TWI253386B - Method for preparing self-synthesized tungsten carbide nano-grade wires - Google Patents

Method for preparing self-synthesized tungsten carbide nano-grade wires Download PDF

Info

Publication number
TWI253386B
TWI253386B TW94101536A TW94101536A TWI253386B TW I253386 B TWI253386 B TW I253386B TW 94101536 A TW94101536 A TW 94101536A TW 94101536 A TW94101536 A TW 94101536A TW I253386 B TWI253386 B TW I253386B
Authority
TW
Taiwan
Prior art keywords
tungsten carbide
nanowire
substrate
self
film
Prior art date
Application number
TW94101536A
Other languages
Chinese (zh)
Other versions
TW200626366A (en
Inventor
Shuei-Jin Wang
Jau-Shiung Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94101536A priority Critical patent/TWI253386B/en
Application granted granted Critical
Publication of TWI253386B publication Critical patent/TWI253386B/en
Publication of TW200626366A publication Critical patent/TW200626366A/en

Links

Abstract

A method for preparing self-synthesized tungsten carbide nano-grade wires, including the steps of: (a) coating a tungsten carbide film over a substrate top face; and (b) subjecting the substrate that has been coated with the tungsten carbide film to annealing, so as to form high density tungsten carbide nano-grade wires over the tungsten carbide film surface. The annealing temperature is set at 450 to 800 DEG C, and the relative annealing time is 2.5 hours to 5 min. The changes of crystal phase of the tungsten carbide film as occurred during the annealing process allows production of a great amount of tungsten carbide nano-grade wires over the tungsten carbide film without the need of using catalyst.

Description

1253386 九、發明說明: 【發明所屬之技術領域】 纟發明s有關於-種奈米線的製造方法,特別是 種碳化鎢奈米線之製備方法。 曰 【先前技術】 近年來於奈米製程技術與材料研發上,開發能自我人 成且具優異場發射特性之新穎材料,已成為各研究機構積 極發展之重點。奈米材料大致可分碳基(carb—ased)盘非 碳基(_-carb〇n-based)兩種。在碳基奈米材料方面,由於 奈米碳管(Carbon Nanotubes,咖)具有質輕、高導電性 、高長度/直徑比,&良好的熱與化學穩定性,因㈣、 研發或應用方面皆備受囑目,尤其是在碳基場發射源^ 方面。然而,目前傳統奈米碳管(CNTs)其場發射特性 射電流密度為1μΑ^之條件下,其所需之導通電場偏: ,約在2〜3 ν/μιη左右。另外,典型奈米碳管之合成方: 主要有電弧放電法、雷射閃蒸法、及目前普遍被採用之觸 媒辅助化學氣相沈積法等,但上述製備方法除牽涉 製程設備外,觸媒輔助化學氣相沉積法更須先在— 沈積-觸媒層(鐵、钻、鎳等材料)後,再輔以化^ 沈積法(CVD)進行奈米碳f的生成,且在觸媒材料之執目 裂解控制與大面積成長的均勻性等問題上均較顯繁難。…、 而非碳基奈米材料方面,由於鎢金屬或其相關化 之奈米結構材料具有與CNTs類似之特性,且其奈米尺寸可 較CNTS為小,因此在場發射方面之應㈣具潛力。、可 5 1253386 【發明内容】 口此’本發明之目的,即在提供-種不f使用觸媒層 且可方便快速製備碳化鎢奈米線之方法。1253386 IX. Description of the invention: [Technical field to which the invention pertains] The invention of the invention relates to a method for producing a nanowire, in particular to a method for preparing a tungsten carbide nanowire.曰 【Prior Art】 In recent years, the development of nano-process technology and material research and development of novel materials with excellent field emission characteristics has become the focus of the development of various research institutions. Nanomaterials can be roughly classified into two types: carb-ased discs (_-carb〇n-based). In terms of carbon-based nanomaterials, carbon nanotubes (carbon nanotubes) have light weight, high electrical conductivity, high length/diameter ratio, & good thermal and chemical stability, due to (four), research and development or application aspects. Both are highly regarded, especially in the field of carbon-based field emission sources. However, at present, conventional nanocarbon tubes (CNTs) have a field emission characteristic with a current density of 1 μΑ, and the required conduction electric field bias is about 2 to 3 ν/μηη. In addition, the synthesis of typical carbon nanotubes: mainly arc discharge method, laser flash method, and currently used catalyst-assisted chemical vapor deposition, etc., but the above preparation method, in addition to involving process equipment, touch The medium-assisted chemical vapor deposition method is first carried out after the deposition-catalyst layer (iron, diamond, nickel, etc.), and then by the chemical deposition method (CVD) for the formation of nanocarbon f, and in the catalyst The problems of the material's cracking control and the uniformity of large-area growth are more difficult. ..., rather than carbon-based nanomaterials, since tungsten metal or its related nanostructured materials have similar properties to CNTs, and their nanometer size can be smaller than that of CNTS, in field emission (4) potential. The present invention is directed to a method for providing a tungsten carbide nanowire by providing a catalyst layer and providing a tungsten carbide nanowire.

