JP4310447B2 - Ultra fine particle manufacturing method and manufacturing apparatus thereof - Google Patents

Ultra fine particle manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4310447B2
JP4310447B2 JP2004085667A JP2004085667A JP4310447B2 JP 4310447 B2 JP4310447 B2 JP 4310447B2 JP 2004085667 A JP2004085667 A JP 2004085667A JP 2004085667 A JP2004085667 A JP 2004085667A JP 4310447 B2 JP4310447 B2 JP 4310447B2
Authority
JP
Japan
Prior art keywords
ultrafine particles
gas
diameter
solid metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004085667A
Other languages
Japanese (ja)
Other versions
JP2005270745A (en
Inventor
八井  浄
江  偉華
久幸 末松
常生 鈴木
Original Assignee
八井 浄
江 偉華
久幸 末松
常生 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八井 浄, 江 偉華, 久幸 末松, 常生 鈴木 filed Critical 八井 浄
Priority to JP2004085667A priority Critical patent/JP4310447B2/en
Publication of JP2005270745A publication Critical patent/JP2005270745A/en
Application granted granted Critical
Publication of JP4310447B2 publication Critical patent/JP4310447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、低温安定相化合物超微粒子の製造方法およびその製造装置に関するものである。   The present invention relates to a method for producing low-temperature stable phase compound ultrafine particles and a production apparatus therefor.

直径100nm以下の粒子は超微粒子と呼ばれ、多くの応用が期待されている。特に、微細化する電子、機械部品用素材として、超微粒子の新しい用途や市場が生まれる可能性がある。特に、Fe-Nなど低温安定相の窒化物は、研磨剤材料などとしての実用化が求められている。   Particles having a diameter of 100 nm or less are called ultrafine particles, and many applications are expected. In particular, there is a possibility that new applications and markets for ultrafine particles will be born as materials for electronic and mechanical parts to be miniaturized. In particular, low-temperature stable phase nitrides such as Fe—N are required to be put to practical use as abrasive materials.

この超微粒子の製造方法としては、液相法と気相法が知られていた。液相法は、金属原子含む溶液を沈殿あるいはゲル化後熱処理して望みの相を得るが、液相中の溶媒原子を除去するのが困難であった。   As a method for producing the ultrafine particles, a liquid phase method and a gas phase method have been known. In the liquid phase method, a solution containing metal atoms is precipitated or gelled and then heat-treated to obtain a desired phase, but it is difficult to remove solvent atoms in the liquid phase.

これに対して、気相法は、原料を高温加熱して溶融または蒸発させこれを固化させるため、溶媒不純物混入の可能性は少ない。その代わり、加熱時に投入されるエネルギーの多くが原料以外の熱伝導によって失われるためエネルギー変換効率が悪かった。こうした問題点のため、気相法による超微粒子作製は高コストとなり、販売価格高のために市場サイズに制限があった。   On the other hand, in the vapor phase method, the raw material is heated at a high temperature to melt or evaporate and solidify it, so that there is little possibility of contamination with solvent impurities. Instead, much of the energy input during heating is lost due to heat conduction other than the raw material, resulting in poor energy conversion efficiency. Due to these problems, the production of ultrafine particles by the vapor phase method is expensive, and the market size is limited due to the high sales price.

この気相法による超微粒子作製時のエネルギー変換効率向上のため、パルス細線放電法が開発された。この方法では、金属原料細線の大電流パルス通電により加熱を行うことにより、熱伝導を押さえて高効率加熱を実現した。一方、この方法では原料金属が蒸発・プラズマ化した後、雰囲気ガスにより急冷されるため、高温安定相の作製は容易でも、低温安定相の作製は困難であった。   In order to improve the energy conversion efficiency during the production of ultrafine particles by this vapor phase method, the pulsed wire discharge method was developed. In this method, high-efficiency heating was realized by suppressing heat conduction by heating by applying a large current pulse to a metal raw material thin wire. On the other hand, in this method, since the raw material metal is vaporized and converted into plasma and then rapidly cooled by the atmospheric gas, it is difficult to produce a low-temperature stable phase even though it is easy to produce a high-temperature stable phase.

さらに研磨剤作製のためには、表面に曲半径の小さな突起が出ている粒子の方が望ましいが、気相中蒸気の急冷による超微粒子作製法であるパルス細線放電法では球形以外の超微粒子作製は困難であった。 For further abrasive manufactured, but who particles small radius of curvature surface protrusions are out is desired, the pulse Wire Discharge is ultrafine particles production method according to quench the gas phase vapor other than spherical ultra It was difficult to produce fine particles.

