JP4569596B2 - 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法 - Google Patents

無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法 Download PDF

Info

Publication number
JP4569596B2
JP4569596B2 JP2007115796A JP2007115796A JP4569596B2 JP 4569596 B2 JP4569596 B2 JP 4569596B2 JP 2007115796 A JP2007115796 A JP 2007115796A JP 2007115796 A JP2007115796 A JP 2007115796A JP 4569596 B2 JP4569596 B2 JP 4569596B2
Authority
JP
Japan
Prior art keywords
load
sine wave
load device
power supply
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007115796A
Other languages
English (en)
Other versions
JP2008278558A (ja
Inventor
敬幸 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007115796A priority Critical patent/JP4569596B2/ja
Publication of JP2008278558A publication Critical patent/JP2008278558A/ja
Application granted granted Critical
Publication of JP4569596B2 publication Critical patent/JP4569596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Description

本発明は、無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法に関する。
特許文献1は、無停電電源装置を開示する。この無停電電源装置では、基準波生成回路により台形波の基準信号を生成し、PWM信号生成回路がこの台形波と三角波生成回路により生成される三角波とを比較して、インバータへのドライブ信号を生成する。これにより、無停電電源装置から負荷へ台形波の交流電力が供給され、容量性の負荷へ供給する電力の無効電流が抑えられ、力率が改善する。
特開2001−8462号公報(図2、段落0029、発明の詳細な説明など)
ところで、無停電電源装置は、交流電力により負荷機器へ電力を供給する。また、無停電電源装置に接続される負荷機器の電源回路には、たとえば入力変圧器を備えたものや、たとえばコンデンサを備えた容量性のものや整流素子およびコンデンサを用いたコンデンサインプット形の整流回路などがある。そして、特許文献1の無停電電源装置は、負荷機器へ印加する交流電圧を台形波とすることで、容量性の負荷機器にとって適したものとなっている。
しかしながら、台形波の交流電圧には第3次高調波、第5次高調波などの高調波成分が多く含まれている。そのため、この台形波の交流電圧を入力変圧器を備えた負荷機器へ印加した場合、その電源回路の変圧器などにおいて高調波損失が発生し、変圧器の温度上昇が問題となる場合がある。このような負荷機器は、正弦波の交流電圧で運転する方が良い。
なお、コンデンサインプット形の整流回路を電源とする負荷機器に対しては、正弦波の交流電圧を印加するよりも、台形波や極端な場合は矩形波を印加した方が電源の力率が改善されるので都合が良い。
本発明は、負荷機器に関係なく、あらゆる種類の負荷機器に対して、特にコンデンサインプット形の整流回路を電源とする負荷機器とそれ以外の方式を電源とする負荷機器に最適な電力を供給することができる無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法を提供することを目的とする。
本発明に係る無停電電源装置は、三角波を生成する三角波生成手段と、三角波より大きい振幅へ変更可能な正弦波を生成する正弦波生成手段と、三角波と正弦波とのレベル比較に基づいてスイッチング信号を生成するスイッチング信号生成手段と、スイッチング信号によりオンオフ動作するスイッチング素子を有し、このスイッチング動作により負荷機器へ供給する交流電圧の電力を生成するインバータ回路と、当該無停電電源装置から負荷機器へ供給する負荷電流を検出する検出部材と負荷機器に対して正弦波による交流電力を供給したときに検出される負荷電流のクレストファクタ値が、所定の閾値より小さい場合には負荷機器がコンデンサインプット形整流器負荷でないと判断し、クレストファクタ値が所定の閾値より大きい場合には負荷機器がコンデンサインプット形整流器負荷であると判断する判断手段と、負荷機器がコンデンサインプット形整流器負荷であると判断された場合には正弦波生成手段により三角波より振幅が大きい正弦波を生成させ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には正弦波生成手段により三角波より振幅が小さい正弦波を生成させる制御手段と、を有するものである。
この構成を採用すれば、無停電電源装置は、自動的に負荷機器の種類を判断し、その判断に応じて正弦波あるいは台形波の電力を適切に負荷機器へ供給することができる。負荷機器がコンデンサインプット形整流器負荷である場合には台形波の交流電力を供給し、負荷機器がコンデンサインプット形整流器負荷でない場合には正弦波の交流電力を供給することができる。したがって、この無停電電源装置、ユーザの手を煩わすことなく、あらゆる種類の負荷機器に対して最適な電力を供給することができる。特に、負荷機器がコンデンサインプット形整流器負荷であるか否かを、負荷電流に検出に基づいて適切に判断することができる。しかも、この負荷電流の検出においては正弦波の交流電力を負荷機器へ供給するので、この検出時に負荷機器に支障が生じてしまうことはない。さらに、検出の際に負荷機器への給電を開始するので、このような検出をするがために負荷機器への給電開始が遅くなってしまうこともない。
本発明に係る他の無停電電源装置は、上述した発明の各構成に加えて以下の特徴を有するものである。すなわち、制御手段は、負荷機器がコンデンサインプット形整流器負荷であると判断された場合には正弦波の振幅を三角波の振幅の4倍以上とし、且つ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には正弦波の振幅を三角波の振幅の1倍より小さくする。
この構成を採用すれば、無停電電源装置は、コンデンサインプット形整流器でない負荷に対して一般的な無停電電源装置と同様の正弦波の交流電力を供給することができるとともに、コンデンサインプット形整流器負荷に対して台形波の交流電力を供給することができる。その台形波の交流電力を供給する際には、インバータ回路のスイッチング素子のオンオフ回数が格段に削減されているので、インバータのスイッチング損失を大きく低減することができる。
本発明に係る他の無停電電源装置は、上述した発明の各構成に加えて以下の特徴を有するものである。すなわち、制御手段は、正弦波生成手段に対して、正弦波を出力させるためのクロック信号と正弦波の最大振幅を指定する変調率指定信号とを出力する。また、正弦波生成手段は、クロック信号に応じて周波数が変化する正弦波であって、且つ、その最大振幅が変調率指定信号により指定されたものとなる正弦波を生成する。
これにより、制御部は、正弦波生成回路が生成する正弦波の振幅を制御することができる。正弦波生成回路は、最大の振幅が変調率指定信号により指定された変調率のものとなる正弦波を生成することができる。
本発明に係る交流電力供給装置は、三角波を生成する三角波生成手段と、三角波より大きい振幅へ変更可能な正弦波を生成する正弦波生成手段と、三角波と正弦波とのレベル比較に基づいてスイッチング信号を生成するスイッチング信号生成手段と、スイッチング信号によりオンオフ動作するスイッチング素子を有し、このスイッチング動作により負荷機器へ供給する交流電圧の電力を生成するインバータ回路と、当該交流電力供給装置から負荷機器へ供給する負荷電流を検出する検出部材と負荷機器に対して正弦波による交流電力を供給したときに検出される負荷電流のクレストファクタ値が、所定の閾値より小さい場合には負荷機器がコンデンサインプット形整流器負荷でないと判断し、クレストファクタ値が所定の閾値より大きい場合には負荷機器がコンデンサインプット形整流器負荷であると判断する判断手段と、負荷機器がコンデンサインプット形整流器負荷であると判断された場合には正弦波生成手段により三角波より振幅が大きい正弦波を生成させ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には正弦波生成手段により三角波より振幅が小さい正弦波を生成させる制御手段と、を有するものである。
この構成を採用すれば、交流電力供給装置は、自動的に負荷機器の種類を判断し、その判断に応じて正弦波あるいは台形波の電力を適切に負荷機器へ供給することができる。負荷機器がコンデンサインプット形整流器負荷である場合には台形波の交流電力を供給し、負荷機器がコンデンサインプット形整流器負荷でない場合には正弦波の交流電力を供給することができる。したがって、この交流電力供給装置は、ユーザの手を煩わすことなく、あらゆる種類の負荷機器に対して最適な電力を供給することができる。
本発明に係る負荷機器に応じた交流電圧切替方法は、交流電力供給装置が実行する負荷機器に応じた交流電圧切替方法であって、交流電力供給装置から負荷機器へ交流電力を供給するステップと、当該交流電力供給装置から負荷機器へ供給する負荷電流を検出し、負荷機器に対して正弦波による交流電力を供給したときに検出される負荷電流のクレストファクタ値が、所定の閾値より小さい場合には負荷機器がコンデンサインプット形整流器負荷でないと判断し、クレストファクタ値が所定の閾値より大きい場合には負荷機器がコンデンサインプット形整流器負荷であると判断するステップと、負荷機器がコンデンサインプット形整流器負荷であると判断された場合、交流電圧の電力を生成するインバータ回路をスイッチング動作させるためのスイッチング信号を生成するスイッチング信号生成手段に対して、三角波とレベル比較されるために供給される正弦波の振幅を三角波より大きく制御し、且つ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合、正弦波の振幅を三角波より小さく制御するステップと、を有するものである。
この方法を採用する交流電力供給装置は、負荷機器の種類を自動的に判断し、その判断に応じて正弦波あるいは台形波の電力を適切に負荷機器へ供給することができる。負荷機器がコンデンサインプット形整流器負荷である場合には台形波の交流電力を供給し、負荷機器がコンデンサインプット形整流器負荷でない場合には正弦波の交流電力を供給することができる。したがって、この交流電力供給装置は、ユーザの手を煩わすことなく、あらゆる種類の負荷機器に対して効率良く電力を供給することができる。
本発明では、負荷機器に関係なく、あらゆる種類の負荷機器に対して最適な電力を供給することができる。
以下、本発明の実施の形態に係る無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法を、図面に基づいて説明する。なお、交流電力供給装置は、無停電電源装置の一部として説明する。負荷機器に応じた交流電圧切替方法は、無停電電源装置の動作の一部として説明する。
図1は、本発明の実施の形態に係る無停電電源装置1を示すブロック図である。無停電電源装置1は、たとえば商用交流電源などが停電である場合に、内蔵するバッテリ12から負荷機器へ電力を供給するものである。そのため、無停電電源装置1は、一対の受電端子2,3と、一対の給電端子4,5とを有する。なお、無停電電源装置1は、複数組の給電端子を有するものであってもよい。
無停電電源装置1の一対の受電端子2,3には、図示外の商用交流電源などの交流電源が接続される。商用交流電源などの交流電源は、たとえば50ヘルツや60ヘルツの周波数であって、且つ、100ボルトあるいは200ボルトの実効値を有する交流電力を出力する。
一対の給電端子4,5には、図示外の負荷機器が接続される。負荷機器の電源回路には、たとえば入力変圧器を備えたものや、たとえばコンデンサを備えた容量性のものや、整流素子およびコンデンサを用いたコンデンサインプット形の整流回路などがある。特に、コンピュータ端末などの負荷機器にあっては、整流素子およびコンデンサを用いたコンデンサインプット形の整流回路のものが多い。
図2は、負荷機器の電源回路の入力段の構成例を示す回路図である。図2(A)は、変圧器51が入力段として利用されている電源回路であり、図2(B)は、コンデンサインプット形の整流回路が利用されている電源回路である。そして、図2(A)の電源回路が負荷機器として接続された場合、一対の給電端子4,5には、変圧器51の一次側のコイルが接続されることになる。また、図2(B)の電源回路が負荷機器として接続された場合、一対の給電端子4,5には、整流素子62およびコンデンサ63が接続されることになる。
無停電電源装置1の内部において、一対の受電端子2,3は、コンバータ回路11に接続される。コンバータ回路11は、一対の受電端子2,3に入力される交流電圧を、直流電圧へ変換する。コンバータ回路11の出力には、バッテリ12と、インバータ回路13とが接続される。コンバータ回路11は、インバータ回路13へ直流電力を供給すると共に、バッテリ12を充電する。
インバータ回路13は、一対の入力端子21,22と、一対の出力端子23,24と、4つのスイッチング素子25,26,27,28と、4つの還流ダイオード29,30,31,32とを有する。一方の入力端子21は、バッテリ12の正極に接続される。他方の入力端子22は、バッテリ12の負極に接続される。
スイッチング素子25,26,27,28には、たとえばIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor FET)などが使用される。これらのスイッチング素子25,26,27,28には、スイッチング動作に伴うスイッチング損失が発生する。スイッチング動作回数が多いほど、インバータ回路13のスイッチング動作による電力損失が大きくなる。
4つのスイッチング素子25,26,27,28の中の、1つ目のスイッチング素子25のコレクタは一方の入力端子21に接続され、エミッタは一方の出力端子23に接続される。2つ目のスイッチング素子26のコレクタは一方の入力端子21に接続され、エミッタは他方の出力端子24に接続される。3つ目のスイッチング素子27のコレクタは一方の出力端子23に接続され、エミッタは他方の入力端子22に接続される。4つ目のスイッチング素子28のコレクタは他方の出力端子24に接続され、エミッタは他方の入力端子22に接続される。
4つの還流ダイオード29,30,31,32は、4つのスイッチング素子25,26,27,28のコレクタ−エミッタ間に、各スイッチング素子25,26,27,28とは逆向きの電流を流す向きに接続される。
インバータ回路13の4つのスイッチング素子25,26,27,28は、1つ目のスイッチング素子25および4つ目のスイッチング素子28が同時にオン状態に制御され、2つ目のスイッチング素子26および3つ目のスイッチング素子27が同時にオン状態に制御される。また、各組のスイッチング素子は、基本的に交互にオン状態に制御される。
そして、1組のスイッチング素子25および28がオン状態になると、インバータ回路13の一方の出力端子23はバッテリ12の正極に接続され、他方の出力端子24はバッテリ12の負極に接続される。また、他の組のスイッチング素子26および27がオン状態になると、インバータ回路13の一方の出力端子23はバッテリ12の負極に接続され、他方の出力端子24はバッテリ12の正極に接続される。このようなスイッチング動作により、インバータ回路13の一対の出力端子23,24にはバッテリの正極および負極が交互に接続されることになる。
インバータ回路13には、LPF(Low Pass Filter)回路14が接続される。また、LPF回路14には、一対の給電端子4,5が接続される。そして、LPF回路14は、リアクトル36とコンデンサ37とを有する。リアクトル36は、インバータ回路13の一方の出力端子23と一方の給電端子4との間に接続される。コンデンサ37の一端は、リアクトル36と一方の給電端子4との間に接続される。インバータ回路13の他方の出力端子26と他方の給電端子5とは、コンデンサ37の他端に接続される。
以上の構成により一対の受電端子2,3と一対の給電端子4,5とが接続され、無停電電源装置1を経由する交流電源と負荷機器との間の電力供給経路が構成される。無停電電源装置1は、この他にも、一対の給電端子4,5から負荷機器へ正弦波の交流電力あるいは台形波の交流電力を供給するための制御回路を有する。具体的には、無停電電源装置1は、設定部材としての設定スイッチ41、検出部材としての負荷電流検出回路42、制御手段および判断手段としての制御部43、正弦波生成手段としての正弦波生成回路44、クロック発生回路45、三角波生成手段としての三角波生成回路46、スイッチング信号生成手段としてのコンパレータ回路47などを有する。
クロック発生回路45は、所定の周波数のクロック信号を生成する。クロック発生回路45は、たとえば数キロヘルツから数十キロヘルツの周波数を有するクロック信号を生成する。
三角波生成回路46には、クロック信号が入力される。三角波生成回路46は、クロック信号と同期する三角波を出力する。三角波生成回路46が生成する三角波の振幅は、一定である。
正弦波生成回路44は、設定に応じた振幅の正弦波を出力する。この正弦波の周波数は、一対の受電端子2,3に入力される交流電力と同じもの(たとえば50ヘルツや60ヘルツ)であればよい。特に、この実施の形態の正弦波生成回路44は、三角波の振幅をAとしたとき、正弦波の振幅を0から4A以上程度まで変化させて出力することができるものである。なお、この実施の形態とは異なり、正弦波の交流電力を供給する無停電電源装置では、正弦波生成回路は三角波の振幅より小さい振幅の正弦波を出力する。
コンパレータ回路47には、三角波生成回路46が生成した所定の振幅の三角波と、正弦波生成回路44が生成した任意の振幅の正弦波とが入力される。コンパレータ回路47は、正弦波のレベルと三角波のレベルとを比較する。そして、コンパレータ回路47は、たとえば、正弦波のレベルが三角波のレベルより高い期間においてハイレベルとなり、且つ、正弦波のレベルが三角波のレベルより低い期間においてローレベルとなるスイッチング信号を生成する。
このスイッチング信号は、図1において一方の組のスイッチング素子、すなわち左上の1つ目のスイッチング素子25のゲートと右下の4つ目のスイッチング素子28のゲートとへ供給される。また、スイッチング信号は、反転素子48により反転されて、図1において他方の組のスイッチング素子、すなわち左下の3つ目のスイッチング素子27のゲートと右上の2つ目のスイッチング素子26のゲートとへ供給される。これらのスイッチング素子25,26,27,28は、ゲートがハイレベルのときオン状態となり、ゲートがローレベルのときオフ状態となる。
これにより、インバータ回路13では、コンパレータ回路47が生成するスイッチング信号により、図1において左上の1つ目のスイッチング素子25と右下の4つ目のスイッチング素子28とが同時にオン状態に制御され、右上の2つ目のスイッチング素子26と左下の3つ目のスイッチング素子27とが同時にオン状態に制御される。また、各組のスイッチング素子は、交互にオン状態に制御されることになる。
図3は、一対の給電端子4,5から正弦波の交流電力を供給する場合の信号波形を示す波形図である。図3(A)には、正弦波の交流電力を供給する場合に正弦波生成回路44が生成する正弦波と、三角波生成が生成する三角波とが図示されている。正弦波の交流電力を供給する場合、正弦波の振幅は、三角波の振幅より小さい。コンパレータ回路47は、これらのレベルを比較し、図3(B)のスイッチング信号を生成する。図3(C)は、反転素子48により反転されたスイッチング信号である。これらのスイッチング信号は、正弦波の振幅にしたがってパルス幅が変化するPWM(パルス幅変調)信号である。
そして、図3(B)および図3(C)のスイッチング信号により、インバータ回路13の4つのスイッチング素子25〜28はスイッチング動作をする。これにより、LPF回路14から一対の給電端子4,5へは、図3(D)の正弦波の交流電力が供給される。この交流電力が一対の給電端子4,5に接続される負荷機器へ供給される。
図4は、一対の給電端子4,5から台形波の交流電力を供給する場合の信号波形を示す波形図である。図4(A)には、台形波の交流電力を供給する場合に正弦波生成回路44が生成する正弦波と、三角波生成が生成する三角波とが図示されている。台形波の交流電力を供給する場合、正弦波の振幅は、三角波の振幅より大きい。図4(A)の正弦波は、三角波の略2倍の振幅を有する。コンパレータ回路47は、これらのレベルを比較し、図4(B)のスイッチング信号を生成する。図4(C)は、反転素子48により反転されたスイッチング信号である。これらのスイッチング信号は、PWM(パルス幅変調)信号の一種である。
そして、図4(B)および図4(C)のスイッチング信号により、インバータ回路13の4つのスイッチング素子25〜28はスイッチング動作をする。これにより、LPF回路14から一対の給電端子4,5へは、図4(D)の台形波の交流電力が供給される。この交流電力が一対の給電端子4,5に接続される負荷機器へ供給される。
図1中の設定スイッチ41は、無停電電源装置1が一対の給電端子4,5から負荷機器へ給電する電力の電圧波形を選択するためのものであり、正弦波選択位置、台形波選択位置および自動選択位置の3つの位置の中の1箇所に設定することができる。設定スイッチ41は、設定に応じた信号を制御部43へ出力する。
図1中の負荷電流検出回路42は、一対の給電端子4,5から負荷機器へ供給される瞬時電流を検出する。負荷電流検出回路42は、検出した瞬時負荷電流を制御部43へ出力する。
図1中の制御部43は、正弦波生成回路44へ設定信号を出力する。制御部43は、たとえば正弦波生成回路44に対してクロック信号と変調率指定信号とを出力する。制御部43は、正弦波生成回路44へたとえば受電電圧と同期する正弦波を出力させるためのクロック信号と、正弦波の最大振幅を指定する変調率指定信号とを出力する。また、正弦波生成回路44は、このクロック信号に応じて周波数が変化する正弦波であって、且つ、その最大振幅が変調率指定信号により指定されたものとなる正弦波を生成する。つまり、正弦波生成回路44は、受電電圧と同期して、且つ、指定された変調率に対応する最大振幅の正弦波を生成する。なお、制御部43が正弦波生成回路44に指定する変調率は、たとえば0から4までの値であればよい。また、1以上の変調率が指定されたとき、正弦波の最大振幅は、三角波のものより大きくなる。
なお、制御部43は、たとえばマイクロコンピュータ50の図示外のメモリに記憶される図示外のプログラムを図示外のCPUが実行することにより実現される。そして、この図示外のプログラムは、無停電電源装置1の出荷前にメモリに記憶されたものであっても、無停電電源装置1の出荷後にメモリに記憶されたものであってもよい。また、メモリに記憶されるプログラムの一部が、無停電電源装置1の出荷後に記憶されたものであってもよい。このように出荷後にメモリに記憶されるプログラムは、たとえばCD−ROM(Compact Disc Read Only Memory)や半導体メモリなどのコンピュータ読取可能な記録媒体に記憶されているものをインストールしたものであっても、インターネットなどの伝送媒体を介してサーバ装置などからダウンロードしたものであってもよい。
また、制御部43の他にも、正弦波生成回路44、クロック発生回路45、三角波生成回路46、コンパレータ回路47、反転素子48などは、マイクロコンピュータ50の図示外のメモリに記憶される図示外のプログラムを図示外のCPUが実行することにより、無停電電源装置1に実現されていてもよい。
次に、以上の構成を有するこの実施の形態に係る無停電電源装置1の動作を説明する。以下の説明では主に、一対の給電端子4,5から負荷機器へ供給する交流電力の波形を選択する動作について説明する。
図5は、たとえば無停電電源装置1の起動時などにおいて制御部43が実行する出力波形選択処理の流れを示すフローチャートである。出力波形選択処理において、制御部43は、まず、設定スイッチ41から入力される信号を読み取り、設定スイッチ41の設定位置を判断する(ステップST1)。設定スイッチ41の設定位置には、正弦波選択位置、台形波選択位置および自動選択位置がある。
そして、制御部43は、設定スイッチ41が正弦波選択位置に設定されていると、正弦波出力を選択する。制御部43は、正弦波生成回路44へ、受電電圧と同期するクロック信号と、1より小さい変調率を指定する変調率指定信号とを出力する(ステップST2)。
これにより、正弦波生成回路44は、受電電圧と同期して、且つ、三角波より小さい振幅の正弦波を生成する。また、無停電電源装置1は、図3(D)に示すような正弦波の交流電力を負荷機器へ供給する。
また、設定スイッチ41が台形波選択位置に設定されていると、制御部43は、台形波出力を選択する。制御部43は、正弦波生成回路44へ、受電電圧と同期するクロック信号と、変調率として「4」を指定する変調率指定信号とを出力する(ステップST3)。
これにより、正弦波生成回路44は、受電電圧と同期して、且つ、三角波の4倍の振幅を有する正弦波を生成する。また、無停電電源装置1は、図4(D)に示すような台形波の交流電力を負荷機器へ供給する。
また、設定スイッチ41が自動選択位置に設定されていると、制御部43は、負荷機器がコンデンサインプット形整流器負荷であるか否かを判断するための処理を開始する。制御部43は、まず、正弦波生成回路44へ、受電電圧と同期するクロック信号と、1より小さい変調率を指定する変調率指定信号とを出力する。正弦波生成回路44は、受電電圧と同期して、且つ、三角波より小さい振幅の正弦波を生成する。また、無停電電源装置1は、図3(D)に示すような正弦波の交流電力を負荷機器へ供給し始める(ステップST4)。
負荷電流検出回路42は、一対の給電端子4,5からこの正弦波の交流電力が負荷機器へ供給されるときの瞬時電流を検出する。制御部43は、この正弦波の交流電力の所定の周期分(たとえば数周期分)の瞬時電流値を蓄積する(ステップST5)。
瞬時電流値を蓄積した後、制御部43は、蓄積した所定の周期分の瞬時電流値を用いて、電流ピーク値と、実効値とを演算する(ステップST6)。電流ピーク値は、蓄積した瞬時電流値中で最も絶対値が大きい値である。実効値は、たとえば蓄積した1周期分の瞬時電流値の二乗平均値を演算し、さらにその平方根を演算することにより求めることができる。
負荷電流の電流ピーク値および実効値を演算した後、制御部43は、さらに、クレストファクタ値を演算する(ステップST7)。クレストファクタ値は、波形のピーク値を実効値で割ることにより演算することができる。
その後、制御部43は、演算したクレストファクタ値を用いて、負荷機器がコンデンサインプット形整流器負荷であるか否かを判断する。具体的には、制御部43は、クレストファクタ値が所定の閾値(ここではたとえば1.8)以上である場合には負荷機器がコンデンサインプット形整流器負荷であると判断し、所定の閾値より小さい場合には負荷機器がコンデンサインプット形整流器負荷でないと判断する(ステップST8)。
図6は、負荷機器の種類に応じた電流波形を示す説明図である。図6(A)はコンデンサインプット形整流器負荷でない場合として、抵抗負荷に正弦波の交流電圧を印加した場合の電流波形の一例である。抵抗負荷の場合、負荷電流の波形も正弦波となる。これに対して、図6(B)はコンデンサインプット形整流器負荷に正弦波の交流電圧を印加した場合の電流波形の一例である。コンデンサインプット形整流器負荷の場合、負荷電流は、交流電圧の絶対値が所定の電圧以上になったときのみ流れる離散的な波形となる。なお、こられの図において、点線は、負荷機器に印加されている正弦波の電圧波形を示している。
そして、図6(A)のように略正弦波の負荷電流の場合、クレストファクタ値は、約1.41となる。また、図B(A)のように山形の波形と溝形の波形とに分離した波形の負荷電流の場合、クレストファクタ値は、約2となる。このように、負荷電流のクレストファクタ値は、負荷機器がコンデンサインプット形整流器負荷であるか否かに応じて異なる値になる。したがって、制御部43は、クレストファクタ値が所定の閾値(ここではたとえば1.8)以上であるか否かに基づいて判断することにより、負荷機器がコンデンサインプット形整流器負荷であるかを適切に判断することができる。
クレストファクタ値が所定の閾値(ここではたとえば1.8)より小さくて、負荷機器がコンデンサインプット形整流器負荷でないと判断した場合、制御部43は、正弦波出力を選択する。制御部43は、正弦波生成回路44へ、受電電圧と同期するクロック信号と、1より小さい変調率を指定する変調率指定信号とを出力する。これにより、正弦波生成回路44は、受電電圧と同期して、且つ、三角波より小さい振幅の正弦波を生成する。また、無停電電源装置1は、図3(D)に示すような正弦波の交流電力を負荷機器へ供給する。
なお、この自動測定に基づいて負荷機器がコンデンサインプット形整流器負荷でないと判断した場合、無停電電源装置1は既に正弦波の交流電力を負荷機器へ供給している。したがって、負荷機器がコンデンサインプット形整流器負荷でないと判断した場合、制御部43は、実際には切替動作をすることなく、それまでのクロック信号および変調率指定信号を維持して正弦波生成回路44へ供給すればよい。
クレストファクタ値が所定の閾値(ここではたとえば1.8)以上であって、負荷機器がコンデンサインプット形整流器負荷であると判断した場合、制御部43は、正弦波出力から台形波出力へ切り替える制御を実行する。制御部43は、正弦波生成回路44へ、受電電圧と同期するクロック信号と、変調率として「4」を指定する変調率指定信号とを出力する。これにより、正弦波生成回路44は、生成する正弦波を、受電電圧と同期して、且つ、三角波の4倍の振幅を有する正弦波に切り替える。また、無停電電源装置1が負荷機器へ供給する交流電圧は、図3(D)に示すような正弦波のものから、図4(D)に示すような台形波のものへ切り替わる。
図7は、無停電電源装置1が負荷機器へ供給する交流電力の波形を示す波形図である。
図7(A)は、設定スイッチ41において正弦波選択位置が選択されている場合、および、自動選択においてコンデンサインプット形整流器負荷でない負荷機器と判断された場合に出力される交流電力の波形である。この場合の交流電流は、図7(A)において実線で示すように、正弦波の電圧波形により負荷機器へ供給される。また、負荷機器がほぼ線形であるので、負荷電流も略正弦波となり、負荷電流のクレストファクタ値が約1.41となり、負荷機器へ電力が供給されている。
図7(B)は、設定スイッチ41において台形波選択位置が選択されている場合、および、自動選択においてコンデンサインプット形整流器負荷の負荷機器と判断された場合に出力される交流電力の波形である。この場合の交流電流は、図7(B)において実線で示すように、台形波の電圧波形により負荷機器へ供給される。また、負荷機器がコンデンサインプット形整流器負荷であるので、負荷電流も台形波となり、負荷電流のクレストファクタ値が約1.1となり、負荷機器へ電力が供給されている。なお、図7(B)の波形は、制御部43が正弦波生成回路44に変調率としてたとえば4を指定した場合のものである。
以上のように、この実施の形態の無停電電源装置1は、設定スイッチ41の設定に基づいて、正弦波の交流電圧あるいは台形波の交流電圧を負荷機器へ供給することができる。したがって、この無停電電源装置1は、負荷機器がコンデンサインプット形整流器負荷であるか否かに関係なく、あらゆる種類の負荷機器に対して効率良く電力を供給することができる。
また、この実施の形態の無停電電源装置1は、設定スイッチ41が自動選択位置に設定されている場合、負荷機器へ正弦波の交流電圧を供給した状態での負荷電流を負荷電流検出回路42により検出し、さらに制御部43が負荷電流のクレストファクタ値を演算して、負荷機器がコンデンサインプット形整流器負荷であるか否かを判断している。また、制御部43は、負荷機器がコンデンサインプット形整流器負荷であると判断した場合には正弦波生成回路44により三角波より振幅が大きい正弦波を生成させて台形波の交流電圧を負荷機器へ供給させ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には正弦波生成回路44により三角波より振幅が小さい正弦波を生成させて正弦波の交流電圧を負荷機器へ供給させる。
したがって、この無停電電源装置1は、ユーザの手を煩わすことなく、あらゆる種類の負荷機器に対して最適な電力を供給することができる。また、この無停電電源装置1は、負荷機器がコンデンサインプット形整流器負荷であるか否かを適切に判断することができる。そのため、ユーザは、負荷機器がコンデンサインプット形整流器負荷であるか否かを判断する必要がない。しかも、この負荷電流の検出においては正弦波の交流電圧を負荷機器へ供給しているので、この検出時に負荷機器に支障が生じてしまうことはない。
特に、制御部43は、負荷機器がコンデンサインプット形整流器負荷であると判断された場合には正弦波の振幅を三角波の振幅の4倍以上とさせ、且つ、負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には正弦波の振幅を三角波の振幅の1倍より小さくする。
したがって、無停電電源装置1は、コンデンサインプット形整流器負荷でない負荷に対して一般的な無停電電源装置1と同様の正弦波の交流電圧を供給することができ、しかも、コンデンサインプット形整流器負荷に対して台形波の交流電圧を供給することができる。また、コンデンサインプット形整流器負荷に対する負荷電流のクレストファクタ値は、たとえば約2から約1.1のように略半分に改善することができる。しかも、その台形波の交流電力を供給する際には、インバータ回路13のスイッチング素子25〜28のオンオフ回数が格段に削減されているので、クレストファクタ値が改善されるだけでなく、スイッチング損失が大きく低減されている。これらのクレストファクタ値の改善効果やスイッチング損失の低減効果は、高い。たとえばこの正弦波の代わりに三角波と同じ振幅の台形波をコンパレータ回路47へ供給する場合のように、コンパレータ回路47へ供給する波形により改善効果が制限されてしまうことがないので、これらの改善効果は高いものとなる。
以上の実施の形態は、本発明の好適な実施の形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々の変形や変更が可能である。
たとえば上記実施の形態では、制御部43は、台形波の交流電力を出力させる場合、変調率として「4」を指定している。この他にもたとえば、制御部43は、台形波の交流電力を出力させる場合、変調率として1より極端に大きい、たとえば「100」などを指定するようにしてもよい。これにより、出力電圧として矩形波を出力することができるようになり、インバータのスイッチング周波数を50Hzあるいは60Hzとできるため、インバータの損失を大幅に低減することができる。
上記実施の形態では、負荷電流検出回路42により負荷電流を検出し、制御部43は、負荷電流のクレストファクタ値に基づいて、負荷機器の種類を判断している。この他にもたとえば、無停電電源装置1から給電する負荷機器に応じて変化する物理量として、負荷機器のインピーダンスの周波数特性などを検出し、制御部43は、このインピーダンスの周波数特性などに基づいて負荷機器の種類を判断するようにしてもよい。
ただし、負荷機器のインピーダンスの周波数特性を検出する場合、負荷機器のインピーダンスを所定の周波数範囲において調べる必要があるため、時間がかかる。そして、その測定および判断のための期間においては、無停電電源装置1のLPF回路14などを一対の給電端子4,5から切り離したりする必要があるため、負荷機器への給電を開始することができない。これに対して、この実施の形態のように、負荷電流のクレストファクタ値に基づいて判断する場合には、その測定および判断のために時間がかからないだけでなく、その測定のために負荷機器へ交流電力を供給する必要があるので、測定のための給電により負荷機器への給電を開始することができる。また、その後に必要に応じて波形を切り替えることにより、継続的に給電をすることができる。
上記実施の形態では、無停電電源装置1において、その出力電力を正弦波と台形波との間で切り替えている。本発明は、無停電電源装置1以外にもたとえば、ジェネレータなどの電源装置や、交流電力の波形品質を改善するための電力品質改善装置などの交流電力供給装置において、その出力電力を正弦波と台形波との間で切り替えるために利用してもよい。
本発明は、無停電電源装置などにおいて、効率良く交流電力を供給するために好適に利用することができる。
図1は、本発明の実施の形態に係る無停電電源装置を示すブロック図である。 図2は、負荷機器の電源回路の入力段の構成例を示す回路図である。 図3は、正弦波の交流電力を供給する場合の信号波形を示す波形図である。 図4は、台形波の交流電力を供給する場合の信号波形を示す波形図である。 図5は、制御部による出力波形選択処理を示すフローチャートである。 図6は、負荷機器の種類に応じた電流波形を示す説明図である。 図7は、負荷機器へ供給する交流電圧の波形を示す波形図である。
符号の説明
1 無停電電源装置
13 インバータ回路
25〜28 スイッチング素子
41 設定スイッチ(設定部材)
42 負荷電流検出回路(検出部材)
43 制御部(制御手段、判断手段)
44 正弦波生成回路(正弦波生成手段)
46 三角波生成回路(三角波生成手段)
47 コンパレータ回路(スイッチング信号生成手段)

Claims (5)

  1. 三角波を生成する三角波生成手段と、
    上記三角波より大きい振幅へ変更可能な正弦波を生成する正弦波生成手段と、
    上記三角波と上記正弦波とのレベル比較に基づいてスイッチング信号を生成するスイッチング信号生成手段と、
    上記スイッチング信号によりオンオフ動作するスイッチング素子を有し、このスイッチング動作により負荷機器へ供給する交流電圧の電力を生成するインバータ回路と、
    当該無停電電源装置から上記負荷機器へ供給する負荷電流を検出する検出部材と
    上記負荷機器に対して正弦波による交流電力を供給したときに検出される上記負荷電流のクレストファクタ値が、所定の閾値より小さい場合には上記負荷機器がコンデンサインプット形整流器負荷でないと判断し、上記クレストファクタ値が所定の閾値より大きい場合には上記負荷機器がコンデンサインプット形整流器負荷であると判断する判断手段と
    上記負荷機器がコンデンサインプット形整流器負荷であると判断された場合には上記正弦波生成手段により上記三角波より振幅が大きい上記正弦波を生成させ、上記負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には上記正弦波生成手段により上記三角波より振幅が小さい上記正弦波を生成させる制御手段と、
    を有することを特徴とする無停電電源装置。
  2. 前記制御手段は、前記負荷機器がコンデンサインプット形整流器負荷であると判断された場合には前記正弦波の振幅を前記三角波の振幅の4倍以上とし、且つ、前記負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には前記正弦波の振幅を前記三角波の振幅の1倍より小さくすること、を特徴とする請求項記載の無停電電源装置。
  3. 前記制御手段は、前記正弦波生成手段に対して、インバータ出力電圧としての正弦波を出力させるためのクロック信号と正弦波の最大振幅を指定する変調率指定信号とを出力し、
    前記正弦波生成手段は、上記クロック信号に応じて周波数が変化する正弦波であって、且つ、その最大振幅が上記変調率指定信号により指定されたものとなる正弦波を生成すること、を特徴とする請求項2または3記載の無停電電源装置。
  4. 三角波を生成する三角波生成手段と、
    上記三角波より大きい振幅へ変更可能な正弦波を生成する正弦波生成手段と、
    上記三角波と上記正弦波とのレベル比較に基づいてスイッチング信号を生成するスイッチング信号生成手段と、
    上記スイッチング信号によりオンオフ動作するスイッチング素子を有し、このスイッチング動作により負荷機器へ供給する交流電圧の電力を生成するインバータ回路と、
    当該交流電力供給装置から上記負荷機器へ供給する負荷電流を検出する検出部材と
    上記負荷機器に対して正弦波による交流電力を供給したときに検出される上記負荷電流のクレストファクタ値が、所定の閾値より小さい場合には上記負荷機器がコンデンサインプット形整流器負荷でないと判断し、上記クレストファクタ値が所定の閾値より大きい場合には上記負荷機器がコンデンサインプット形整流器負荷であると判断する判断手段と
    上記負荷機器がコンデンサインプット形整流器負荷であると判断された場合には上記正弦波生成手段により上記三角波より振幅が大きい上記正弦波を生成させ、上記負荷機器がコンデンサインプット形整流器負荷でないと判断された場合には上記正弦波生成手段により上記三角波より振幅が小さい上記正弦波を生成させる制御手段と、
    を有することを特徴とする交流電力供給装置。
  5. 交流電力供給装置が実行する負荷機器に応じた交流電圧切替方法であって、
    交流電力供給装置から負荷機器へ交流電力を供給するステップと、
    当該交流電力供給装置から上記負荷機器へ供給する負荷電流を検出し、上記負荷機器に対して正弦波による交流電力を供給したときに検出される上記負荷電流のクレストファクタ値が、所定の閾値より小さい場合には上記負荷機器がコンデンサインプット形整流器負荷でないと判断し、上記クレストファクタ値が所定の閾値より大きい場合には上記負荷機器がコンデンサインプット形整流器負荷であると判断するステップと
    上記負荷機器がコンデンサインプット形整流器負荷であると判断された場合、交流電圧の電力を生成するインバータ回路をスイッチング動作させるためのスイッチング信号を生成するスイッチング信号生成手段に対して、三角波とレベル比較されるために供給される正弦波の振幅を上記三角波より大きく制御し、且つ、上記負荷機器がコンデンサインプット形整流器負荷でないと判断された場合、上記正弦波の振幅を上記三角波より小さく制御するステップと、
    を有することを特徴とする負荷機器に応じた交流電圧切替方法。
JP2007115796A 2007-04-25 2007-04-25 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法 Active JP4569596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115796A JP4569596B2 (ja) 2007-04-25 2007-04-25 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115796A JP4569596B2 (ja) 2007-04-25 2007-04-25 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法

Publications (2)

Publication Number Publication Date
JP2008278558A JP2008278558A (ja) 2008-11-13
JP4569596B2 true JP4569596B2 (ja) 2010-10-27

Family

ID=40055877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115796A Active JP4569596B2 (ja) 2007-04-25 2007-04-25 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法

Country Status (1)

Country Link
JP (1) JP4569596B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157700B1 (ko) * 2020-04-06 2020-09-18 주식회사 에이치에스해성 보호회로를 구비한 전력변환장치 및 전력변환장치의 제어방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380138B2 (ja) * 2009-04-06 2014-01-08 本田技研工業株式会社 系統連系インバータ
JP6025663B2 (ja) * 2013-06-06 2016-11-16 三菱電機株式会社 無停電電源装置
JP6392892B2 (ja) * 2014-12-08 2018-09-19 東芝三菱電機産業システム株式会社 無停電電源装置
EP3240139A4 (en) * 2014-12-25 2018-08-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
JP6669434B2 (ja) * 2015-02-16 2020-03-18 株式会社Soken 電力変換装置
CN107046370B (zh) 2016-02-09 2020-05-26 松下知识产权经营株式会社 变换器、电力传输***及控制器
CN107046379B (zh) 2016-02-09 2020-07-10 松下知识产权经营株式会社 变换器、电力传输***及控制器
JP7252431B2 (ja) * 2019-10-10 2023-04-05 パワーサプライテクノロジー株式会社 電源装置と、それを用いた印刷装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285473A (ja) * 1991-03-11 1992-10-09 Toshiba Corp Dc/ac電源装置
JPH0631391U (ja) * 1992-09-25 1994-04-22 株式会社明電舎 無停電電源装置の出力電圧波形歪補正回路
JPH06189475A (ja) * 1992-12-17 1994-07-08 Toshiba Corp 無停電電源装置
JP2003009419A (ja) * 2001-06-21 2003-01-10 Matsushita Electric Ind Co Ltd 電源装置
JP2004215321A (ja) * 2002-12-26 2004-07-29 Ntt Data Corp 無停電電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285473A (ja) * 1991-03-11 1992-10-09 Toshiba Corp Dc/ac電源装置
JPH0631391U (ja) * 1992-09-25 1994-04-22 株式会社明電舎 無停電電源装置の出力電圧波形歪補正回路
JPH06189475A (ja) * 1992-12-17 1994-07-08 Toshiba Corp 無停電電源装置
JP2003009419A (ja) * 2001-06-21 2003-01-10 Matsushita Electric Ind Co Ltd 電源装置
JP2004215321A (ja) * 2002-12-26 2004-07-29 Ntt Data Corp 無停電電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157700B1 (ko) * 2020-04-06 2020-09-18 주식회사 에이치에스해성 보호회로를 구비한 전력변환장치 및 전력변환장치의 제어방법

Also Published As

Publication number Publication date
JP2008278558A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4569596B2 (ja) 無停電電源装置、交流電力供給装置および負荷機器に応じた交流電圧切替方法
US9660519B2 (en) Switching power supply circuit and power factor correction circuit
US8094473B2 (en) Bridgeless power factor correction circuit
JP4487009B2 (ja) 電源装置
JP6479160B2 (ja) コンバータ装置
JP2012157220A (ja) 制御装置、制御方法および電源装置
JP6731639B2 (ja) 電力変換装置
JP6830205B2 (ja) 負荷制御装置
US9438131B2 (en) AC-DC converter
JP6830204B2 (ja) 負荷制御装置
CN108604867B (zh) 电力变换装置
JP5658922B2 (ja) 系統連系電力変換装置及び系統連系電力変換の制御方法
JP6178676B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
JP5180890B2 (ja) 直流電源装置
US20210068210A1 (en) Induction cooker and operation method thereof
KR102106388B1 (ko) 유도 가열 장치 및 유도 가열 장치 제어 방법
KR102175634B1 (ko) 동작 안정성을 향상한 조리 기기 및 그 동작방법
JP4899268B2 (ja) スイッチング電源装置
JP7142228B2 (ja) 負荷制御装置
JP2012029397A (ja) 負荷駆動装置
JP2003219652A (ja) 電力変換装置
JP4023438B2 (ja) 炊飯器
WO2020012802A1 (ja) コンバータ装置、制御信号特定方法及びプログラム
JPWO2017145242A1 (ja) コンバータ回路、インバータ回路および空気調和機の電力変換装置
WO2013088595A1 (ja) 誘導加熱装置とその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250