人、於疋,本發明自行合成式碳化鎢奈米線之製備依序包 、下V驟·( A )於該基板頂面被覆一碳化鎢薄膜。及(B )將,被覆碳化鎢薄膜之基板進行熱退火處理,而於該碳 化鎢相表面形成多數碳化鎢奈米線,退火溫度45〇〜8〇(TC 籲 ,相對退火時間2·5 hr〜5 min。 • 藉由碳化鎢薄膜於熱退火處理過程中之晶相變化,而 彳在不需觸媒層的輔助下,於該碳化鎢薄膜表面產生高密 度之碳化鎢奈米線。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖示之一個較佳實施例的詳細說明中,將可 清楚的呈現。 • 如圖1、2所示,本發明自行合成式碳化鎢奈米線之製 備方法的較佳實施例依序包含以下㈣:(一);青洗乾燥基 板、(二)沉積碳化鎢薄膜、及(三)熱退火處理。以下則 針對各步驟逐一進行詳細之說明。 • 步驟()凊洗乾燥基板。本步驟之主要目的是要將 、 Ρ付著於忒基板3表面之雜質與油潰清除,由於該清洗與乾 k方式s為热習該項技術者所經常採用之技術,且非本發 月之改良重點,因此不再詳述。在本實施例中,所採用之 基板3材質為半導體,但實施時,該基板3之材質亦 6 1253386 可以是P-型半導體、玻璃、金屬或以上之組合,且實 不以上述材料為限。 '接著疋進仃步驟(二)沉積碳化鐫薄膜。利用滅鍍法 將m積於該基板3頂面,而形成所需之碳化鎮薄 \ ’、中奴化鎢純度^99·5% ,濺鍍功率為200 w,沉 =速率為0.36 A/Sec ’真空條件為7 6χ 1〇-3 w,氬氣流量 ⑽’而碳化鎢薄膜4之厚度為1〇〜5〇〇_。 :本實施例中,所採用之碳化鎢為wc,但實施時,該 ^匕鎢亦可以是WC2、WC3等。而沉積該碳化鎢薄膜4之 採用化學氣相沉積法,但實施時,碳化鶴之成分 “化鎢薄膜4的製造方法皆不以上述型態為限。 ,完成碳化鎢薄膜4後,便可將該已沉積碳化鎮薄膜4 土板3置入一濟營Γ 丰-λ山 ,^ ce (圖未不)中,進行步驟(三)熱退 =理充在二實施例中,是將已沉積碳化輪^ 石户化㈣膜(N2)的”環境中進行熱退火處理,使 析出鶴=4中的碳於退火過程中,由碳化物4表面 :,V致碳化嫣薄膜4之晶相φ wc轉變“c,而於 她鎢薄膜4表面析出形 · 4〇。其中,退火溫度範圍彻省c,而所Γ化嫣奈米線 隨著退火溫度的升高而相$^丨 而之退火時間則 min。,^ π而相對減少,相對退火時間為2.5 hr〜5 …在本貫施例中,該爐管中之氣體為氮氣 该氣體亦可以是氬氣(Α〇 -、&、 舳、戸ί 士 乂虱乱興虱虱之組合。另外, …U火處理並不限於採用爐管,亦可 量控制之加熱系統。 用其他可供氣體流 7 1253386 以下乃疋針對本發明之方法所產生的碳化鎢奈米線4〇 ,=行結構觀察與特性分析之結果,其中,所採用之基板3 材質為卜型半導體,碳化鎢薄膜4厚度為60 _,退火溫度 700°C,退火時間30 min。 -石囷3所示,為本貫施例於該碳化嫣薄膜*表面產 生之碳化鎢奈米線4G,該_化鎢奈米線4q的分布密度約 為250〜260 ,長度則介於0.1〜0.3 μηι。 戈口圆 2 、 4The preparation of the self-synthesis type tungsten carbide nanowire of the present invention is carried out in sequence, and the lower V step (A) is coated with a tungsten carbide film on the top surface of the substrate. And (B) thermally annealing the substrate coated with the tungsten carbide film, and forming a plurality of tungsten carbide nanowires on the surface of the tungsten carbide phase, the annealing temperature is 45 〇 8 〇 (TC ,, relative annealing time 2·5 hr ~5 min. • High-density tungsten carbide nanowires are produced on the surface of the tungsten carbide film by the change of the crystal phase during the thermal annealing treatment of the tungsten carbide film, without the aid of the catalyst layer. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of a preferred embodiment of the accompanying drawings. A preferred embodiment of the method for preparing a self-synthesizing tungsten carbide nanowire comprises the following (4): (1); a green washed dry substrate, (2) a deposited tungsten carbide film, and (3) a thermal annealing treatment. Detailed explanations are given for each step. • Step () Wash and dry the substrate. The main purpose of this step is to remove and remove the impurities and oil from the surface of the substrate 3 due to the cleaning and dry k method. s is a technique that is often used by those skilled in the art, and is not a focus of improvement in this month, and therefore will not be described in detail. In this embodiment, the substrate 3 used is made of a semiconductor, but when implemented, the substrate 3 material is also 6 1253386 may be P-type semiconductor, glass, metal or a combination of the above, and is not limited to the above materials. 'Next step ( ( step (2) deposition of tantalum carbide film. Using the method of extinction It is accumulated on the top surface of the substrate 3 to form the desired carbonized thinness, 'the purity of the neutralized tungsten is 99.5%, the sputtering power is 200 w, and the sinking rate is 0.36 A/Sec. The vacuum condition is 7 6χ. 1〇-3 w, argon flow rate (10)' and the thickness of the tungsten carbide film 4 is 1〇~5〇〇_. In this embodiment, the tungsten carbide used is wc, but in practice, the tungsten is also It may be WC2, WC3, etc. The chemical vapor deposition method is used for depositing the tungsten carbide thin film 4, but in practice, the carbonized crane component "the method for producing the tungsten thin film 4 is not limited to the above type." After the tungsten film 4, the deposited carbonized town film 4 soil plate 3 can be placed into a jiying fengfeng- λ mountain, ^ ce (Fig. No), step (3) heat retreat = recharge in the second embodiment, the carbonization wheel is deposited in the "four" film (N2) in the environment of thermal annealing treatment, so that the crane In the annealing process, the carbon in the annealing process is changed from the surface of the carbide 4: the crystal phase φ wc of the V-barium carbide film 4 to "c, and the surface of the tungsten film 4 is precipitated. 4", wherein the annealing temperature range After the c, and the 嫣 嫣 嫣 随着 line with the increase of the annealing temperature, the annealing time is min., ^ π and relatively reduced, the relative annealing time is 2.5 hr ~ 5 ... in the present In the embodiment, the gas in the furnace tube is nitrogen gas, and the gas may also be a combination of argon gas (Α〇-, &, 舳, 戸 乂虱 。 。 。 。 。. In addition, the ...U fire treatment is not limited to the use of a furnace tube, but also a controlled heating system. The use of other available gas streams 7 1253386 is the result of the observation and characteristic analysis of the tungsten carbide nanowires produced by the method of the present invention, wherein the substrate 3 is made of a silicon semiconductor. The tungsten carbide film 4 has a thickness of 60 Å, an annealing temperature of 700 ° C, and an annealing time of 30 min. - As shown in Figure 3, for the tungsten carbide nanowire 4G produced on the surface of the tantalum carbide film*, the distribution density of the tungsten nanowire 4q is about 250~260, and the length is 0.1. ~0.3 μηι. Gekouyuan 2, 4

, 》所示,以穿透式電子顯微鏡(ΤΕΜ)針 對該等碳化鎢奈米線40進行微結構觀察可知,該等碳化鎢 奈米線40之管徑是介於12〜15脑,且長度/直徑比為 • 而藉由選區繞射法(selective area electron chffmcuon,SEAD )分析單一根碳化嫣奈米線扣之晶相的沾 果可知’《_奈米線4G係為—包含㈣仰叫及α_ W2C(002)結晶相的微結晶結構。 將經由敎處理3Gmin後所得之碳化鎢奈米線 4〇,貫際進行場發射電流·電㈣性測試,其中,受測基板 3頂面之面積為L5x 1〇-、2,進行測試之陰極(圓未示) 與陽極(圓未示)的間距為21〇 μιη,測試環境之真空度為 IX 1〇·7 W。由目6所示之場發射電流_電壓特性曲線;知 ,經70(TC退火處理後所製得碳化鎢奈米線仙於導通電流 密度為1 μΑ/cm2時,其導通電場僅為173 v/_。 机 歸納上述,藉由將該碳化鎢薄膜4於具有氮氣、氨氣 或以上之組合的退火環境中進行㈣火處理,並透 熱退火處理溫度與相對的熱處理時間,即可在無觸媒的辅 8 1253386 ,用碳化鎢薄膜4於熱退火過程所產生之晶相變化 具"域鎢溥膜4表面產生分布密度高達250〜260 奈^ 2直&比為U〜%的碳化鶬奈米、線4Q,且該等碳化鶴 :::0具有相當好的場發射特性,於導通電流密度為 Cm時’其導通電場僅約為1.73 V/μη!。 本&月之奴化鎢奈米線4Θ的製備方法可完全與 其^體相|,並具有可直接在半導體、玻璃、或金屬 基板上進行碳化鶴奈米線4Q製作之優點,而所需之製備裝 置亦皆為—般半導體製程中所經常採用之裝置,所以相當 方便。因itb,確實達到本發明之目的。, as shown in the paper, the microstructure observation of the tungsten carbide nanowires 40 by a transmission electron microscope (ΤΕΜ) shows that the diameter of the tungsten carbide nanowires 40 is between 12 and 15 brains, and the length is / Diameter ratio is • and the selective area electron chffmcuon (SEAD) is used to analyze the crystal phase of a single carbonized nanowire buckle. '_The nanowire 4G system is - contains (four) And the microcrystalline structure of the α_W2C (002) crystal phase. The tungsten carbide nanowire obtained after the treatment of 3Gmin was subjected to a field emission current and electric (four) test. The area of the top surface of the substrate 3 to be tested was L5x 1〇-, 2, and the cathode to be tested. (The circle is not shown) The distance from the anode (circle not shown) is 21 〇 μιη, and the vacuum of the test environment is IX 1 〇·7 W. The field-current-voltage characteristic curve shown by item 6 is known. After 70 (the tungsten carbide nanowire produced by TC annealing treatment has a conduction current density of 1 μΑ/cm 2 , the conduction electric field is only 173 v. In general, the tungsten carbide film 4 is subjected to (iv) fire treatment in an annealing environment having a combination of nitrogen gas, ammonia gas or the like, and the temperature of the diathermic annealing treatment and the relative heat treatment time are Catalyst auxiliary 8 1253386, the crystal phase change produced by the tungsten carbide film 4 during the thermal annealing process has a distribution density of up to 250~260 Na 2 straight & U~% Tantalum carbide nanowire, wire 4Q, and these carbonized cranes :::0 have quite good field emission characteristics. When the conduction current density is Cm, the conduction electric field is only about 1.73 V/μη!. Ben & Month The preparation method of the annihilated tungsten nanowire 4Θ can be completely completed with the body phase, and has the advantages that the carbonized crane nanowire 4Q can be directly fabricated on a semiconductor, glass, or metal substrate, and the required preparation devices are also a device that is often used in semiconductor manufacturing processes, so Convenient because itb, to achieve the object of the present invention does.

、上所述者,僅為本發明之一較佳實施例而已,當 此乂此限定本發明實施之範圍’即大凡依本發明申請專 利範圍及發明說明内容所作之簡單的等效變化與儕飾,皆 仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本發明自行合成式碳化鎢奈米線之製備方法的 一車父佳實施例之步驟流程圖; 圖2是該較佳實施例在圖丨各步驟時之流程示壽圖; 圖3是该較佳實施例所產生之碳化鎢奈米線的§ΕΜ圖 圖4是圖3之碳化鎢奈米線的TEM圖; 圖5疋圖3之單一碳化鎢奈米線的SAED圖;及 圖θ疋圖3之碳化鎢奈米線的場發射電流_電壓之特性 曲線圖。 9 1253386The above description is only a preferred embodiment of the present invention, and thus, the scope of the present invention is defined as the equivalent equivalents and variations of the scope of the invention and the description of the invention. Decorations are still within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the steps of a preferred embodiment of a self-synthesis type tungsten carbide nanowire of the present invention; FIG. 2 is a flow chart of the preferred embodiment of the preferred embodiment. Figure 3 is a TEM diagram of the tungsten carbide nanowire produced by the preferred embodiment. Figure 4 is a TEM image of the tungsten carbide nanowire of Figure 3; Figure 5 is a single tungsten carbide nanotube of Figure 3. The SAED pattern of the line; and the characteristic curve of the field emission current_voltage of the tungsten carbide nanowire of FIG. 9 1253386