本発明は、研磨剤実用化のために突起を有する低温安定相超微粒子製造に着目し、気相法により高エネルギー効率で突起を有する低温安定相超微粒子を作製することが技術的課題である。   The present invention focuses on the production of low temperature stable phase ultrafine particles having protrusions for practical use of an abrasive, and it is a technical problem to produce low temperature stable phase ultrafine particles having protrusions with high energy efficiency by a vapor phase method. .

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

電気炉中で100〜1000℃に保持された窒素、酸素、炭素、硫黄原子を含む気体中で直径0.1〜1mmの固体金属細線に通電し、蒸発と同時に気体と反応させることにより合成した曲率半径3〜10nmの突起を持つ直径5〜100nmの化合物超微粒子を作製することを特徴とする超微粒子の製造方法に係るものである。 Nitrogen in an electric furnace held in 100 to 1000 ° C., energized oxygen, carbon, a solid metal thin wires having a diameter of 0.1~1mm a gas containing a sulfur atom, it was synthesized by reacting evaporated simultaneously with the gas The present invention relates to a method for producing ultrafine particles, comprising producing compound ultrafine particles having a diameter of 5 to 100 nm having protrusions having a curvature radius of 3 to 10 nm.

また、前記通電時間が、1μs〜1msとしたことを特徴とする請求項1記載の超微粒子の製造方法に係るものである。   The method according to claim 1, wherein the energization time is 1 μs to 1 ms.

また、100〜1000℃に保持された窒素、酸素、炭素、硫黄原子を含む気体を収納した反応室部と、この反応室部内に設ける直径0.1〜1mmの固体金属細線を前記気体中でパルス電流を通電することで加熱・蒸発させる加熱装置とを備えて、前記固体金属細線を蒸発と同時に前記気体と反応させることで曲率半径3〜10nmの突起を持つ直径5〜100nmの化合物超微粒子が作製されるように構成したことを特徴とする超微粒子の製造装置に係るものである。   In addition, a reaction chamber portion containing a gas containing nitrogen, oxygen, carbon, and sulfur atoms held at 100 to 1000 ° C., and a solid metal thin wire having a diameter of 0.1 to 1 mm provided in the reaction chamber portion in the gas. A heating apparatus that heats and evaporates by applying a pulse current, and reacts with the gas at the same time as evaporating the solid metal fine wire, thereby causing compound ultrafine particles with a diameter of 5 to 100 nm having protrusions with a curvature radius of 3 to 10 nm. The present invention relates to an apparatus for producing ultrafine particles, which is configured to be manufactured.

また、前記固体金属細線に通電するパルス電流の通電時間を1μs〜1msに制御する通電時間制御手段を備えたことを特徴とする請求項3記載の超微粒子の製造装置に係るものである。   4. The ultrafine particle manufacturing apparatus according to claim 3, further comprising energization time control means for controlling an energization time of a pulse current energizing the solid metal thin wire to 1 μs to 1 ms.

本発明は上述のように構成したから、突起を有する低温相化合物微粒子を、高エネルギー変換効率で、不純物混入の可能性が少ない気相法により作製することを可能にした。   Since the present invention is configured as described above, low-temperature phase compound fine particles having protrusions can be produced by a gas phase method with high energy conversion efficiency and low possibility of impurity contamination.

また、請求項2記載の発明によれば、短時間加熱により高いエネルギー変換効率で低温相化合物微粒子が製造でき、低コストで低温相化合物微粒子を作製できることとなった。   According to the invention of claim 2, low-temperature phase compound fine particles can be produced with high energy conversion efficiency by short-time heating, and low-temperature phase compound fine particles can be produced at low cost.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

電気炉中で一定温度に保った雰囲気ガス中で、金属細線にパルス電流を通電することにより、金属プラズマを発生させ、これを冷却中に雰囲気ガスと反応・凝結させることにより超微粒子を作製した。   Ultrafine particles were produced by generating a metal plasma by applying a pulse current to a fine metal wire in an atmospheric gas maintained at a constant temperature in an electric furnace, and reacting and condensing it with the atmospheric gas during cooling. .

