JP2004324004A - Carbon fiber and method for producing the same - Google Patents

Carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2004324004A
JP2004324004A JP2003118875A JP2003118875A JP2004324004A JP 2004324004 A JP2004324004 A JP 2004324004A JP 2003118875 A JP2003118875 A JP 2003118875A JP 2003118875 A JP2003118875 A JP 2003118875A JP 2004324004 A JP2004324004 A JP 2004324004A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
carrier
catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118875A
Other languages
Japanese (ja)
Inventor
Eriko Yagasaki
えり子 矢ケ崎
Masashi Inoue
正志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2003118875A priority Critical patent/JP2004324004A/en
Publication of JP2004324004A publication Critical patent/JP2004324004A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber having industrial utility value, simultaneously produced with hydrogen without accompanying the byproduction of carbon dioxide by decomposing hydrocarbons such as methane by using a catalyst; and to provide a method for producing the carbon fiber. <P>SOLUTION: The carbon fiber (3) is obtained by allowing a hydrocarbon molecule to be absorbed on a catalytic metal particle (2) carried by the surface of a spherical carrier (1), allowing the carbon formed by the decomposition reaction to continuously precipitate on the interface between the catalytic metal particle (2) and the carrier, and growing the fiber in a crystal shape accompanying the catalytic metal particle (2) at the tip. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は触媒を用いて、炭化水素を分解し、水素とカーボンナノチューブないし超微細な炭素繊維を製造する技術に関するものである。さらに詳しくいえば、本発明は、炭化水素類を効率よく熱分解して、水素と、超微細な炭素繊維とくにカーボンナノチューブと呼ばれる炭素材を製造する技術に関するものである。
【0002】
【従来の技術】
従来、水素の製造法としてはメタンなどの炭化水素類を、触媒を用いて水蒸気改質したり、空気により部分酸化したりする方法が知られている。このような方法によって製造された水素は化学工業原料として広範囲に消費されているが、最近はエネルギーとして利用するための水素消費が増大するものと見込まれている。しかし、従来法による水素製造には同時に温室効果ガスである二酸化炭素が大量に生成してしまうという問題があり、二酸化炭素を副成しない水素製造法が強く望まれている。
【0003】
一方、炭化水素類を触媒の介在下に直接分解して水素と炭素を製造する方法は古くから知られており、最近でも触媒の改良に関する発明がなされている(下記特許文献1)、しかし、水素製造とともに、有用性のない粉末状や無定形な固体炭素が大量に製造されてしまうという問題があった。
【0004】
また、カーボンナノチューブやナノスケールの炭素繊維の製造に関しては、アーク放電法、レーザーアブレーション法、プラズマ合成法、炭化水素触媒分解法など種々の方法が報告されている。安価な大量合成技術の確立を目指して盛んに研究開発も続けられている。炭化水素触媒分解法によるカーボンナノチューブの製造では、触媒金属を微粒子とする手法が多く報告されているが、製造される炭素が触媒担体の形状により影響を受けるとの報告はない。
【0005】
また、触媒担体の分散度により、製造される炭素の量や形状その他の特性に影響が見られるとの報告もない。
【0006】
【特許文献】
特許第2838192号明細書
【0007】
【発明が解決しようとする課題】
本発明は、前記従来の問題を解決するため、触媒を用いてメタンなどの炭化水素類を熱分解することで、二酸化炭素の副生を伴うことなく水素を製造し、同時に工業的利用価値の高いカーボン繊維及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明のカーボン繊維は、球状担体表面に担持された触媒金属粒子に炭化水素分子が吸着し、分解反応を起こして生成した炭素が、前記触媒金属粒子と担体との界面に連続的に析出し、先端に前記触媒金属粒子をともなって結晶状に成長したことを特徴とする。
【0009】
本発明のカーボン繊維の製造方法は、炭化水素分解触媒を用いてカーボン繊維を製造する方法であって、球状担体表面に担持された触媒金属粒子に炭化水素分子を供給し、吸着させ、分解反応させ、前記触媒金属粒子と担体との界面に炭素を連続的に析出させ、先端に前記触媒金属粒子をともなって結晶状に成長させることを特徴とする。