【主要元件符號說明】 3………《基板 4 0…·'…碳化嫣奈米線 4*…石炭化嫣薄膜 10[Description of main component symbols] 3........."Substrate 4 0...·'...Carbide nanowire 4*...Carbonized tantalum film 10

Claims (1)

I253386 、申請專利範圍: -種自行合成式碳化鎢奈米線之製備方法,依序包含以 下步驟: 2 (A )於該基板頂面被覆一碳化鎢薄膜;及 ()將已被覆石厌化鎢薄膜之基板進行熱退火處理 、’而於该碳化鎢薄膜表面形成多數破化鶴奈米線,退火 溫度450〜800。〇,相對退火時間2.5 hr〜5 min。 依據申請專利範圍第1項所述 貝所迷之自仃合成式碳化鎢奈米 線之製備方法,中,半跡,Λ、θ ” 、 d #驟(八)是以賤鑛法或化學氣 相〉儿積法於該基板頂面被覆碳化鎢薄膜。 3.依射請專利範圍第2項所述之自行合成式碳化嫣奈米 線之製備方法,其中,該碳化鎮薄膜厚度範圍為 nm 〇 (依據"專利範圍第1項所述之自行合成式碳化鶴奈米 線之製備方法’其中,步驟(A)之基板是由半導體、 玻璃、金屬或以上之組合製成。 5.依據申請專利範圍第丨項所述之自行合 ^ 、兔化鎢奈米 線之製備方法,其中,步驟(B )是在含有_ ^ ^ 鐵4氣、租」氣 或以上之組合的環境中進行熱退火處理。 ’I253386, the scope of patent application: - a self-synthesis method for preparing a tungsten carbide nanowire, comprising the following steps: 2 (A) coating a top surface of the substrate with a tungsten carbide film; and () anisying the coated stone The substrate of the tungsten thin film is subjected to thermal annealing treatment, and a majority of the cracked crane nanowire is formed on the surface of the tungsten carbide film, and the annealing temperature is 450 to 800. 〇, relative annealing time 2.5 hr~5 min. According to the preparation method of the self-twisted synthetic tungsten carbide nanowire described in the first paragraph of the patent application scope, the medium, half trace, Λ, θ ′′, d # (8) is a bismuth or chemical gas. The method of preparing the tungsten carbide film on the top surface of the substrate is as follows: 3. The method for preparing the self-synthesis type tantalum carbide nanowire according to the second item of the patent scope, wherein the thickness of the carbonized film is nm 〇 (According to "Preparation method of self-synthesis carbonized crane nanowire according to item 1 of the patent scope, wherein the substrate of step (A) is made of semiconductor, glass, metal or a combination thereof. The method for preparing a self-contained or rabbit-shaped tungsten nanowire according to the scope of the patent application, wherein the step (B) is carried out in an environment containing a combination of _ ^ ^ iron 4 gas, rent gas or the like. Thermal annealing treatment.'
TW94101536A 2005-01-19 2005-01-19 Method for preparing self-synthesized tungsten carbide nano-grade wires TWI253386B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94101536A TWI253386B (en) 2005-01-19 2005-01-19 Method for preparing self-synthesized tungsten carbide nano-grade wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94101536A TWI253386B (en) 2005-01-19 2005-01-19 Method for preparing self-synthesized tungsten carbide nano-grade wires

