. and 300 seconds, and the CNTs were fixed on the substrate. The CNTs thus obtained were 1/500, 1/50, 1/10, and 1/500 of the length of the grown CNTs, with the length of the lower end portion coated with metal being increased according to each film thickness. 3 and the same form as in Example 1 and the same strength was confirmed. Further, it was confirmed that the conductivity and heat conductivity were good and the contact resistance was low.

本発明によれば、CNTと基板との密着性を向上させ、基板表面に触れた程度では剥がれず、さらに強めの衝撃にも密着性が損なわれず、また、導電性も熱伝導性も良く、接触抵抗も低いCNTを提供できる。そのため、これまで用途が限られていたCNTを、直接接触させるような用途や、強い気流などが加わるような用途に使用することができる。従って、本発明は、CNTを使用する産業分野で有効に利用できる。   According to the present invention, the adhesion between the CNT and the substrate is improved, it does not peel off to the extent that it touches the substrate surface, the adhesion is not impaired even by a stronger impact, and the conductivity and heat conductivity are good, CNTs with low contact resistance can be provided. Therefore, it can be used for applications in which CNTs, which have been limited in use so far, are in direct contact with each other or where a strong air current is applied. Therefore, the present invention can be effectively used in industrial fields that use CNTs.

実施例1で得られたCNTの断面SEM写真。2 is a cross-sectional SEM photograph of the CNT obtained in Example 1. FIG. 実施例2で得られたCNTの断面SEM写真。4 is a cross-sectional SEM photograph of the CNT obtained in Example 2. FIG.

Claims (15)

基板上にカーボンナノチューブを成長させる際に、基板上にカーボンナノチューブ成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設けた基板を用い、この基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで該金属膜を該カーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とする固定されたカーボンナノチューブの作製方法。 When growing carbon nanotubes on a substrate, a metal film having a melting point higher than the carbon nanotube growth temperature is formed on the substrate, and a substrate provided with a catalyst on the metal film is used. And then growing the carbon nanotubes, then melting the metal film at a temperature higher than the carbon nanotube growth temperature, and coating and fixing the lower end portion of the carbon nanotubes with the molten metal. A method for producing carbon nanotubes. 前記溶融金属で被覆されたカーボンナノチューブの下端部分の長さが、成長したカーボンナノチューブの長さの1/3以下であることを特徴とする請求項1記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to claim 1, wherein the length of the lower end portion of the carbon nanotube covered with the molten metal is 1/3 or less of the length of the grown carbon nanotube. 前記金属膜が、5μm以下の膜厚を有することを特徴とする請求項1又は2記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to claim 1, wherein the metal film has a thickness of 5 μm or less. 前記金属膜が、Al、Sb、Mg、Au、Ag、Cu、及びこれらの金属の少なくとも1種を含む合金から選ばれた金属からなる膜であることを特徴とする請求項1〜3のいずれかに記載の固定されたカーボンナノチューブの作製方法。 4. The metal film according to claim 1, wherein the metal film is a film made of a metal selected from Al, Sb, Mg, Au, Ag, Cu, and an alloy containing at least one of these metals. A method for producing a fixed carbon nanotube according to claim 1. 前記カーボンナノチューブ成長温度が、400〜1200℃であることを特徴とする請求項1〜4のいずれかに記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to any one of claims 1 to 4, wherein the carbon nanotube growth temperature is 400 to 1200 ° C. 前記カーボンナノチューブを、熱CVD法、プラズマCVD法、又はリモートプラズマCVD法により成長させることを特徴とする請求項1〜5のいずれかに記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to claim 1, wherein the carbon nanotube is grown by a thermal CVD method, a plasma CVD method, or a remote plasma CVD method. 前記触媒が、Fe、Co、Ni及びこれら金属の少なくとも1種を含む合金から選ばれたものであり、EB蒸着法、抵抗加熱蒸着法、又はスパッタ法により前記金属膜上に成膜されているか、又は湿式の塗布法により前記金属膜上に微粒子形成されていることを特徴とする請求項1〜6のいずれかに記載の固定されたカーボンナノチューブの作製方法。 Whether the catalyst is selected from Fe, Co, Ni, and an alloy containing at least one of these metals, and is formed on the metal film by EB vapor deposition, resistance heating vapor deposition, or sputtering. The method for producing a fixed carbon nanotube according to claim 1, wherein fine particles are formed on the metal film by a wet coating method. 前記金属膜を600〜1500℃で溶融させることを特徴とする請求項1〜7のいずれかに記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to any one of claims 1 to 7, wherein the metal film is melted at 600 to 1500 ° C. 基板上にカーボンナノチューブを成長させる際に、カーボンナノチューブ成長温度より高い融点を有する金属からなる基板を用い、この金属基板上に触媒を成膜又は微粒子化形成して設けた後、この金属基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで該金属基板の表面部分を該カーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とする固定されたカーボンナノチューブの作製方法。 When a carbon nanotube is grown on the substrate, a substrate made of a metal having a melting point higher than the carbon nanotube growth temperature is used, and a catalyst is formed or formed into fine particles on the metal substrate. The raw material gas is supplied to grow carbon nanotubes, and then the surface portion of the metal substrate is melted at a temperature higher than the carbon nanotube growth temperature, and the lower end portion of the carbon nanotubes is covered with the molten metal and fixed. A method for producing a fixed carbon nanotube characterized. 前記溶融金属で被覆されたカーボンナノチューブの下端部分の長さが、成長したカーボンナノチューブの長さの1/3以下であることを特徴とする請求項9記載の固定されたカーボンナノチューブの作製方法。 The method for producing a fixed carbon nanotube according to claim 9, wherein a length of a lower end portion of the carbon nanotube covered with the molten metal is 1/3 or less of a length of the grown carbon nanotube. 前記金属基板が、Al、Sb、Mg、Au、Ag、Cu、及びこれらの金属の少なくとも1種を含む合金から選ばれた金属からなる基板であることを特徴とする請求項9又は10に記載の固定されたカーボンナノチューブの作製方法。 11. The substrate according to claim 9, wherein the metal substrate is a substrate made of a metal selected from Al, Sb, Mg, Au, Ag, Cu, and an alloy containing at least one of these metals. A method for producing a fixed carbon nanotube. 前記カーボンナノチューブ成長温度が、400〜1200℃であり、カーボンナノチューブを、熱CVD法、プラズマCVD法、又はリモートプラズマCVD法により成長させることを特徴とする請求項9〜11のいずれかに記載の固定化されたカーボンナノチューブの作製方法。 12. The carbon nanotube growth temperature is 400 to 1200 ° C., and the carbon nanotubes are grown by a thermal CVD method, a plasma CVD method, or a remote plasma CVD method. A method for producing an immobilized carbon nanotube. 前記触媒が、Fe、Co、Ni及びこれら金属の少なくとも1種を含む合金から選ばれたものであり、EB蒸着法、抵抗加熱蒸着法、又はスパッタ法により前記金属基板上に形成されているか、又は湿式の塗布法により前記金属基板上に微粒子形成されていることを特徴とする請求項9〜12のいずれかに記載の固定化されたカーボンナノチューブの作製方法。 The catalyst is selected from Fe, Co, Ni and an alloy containing at least one of these metals, and is formed on the metal substrate by EB vapor deposition, resistance heating vapor deposition, or sputtering, Alternatively, fine particles are formed on the metal substrate by a wet coating method. The method for producing an immobilized carbon nanotube according to any one of claims 9 to 12. 前記金属基板表面部分を600〜1500℃で溶融させることを特徴とする請求項9〜13のいずれかに記載の固定化されたカーボンナノチューブの作製方法。 The method for producing an immobilized carbon nanotube according to any one of claims 9 to 13, wherein the surface portion of the metal substrate is melted at 600 to 1500 ° C. 基板上にカーボンナノチューブを成長させる際に、基板上にカーボンナノチューブ成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設けた基板を用いるか、又はカーボンナノチューブ成長温度より高い融点を有する金属からなる金属基板の上に触媒を設けた基板を用い、この基板上に原料ガスを供給してカーボンナノチューブを成長させ、次いで該金属膜又は該金属基板の表面部分をカーボンナノチューブ成長温度より高い温度で溶融させ、カーボンナノチューブの下端部分をこの溶融金属で被覆し、固定することを特徴とするカーボンナノチューブの固定方法。 When growing carbon nanotubes on a substrate, a metal film having a melting point higher than the carbon nanotube growth temperature is formed on the substrate, and a substrate provided with a catalyst on the metal film is used, or the carbon nanotube growth temperature Using a substrate provided with a catalyst on a metal substrate made of a metal having a higher melting point, supplying a source gas on this substrate to grow carbon nanotubes, and then forming a carbon nanotube on the surface of the metal film or the metal substrate A method for fixing carbon nanotubes, comprising melting at a temperature higher than the nanotube growth temperature, coating the lower end portion of the carbon nanotubes with the molten metal, and fixing the carbon nanotubes.
JP2005262727A 2005-09-09 2005-09-09 Method for producing carbon nanotube and method for fixing the same Active JP4684053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262727A JP4684053B2 (en) 2005-09-09 2005-09-09 Method for producing carbon nanotube and method for fixing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262727A JP4684053B2 (en) 2005-09-09 2005-09-09 Method for producing carbon nanotube and method for fixing the same

Publications (2)

Publication Number Publication Date
JP2007076925A JP2007076925A (en) 2007-03-29
JP4684053B2 true JP4684053B2 (en) 2011-05-18

Family

ID=37937596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262727A Active JP4684053B2 (en) 2005-09-09 2005-09-09 Method for producing carbon nanotube and method for fixing the same

Country Status (1)

Country Link
JP (1) JP4684053B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272700B2 (en) 2007-01-18 2009-06-03 パナソニック株式会社 Nanostructure and manufacturing method thereof
JP5146256B2 (en) 2008-03-18 2013-02-20 富士通株式会社 Sheet-like structure and manufacturing method thereof, and electronic device and manufacturing method thereof
JP5768786B2 (en) * 2008-03-18 2015-08-26 富士通株式会社 Sheet-like structure and electronic device
JP5578699B2 (en) * 2009-04-28 2014-08-27 日東電工株式会社 Carbon nanotube assembly
KR101029566B1 (en) 2009-12-09 2011-04-15 한국기계연구원 Method for manufacturing nanowire transistor using metal thin film and nanowire transistor manufactured by the same
JP5571994B2 (en) * 2010-03-30 2014-08-13 株式会社東芝 Carbon nanotube aggregate, solar cell, and substrate with waveguide and carbon nanotube aggregate
JP2012136362A (en) * 2010-12-24 2012-07-19 Aisin Seiki Co Ltd Method for manufacturing multilayer carbon nanotube
JP5757173B2 (en) 2011-06-17 2015-07-29 アイシン精機株式会社 Power storage device
JP6328870B2 (en) * 2011-11-11 2018-05-23 株式会社Ihi Manufacturing method of nanostructure
JP5764236B2 (en) * 2014-05-01 2015-08-19 日東電工株式会社 Method for producing aggregate of carbon nanotubes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264165A (en) * 1985-05-20 1986-11-22 Senchiyurii Fiber Kk Heat radiation member covered with carbon fiber
JP2001176431A (en) * 1999-11-05 2001-06-29 Cheol Jin Lee Field-emission display element and manufacturing method therefor
JP2004140288A (en) * 2002-10-21 2004-05-13 Nishizumi Hiroshi Electrode, device and method for manufacturing it, and thermal power generation device
JP2004259667A (en) * 2003-02-27 2004-09-16 Umk Technology Kk Vertical alignment method of carbon nanotube electrode and fed cathode equipped with vertically arranged carbon nanotube
JP2004284938A (en) * 2003-03-19 2004-10-14 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Method of producing carbon nanotube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264165A (en) * 1985-05-20 1986-11-22 Senchiyurii Fiber Kk Heat radiation member covered with carbon fiber
JP2001176431A (en) * 1999-11-05 2001-06-29 Cheol Jin Lee Field-emission display element and manufacturing method therefor
JP2004140288A (en) * 2002-10-21 2004-05-13 Nishizumi Hiroshi Electrode, device and method for manufacturing it, and thermal power generation device
JP2004259667A (en) * 2003-02-27 2004-09-16 Umk Technology Kk Vertical alignment method of carbon nanotube electrode and fed cathode equipped with vertically arranged carbon nanotube
JP2004284938A (en) * 2003-03-19 2004-10-14 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Method of producing carbon nanotube

Also Published As

Publication number Publication date
JP2007076925A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4684053B2 (en) Method for producing carbon nanotube and method for fixing the same
Hofmann et al. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth
US20070020168A1 (en) Synthesis of long and well-aligned carbon nanotubes
JP3877302B2 (en) Method for forming carbon nanotube
JP3442039B2 (en) Fabrication method of patterned carbon nanotube thin film
US8709373B2 (en) Strongly bound carbon nanotube arrays directly grown on substrates and methods for production thereof
US6764874B1 (en) Method for chemical vapor deposition of single walled carbon nanotubes
US7776445B2 (en) Graphene-diamond hybrid material and method for preparing same using chemical vapor deposition
JP5065336B2 (en) Method for producing carbon nanotube film
US20120107597A1 (en) Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US20100021736A1 (en) Interface-infused nanotube interconnect
JP2009536912A (en) Assisted selective growth of dense and vertically aligned carbon nanotubes
Zhong et al. Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering
JP5673325B2 (en) Carbon nanotube formation method and thermal diffusion apparatus
TW200406513A (en) Method for producing graphite nanofiber, electron discharge source, and display device
JP2007518067A5 (en) Nanostructure chip manufacturing method and apparatus thereof
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
JP2007254167A (en) Method for production of carbon nanotube
Sohn et al. Effect of different metal deposition methods on the growth behaviors of carbon nanotubes
JP4471617B2 (en) Pd metal-encapsulating carbon nanotube production method
JP5783669B2 (en) Method for forming catalytic metal fine particles
JP4907017B2 (en) Method for producing carbon nanotube film body
Hofmeister et al. Carbon nanotube growth from Cu–Co alloys for field emission applications
TWI253386B (en) Method for preparing self-synthesized tungsten carbide nano-grade wires
EP2727881A1 (en) Aggregation of fibrous columnar structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250