【0010】
【発明の実施の形態】
本発明者らは、炭化水素類の熱分解触媒について研究を重ねた結果、水素と同時に生成する炭素をカーボンナノチューブないし超微細炭素繊維とするような触媒を見出し、本発明をなすに至った。
【0011】
触媒担体には一般に、触媒を担持する表面積が大きいことが必要であるが、その他には細孔径、酸性度等の物性が重要視されてきた。しかし本発明者らは、炭化水素類の熱分解で水素とともに生成する炭素が粒子状や無定形ではなく、カーボンナノチューブないし超微細炭素繊維となるためには、触媒金属の種類や触媒調製法よりも触媒担体の形状及び分散度が重要であることを見出し、この知見に基づいて本発明をなしたものである。
【0012】
本発明の方法は、高分散な球状の担体と該担体に担持された金属とからなる触媒上において、メタン等の炭化水素ガスを熱分解することにより実施され、水素と、カーボンナノチューブないし超微細な炭素繊維が製造される。この場合、担体の形状が球形であることが重要であって、板状、鱗片状、無定形等では本発明の効果が得られない。
【0013】
担体の例としては、球形のジルコア(ZrO)、球形のシリカ(SiO)、球形のエルビウム−ガリウム酸化物(ErGa12)等が挙げられる。この状担体の平均粒子径は10〜1000nmの範囲にあることが好ましい。
【0014】
担持される金属としては、ニッケルや銅等の公知の触媒金属各種を用いることができる。また、凝集しておらず分散性の良い担体ほどカーボンナノチューブないし超微細な炭素繊維の製造に良好である。前記触媒金属粒子の大きさは、5〜100nmの範囲にあることが好ましい。結晶状に成長するカーボン繊維は、先端に触媒金属粒子をともなっており、カーボン繊維の直径は触媒金属粒子の直径にほぼ等しくなる。カーボン繊維の直径も5〜100nmの範囲になる。カーボン繊維の長さは数百ミクロン以上である。
【0015】
本発明による触媒は、球状の触媒担体に、触媒金属の塩を含浸・乾燥後、加熱することにより調製できる。球状の触媒担体は、いわゆるグリコサーマル法により合成することができる。ここでグリコサーマル法とは、担体前駆体を1,4−ブタンジオールなどのグリコール中で懸濁し、その後焼成することにより、担体を形成する方法をいう。ジルコニア担体を合成する場合を例にとると、所定量のジルコニウムテトラプロポキシドと酢酸イットリウムまたはマグネシウムアセチルアセトナートを1,4−ブタンジオール中に懸濁させ、窒素雰囲気中で300℃程度で反応させた後、生成物を洗浄・乾燥後、400℃程度で焼成すると、ほぼ真球状の形態の高表面積担体が得られる。担体の分散度は焼成温度により影響を受け、例えば1200℃程度の高温では凝集が起こり、不適当である。これを各種金属塩(硝酸ニッケル、硝酸コバルト、硝酸鉄、ギ酸銅、モリブデン酸アンモニウム、塩化マンガン等)の水溶液に含浸し、乾燥後に400℃程度の温度で焼成すると本発明の触媒が得られる。
【0016】
上記のようにして製造された触媒上に所定の温度でメタン等の炭化水素類のガスを流すと、水素と固体炭素が生成し、固体炭素がカーボンナノチューブ(条件により超微細な炭素繊維)となっていることは透過型電子顕微鏡による観察で確認される。好ましい反応温度は触媒により異なるが、概ね400℃以上800℃以下の範囲で、とくに450℃以上650℃以下が好適である。
【0017】
本発明の触媒によるカーボンナノチューブないし超微細な炭素繊維の生成は、触媒に担持された金属上で炭化水素分子が分解反応を起こして生成した炭素が触媒金属内に溶解し、触媒金属粒子と担体との界面で析出することによって起こる。この触媒金属粒子−担体界面での炭素析出が連続的に起これば、生成する炭素はカーボンナノチューブないし超微細な炭素繊維になるが、析出が不連続であると粉末状や無定形な炭素が生成する。本発明の触媒では、担体形状を球形とすることで、炭素の析出に伴って担体粒子同士の遊離が進むため、カーボンナノチューブないし超微細な炭素繊維の成長を阻害せず、高収率で有用なカーボンナノチューブないし超微細な炭素繊維を製造することができる。また、触媒担体の分散性が悪く担体粒子が凝集している場合には、カーボンナノチューブないし超微細な炭素繊維の成長が阻害されてしまうが、高分散な触媒担体を用いれば、結晶性が良く長尺なカーボンナノチューブないし超微細な炭素繊維を製造することができる。
【0018】
次に図1(a)〜(c)は、本発明の炭素繊維の生成メカニズムを説明する図面である。まず図1(a)に示すように、球状担体1表面に担持された触媒金属2に例えばメタン(CH)炭化水素分子を供給し、吸着させ、熱分解反応をおこさせる。図1(b)に示すように、脱水素反応し、生成した炭素(C)が触媒金属2内に溶解し、図1(c)に示すように、触媒金属粒子2と担体1との界面に炭素繊維3を連続的に析出させる。炭素繊維3は先端に触媒金属粒子2をともなって結晶状に成長する。図2の矢印の部分が、炭素繊維の先端の触媒金属粒子である。
【0019】
図3は、中央の黒い球状担体から数多くの本数の炭素繊維が成長した状態を示す。図4は図3における球状担体の拡大図、図5は図3におけるは炭素繊維部分の拡大図である。
【0020】
図6は、図3における炭素繊維の拡大図であり、平行線状に並んで写っているのはグラフェン炭素層である。ここでグラフェン炭素層とは、グラファイトからなる6員環網目構造の層のことをいう。また、図6中、右の繊維に着目すると、中央の長手方向に白い線が見える。中空であることを示し、この繊維はカーボンナノチューブの構造を示している。カーボンナノチューブは、前記グラファイトからなる6員環網目構造の層の長いものが、単層でもしくは多層に重なって、または斜めに筍状に巻いたように形成されている。
【0021】
本発明の炭素繊維及びカーボンナノチューブは、電池、燃料電池、電気二重層キャパシタの電極、導電性フィラー等の用途に適用できる。
【0022】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。また、本発明の効果をより明らかにするために、比較例についても説明する。
【0023】
(実施例1)
所定量のジルコニウムテトラプロポキシドと酢酸イットリウムを1,4−ブタンジオール中に懸濁させ、窒素置換した反応系内で毎分2.5度で昇温し、300℃程度で2時間保持して反応させた。生成物をメタノールで洗浄し、風乾させた後、400℃程度で焼成して本発明の実施例の担体を得た。得られた担体を走査型電子顕微鏡を用いて観察したところ、ほぼ真球状の形態で高分散になっていることが確認された。
【0024】
この担体を硝酸ニッケルの水溶液を用いて含浸、乾燥した後、400℃で焼成して、Ni/ZrCo触媒とした。ニッケルの担持量は10重量%となるよう調製した。
【0025】
上記のようにして製造したNi/ZrCo触媒をアルゴンガス中で昇温し、所定の温度に達したら、アルゴンガスの流通を止めメタンガスの流通に切り替えて、水素とカーボンナノチューブを製造させた。水素が製造されていること、および二酸化炭素の副生が問題とならないレベルであることは、反応後のガスのガスクロマトグラフを用いた分析により確認された。また析出した固体炭素を透過型電子顕微鏡およびX線回折装置により観測し、カーボンナノチューブが製造されたことを確認した。図2〜5は本実施例によって得られた炭素繊維を示している。また、図6にこのカーボンナノチューブの透過型電子顕微鏡写真を示す。
【0026】
温度を種々変化させて反応を繰り返したところ、カーボンナノチューブの製造効率は、500℃付近で最も高かった。
【0027】
(実施例2)
所定量の酢酸エルビウム四水和物、トリス−アセチルアセトナトガリウム、1,4−ブタンジオールを懸濁させ、300℃で2時間反応させた後、メタノールで洗浄し風乾後、300℃で焼成し、触媒担体ErGa12を得た。このグリコサーマル法によって調製した球状担体ErGa12が、球形で高分散であることが電子顕微鏡観察によって確認した。この担体に5重量%のNiを担持して作製した触媒を用いて、650℃においてメタンの分解反応を実施したところ、ガスクロマトグラフにより水素の製造が確認できた。また、透過型電子顕微鏡観察により、図2〜5に示すのと同様に、生成炭素がカーボンナノチューブであることが確認された。
【0028】
なお、焼成温度を1200℃とした他は全く同様の方法で作製した担体は、形状は球体であるが凝集していることが電子顕微鏡観察により確認された。この担体に上と同様の方法で触媒金属を担持して作製した触媒上でのメタンの分解反応からは、水素とカーボンナノチューブの生成するが、カーボンナノチューブの製造量が1/2以下に減少した。
【0029】
(比較例1)
球状ではない市販のジルコニアを担体に使用した以外は実施例と同様にして触媒を製造し、実施例と同様にメタンガスと反応させた。水素ガスの製造はガスクロマトグラフにより確認されたが、析出した固体炭素中には粒子状ないし無定形の炭素が多く含まれ、カーボンナノチューブや炭素繊維の収率はわずかであった。
【0030】
(比較例2)
球状ではない市販のチタニアを担体に使用した以外は実施例と同様にして触媒を製造し、実施例と同様にメタンガスと反応させた。水素ガスの製造はガスクロマトグラフにより確認されたが、析出した固体炭素の透過型電子顕微鏡による観察では、オニオン状の粒子ばかりが見られ、有効なカーボンナノチューブないし炭素繊維の製造は認められなかった。
【0031】
【発明の効果】
本発明によれば、分散性の良い球状形態の担体を用いた触媒上でメタン等の炭化水素類を反応させることによって、二酸化炭素の副生を抑制して、水素とカーボンナノチューブないし超微細な炭素繊維を製造することができる。
【図面の簡単な説明】
【図1】(a)〜(c)は、本発明の実施例1における炭素繊維の生成メカニズムを説明する図面である。
【図2】同、炭素繊維の先端の触媒金属粒子を示す図面である。
【図3】同、中央の黒い球状担体から数多くの本数の炭素繊維が成長した状態を示す図面である。
【図4】図3における球状担体の拡大図である。
【図5】図3における炭素繊維部分の拡大図である。
【図6】図3における炭素繊維の拡大図であり、グラフェン層状構造と、カーボンナノチューブの構造を示す。
【符号の説明】
1 球状担体
2 触媒金属
3 炭素繊維
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for decomposing hydrocarbons using a catalyst to produce hydrogen and carbon nanotubes or ultrafine carbon fibers. More specifically, the present invention relates to a technology for efficiently pyrolyzing hydrocarbons to produce hydrogen and ultrafine carbon fibers, particularly carbon materials called carbon nanotubes.
[0002]
[Prior art]
Conventionally, as a method for producing hydrogen, a method is known in which hydrocarbons such as methane are reformed by steam using a catalyst or partially oxidized by air. Although hydrogen produced by such a method is widely consumed as a raw material for the chemical industry, it is expected that hydrogen consumption for energy use will increase in recent years. However, the conventional method of producing hydrogen has a problem that carbon dioxide, which is a greenhouse gas, is generated in large quantities at the same time, and a hydrogen producing method that does not produce carbon dioxide is strongly desired.
[0003]
On the other hand, a method for producing hydrogen and carbon by directly decomposing hydrocarbons in the presence of a catalyst has been known for a long time, and an invention relating to catalyst improvement has recently been made (Patent Document 1 below). There has been a problem that, together with the production of hydrogen, powdery or amorphous solid carbon having no usefulness is produced in large quantities.
[0004]
Various methods have been reported for producing carbon nanotubes and nanoscale carbon fibers, such as an arc discharge method, a laser ablation method, a plasma synthesis method, and a hydrocarbon catalytic decomposition method. Research and development are being actively pursued with the aim of establishing inexpensive mass synthesis technology. In the production of carbon nanotubes by the hydrocarbon catalytic decomposition method, many methods using fine particles of catalytic metal have been reported, but there is no report that the produced carbon is affected by the shape of the catalyst carrier.
[0005]
Further, there is no report that the amount, shape and other properties of carbon produced are affected by the degree of dispersion of the catalyst carrier.
[0006]
[Patent Document]
Patent No. 2838192 Specification
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems by thermally decomposing hydrocarbons such as methane using a catalyst to produce hydrogen without by-producing carbon dioxide, and at the same time, reduce the value of industrial use. An object is to provide a high carbon fiber and a method for producing the same.
[0008]
[Means for Solving the Problems]
In the carbon fiber of the present invention, hydrocarbon molecules are adsorbed to the catalyst metal particles supported on the surface of the spherical carrier, and carbon generated by causing a decomposition reaction is continuously deposited on the interface between the catalyst metal particles and the carrier. , Characterized in that it has grown into a crystal with the catalyst metal particles at the tip.
[0009]
The method for producing carbon fiber of the present invention is a method for producing carbon fiber using a hydrocarbon decomposition catalyst, in which hydrocarbon molecules are supplied to catalyst metal particles supported on a spherical carrier surface, adsorbed, and the decomposition reaction is performed. Then, carbon is continuously deposited on the interface between the catalyst metal particles and the carrier, and is grown in a crystalline state with the catalyst metal particles at the tip.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted research on a catalyst for thermal decomposition of hydrocarbons, and as a result, have found a catalyst in which carbon produced simultaneously with hydrogen is converted into carbon nanotubes or ultrafine carbon fibers, and have accomplished the present invention.
[0011]
In general, a catalyst support needs to have a large surface area for supporting a catalyst, but other important factors such as physical properties such as pore diameter and acidity have been regarded as important. However, the present inventors have determined that the carbon generated together with hydrogen by the thermal decomposition of hydrocarbons is not particulate or amorphous, but rather carbon nanotubes or ultrafine carbon fibers, depending on the type of catalyst metal and the catalyst preparation method. Also found that the shape and the degree of dispersion of the catalyst carrier were important, and made the present invention based on this finding.
[0012]
The method of the present invention is carried out by thermally decomposing a hydrocarbon gas such as methane on a catalyst composed of a highly dispersed spherical carrier and a metal supported on the carrier. Carbon fiber is produced. In this case, it is important that the shape of the carrier is spherical, and the effects of the present invention cannot be obtained if the shape is plate-like, scale-like, amorphous, or the like.
[0013]
Examples of the carrier include spherical zirconium (ZrO 2 ), spherical silica (SiO 2 ), and spherical erbium-gallium oxide (Er 3 Ga 5 O 12 ). The average particle size of the carrier is preferably in the range of 10 to 1000 nm.
[0014]
As the metal to be supported, various known catalyst metals such as nickel and copper can be used. In addition, a carrier that is not aggregated and has better dispersibility is more suitable for producing carbon nanotubes or ultrafine carbon fibers. The size of the catalyst metal particles is preferably in the range of 5 to 100 nm. The carbon fiber that grows in a crystalline state has catalytic metal particles at its tip, and the diameter of the carbon fiber is substantially equal to the diameter of the catalytic metal particles. The diameter of the carbon fiber is also in the range of 5 to 100 nm. The length of the carbon fiber is several hundred microns or more.
[0015]
The catalyst according to the present invention can be prepared by impregnating and drying a spherical catalyst support with a salt of a catalyst metal, followed by heating. The spherical catalyst support can be synthesized by a so-called glycothermal method. Here, the glycothermal method refers to a method of forming a carrier by suspending a carrier precursor in a glycol such as 1,4-butanediol and then baking it. Taking a case where a zirconia carrier is synthesized as an example, a predetermined amount of zirconium tetrapropoxide and yttrium acetate or magnesium acetylacetonate are suspended in 1,4-butanediol and reacted at about 300 ° C. in a nitrogen atmosphere. Thereafter, the product is washed and dried, and then calcined at about 400 ° C., whereby a high-surface-area carrier having a substantially spherical shape is obtained. The degree of dispersion of the carrier is affected by the sintering temperature. For example, aggregation occurs at a high temperature of about 1200 ° C., which is inappropriate. This is impregnated with an aqueous solution of various metal salts (nickel nitrate, cobalt nitrate, iron nitrate, copper formate, ammonium molybdate, manganese chloride, etc.), dried and calcined at a temperature of about 400 ° C. to obtain the catalyst of the present invention.
[0016]
When a gas of hydrocarbons such as methane flows at a predetermined temperature over the catalyst produced as described above, hydrogen and solid carbon are generated, and the solid carbon is converted into carbon nanotubes (ultrafine carbon fibers depending on conditions). This is confirmed by observation with a transmission electron microscope. The preferred reaction temperature varies depending on the catalyst, but is generally in the range of 400 ° C. to 800 ° C., preferably 450 ° C. to 650 ° C.
[0017]
The production of carbon nanotubes or ultrafine carbon fibers by the catalyst of the present invention is based on the fact that carbon generated by the decomposition reaction of hydrocarbon molecules on the metal supported on the catalyst is dissolved in the catalyst metal, and the catalyst metal particles and the carrier It is caused by precipitation at the interface with. If carbon deposition at the catalyst metal particle-carrier interface occurs continuously, the generated carbon becomes carbon nanotubes or ultrafine carbon fibers, but if the deposition is discontinuous, powdery or amorphous carbon is formed. Generate. In the catalyst of the present invention, since the carrier shape is spherical, liberation of carrier particles proceeds with the deposition of carbon, the growth of carbon nanotubes or ultrafine carbon fibers is not hindered, and the catalyst is useful in high yield. Carbon nanotubes or ultrafine carbon fibers can be produced. In addition, when the dispersibility of the catalyst carrier is poor and the carrier particles are aggregated, the growth of carbon nanotubes or ultrafine carbon fibers is hindered.However, if a highly dispersed catalyst carrier is used, the crystallinity is improved. Long carbon nanotubes or ultrafine carbon fibers can be manufactured.
[0018]
Next, FIGS. 1 (a) to 1 (c) are drawings illustrating the mechanism of producing the carbon fiber of the present invention. First, as shown in FIG. 1 (a), for example, methane (CH 4 ) hydrocarbon molecules are supplied to the catalyst metal 2 supported on the surface of the spherical carrier 1 and adsorbed to cause a thermal decomposition reaction. As shown in FIG. 1 (b), carbon (C) produced by the dehydrogenation reaction is dissolved in the catalyst metal 2, and as shown in FIG. 1 (c), the interface between the catalyst metal particles 2 and the carrier 1 is formed. The carbon fiber 3 is continuously precipitated. The carbon fiber 3 grows in a crystalline state with the catalyst metal particles 2 at the tip. The portion indicated by the arrow in FIG. 2 is the catalytic metal particle at the tip of the carbon fiber.
[0019]
FIG. 3 shows a state in which a large number of carbon fibers have grown from the central black spherical carrier. FIG. 4 is an enlarged view of the spherical carrier in FIG. 3, and FIG. 5 is an enlarged view of the carbon fiber portion in FIG.
[0020]
FIG. 6 is an enlarged view of the carbon fiber in FIG. 3, and the graphene carbon layer is shown in parallel lines. Here, the graphene carbon layer refers to a layer having a six-membered ring network structure made of graphite. In addition, when attention is paid to the right fiber in FIG. 6, a white line is seen in the central longitudinal direction. The fibers are hollow, indicating the structure of the carbon nanotube. The carbon nanotube is formed such that a long layer of a 6-membered ring network structure made of graphite is rolled in a single layer or in multiple layers, or wound obliquely in a bamboo shoot shape.
[0021]
The carbon fibers and carbon nanotubes of the present invention can be applied to applications such as batteries, fuel cells, electrodes of electric double layer capacitors, and conductive fillers.
[0022]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In order to further clarify the effects of the present invention, comparative examples will be described.
[0023]
(Example 1)
A predetermined amount of zirconium tetrapropoxide and yttrium acetate are suspended in 1,4-butanediol, heated at a rate of 2.5 degrees per minute in a reaction system purged with nitrogen, and kept at about 300 degrees Celsius for 2 hours. Reacted. The product was washed with methanol, air-dried, and calcined at about 400 ° C. to obtain a carrier according to an example of the present invention. When the obtained carrier was observed using a scanning electron microscope, it was confirmed that the carrier was substantially spherical and highly dispersed.
[0024]
The carrier was impregnated with an aqueous solution of nickel nitrate, dried, and calcined at 400 ° C. to obtain a Ni / ZrCo 2 catalyst. The nickel loading was adjusted to 10% by weight.
[0025]
The temperature of the Ni / ZrCo 2 catalyst produced as described above was raised in argon gas, and when the temperature reached a predetermined temperature, the flow of argon gas was stopped and the flow of methane gas was switched to produce hydrogen and carbon nanotubes. The production of hydrogen and the level at which by-products of carbon dioxide do not pose any problems were confirmed by gas chromatographic analysis of the gas after the reaction. The deposited solid carbon was observed with a transmission electron microscope and an X-ray diffractometer to confirm that carbon nanotubes were produced. 2 to 5 show carbon fibers obtained according to this example. FIG. 6 shows a transmission electron micrograph of the carbon nanotube.
[0026]
When the reaction was repeated while changing the temperature variously, the production efficiency of the carbon nanotube was highest at around 500 ° C.
[0027]
(Example 2)
A predetermined amount of erbium acetate tetrahydrate, tris-acetylacetonatogallium, and 1,4-butanediol were suspended, reacted at 300 ° C for 2 hours, washed with methanol, air-dried, and calcined at 300 ° C. Thus, a catalyst carrier Er 3 Ga 5 O 12 was obtained. It was confirmed by electron microscope observation that the spherical carrier Er 3 Ga 5 O 12 prepared by the glycothermal method was spherical and highly dispersed. When a methane decomposition reaction was carried out at 650 ° C. using a catalyst prepared by supporting 5% by weight of Ni on this carrier, the production of hydrogen was confirmed by gas chromatography. In addition, transmission electron microscopy confirmed that the generated carbon was a carbon nanotube, as shown in FIGS.
[0028]
An electron microscope observation confirmed that the carrier produced in exactly the same manner except that the sintering temperature was 1200 ° C. had a spherical shape but was aggregated. Hydrogen and carbon nanotubes were generated from the decomposition reaction of methane on the catalyst prepared by supporting the catalyst metal in the same manner as above, but the production amount of carbon nanotubes was reduced to 2 or less. .
[0029]
(Comparative Example 1)
A catalyst was produced in the same manner as in the example except that commercially available zirconia which was not spherical was used as a carrier, and was reacted with methane gas in the same manner as in the example. Production of hydrogen gas was confirmed by gas chromatography, but the precipitated solid carbon contained a large amount of particulate or amorphous carbon, and the yield of carbon nanotubes and carbon fibers was small.
[0030]
(Comparative Example 2)
A catalyst was produced in the same manner as in the example except that commercially available titania having a non-spherical shape was used as a carrier, and reacted with methane gas in the same manner as in the example. Production of hydrogen gas was confirmed by gas chromatography, but observation of the precipitated solid carbon with a transmission electron microscope showed only onion-like particles, and no effective production of carbon nanotubes or carbon fibers was observed.
[0031]
【The invention's effect】
According to the present invention, by reacting hydrocarbons such as methane on a catalyst using a spherical carrier with good dispersibility, by-product carbon dioxide is suppressed, hydrogen and carbon nanotubes or ultrafine Carbon fibers can be produced.
[Brief description of the drawings]
1 (a) to 1 (c) are drawings for explaining a carbon fiber generation mechanism in Example 1 of the present invention.
FIG. 2 is a drawing showing catalytic metal particles at the tip of a carbon fiber.
FIG. 3 is a drawing showing a state in which a large number of carbon fibers have grown from a central black spherical carrier.
FIG. 4 is an enlarged view of the spherical carrier in FIG.
FIG. 5 is an enlarged view of a carbon fiber portion in FIG.
FIG. 6 is an enlarged view of the carbon fiber in FIG. 3, showing a graphene layer structure and a carbon nanotube structure.
[Explanation of symbols]
1 spherical carrier 2 catalytic metal 3 carbon fiber

Claims (11)

球状担体表面に担持された触媒金属粒子に炭化水素分子が吸着し、分解反応を起こして生成した炭素が、前記触媒金属粒子と担体との界面に連続的に析出し、先端に前記触媒金属粒子をともなって結晶状に成長したカーボン繊維。Hydrocarbon molecules are adsorbed on the catalyst metal particles supported on the surface of the spherical carrier, carbon generated by causing a decomposition reaction is continuously deposited at the interface between the catalyst metal particles and the carrier, and the catalyst metal particles are formed at the tip. Carbon fiber grown in a crystalline state with 前記カーボン繊維が、グラフェン層状構造を持つ請求項1に記載のカーボン繊維。The carbon fiber according to claim 1, wherein the carbon fiber has a graphene layer structure. 前記カーボン繊維が、カーボンナノチューブである請求項1または2に記載のカーボン繊維。The carbon fiber according to claim 1, wherein the carbon fiber is a carbon nanotube. 前記カーボン繊維の直径が、5〜100nmの範囲である請求項1〜3のいずれかに記載のカーボン繊維。The carbon fiber according to any one of claims 1 to 3, wherein a diameter of the carbon fiber is in a range of 5 to 100 nm. 前記球状担体が、担体前駆体をグリコール中で懸濁し、その後焼成することにより形成されている請求項1に記載のカーボン繊維。The carbon fiber according to claim 1, wherein the spherical carrier is formed by suspending a carrier precursor in glycol and then baking the suspension. 炭化水素分解触媒を用いてカーボン繊維を製造する方法であって、
球状担体表面に担持された触媒金属粒子に炭化水素分子を供給し、吸着させ、分解反応させ、前記触媒金属粒子と担体との界面に炭素を連続的に析出させ、先端に前記触媒金属粒子をともなって結晶状に成長させることを特徴とするカーボン繊維の製造方法。
A method for producing carbon fibers using a hydrocarbon cracking catalyst,
Hydrocarbon molecules are supplied to the catalyst metal particles supported on the surface of the spherical carrier, adsorbed, decomposed, and carbon is continuously deposited on the interface between the catalyst metal particles and the carrier. A method for producing a carbon fiber, wherein the carbon fiber is grown together with the crystal.
前記球状担体が、担体前駆体をグリコール中で懸濁し、その後焼成することにより形成されている請求項6に記載のカーボン繊維の製造方法。The method for producing carbon fibers according to claim 6, wherein the spherical carrier is formed by suspending a carrier precursor in glycol and then baking it. 前記球状担体が高分散性である請求項6又は7に記載のカーボン繊維の製造方法。The method for producing a carbon fiber according to claim 6, wherein the spherical carrier is highly dispersible. 前記球状担体の平均粒子径が10〜1000nmの範囲にある請求項6〜8のいずれかに記載のカーボン繊維の製造方法。The method for producing carbon fibers according to any one of claims 6 to 8, wherein the spherical carrier has an average particle diameter in a range of 10 to 1000 nm. 前記触媒金属粒子が、Ni,Cu又はこれらを含む組成物である請求項6に記載のカーボン繊維の製造方法。The method for producing carbon fibers according to claim 6, wherein the catalytic metal particles are Ni, Cu, or a composition containing these. 前記触媒金属粒子の大きさが、5〜100nmの範囲にある請求項6又は10に記載のカーボン繊維の製造方法。The method for producing a carbon fiber according to claim 6, wherein the size of the catalyst metal particles is in a range of 5 to 100 nm.
JP2003118875A 2003-04-23 2003-04-23 Carbon fiber and method for producing the same Pending JP2004324004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118875A JP2004324004A (en) 2003-04-23 2003-04-23 Carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118875A JP2004324004A (en) 2003-04-23 2003-04-23 Carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004324004A true JP2004324004A (en) 2004-11-18

Family

ID=33498293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118875A Pending JP2004324004A (en) 2003-04-23 2003-04-23 Carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004324004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251961A (en) * 2007-03-30 2008-10-16 Fujitsu Ltd Carbon nanotube device and its production process
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8092778B2 (en) 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
JP2013500922A (en) * 2009-07-31 2013-01-10 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for the formation of carbon-based nanostructures
US9663368B2 (en) 2010-10-28 2017-05-30 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8092778B2 (en) 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
JP2008251961A (en) * 2007-03-30 2008-10-16 Fujitsu Ltd Carbon nanotube device and its production process
JP2013500922A (en) * 2009-07-31 2013-01-10 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for the formation of carbon-based nanostructures
US8865109B2 (en) 2009-07-31 2014-10-21 Massachusetts Institute Of Technology Systems and methods related to the formation of carbon-based nanostructures
US10087079B2 (en) 2009-07-31 2018-10-02 Massachusetts Institute Of Technology Systems and methods related to the formation of carbon-based nanostructures
US9663368B2 (en) 2010-10-28 2017-05-30 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films

Similar Documents

Publication Publication Date Title
Esteves et al. Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review
JP5702043B2 (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
JP4004502B2 (en) Method for producing ultrafine fibrous nanocarbon
JP2010137222A (en) Metal nano catalyst, manufacturing method therefor, and adjusting method of growth mode of carbon nanotube using therewith
JP2010188337A (en) Catalyst composition for producing thin multi-walled carbon nanotube, and method for preparing the catalyst composition
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
JP2005512925A (en) Method for producing multi-sided graphite nanotubes
Allaedini et al. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst
JP2003201108A (en) Carbon material
CN114308049A (en) Growth catalyst for preparing carbon nano tube with high specific surface area
JP4967536B2 (en) Nanocarbon material composite and method for producing the same
JP2004324004A (en) Carbon fiber and method for producing the same
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
JP3698263B2 (en) Method for producing carbon fiber and catalyst for production thereof
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JP2009062230A (en) Method for manufacturing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
CN112371131A (en) Carbon nano tube growth catalyst, preparation method thereof and preparation method of carbon nano tube
KR100814677B1 (en) Surface modifying method of natural graphite by carbon nanofiber
KR100991012B1 (en) Catalyst for synthesizing filamentous carbons at low temperature and preparation methods thereof
WO2003006726A1 (en) Crystalline graphite nanofibers and a process for producing same
JP2009041127A (en) Method for producing vapor-grown carbon fiber, and vapor-grown carbon fiber
KR20140142838A (en) A method for preparing carbon nanofibers and carbon nanofibers prepared by using same
US20220298017A1 (en) Long and Narrow Diameter Carbon Nanotubes and Catalysts for Producing Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090305