Publications (2)

Publication Number Publication Date
TWI253386B true TWI253386B (en) 2006-04-21
TW200626366A TW200626366A (en) 2006-08-01

Family

ID=37586598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101536A TWI253386B (en) 2005-01-19 2005-01-19 Method for preparing self-synthesized tungsten carbide nano-grade wires

Country Status (1)

Country Link
TW (1) TWI253386B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869842A (en) * 2010-06-11 2010-10-27 哈尔滨工业大学深圳研究生院 Tungsten carbide nano fiber oxygen reducing catalyst, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869842A (en) * 2010-06-11 2010-10-27 哈尔滨工业大学深圳研究生院 Tungsten carbide nano fiber oxygen reducing catalyst, preparation method and application thereof
CN101869842B (en) * 2010-06-11 2013-02-27 哈尔滨工业大学深圳研究生院 Tungsten carbide nano fiber oxygen reducing catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
TW200626366A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US7776445B2 (en) Graphene-diamond hybrid material and method for preparing same using chemical vapor deposition
US6764874B1 (en) Method for chemical vapor deposition of single walled carbon nanotubes
JP5065336B2 (en) Method for producing carbon nanotube film
CN1930079B (en) Elongated nano-structures and related devices
JP2009536912A (en) Assisted selective growth of dense and vertically aligned carbon nanotubes
CN103359718B (en) Preparation method of narrow graphene nanoribbons
JP2009184907A (en) Carbon nanotube composite material
JP4684053B2 (en) Method for producing carbon nanotube and method for fixing the same
Liu et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review
CN101189372A (en) Controlled growth of a nanostructure on a substrate, and electron emission devices based on the same
JP2007142197A (en) Functional element and method of manufacturing same
TW201315276A (en) Heating device comprising carbon nanotube and manufacturing method thereof
KR100801192B1 (en) Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
TWI476149B (en) Method for making carbon nanotube film
JP6158798B2 (en) Device including nanostructure and manufacturing method thereof
TWI253386B (en) Method for preparing self-synthesized tungsten carbide nano-grade wires
Morassutto et al. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition
Lim et al. Temperature-dependent selective growth of carbon nanotubes in Si/SiO2 structures for field emitter array applications
JP2004182537A (en) Method of forming arranged structure of nanocarbon material
JP2007518067A5 (en) Nanostructure chip manufacturing method and apparatus thereof
KR20120005683A (en) Method for preparing branched nanowires
KR101215564B1 (en) Manufacturing method for field emission cold cathode prepared by hydrogen plasma etching of vertically aligned carbon nanotube films
Mohamed Saheed et al. Optimization of the production of aligned CNTs array as the gas sensing element
TWI408246B (en) Manufacturing method for branched carbon nanotubes
Handuja et al. Growth of long aligned carbon nanotubes on amorphous hydrogenated silicon nitride by thermal chemical vapor deposition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees