JP4639798B2 - Vapor growth method carbon fiber production catalyst and carbon fiber production method - Google Patents

Vapor growth method carbon fiber production catalyst and carbon fiber production method Download PDF

Info

Publication number
JP4639798B2
JP4639798B2 JP2004377873A JP2004377873A JP4639798B2 JP 4639798 B2 JP4639798 B2 JP 4639798B2 JP 2004377873 A JP2004377873 A JP 2004377873A JP 2004377873 A JP2004377873 A JP 2004377873A JP 4639798 B2 JP4639798 B2 JP 4639798B2
Authority
JP
Japan
Prior art keywords
carbon fiber
catalyst
group
metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004377873A
Other languages
Japanese (ja)
Other versions
JP2006181477A (en
Inventor
貢悦 伊藤
恵美 三浦
裕 福山
貴人 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004377873A priority Critical patent/JP4639798B2/en
Publication of JP2006181477A publication Critical patent/JP2006181477A/en
Application granted granted Critical
Publication of JP4639798B2 publication Critical patent/JP4639798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノファイバー(カーボンナノチューブ)と称される、直径が1μm以下の炭素繊維の製造用触媒、及びこれを用いる炭素繊維の製造方法、特に、気相成長法による炭素繊維の製造用触媒、及びこれを用いる炭素繊維の製造方法に関する。   The present invention relates to a catalyst for producing a carbon fiber having a diameter of 1 μm or less, called a carbon nanofiber (carbon nanotube), and a method for producing a carbon fiber using the same, particularly for producing a carbon fiber by a vapor growth method. The present invention relates to a catalyst and a method for producing carbon fiber using the catalyst.

カーボンナノファイバーまたはカーボンナノチューブと称される、直径が1μm以下の炭素繊維(以下、単に「炭素繊維」と言う。)は、例えば樹脂コンパウンドに導電性や強度等の特性を付与するフィラーとして、種々の検討がなされている。そしてこの様な炭素繊維は、従来、主にアーク放電法、レーザー蒸着法、気相成長法などで製造されていた。
このうちアーク放電法やレーザー蒸発法では、排気装置や高電圧大電流電源等、高価且つ取り扱いに高度な注意を要する装置を必要とし、加えて炭素繊維の生成量も少ないという問題があった。更に、これらの方法によって得られる炭素繊維は、黒鉛やアモルファスカーボン等の不純物が多く含み、炭素繊維の直径や長さのバラツキが大きく、生成効率も低いという問題もあった。
Carbon fibers having a diameter of 1 μm or less, referred to as carbon nanofibers or carbon nanotubes (hereinafter simply referred to as “carbon fibers”), are used as fillers that impart properties such as conductivity and strength to resin compounds, for example. Is being studied. Such carbon fibers have heretofore been produced mainly by an arc discharge method, a laser vapor deposition method, a vapor phase growth method or the like.
Among them, the arc discharge method and the laser evaporation method have a problem in that they require an expensive device such as an exhaust device and a high-voltage high-current power source and require a high degree of attention in handling, and in addition, the amount of carbon fiber generated is small. Further, the carbon fibers obtained by these methods have a problem that they contain a large amount of impurities such as graphite and amorphous carbon, have large variations in the diameter and length of the carbon fibers, and have low production efficiency.

この様な課題に対し、炭化水素や一酸化炭素等の炭素を含む原料ガスを、触媒金属上で熱分解して繊維状炭素を得る方法(気相成長法)による炭素繊維の製造方法が提案されている。気相成長法は、アーク放電法やレーザー蒸着法に比べて不純物の少ない炭素繊維が得られるという利点がある。また気体状態の原料を使用することによって、効率のよい、連続反応(連続製造)が可能であり、更には原料ガスとなる炭化水素や一酸化炭素等の炭素を含むガスが安価に入手できるので、炭素繊維の連続大量製造に適している。そして更に、使用する触媒金属の種類や粒径等を調整することで、炭素繊維の性状を制御することが可能である。   In response to such problems, a carbon fiber production method using a method (vapor phase growth method) for obtaining fibrous carbon by pyrolyzing a raw material gas containing carbon such as hydrocarbon or carbon monoxide on a catalytic metal is proposed. Has been. Vapor phase epitaxy has the advantage that carbon fibers with fewer impurities can be obtained compared to arc discharge and laser deposition. In addition, by using a raw material in a gaseous state, an efficient continuous reaction (continuous production) is possible, and further, gas containing carbon such as hydrocarbon and carbon monoxide, which is a raw material gas, can be obtained at low cost. Suitable for continuous mass production of carbon fiber. Furthermore, it is possible to control the properties of the carbon fiber by adjusting the type and particle size of the catalyst metal used.

気相成長法で使用される触媒(以下、「気相成長法炭素繊維製造用触媒」ということがある。)は、例えばシリカ、アルミナ、マグネシア、ゼオライト等の担体に、鉄、コバルト、ニッケル等の遷移金属を担持させたものが提案されている。またこれらの触媒は、一般的に触媒金属を酸化物としたものであり、これを水素等によって還元雰囲気化にて活性化した後に使用する。そしてこの触媒の製造方法としては、例えば金属を共沈法やゾル−ゲル法などの、所謂、液相法により担体に担持する方法が提案されている(非特許文献1、2参照)。   Catalysts used in the vapor phase growth method (hereinafter sometimes referred to as “catalysts for vapor phase growth carbon fiber production”) are, for example, carriers such as silica, alumina, magnesia, zeolite, iron, cobalt, nickel, etc. A material on which a transition metal is supported has been proposed. Further, these catalysts are generally those obtained by converting a catalytic metal into an oxide, which is used after being activated in a reducing atmosphere with hydrogen or the like. As a method for producing this catalyst, for example, a method in which a metal is supported on a carrier by a so-called liquid phase method such as a coprecipitation method or a sol-gel method has been proposed (see Non-Patent Documents 1 and 2).

気相成長法炭素繊維製造用触媒として広く利用されている担持型触媒は、炭素繊維製造の反応条件を調整することによって、繊維の直径が数nmから十数nmの範囲の炭素繊維を製造することができる。そして担体を多孔性担体とすることで、炭素繊維の直径やその分布を調整することができ、例えば多孔質担体に遷移金属触媒を担持させたものを用いて炭素繊維を製造することも提案されている(例えば特許文献1、2参照)。   A supported catalyst widely used as a catalyst for vapor phase growth carbon fiber production produces carbon fibers having a fiber diameter in the range of several nanometers to several tens of nanometers by adjusting reaction conditions for carbon fiber production. be able to. By using a porous carrier as the carrier, the diameter and distribution of the carbon fibers can be adjusted. For example, it is proposed to produce carbon fibers using a porous carrier carrying a transition metal catalyst. (For example, see Patent Documents 1 and 2).

多孔性担体に金属触媒を担持した気相成長法炭素繊維製造用触媒の製造方法としては、例えば上述の液相法において、金属又はその化合物以外に、更にクエン酸等の有機酸を含む混合溶液を、700℃以上の高温で焼成して触媒を得る方法(有機酸法)等が提案されている。
具体的には例えば、硝酸金属塩とクエン酸を含む混合物を乾燥し、700℃で5時間焼成して得られた気相成長法炭素繊維製造用触媒を用いて、炭素繊維を製造したところ、選択的に、直径が7〜25nm程度で、チューブ部分が多層の炭素繊維を得る方法が提案されている(例えば特許文献3、非特許文献3、4参照)。
As a method for producing a catalyst for vapor phase growth carbon fiber production in which a metal catalyst is supported on a porous carrier, for example, in the above liquid phase method, in addition to the metal or a compound thereof, a mixed solution further containing an organic acid such as citric acid Has been proposed (organic acid method) and the like which are calcined at a high temperature of 700 ° C. or higher to obtain a catalyst.
Specifically, for example, when a carbon fiber was produced using a vapor phase growth carbon fiber production catalyst obtained by drying a mixture containing a metal nitrate and citric acid and calcining at 700 ° C. for 5 hours, Alternatively, a method has been proposed in which carbon fibers having a diameter of about 7 to 25 nm and a tube portion having a multilayer structure are obtained (see, for example, Patent Document 3 and Non-Patent Documents 3 and 4).

有機酸法により得られる多孔性担体は、上述の液相法における共沈法や熱分解法と比べて、得られる担体(および担体を含む気相成長法炭素繊維製造用触媒)の組成が均一であり、また比較的低温での触媒製造が可能で、且つ高比表面積を有するものが得られるという特徴がある。
Chemical Physics Letters,368,299−306(2003) React.Kinet.Catal.Lett.,64,63−71(1998) Carbon,41,2949−2959(2002) Carbon,40,955−971(2002) 特開2004−182548号公報 特開2004−18309号公報 特開2003−206117号公報
The porous carrier obtained by the organic acid method has a uniform composition of the obtained carrier (and a catalyst for producing a vapor-grown carbon fiber containing the carrier) compared to the coprecipitation method and the thermal decomposition method in the liquid phase method described above. In addition, the catalyst can be produced at a relatively low temperature and has a high specific surface area.
Chemical Physics Letters, 368, 299-306 (2003). React. Kinet. Catal. Lett. 64, 63-71 (1998) Carbon, 41, 2949-2959 (2002) Carbon, 40, 955-971 (2002) JP 2004-182548 A JP 2004-18309 A JP 2003-206117 A

しかし、液相法により得られる気相成長法炭素繊維製造用触媒を用いて炭素繊維を製造しても、生成物中には、未だに触媒由来の金属不純物が、数%から数十%程度、含まれているという問題があった。
また含浸法により得られる気相成長法炭素繊維製造用触媒は、例えばシリカ等の担体表面に触媒作用を有する金属(触媒金属)を担持させる際、多量の金属を均等に担持させることが困難な為に、担持できる金属量が少なくせざるを得ず、炭素繊維の生成効率が低下し、更には生成物中における金属不純物量も低減できないと言う問題があった。
However, even if carbon fiber is produced using a vapor phase growth carbon fiber production catalyst obtained by a liquid phase method, the catalyst still contains metal impurities derived from the catalyst in the order of several percent to several tens of percent. There was a problem of being included.
In addition, the catalyst for vapor phase growth carbon fiber production obtained by the impregnation method is difficult to carry a large amount of metal evenly when carrying a catalytic metal (catalytic metal) on the surface of a carrier such as silica. Therefore, there is a problem that the amount of metal that can be supported has to be reduced, the production efficiency of carbon fibers is lowered, and further, the amount of metal impurities in the product cannot be reduced.

そして共沈法等の液相法により得られた気相成長法炭素繊維製造用触媒では、先述の含浸法と比べれば、触媒作用を有する金属を高濃度で担持できるが、未だに触媒金属の比表面積が小さい為に触媒として作用する活性点が少なく、炭素繊維の生成効率が低いと言う問題があった。
また、高温・長時間の焼成を必要とする液相法による触媒の調製においては、過度に焼成してしまうと得られる触媒の表面にシンタリングが生じて細孔が失われ、触媒の比表面積が低下すると言う問題があった。また高温での焼成によって、担体と触媒金属との固溶体や複合酸化物を形成してしまうと、担体や触媒金属等の結晶化が進むことで触媒粒子の強度は強くなる反面、担体の結晶格子中に触媒金属が入り込んでしまい、触媒としての作用が低下してしまい、炭素繊維の生成効率が低下するという問題があった。
The vapor growth carbon fiber production catalyst obtained by a liquid phase method such as a coprecipitation method can support a metal having a catalytic action at a higher concentration than the impregnation method described above. Since the surface area was small, there were few active points which act as a catalyst, and there existed a problem that the production | generation efficiency of carbon fiber was low.
In addition, in the preparation of a catalyst by a liquid phase method that requires high-temperature, long-time firing, if the firing is excessive, sintering occurs on the surface of the resulting catalyst, resulting in loss of pores, and the specific surface area of the catalyst. There was a problem of lowering. In addition, if a solid solution or composite oxide of the support and the catalyst metal is formed by firing at a high temperature, the strength of the catalyst particles increases due to the progress of crystallization of the support and the catalyst metal, but the crystal lattice of the support. There is a problem that the catalytic metal enters the inside, the action as a catalyst is lowered, and the production efficiency of the carbon fiber is lowered.

そしてこの様な従来の有機酸法により得られた炭素繊維は、樹脂コンパウンドのフィラーとして用いてもコンパウンド中における炭素繊維の分散性が低いという問題があった。また高温焼成工程を経る為に強度が高い反面、炭素繊維と樹脂とを混練しても、炭素繊維に含まれる触媒担体や触媒金属の粒径が破砕され難いので、樹脂コンパウンドを成型した際に、これらが樹脂成型体の表面平滑性を低下させ、外観を損ねてしまうという問題があった。   The carbon fiber obtained by such a conventional organic acid method has a problem that the dispersibility of the carbon fiber in the compound is low even if it is used as a filler of a resin compound. In addition, since the strength is high because of the high-temperature firing process, the particle size of the catalyst carrier and the catalyst metal contained in the carbon fiber is not easily crushed even when the carbon fiber and the resin are kneaded, so when molding the resin compound These have the problem that the surface smoothness of the resin molding is lowered and the appearance is impaired.

一方、この様な気相成長法炭素繊維製造用触媒によって得られた、炭素繊維を含む生成物中に含まれる大量の金属不純物は、この生成物を塩酸や硝酸等の酸と接触させることで除去できるが、この様な処理方法を施すと、炭素繊維自体が酸による酸化を受けてしまい、その表面の性質が損なわれると言う問題があった。   On the other hand, a large amount of metal impurities contained in a product containing carbon fiber obtained by such a vapor growth carbon fiber production catalyst is brought into contact with an acid such as hydrochloric acid or nitric acid. Although it can be removed, there is a problem that when such a treatment method is applied, the carbon fiber itself is oxidized by an acid, and the properties of its surface are impaired.

本発明者らは上述した様な課題に鑑みて、気相成長法炭素繊維製造用触媒について、特に有機酸法にて得られる該触媒について鋭意検討した。その結果、少なくとも水溶性8族金属化合物、8族以外の水溶性金属化合物、および有機化合物とを含む混合物を焼成してなる触媒において8族金属と8族以外の金属の合計量に対する8族金属のモル比が15モル%以上であり、触媒中の全8族金属酸化物において、非晶質である8族金属酸化物の含有量を特定以上、具体的には10重量%以上とし、且つ、担体等を構成する全含有金属酸化物中の結晶質金属酸化物の含有量を抑えた、具体的には85重量%以下とした触媒を気相成長法炭素繊維製造用触媒として用いることによって、直径や長さの分布が狭く、且つ不純物含有量を抑えた炭素繊維を製造できることを見出し、本発明を完成させた。

In view of the problems as described above, the present inventors have intensively studied a catalyst for producing a vapor grown carbon fiber, particularly the catalyst obtained by the organic acid method. As a result, in a catalyst obtained by calcining a mixture containing at least a water-soluble group 8 metal compound, a water-soluble metal compound other than group 8 and an organic compound , group 8 relative to the total amount of group 8 metal and metal other than group 8 The metal molar ratio is 15 mol% or more, and in all the group 8 metal oxides in the catalyst, the content of the amorphous group 8 metal oxide is specified or more, specifically 10 wt% or more, In addition, a catalyst in which the content of the crystalline metal oxide in the total contained metal oxide constituting the support is suppressed, specifically 85% by weight or less, is used as a catalyst for producing a vapor grown carbon fiber. Thus, it was found that a carbon fiber having a narrow diameter and length distribution and a reduced impurity content can be produced, and the present invention has been completed.

本発明によれば、特別な装置等を用いずとも、簡易な方法によって、気相成長法による炭素繊維製造用触媒として優れた性能を備えた触媒を提供することが出来る。また、本発明の触媒を用いることによって、直径や長さが揃った、且つ不純物含有量を抑えた炭素繊維を製造することが出来る。そしてこの炭素繊維を樹脂フィラーとして用いた樹脂コンパウンドは、炭素繊維に付随する、触媒担体や金属触媒に由来する不純物の粒径が小さく、且つその強度が比較的低いので樹脂との混練等によって容易に微細化し、樹脂コンパウンドを樹脂成形体とした際、その表面性を損なわない、優れた樹脂成形体を提供することが出来る。   According to the present invention, a catalyst having excellent performance as a catalyst for producing carbon fibers by a vapor phase growth method can be provided by a simple method without using a special apparatus or the like. In addition, by using the catalyst of the present invention, carbon fibers having a uniform diameter and length and a reduced impurity content can be produced. A resin compound using this carbon fiber as a resin filler can be easily obtained by kneading with a resin because the particle size of impurities derived from the catalyst carrier and metal catalyst accompanying the carbon fiber is small and its strength is relatively low. When the resin compound is made into a resin molded body, it is possible to provide an excellent resin molded body that does not impair the surface properties.

以下、本発明を更に詳細に説明する。
本発明は、少なくとも水溶性8族金属化合物と、有機化合物とを含む混合物を焼成してなる、8族金属酸化物を含有する気相成長法炭素繊維製造用触媒であって、8族金属酸化物における非晶質8族金属酸化物が10重量%以上で、且つ全金属酸化物における結晶質金属酸化物が85重量%以下であることを特徴とする気相成長法炭素繊維製造用触媒、及びこの触媒を用いる炭素繊維の製造方法に関する。
Hereinafter, the present invention will be described in more detail.
The present invention relates to a vapor-grown carbon fiber production catalyst containing a group 8 metal oxide, which is obtained by firing a mixture containing at least a water-soluble group 8 metal compound and an organic compound. A catalyst for producing a vapor-grown carbon fiber, characterized in that the amorphous group 8 metal oxide in the product is 10 wt% or more and the crystalline metal oxide in the total metal oxide is 85 wt% or less, And a method for producing a carbon fiber using the catalyst.

本発明に用いる8族金属としては、鉄、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)から選ばれる少なくとも1つ以上の金属である。これらの中でも鉄、コバルト、ニッケルが好ましく、特にコバルトが好ましい。
本発明においては、この8族の金属を水溶性金属化合物として用いる。この水溶性化合物としては、水溶性で有れば特に制限はなく、例えば塩化物塩、硝酸塩、硫酸塩、酢酸塩等の無機酸塩や有機酸塩;アンモニア錯体塩;及び金属アルコキシド類等が通常用いられる。これらのうち、入手や取り扱いの容易さ等の理由から無機酸塩や有機酸塩が好ましい。この様な塩の中でも600℃程度の比較定低温で分解する硝酸塩、硫酸塩、酢酸塩等は、これらを用いて本発明の触媒を製造する際に、焼成温度を低く出来るので好ましく、特に硝酸塩、酢酸塩が好ましい。
Group 8 metals used in the present invention include iron, cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt ) At least one metal selected from. Among these, iron, cobalt, and nickel are preferable, and cobalt is particularly preferable.
In the present invention, this group 8 metal is used as a water-soluble metal compound. The water-soluble compound is not particularly limited as long as it is water-soluble, and examples thereof include inorganic acid salts and organic acid salts such as chloride salts, nitrate salts, sulfate salts, and acetate salts; ammonia complex salts; and metal alkoxides. Usually used. Of these, inorganic acid salts and organic acid salts are preferred for reasons such as availability and ease of handling. Among such salts, nitrates, sulfates, acetates and the like that decompose at a comparatively low temperature of about 600 ° C. are preferable because the calcining temperature can be lowered when these are used to produce the catalyst of the present invention. Acetate is preferred.

尚、本発明においては、更に8属金属以外の水溶性金属化合物を含む混合物を、焼成して得られた触媒であることが好ましい。この様な、8属金属以外の水溶性金属化合物としては、焼成により酸化された際、触媒担体となりうるものであれば任意のものを使用でき、具体的にはマグネシウム、カルシウム、スカンジウム、イットリウム、チタン、ジルコニウム、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガン、銅、銀、金、ホウ素、アルミニウム、ケイ素、ランタノイド等を含む化合物が挙げられる。   In addition, in this invention, it is preferable that it is the catalyst obtained by baking the mixture containing water-soluble metal compounds other than a group 8 metal. As such a water-soluble metal compound other than Group 8 metal, any compound can be used as long as it can become a catalyst carrier when oxidized by firing, specifically magnesium, calcium, scandium, yttrium, And compounds containing titanium, zirconium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, copper, silver, gold, boron, aluminum, silicon, lanthanoids, and the like.

これらの中でも、焼成により酸化されて金属酸化物となった際、触媒担体として優れた性能を奏するものとして2族、4族、13族、及び14族からなる群より選ばれる1つ以上の金属を含む金属化合物であることとが好ましく、中でもマグネシウム、チタン、ジルコニウム、アルミニウム、珪素からなる群より選ばれる1つ上の金属を含む金属化合物が好ましく、特にマグネシウム、チタン、ジルコニウムが好ましい。   Among these, one or more metals selected from the group consisting of Group 2, Group 4, Group 13, and Group 14 exhibiting excellent performance as a catalyst carrier when oxidized into a metal oxide by firing In particular, a metal compound containing one metal selected from the group consisting of magnesium, titanium, zirconium, aluminum, and silicon is preferable, and magnesium, titanium, and zirconium are particularly preferable.

本発明においては、上述したような8族金属化合物と、8族以外の金属化合物とのモル比は適宜選択し、決定すればよい。一般的にはこれらの金属換算の合計量に対して、8族金属が10モル%以上あればよく、中でも15モル%以上、特に20モル%以上であることが好ましく、その上限は50モル%以下、中でも40モル%以下であることが好ましい。   In the present invention, the molar ratio between the group 8 metal compound as described above and the metal compound other than group 8 may be appropriately selected and determined. In general, the group 8 metal should be 10 mol% or more with respect to the total amount in terms of these metals, preferably 15 mol% or more, particularly preferably 20 mol% or more, and the upper limit is 50 mol%. Hereinafter, it is preferable that it is 40 mol% or less especially.

金属化合物としては、水溶性で有れば特に制限はなく、例えば塩化物塩、硝酸塩、硫酸塩、酢酸塩等の無機酸塩や有機酸塩;アンモニア錯体塩;及び金属アルコキシド等が通常用いられる。これらのうち、入手や取り扱いの容易さ等の理由から無機酸塩や有機酸塩が好ましい。中でも600℃程度の比較定低温で分解する硝酸塩、硫酸塩、酢酸塩等は、これらを用いて本発明の触媒を製造する際に、焼成温度を低く出来るので好ましく、特に硝酸塩、酢酸塩が好ましい。またこれらの塩は、8族金属化合物と同じ塩であることが更に好ましく、中でも硝酸塩であることが好ましい。   The metal compound is not particularly limited as long as it is water-soluble, and for example, inorganic acid salts and organic acid salts such as chloride salts, nitrate salts, sulfate salts and acetate salts; ammonia complex salts; and metal alkoxides are usually used. . Of these, inorganic acid salts and organic acid salts are preferred for reasons such as availability and ease of handling. Among them, nitrates, sulfates, acetates and the like that decompose at a comparatively constant low temperature of about 600 ° C. are preferable because the firing temperature can be lowered when these are used to produce the catalyst of the present invention, and nitrates and acetates are particularly preferable. . Further, these salts are more preferably the same salts as the Group 8 metal compound, and nitrates are particularly preferable.

本発明に用いる有機化合物としては任意の有機化合物を使用できるが、一般的には水溶性を示すものを用いる。この様なものとしては例えば、同一分子内にカルボキシル基、ヒドロキシル基、アミノ基等を有する有機化合物が挙げられ、具体的にはカルボン酸や、ヒドロキシカルボン酸、カルボン酸エステルなどのカルボン酸誘導体、アミノ酸類、アミド類、アミン類、およびこれらの水和物や無水物などが挙げられる。   Any organic compound can be used as the organic compound used in the present invention, but generally an organic compound showing water solubility is used. Examples of such compounds include organic compounds having a carboxyl group, a hydroxyl group, an amino group, and the like in the same molecule. Specifically, carboxylic acid derivatives such as carboxylic acids, hydroxycarboxylic acids, carboxylic acid esters, Examples thereof include amino acids, amides, amines, and hydrates and anhydrides thereof.

これら有機化合物の中でも、分解温度の低いもの、例えば300℃以下で分解するものが好ましく、特に金属との錯形成能を有する(配位子となりうる)化合物は、本発明の触媒において含有される8族金属酸化物の分散性を良好なものとし、且つ微粒子化できるので好ましい。
この様な有機化合物としては例えば、クエン酸、リンゴ酸、酒石酸、乳酸、グリシン、グルタミン酸、グルタミン、アスパラギン、アルギニン、フェニルアラニン、アラニン、ロイシン、イソロイシンなどが挙げられる。中でも分解温度が低く、金属との錯形成能に優れるカルボン酸が好ましく、特にクエン酸が好ましい。
Among these organic compounds, those having a low decomposition temperature, for example, those capable of decomposing at 300 ° C. or less are preferable. Particularly, a compound having a complex forming ability with a metal (can be a ligand) is contained in the catalyst of the present invention. This is preferable because the dispersibility of the Group 8 metal oxide is good and the particles can be made fine.
Examples of such organic compounds include citric acid, malic acid, tartaric acid, lactic acid, glycine, glutamic acid, glutamine, asparagine, arginine, phenylalanine, alanine, leucine, and isoleucine. Among them, a carboxylic acid having a low decomposition temperature and excellent complex forming ability with a metal is preferable, and citric acid is particularly preferable.

本発明の気相成長法炭素繊維製造用触媒は、8族金属酸化物における非晶質8族金属酸化物が10重量%以上で、且つ全金属酸化物における結晶質金属酸化物が85重量%以下であることを特徴とする。8族金属酸化物における非晶質8族金属酸化物は10重量%以上であればその含有量は多いほど、得られる炭素繊維の生成効率が高くなる。よってこの含有量は、中でも11重量%以上、特に13重量%以上であることが好ましい。またその上限は特に制限はないが、一般的には50重量%以下である。   The catalyst for producing a vapor grown carbon fiber of the present invention comprises 10% by weight or more of the amorphous group 8 metal oxide in the group 8 metal oxide and 85% by weight of the crystalline metal oxide in the total metal oxide. It is characterized by the following. As long as the content of the amorphous group 8 metal oxide in the group 8 metal oxide is 10% by weight or more, the generation efficiency of the obtained carbon fiber increases. Accordingly, the content is preferably 11% by weight or more, particularly 13% by weight or more. The upper limit is not particularly limited, but is generally 50% by weight or less.

また全金属酸化物における結晶質金属酸化物の含有量は、85重量%以下であれば少ないほど好ましく、中でも80重量%以下、特に75重量%以下であることが好ましい。
これら含有量の測定方法は、従来公知の任意の方法によって行えばよく、例えば金属酸化物類等の測定対象(試料)の元素分析を行い、まずその組成を決定する。例えば、8族金属としてコバルト(Co)を含有し、また他の金属としてマグネシウム(Mg)を主として含有し、その他炭素(C)、水素等を含有する金属酸化物類においては、これをICP発光分析、CNH計等にて測定し結果からCo、Mgの他、酸素、C、H等の組成決定する。次いで内部標準を一定量添加した試料のX線分析を行い、Rietveld法等によって各金属やその酸化物等の結晶成分の質量分率を求めればよい。
Further, the content of the crystalline metal oxide in the total metal oxide is preferably as low as 85% by weight or less, more preferably 80% by weight or less, and particularly preferably 75% by weight or less.
The content may be measured by any conventionally known method. For example, elemental analysis of a measurement target (sample) such as metal oxides is performed, and the composition is first determined. For example, in the case of metal oxides containing cobalt (Co) as a Group 8 metal, mainly containing magnesium (Mg) as another metal, and containing other carbon (C), hydrogen, etc., this is referred to as ICP emission. Analysis, measurement with a CNH meter or the like, and determination of the composition of oxygen, C, H, etc. in addition to Co and Mg. Next, X-ray analysis of a sample to which a predetermined amount of an internal standard has been added is performed, and the mass fraction of crystal components such as each metal and its oxide may be determined by the Rietveld method or the like.

また非晶質の8族金属酸化物の含有量は、例えば以下の様な方法により測定すればよい。先ず測定目的の8族金属酸化物結晶純品のX線回折強度を100とし、試料中の8族金属酸化物のX線回折強度を測定して、結晶化8族金属酸化物の含有量を決定する。別途、試料の組成を化学分析により定量し、全8族金属酸化物含有量から、結晶化8族金属酸化物の含有量を差し引いたものを、非晶質8族金属酸化物の含有量とすればよい。   Further, the content of the amorphous group 8 metal oxide may be measured by the following method, for example. First, the X-ray diffraction intensity of the Group 8 metal oxide crystal pure product to be measured is set to 100, the X-ray diffraction intensity of the Group 8 metal oxide in the sample is measured, and the content of the crystallized Group 8 metal oxide is determined. decide. Separately, the composition of the sample was quantified by chemical analysis, and the total group 8 metal oxide content minus the crystallized group 8 metal oxide content was determined as the amorphous group 8 metal oxide content. do it.

本発明の気相成長法炭素繊維製造用触媒における非晶質金属酸化物と結晶質金属酸化物の粒子径は、適宜選択し決定すればよく、一般的には5nm以上、50nm以下の範囲である。中でも、この粒子径が25nm以下であると、直径が数nm〜十数nmの炭素繊維を効率的に製造することができ、またこの気相成長法炭素繊維製造用触媒を用いて得られる炭素繊維を樹脂と混合して得られる樹脂コンパウンド等の表面平滑性が良好となるので好ましい。   The particle diameters of the amorphous metal oxide and the crystalline metal oxide in the vapor-grown carbon fiber production catalyst of the present invention may be appropriately selected and determined, and are generally in the range of 5 nm or more and 50 nm or less. is there. Among these, when the particle diameter is 25 nm or less, carbon fibers having a diameter of several nm to several tens of nm can be efficiently produced, and carbon obtained using the catalyst for producing the vapor grown carbon fiber is obtained. This is preferable because the surface smoothness of a resin compound or the like obtained by mixing the fiber with the resin becomes good.

よってこの粒子径は、中でも5nm以上、更には10nm以上、特に15nm以上であることが好ましく、25nm以下、中でも20nm以下であることが好ましい。尚、非晶質、及び結晶質金属酸化物の結晶子径は、X線回折で各成分の固有回折ピークの半値幅より算出した結晶子径を示す。
本発明の気相成長法炭素繊維製造用触媒は、少なくとも水溶性8族金属化合物と、有機化合物とを含む混合物を焼成してなる、8族金属酸化物を含有する気相成長法炭素繊維製造用触媒である。この際の焼成温度は、700℃未満の、比較的低温で行うことが好ましく、具体的には650℃以下、中でも600℃以下、更には450℃以下、特に400℃以下で焼成されたものであることが好ましい。
Therefore, the particle diameter is preferably 5 nm or more, more preferably 10 nm or more, and particularly preferably 15 nm or more, and is preferably 25 nm or less, and particularly preferably 20 nm or less. The crystallite size of amorphous and crystalline metal oxides is the crystallite size calculated from the half width of the intrinsic diffraction peak of each component by X-ray diffraction.
The catalyst for producing a vapor grown carbon fiber of the present invention is a vapor grown carbon fiber containing a group 8 metal oxide, which is obtained by firing a mixture containing at least a water-soluble group 8 metal compound and an organic compound. Catalyst. The firing temperature at this time is preferably a relatively low temperature of less than 700 ° C., specifically 650 ° C. or less, particularly 600 ° C. or less, more preferably 450 ° C. or less, particularly 400 ° C. or less. Preferably there is.

本発明の気相成長法炭素繊維製造用触媒は、触媒金属上で炭化水素や一酸化炭素などの炭素を含むガスを熱分解して繊維状の炭素を析出させる、いわゆる気相成長法炭素繊維製造用の触媒である。この方法による炭素繊維の製造方法は、一般的に、粉末状の触媒に炭素繊維の原料ガスを接触させる方法や、該ガスと、触媒となる有機金属化合物を同時に反応装置内に導入する方法等がある。   The catalyst for producing a vapor-grown carbon fiber of the present invention is a so-called vapor-grown carbon fiber that deposits fibrous carbon by pyrolyzing a gas containing carbon such as hydrocarbon or carbon monoxide on a catalyst metal. It is a catalyst for production. The carbon fiber production method by this method is generally a method in which a raw material gas of carbon fiber is brought into contact with a powdered catalyst, a method in which the gas and an organometallic compound as a catalyst are simultaneously introduced into a reactor, etc. There is.

本発明の気相成長法炭素繊維製造用触媒は、還元雰囲気下で活性化した後、又は還元性ガスと共に炭素繊維原料ガスと接触させて使用する。
炭素繊維の原料ガスとしては、従来公知の任意のものを使用でき、具体的には例えば、炭素を含むガスとしてメタンやエチレン、アセチレンなどの炭化水素や、一酸化炭素、アルコールなどを用いることができる。また製造時の温度や原料ガスの供給量などは、従来公知の任意の値から、適宜選択し決定すればよい。
The catalyst for producing a vapor grown carbon fiber of the present invention is used after being activated in a reducing atmosphere or in contact with a carbon fiber raw material gas together with a reducing gas.
As the raw material gas for carbon fiber, any conventionally known gas can be used. Specifically, for example, hydrocarbons such as methane, ethylene, and acetylene, carbon monoxide, alcohol, and the like are used as the gas containing carbon. it can. Further, the temperature at the time of production, the supply amount of the raw material gas, and the like may be appropriately selected and determined from conventionally known arbitrary values.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。尚、以下の実施例、比較例における触媒等の分析方法は以下の通りである。
分析対象の気相成長法炭素繊維製造用触媒に、濃度が10wt%となるように内部標準Al粉末を添加したものを試料として用い、X線回折測定を行った。測定はCuKαのX線源を用い、照射幅が試料の幅をこえないよう可変スリットモードを用いて測定を行った。測定条件の詳細は以下の通りとし、Rietveld法による定量解析を行った。Rietveld法においては、3成分(Al、Co、及びMgO)の同時解析を実施し、得られた各相のスケールファクターから計算される質量分率と内部標準の添加量から、試料中のCoと、MgOの結晶成分の定量を行った。
開始角度15°、終了角度155°、ステップ幅0.02°、走査速度0.3°/分、発散・散乱スリット:可変(照射幅:10.00mm)、受光スリット0.2mm、
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the analysis methods of the catalyst etc. in the following examples and comparative examples are as follows.
X-ray diffraction measurement was performed using a sample prepared by adding an internal standard Al 2 O 3 powder so as to have a concentration of 10 wt% to a gas phase growth method carbon fiber production catalyst to be analyzed. The measurement was performed using a CuKα X-ray source and using a variable slit mode so that the irradiation width did not exceed the width of the sample. The details of the measurement conditions were as follows, and quantitative analysis was performed by the Rietveld method. In the Rietveld method, simultaneous analysis of three components (Al 2 O 3 , Co 3 O 4 , and MgO) was performed, and from the mass fraction calculated from the scale factor of each obtained phase and the amount of internal standard added The crystal components of Co 3 O 4 and MgO in the sample were quantified.
Start angle 15 °, end angle 155 °, step width 0.02 °, scanning speed 0.3 ° / min, divergence / scattering slit: variable (irradiation width: 10.00 mm), light receiving slit 0.2 mm,

(実施例1)
硝酸コバルト六水和物60ミリモル(mmol)、硝酸マグネシウム六水和物140mmol、及びクエン酸一水和物60mmol(分解温度は195℃)を水200gに溶解させて得た水溶液を加熱し、黄色ガスの発生が止まるまで蒸発乾固させた。この固形物を105℃で十分に乾燥させた後、電気炉を用い、空気雰囲気下で450℃まで昇温した後、450℃、30分間焼成した。焼成後、室温まで冷却した後に固形物を粉砕して、気相成長法炭素繊維製造用触媒を得た。
Example 1
An aqueous solution obtained by dissolving 60 mmol (mmol) of cobalt nitrate hexahydrate, 140 mmol of magnesium nitrate hexahydrate, and 60 mmol of citric acid monohydrate (decomposition temperature is 195 ° C.) in 200 g of water is heated to yellow. It was evaporated to dryness until gas evolution ceased. The solid was sufficiently dried at 105 ° C., heated to 450 ° C. in an air atmosphere using an electric furnace, and then fired at 450 ° C. for 30 minutes. After calcination, the solid was pulverized after cooling to room temperature to obtain a catalyst for producing a vapor grown carbon fiber.

得られた触媒をX線分析した結果、触媒前駆体における全金属酸化物中の結晶質金属酸化物の含有量は74.53重量%であり、非晶質8族金属酸化物の含有量は13.19重量%であった。また結晶質8族金属酸化物(Co)粒子の粒子径は14.6nm、またMgO粒子の粒径は16.7nmであった。
この触媒を水素還元処理した後、反応温度600℃で3時間、一酸化炭素と水素の混合ガスと接触させて炭素繊維を製造した。
得られた、炭素繊維を含む生成物を透過型電子顕微鏡で観察したところ、その直径は15〜25nmであり、多層のチューブ状炭素繊維であった。また触媒1gあたりの炭素繊維析出量(C/Cat)は6.8[g炭素/g触媒]、生成物中の炭素含有量は87重量%であった。
As a result of X-ray analysis of the obtained catalyst, the content of the crystalline metal oxide in the total metal oxide in the catalyst precursor was 74.53% by weight, and the content of the amorphous group 8 metal oxide was 13.19% by weight. The particle size of the crystalline group 8 metal oxide (Co 3 O 4 ) particles was 14.6 nm, and the particle size of the MgO particles was 16.7 nm.
After this catalyst was subjected to hydrogen reduction treatment, carbon fiber was produced by contacting with a mixed gas of carbon monoxide and hydrogen at a reaction temperature of 600 ° C. for 3 hours.
When the obtained product containing carbon fiber was observed with a transmission electron microscope, its diameter was 15 to 25 nm, and it was a multilayered tubular carbon fiber. The carbon fiber deposition amount (C / Cat) per gram of catalyst was 6.8 [g carbon / g catalyst], and the carbon content in the product was 87% by weight.

(実施例2)
炭素繊維の製造における反応温度を512℃とした以外は実施例1と同様にして炭素繊維を含む生成物を得て、評価した。炭素繊維の直径は10〜20nmであり、多層のチューブ状炭素繊維であった。またC/Catは10.8[g炭素/g触媒]、生成物中の炭素含有量は91重量%であった。
(Example 2)
A product containing carbon fiber was obtained and evaluated in the same manner as in Example 1 except that the reaction temperature in the production of carbon fiber was 512 ° C. The carbon fiber had a diameter of 10 to 20 nm and was a multilayered tubular carbon fiber. C / Cat was 10.8 [g carbon / g catalyst], and the carbon content in the product was 91% by weight.

(実施例3)
硝酸コバルト六水和物80mmol、硝酸マグネシウム六水和物120mmol、及びクエン酸一水和物120mmoとした以外は実施例1と同様にして気相成長法炭素繊維製造用触媒を得た。そしてこれを用いて、実施例2と同様にして炭素繊維を含む生成物を得て、評価した。
得られた触媒をX線分析した結果、触媒におけるMgO粒子の粒径は15.7nmであった。そして炭素繊維の直径は10〜15nmであり、多層のチューブ状炭素繊維であった。またC/Catは12.6[g炭素/g触媒]、生成物中の炭素含有量は93重量%であった。
(Example 3)
A catalyst for producing vapor grown carbon fiber was obtained in the same manner as in Example 1 except that 80 mmol of cobalt nitrate hexahydrate, 120 mmol of magnesium nitrate hexahydrate, and 120 mmol of citric acid monohydrate were used. And using this, the product containing carbon fiber was obtained similarly to Example 2, and was evaluated.
As a result of X-ray analysis of the obtained catalyst, the particle diameter of MgO particles in the catalyst was 15.7 nm. And the diameter of carbon fiber was 10-15 nm, and it was a multilayer tubular carbon fiber. C / Cat was 12.6 [g carbon / g catalyst], and the carbon content in the product was 93% by weight.

(実施例4)
触媒の製造において、焼成温度を400℃とした以外は実施例1と同様にして気相成長法炭素繊維製造用触媒を得て、これを用いて炭素繊維を含む生成物を得て、評価した。得られた触媒をX線分析した結果、触媒における全金属酸化物中の結晶質金属酸化物の含有量は40.59重量%であり、非晶質8族金属酸化物の含有量は10.87重量%であった。また結晶質8族金属酸化物粒子の粒子径は18.5nm、またMgO粒子の粒径は25.8nmであった。
そして炭素繊維の直径は10〜15nmであり、多層のチューブ状炭素繊維であった。またC/Catは4.3[g炭素/g触媒]、生成物中の炭素含有量は81重量%であった。
Example 4
In the production of the catalyst, a vapor growth carbon fiber production catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was 400 ° C., and a product containing carbon fiber was obtained and evaluated using this catalyst. . As a result of X-ray analysis of the obtained catalyst, the content of the crystalline metal oxide in the total metal oxide in the catalyst was 40.59% by weight, and the content of the amorphous group 8 metal oxide was 10. It was 87% by weight. The particle size of the crystalline group 8 metal oxide particles was 18.5 nm, and the particle size of the MgO particles was 25.8 nm.
And the diameter of carbon fiber was 10-15 nm, and it was a multilayer tubular carbon fiber. C / Cat was 4.3 [g carbon / g catalyst], and the carbon content in the product was 81% by weight.

(実施例5)
触媒の製造において、焼成温度を600℃とした以外は実施例1と同様にして気相成長法炭素繊維製造用触媒を得て、これを用いて炭素繊維を含む生成物を得て、評価した。
得られた触媒をX線分析した結果、触媒における全金属酸化物中の結晶質金属酸化物の含有量は73.64重量%であり、非晶質8族金属酸化物の含有量は11.07重量%であった。また結晶質8族金属酸化物粒子の粒子径は22.3nm、またMgO粒子の粒径は16.4nmであった。
そして炭素繊維の直径は10〜30nmであり、多層のチューブ状炭素繊維であった。またC/Catは9.9[g炭素/g触媒]、生成物中の炭素含有量は91重量%であった。
(Example 5)
In the production of the catalyst, a vapor growth carbon fiber production catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was 600 ° C., and a product containing carbon fiber was obtained and evaluated using this catalyst. .
As a result of X-ray analysis of the obtained catalyst, the content of the crystalline metal oxide in the total metal oxide in the catalyst was 73.64% by weight, and the content of the amorphous group 8 metal oxide was 11. It was 07% by weight. The particle size of the crystalline group 8 metal oxide particles was 22.3 nm, and the particle size of the MgO particles was 16.4 nm.
And the diameter of carbon fiber was 10-30 nm, and it was a multilayer tubular carbon fiber. C / Cat was 9.9 [g carbon / g catalyst], and the carbon content in the product was 91% by weight.

(実施例6)
硝酸コバルト六水和物、及び硝酸マグネシウム六水和物に代えて、酢酸コバルト四水和物、及び酢酸マグネシウム四水和物を用いた以外は実施例1と同様にして気相成長法炭素繊維製造用触媒を得て、これを用いて炭素繊維を含む生成物を得て、評価した。
得られた触媒をX線分析した結果、触媒における全金属酸化物中の結晶質8属金属酸化物のピークは確認できなかった。またMgO粒子の粒径は21.1nmであった。であった。そして炭素繊維の直径は15〜25nmであり、多層のチューブ状炭素繊維であった。またC/Catは10.1[g炭素/g触媒]、生成物中の炭素含有量は91重量%であった。
(Example 6)
Vapor grown carbon fiber in the same manner as in Example 1 except that cobalt acetate tetrahydrate and magnesium acetate tetrahydrate were used instead of cobalt nitrate hexahydrate and magnesium nitrate hexahydrate. A production catalyst was obtained and used to obtain and evaluate a product containing carbon fiber.
As a result of X-ray analysis of the obtained catalyst, a peak of crystalline group 8 metal oxide in all metal oxides in the catalyst could not be confirmed. The particle diameter of the MgO particles was 21.1 nm. Met. And the diameter of carbon fiber was 15-25 nm, and it was a multilayer tubular carbon fiber. C / Cat was 10.1 [g carbon / g catalyst], and the carbon content in the product was 91% by weight.

(比較例1)
焼成温度を700℃、焼成時間を5時間とした以外は、実施例3と同様にして気相成長法炭素繊維製造用触媒を得て、これを用いて炭素繊維を含む生成物を得て、評価した。
得られた触媒をX線分析した結果、触媒における全金属酸化物中の結晶質8族金属酸化物粒子の粒子径は26.8nm、またMgO粒子の粒径は25.8nmであった。そして炭素繊維の直径は5〜15nmであり、多層のチューブ状炭素繊維であった。しかしC/Catは0.53[g炭素/g触媒]と極めて低く、また生成物中の炭素含有量は35重量%であった。
(Comparative Example 1)
Except for the firing temperature of 700 ° C. and the firing time of 5 hours, a catalyst for producing a vapor-grown carbon fiber was obtained in the same manner as in Example 3, and a product containing carbon fiber was obtained using this catalyst. evaluated.
As a result of X-ray analysis of the obtained catalyst, the particle size of the crystalline group 8 metal oxide particles in the total metal oxide in the catalyst was 26.8 nm, and the particle size of the MgO particles was 25.8 nm. And the diameter of carbon fiber was 5-15 nm, and it was a multilayer tubular carbon fiber. However, C / Cat was as extremely low as 0.53 [g carbon / g catalyst], and the carbon content in the product was 35% by weight.

(比較例2)
焼成温度を900℃とした以外は、実施例1と同様にして気相成長法炭素繊維製造用触媒を得て、評価した。
得られた触媒をX線分析した結果、触媒における全金属酸化物中、8族金属酸化物を含めた、他の非晶質金属酸化物は見受けられなかった。また結晶質金属酸化物粒子はCoOとMgOとの固溶体であり、その粒径は37.6nmであった。
そして、この触媒を用いて、実施例1と同様にして炭素繊維を製造しようとしたが、反応時間を経過しても、炭素の生成は確認できず、炭素繊維は製造できなかった。
(Comparative Example 2)
Except for setting the firing temperature to 900 ° C., a catalyst for producing a vapor-grown carbon fiber was obtained and evaluated in the same manner as in Example 1.
As a result of X-ray analysis of the obtained catalyst, other amorphous metal oxides including a group 8 metal oxide were not found in all metal oxides in the catalyst. The crystalline metal oxide particles were a solid solution of CoO and MgO, and the particle size was 37.6 nm.
And although it was going to manufacture carbon fiber like Example 1 using this catalyst, the production | generation of carbon was not able to be confirmed even if reaction time passed, and carbon fiber was not able to be manufactured.

(比較例3)
硝酸コバルト六水和物80mmol、硝酸マグネシウム六水和物120mmolを含む水溶液100gに、蓚酸240mmolを含む水溶液100gを滴下し、沈殿生成物を得た。この沈殿を吸引ろ過でろ別し、沈殿を蒸留水で洗浄後、実施例1と同様にして充分に乾燥させ、次いで電気炉にて焼成して気相成長法炭素繊維製造用触媒を得て、これを用いて炭素繊維を含む生成物を得て、評価した。
(Comparative Example 3)
100 g of an aqueous solution containing 240 mmol of oxalic acid was added dropwise to 100 g of an aqueous solution containing 80 mmol of cobalt nitrate hexahydrate and 120 mmol of magnesium nitrate hexahydrate to obtain a precipitation product. This precipitate was filtered by suction filtration, and after washing the precipitate with distilled water, it was sufficiently dried in the same manner as in Example 1, and then calcined in an electric furnace to obtain a catalyst for producing a vapor-grown carbon fiber, This was used to obtain and evaluate products containing carbon fibers.

得られた触媒をX線分析した結果、触媒における全金属酸化物中の結晶質金属酸化物の含有量は90.79重量%であり、非晶質8族金属酸化物の含有量は6.92重量%であった。また結晶質8族金属酸化物粒子の粒子径は19.8nm、またMgO粒子の粒径は22.9nmであった。
そして、炭素繊維の直径は10〜50nmと広範囲の分布を持つものであった。また炭素繊維は多層のチューブ状炭素繊維であったが、C/Catは6.2[g炭素/g触媒]であり、また生成物中の炭素含有量は86重量%であった。
As a result of X-ray analysis of the obtained catalyst, the content of the crystalline metal oxide in the total metal oxide in the catalyst was 90.79% by weight, and the content of the amorphous group 8 metal oxide was 6. It was 92% by weight. The crystalline group 8 metal oxide particles had a particle size of 19.8 nm, and the MgO particles had a particle size of 22.9 nm.
And the diameter of the carbon fiber had a wide distribution of 10 to 50 nm. The carbon fiber was a multi-layered tubular carbon fiber, but C / Cat was 6.2 [g carbon / g catalyst], and the carbon content in the product was 86% by weight.

Figure 0004639798
Figure 0004639798

以上の結果を表1にまとめた。表1から判る通り、本発明により得られる気相成長法炭素繊維製造用触媒を用いることによって、生成物中の炭素繊維の含有率が高く、生成効率が向上し、且つ炭素繊維の直径やその分布幅が比較的小さい、良好な炭素繊維を提供することが出来る。また、得られる炭素繊維中に含まれる触媒残渣である金属酸化物の粒径が従来のものと比べて小さいので、樹脂コンパウンド等とした際に、その表面特性に与える影響が小さいことが期待できる。   The above results are summarized in Table 1. As can be seen from Table 1, by using the vapor-grown carbon fiber production catalyst obtained by the present invention, the content of carbon fiber in the product is high, the production efficiency is improved, and the diameter of the carbon fiber and its A good carbon fiber having a relatively small distribution width can be provided. Further, since the particle size of the metal oxide, which is a catalyst residue contained in the obtained carbon fiber, is smaller than that of the conventional one, it can be expected that the effect on the surface characteristics is small when a resin compound is used. .

Claims (6)

少なくとも水溶性8族金属化合物、8族以外の水溶性金属化合物、および有機化合物とを含む混合物を焼成してなる、8族金属酸化物を含有する気相成長法炭素繊維製造用触媒であって、8族金属と8族以外の金属の合計量に対する8族金属のモル比が15モル%以上であり、8族金属酸化物における非晶質8族金属酸化物が10重量%以上で、且つ全金属酸化物における結晶質金属酸化物が85重量%以下であることを特徴とする気相成長法炭素繊維製造用触媒。 A catalyst for producing a vapor-grown carbon fiber containing a Group 8 metal oxide, which is obtained by firing a mixture containing at least a water-soluble Group 8 metal compound , a water-soluble metal compound other than Group 8 and an organic compound. The molar ratio of the group 8 metal to the total amount of the group 8 metal and the metal other than the group 8 is 15 mol% or more, the amorphous group 8 metal oxide in the group 8 metal oxide is 10 wt% or more, and A catalyst for producing a vapor-grown carbon fiber, characterized in that the crystalline metal oxide in the total metal oxide is 85% by weight or less. 有機化合物として、分解温度が300℃以下の有機化合物を含むことを特徴とする請求項1に記載の気相成長法炭素繊維製造用触媒。 The catalyst for vapor phase growth carbon fiber production according to claim 1, wherein the organic compound contains an organic compound having a decomposition temperature of 300 ° C or lower. 有機化合物が、金属との錯形成能を有するものであることを特徴とする請求項1又は2に記載の気相成長法炭素繊維製造用触媒。 The catalyst for producing vapor-grown carbon fiber according to claim 1 or 2 , wherein the organic compound has a complex forming ability with a metal. 非晶質金属酸化物と結晶質金属酸化物の粒子径が25nm以下であることを特徴とする請求項1乃至のいずれかに記載の気相成長法炭素繊維製造用触媒。 The catalyst for producing vapor grown carbon fiber according to any one of claims 1 to 3 , wherein the particle diameter of the amorphous metal oxide and the crystalline metal oxide is 25 nm or less. 焼成温度が650℃以下であることを特徴とする請求項1乃至のいずれかに記載の気相成長法炭素繊維製造用触媒。 The catalyst for vapor phase growth carbon fiber production according to any one of claims 1 to 4 , wherein the firing temperature is 650 ° C or lower. 請求項1乃至のいずれかに記載の気相成長法炭素繊維製造用触媒を用いることを特徴とする炭素繊維の製造方法。 A method for producing a carbon fiber, comprising using the vapor growth carbon fiber production catalyst according to any one of claims 1 to 5 .
JP2004377873A 2004-12-27 2004-12-27 Vapor growth method carbon fiber production catalyst and carbon fiber production method Active JP4639798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377873A JP4639798B2 (en) 2004-12-27 2004-12-27 Vapor growth method carbon fiber production catalyst and carbon fiber production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377873A JP4639798B2 (en) 2004-12-27 2004-12-27 Vapor growth method carbon fiber production catalyst and carbon fiber production method

Publications (2)

Publication Number Publication Date
JP2006181477A JP2006181477A (en) 2006-07-13
JP4639798B2 true JP4639798B2 (en) 2011-02-23

Family

ID=36734965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377873A Active JP4639798B2 (en) 2004-12-27 2004-12-27 Vapor growth method carbon fiber production catalyst and carbon fiber production method

Country Status (1)

Country Link
JP (1) JP4639798B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194455B2 (en) * 2007-01-22 2013-05-08 三菱化学株式会社 Catalyst for producing vapor grown carbon fiber and vapor grown carbon fiber
JP5018387B2 (en) * 2007-10-11 2012-09-05 三菱化学株式会社 Catalyst and method for producing fine hollow carbon fiber using the same
US20100266478A1 (en) * 2008-12-10 2010-10-21 Cheil Industries Inc. Metal Nano Catalyst, Method for Preparing the Same and Method for Controlling the Growth Types of Carbon Nanotubes Using the Same
JP5649901B2 (en) * 2010-10-06 2015-01-07 川研ファインケミカル株式会社 Multi-walled carbon nanotube aggregate and method for producing the same
JP6369048B2 (en) * 2013-03-29 2018-08-08 東洋インキScホールディングス株式会社 Method for producing catalyst for carbon nanotube synthesis and method for producing aggregate of carbon nanotubes
JP5708738B2 (en) * 2013-09-04 2015-04-30 三菱化学株式会社 Aggregate of fine hollow carbon fibers and method for producing aggregate of fine hollow carbon fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282334A (en) * 1999-03-31 2000-10-10 Toshiba Corp Structure comprising carbon fiber and its support and production thereof
JP2003206117A (en) * 2002-01-15 2003-07-22 Centre National De La Recherche Scientifique (Cnrs) Process for mass production of multiwalled carbon nanotubes
JP2004003092A (en) * 2002-04-17 2004-01-08 Jfe Chemical Corp Method for producing vapor-deposition carbon fiber and vapor-deposition carbon fiber
JP2004018309A (en) * 2002-06-14 2004-01-22 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nanotube
JP2004182548A (en) * 2002-12-04 2004-07-02 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250148B2 (en) * 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282334A (en) * 1999-03-31 2000-10-10 Toshiba Corp Structure comprising carbon fiber and its support and production thereof
JP2003206117A (en) * 2002-01-15 2003-07-22 Centre National De La Recherche Scientifique (Cnrs) Process for mass production of multiwalled carbon nanotubes
JP2004003092A (en) * 2002-04-17 2004-01-08 Jfe Chemical Corp Method for producing vapor-deposition carbon fiber and vapor-deposition carbon fiber
JP2004018309A (en) * 2002-06-14 2004-01-22 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nanotube
JP2004182548A (en) * 2002-12-04 2004-07-02 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube

Also Published As

Publication number Publication date
JP2006181477A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Pudukudy et al. Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method
US8496904B2 (en) Single-walled carbon nanotube catalysts and method for preparing same
KR101358264B1 (en) Catalyst system for a multi-walled carbon nanotube production process
KR101241034B1 (en) Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
US20150224479A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
Han et al. Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce [Co (CN) 6] and application for the catalytic combustion of toluene
JP6348352B2 (en) Method for producing oxygen storage material
JP2005512925A (en) Method for producing multi-sided graphite nanotubes
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP6187282B2 (en) Hydrocarbon reforming catalyst
Shen et al. Sol–gel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition
Megarajan et al. Improved catalytic activity of PrMO 3 (M= Co and Fe) perovskites: synthesis of thermally stable nanoparticles by a novel hydrothermal method
Albaladejo-Fuentes et al. Tailoring the properties of BaTi0. 8Cu0. 2O3 catalyst selecting the synthesis method
JP4639798B2 (en) Vapor growth method carbon fiber production catalyst and carbon fiber production method
JP6237311B2 (en) Catalyst for carbon nanotube synthesis
JP2009062230A (en) Method for manufacturing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP6531560B2 (en) Catalyst for carbon nanotube synthesis
Zhang et al. Hydrothermal fabrication and catalytic properties of YBa 2 Cu 3 O 7 single crystallites for methane combustion
JP2004324004A (en) Carbon fiber and method for producing the same
JP2009041127A (en) Method for producing vapor-grown carbon fiber, and vapor-grown carbon fiber
KR100991012B1 (en) Catalyst for synthesizing filamentous carbons at low temperature and preparation methods thereof
ZHANG et al. Preparation and properties of K2NiF4-type perovskite oxides La2NiO4 catalysts for steam reforming of ethanol
CN112705208A (en) Nickel-gallium alloy catalyst and preparation method and application thereof
JP2009167573A (en) Method for producing vapor growth carbon fiber, and vapor growth carbon fiber
Fakhroueian et al. Investigation of fine nanoparticles syngas catalyst (POM) considering their various morphology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350