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

図1に装置断面図を示す。圧力750Torrのアンモニアガスを密封型管状電気炉に充填し、室温または450℃の温度に保持した。この電気炉中に直径0.2mm、長さ19mmの鉄線を設置した。これを6kVに充電した容量20μFのコンデンサーに接続し、パルス大電流放電によって鉄線を加熱・プラズマ化させた。同等な回路の通電時に測定した電圧・電流波形より求めた加熱時間は、4μsであった。プラズマの冷却によって製造した超微粒子は、フィルターを介して脱気することにより回収した。図中、符号1は鉄線、2,3は鉄線留め具、4,5は電極、6はコンデンサー、7はスイッチ、8,9はヒーター、10は密封型管状電気炉、11はバルブ、12はアンモニアガス源である。 FIG. 1 shows a sectional view of the apparatus. A sealed tubular electric furnace was filled with ammonia gas having a pressure of 750 Torr and maintained at room temperature or 450 ° C. An iron wire having a diameter of 0.2 mm and a length of 19 mm was installed in the electric furnace. This was connected to a capacitor having a capacity of 20 μF charged to 6 kV, and the iron wire was heated and turned into plasma by pulsed large current discharge. The heating time obtained from the voltage / current waveform measured during energization of an equivalent circuit was 4 μs. Ultrafine particles produced by cooling the plasma were recovered by deaeration through a filter. In the figure, 1 is an iron wire, 2 and 3 are iron wire fasteners, 4 and 5 are electrodes, 6 is a capacitor, 7 is a switch, 8 and 9 are heaters, 10 is a sealed tubular electric furnace, 11 is a valve, 12 is A source of ammonia gas.

図2に450℃で作製した超微粒子の透過型電子顕微鏡写真を示す。直径5〜100nmの微粒子が作製できた。この表面には曲半径5〜10nmの突起が生じていることが分かった。 FIG. 2 shows a transmission electron micrograph of ultrafine particles produced at 450 ° C. Fine particles having a diameter of 5 to 100 nm were prepared. It was found that protrusions with a curvature radius of 5 to 10 nm were formed on this surface.

図3に室温と450℃で作製した超微粒子の粉末X線回折図形を示す。室温で作製した超微粒子には、変態温度680℃を有する低温相窒化鉄の一つであるγ'-Fe4N相が存在することが分かるが、同時にα-Fe、γ-Feなど窒化していない超微粒子も存在する。特にγ-Feは、高温相である。一方、450℃で作製した超微粒子中のα-Fe、γ-Feのピーク強度は、室温で作製した超微粒子中のそれより大幅に減少している。 FIG. 3 shows a powder X-ray diffraction pattern of ultrafine particles produced at room temperature and 450 ° C. The ultrafine particles produced at room temperature, which is one of the low temperature phase iron nitride having a transformation temperature 680 ℃ γ '- Fe is 4 N phase can be seen that the presence, at the same time α - Fe, γ - Fe such nitrided Some ultrafine particles are not present. In particular, γ - Fe is a high temperature phase. On the other hand, the ultra-fine particles produced at 450 ℃ α - Fe, γ - peak intensity of Fe is decreased it from greatly in ultrafine particles produced at room temperature.

これらの結果により、電気炉中で、アンモニアガスを450℃で保持しておいた中で鉄をパルス通電加熱させることにより、低温相Fe-N超微粒子の合成が可能となったことが分かった。   From these results, it was found that low-temperature phase Fe-N ultrafine particles could be synthesized by heating pulsed iron while holding ammonia gas at 450 ° C in an electric furnace. .

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

本実施例における装置概略図である。It is the apparatus schematic in a present Example. 本実施例における微粒子の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the fine particle in a present Example. 本実施例における微粒子の粉末X線回折図形である。It is a powder X-ray diffraction pattern of the fine particles in a present Example.

Claims (4)

電気炉中で100〜1000℃に保持された窒素、酸素、炭素、硫黄原子を含む気体中で直径0.1〜1mmの固体金属細線に通電し、蒸発と同時に気体と反応させることにより合成した曲率半径3〜10nmの突起を持つ直径5〜100nmの化合物超微粒子を作製することを特徴とする超微粒子の製造方法。 Nitrogen in an electric furnace held in 100 to 1000 ° C., energized oxygen, carbon, a solid metal thin wires having a diameter of 0.1~1mm a gas containing a sulfur atom, it was synthesized by reacting evaporated simultaneously with the gas A method for producing ultrafine particles, comprising producing compound ultrafine particles having a diameter of 5 to 100 nm having protrusions having a curvature radius of 3 to 10 nm. 前記通電時間が、1μs〜1msとしたことを特徴とする請求項1記載の超微粒子の製造方法。   The method for producing ultrafine particles according to claim 1, wherein the energization time is 1 μs to 1 ms. 100〜1000℃に保持された窒素、酸素、炭素、硫黄原子を含む気体を収納した反応室部と、この反応室部内に設ける直径0.1〜1mmの固体金属細線を前記気体中でパルス電流を通電することで加熱・蒸発させる加熱装置とを備えて、前記固体金属細線を蒸発と同時に前記気体と反応させることで曲率半径3〜10nmの突起を持つ直径5〜100nmの化合物超微粒子が作製されるように構成したことを特徴とする超微粒子の製造装置。   A reaction chamber containing a gas containing nitrogen, oxygen, carbon, and sulfur atoms maintained at 100 to 1000 ° C., and a solid metal thin wire having a diameter of 0.1 to 1 mm provided in the reaction chamber are pulsed in the gas. And a heating device that heats and evaporates by energizing the electrode, and reacts with the gas at the same time as evaporating the solid metal fine wire, thereby producing ultrafine compound particles with a diameter of 5 to 100 nm having protrusions with a curvature radius of 3 to 10 nm An apparatus for producing ultrafine particles, characterized in that it is configured as described above. 前記固体金属細線に通電するパルス電流の通電時間を1μs〜1msに制御する通電時間制御手段を備えたことを特徴とする請求項3記載の超微粒子の製造装置。   4. The apparatus for producing ultrafine particles according to claim 3, further comprising energization time control means for controlling an energization time of a pulse current energized to the solid metal thin wire to 1 μs to 1 ms.
JP2004085667A 2004-03-23 2004-03-23 Ultra fine particle manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP4310447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085667A JP4310447B2 (en) 2004-03-23 2004-03-23 Ultra fine particle manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085667A JP4310447B2 (en) 2004-03-23 2004-03-23 Ultra fine particle manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2005270745A JP2005270745A (en) 2005-10-06
JP4310447B2 true JP4310447B2 (en) 2009-08-12

Family

ID=35170964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085667A Expired - Fee Related JP4310447B2 (en) 2004-03-23 2004-03-23 Ultra fine particle manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4310447B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784258B (en) 2007-07-06 2013-07-17 M技术株式会社 Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
JP5255311B2 (en) * 2008-03-31 2013-08-07 独立行政法人科学技術振興機構 Method for producing fine particles
CN104851548B (en) * 2015-04-18 2017-02-01 北京工业大学 Method for preparing ferrum-nitrogen compound magnetic fluid with high-frequency plasma

Also Published As

Publication number Publication date
JP2005270745A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
RU2002123919A (en) PLASMA-ARC REACTOR AND METHOD FOR PRODUCING THIN POWDERS
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
JP4051569B2 (en) Method for producing intermetallic compound porous material
KR101290659B1 (en) Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby
JP4310447B2 (en) Ultra fine particle manufacturing method and manufacturing apparatus thereof
JP2014520207A (en) Nickel alloys for hydrogen storage and energy generation therefrom
US8398948B2 (en) Method of preparing carbon nanotube from liquid phased-carbon source
JP5408823B2 (en) Method for producing metal fine particles
Sangurai et al. Synthesis of nanosize powders of aluminum nitride by pulsed wire discharge
JP2012144792A (en) Method and apparatus for producing alloy particle
KR20080067109A (en) Method for generation and fixation of metal aerosol nanoparticle
JP2018038990A (en) Catalyst for water splitting, hydrogen production method, and hydrogen production apparatus
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
KR101409160B1 (en) Manufacturing method of aluminum nitride nano powder
JP5704640B2 (en) Metal-supported boron nitride nanostructure and manufacturing method thereof
JPH04350107A (en) Production of metal nitride powder
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP6595808B2 (en) Magnesium metal fine particles and method for producing magnesium metal fine particles
KR101395578B1 (en) Thermal plasma apparatus for manufacturing aluminum nitride powder
JP2017165605A (en) METHOD FOR PRODUCING TANTALUM NITRIDE (Ta3 N5)
Suematsu et al. Repetitive pulsed wire discharge for applications to material science
JP2002080211A (en) Method of making carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4310447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees