JPS62282635A - Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder - Google Patents

Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder

Info

Publication number
JPS62282635A
JPS62282635A JP61124667A JP12466786A JPS62282635A JP S62282635 A JPS62282635 A JP S62282635A JP 61124667 A JP61124667 A JP 61124667A JP 12466786 A JP12466786 A JP 12466786A JP S62282635 A JPS62282635 A JP S62282635A
Authority
JP
Japan
Prior art keywords
powder
ultra
aluminum
fine
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61124667A
Other languages
Japanese (ja)
Inventor
Masahiro Uda
雅広 宇田
Satoru Ono
悟 大野
Hideo Okuyama
秀男 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP61124667A priority Critical patent/JPS62282635A/en
Publication of JPS62282635A publication Critical patent/JPS62282635A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles

Abstract

PURPOSE:To highly purify the titled ultra-fine powder at low temp. and in a short time by introducing the mixture of the ultra-fine powder of aluminum nitride and metallic aluminum into a fluidized bed at 400-1,000 deg.C in a nitrogen atmosphere to partially nitride the surface of the ultra-fine metallic aluminum powder. CONSTITUTION:Metallic aluminum is melted by the flame of an arc or plasma jet generator in the atmosphere of nitrogen or a mixture of nitrogen and an inert gas to generate a mixture of the ultra-fine powder of aluminum nitride and metallic aluminum. The mixture of the ultra-fine powder is introduced into a fluidized bed heated at 400-1,000 deg.C in the nitrogen atmosphere to partially nitride the surface of the ultra-fine metallic aluminum powder. The device for producing mixed ultra-fine powder by plasma generation can be composed, for example, of a closed vessel 1, arc plasma 2, molten aluminum, the fluidized bed 4, and an atmosphere gas inlet 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒径1μm以下の窒化アルミニウム超#に船、
L耐酸什桂全にアッパニウム紹尚怜の六−に混合した混
合超微粉の製造法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention is directed to the use of aluminum nitride particles having a grain size of 1 μm or less.
The present invention relates to a method for producing a mixed ultrafine powder obtained by mixing L-acid-resistant Kiquan with Uppanium Shaoshangrei.

窒化アルミニウムは耐熱性、熱伝導特性、絶縁性等に優
れた特性を有することから、各種の半導体用放熱板、透
光性耐熱材、弾性表面波素子基板、溶融金属用耐浴材な
どとして広く利用されている。
Because aluminum nitride has excellent properties such as heat resistance, thermal conductivity, and insulation, it is widely used as heat sinks for various semiconductors, transparent heat-resistant materials, surface acoustic wave device substrates, bath-resistant materials for molten metals, etc. It's being used.

これらの材料はいずれも粉末冶金的手段、すなわち、焼
結によって作成されるが、高性能な焼結体を得るために
は、高純度であり、かつ焼結性の優れた微細な窒化アル
ミニウム粉であることが要求される。
All of these materials are created by powder metallurgy, that is, sintering, but in order to obtain a high-performance sintered body, fine aluminum nitride powder of high purity and excellent sinterability is used. is required.

従来技術 従来、粒径1μm以下の窒化アルミニウム超微粉を製造
する方法としては、(1)窒化アルミニウム塊の機械的
粉砕、(2)アルミニウムハライドとアンモニヤとの気
相反応を利用した製造法があるが、前者では1μm以下
の窒化アルミニウム超微粉を得ることが極めて困難であ
り、後者は反応効率が低く、かつ高純度の窒化アルミニ
ウム超微粉が得がたい等の欠点があった。
Conventional technology Conventionally, methods for producing ultrafine aluminum nitride powder with a particle size of 1 μm or less include (1) mechanical pulverization of aluminum nitride lumps, and (2) production methods that utilize a gas phase reaction between aluminum halide and ammonia. However, with the former, it is extremely difficult to obtain ultrafine aluminum nitride powder of 1 μm or less, and with the latter, the reaction efficiency is low and it is difficult to obtain ultrafine aluminum nitride powder with high purity.

この欠点をなくすべく、本発明者らはさきに、金属アル
ミニウムを窒素プラズマ溶解することにより高純度の超
微粉を製造する方法を開発した。(特開昭59−579
04号)、シかし、得られる超微粉は、窒化アルミニラ
l、超微粉と金属アルミニウム超微粉の混合物である。
In order to eliminate this drawback, the present inventors have previously developed a method for producing highly pure ultrafine powder by melting metallic aluminum with nitrogen plasma. (Unexamined Japanese Patent Publication No. 59-579
No. 04), the obtained ultrafine powder is a mixture of ultrafine aluminum nitride powder and ultrafine metal aluminum powder.

該混合物中の金属アルミニウム超微粉は極めて活性であ
り、比較的低温(<7oo℃)で容易に窒化される半面
、その窒化過程で金属アルミニウム超微粉同志の焼結が
生じたり、僅かの酸素により発火や酸化を生じ、以後の
窒化を著しく阻害するという問題点があった。
The ultrafine metal aluminum powder in the mixture is extremely active and is easily nitrided at relatively low temperatures (<70°C); however, during the nitriding process, the ultrafine metal aluminum powder may sinter with each other, or may be oxidized by a small amount of oxygen. There was a problem that ignition and oxidation occurred, which significantly inhibited subsequent nitriding.

発明の目的 本発明は前記プラズマ法における問題点を解決すべくな
されたもので、その目的は混合物中の金属アルミニウム
超微粉を熱処理によって容易に窒化アルミニウム超微粉
となし得る耐酸化性の金属アルミニウム超微粉に代えた
ものとする方法を提供しようとするにある。
Purpose of the Invention The present invention has been made to solve the problems in the plasma method, and its purpose is to produce an oxidation-resistant metallic aluminum superfine powder that can be easily converted into aluminum nitride superfine powder by heat treatment of the metallic aluminum superfine powder in the mixture. The aim is to provide a method that can replace fine powder.

発明の構成 本発明者らは前記目的を達成すべく更に研究の結果、窒
化アルミニウムと金属アルミニウムの超微粉混合物を、
酸化させることなく、窒素雰囲気中で適当に熱処理する
と、金属アルミニウム超微粉は大気中に取出し得る程度
に耐酸化性となり、かつ、混合物の窒化熱処理の際、金
属アルミニウム粉同志の焼結しないものとなることを究
明し得た。この知見に基いて本発明を完成した。
Structure of the Invention As a result of further research to achieve the above object, the present inventors have developed an ultrafine powder mixture of aluminum nitride and metal aluminum,
When properly heat-treated in a nitrogen atmosphere without oxidation, the metal aluminum ultrafine powder becomes oxidation-resistant to the extent that it can be taken out into the atmosphere, and the metal aluminum powder does not sinter together during the nitriding heat treatment of the mixture. I was able to find out what happened. The present invention was completed based on this knowledge.

本発明の要旨 窒素あるいは窒素と不活性ガスの混合ガス′雰囲気中で
発生させたアークあるいはプラズマジェットのフレーム
により金属アルミニウムを溶融させて窒化アルミニウム
と全項アルミニウムの混合超微粉を発生させ、該混合超
微粉を窒素雰囲気下の400〜1000℃1こ加熱した
流動層に導き、金属アルミニウム超微粉表面を部分窒化
□□二 との混合ガス、アンモニヤガス、アンモニヤガスと窒素
、不活性ガスとの混合ガスを導入してもよい。また流動
層の温度は=100〜1000℃である。400℃未満
では表面窒化に長時間を要し、1000℃を超えると金
属アルミニウムが蒸発する。その処理時間は雰囲気の組
成、粒子密度、所望の窒化率、温度により異なるが、粒
径制御、操業性の点より02〜1000秒の範囲である
ことが望ましい。
Summary of the present invention Metal aluminum is melted by an arc or plasma jet flame generated in a nitrogen or a mixed gas atmosphere of nitrogen and an inert gas to generate a mixed ultrafine powder of aluminum nitride and total aluminum. The ultrafine powder is introduced into a fluidized bed heated to 400 to 1000°C in a nitrogen atmosphere, and the surface of the ultrafine metal aluminum powder is partially nitrided with a mixed gas, ammonia gas, ammonia gas and nitrogen, or an inert gas. Gas may also be introduced. Further, the temperature of the fluidized bed is 100 to 1000°C. If the temperature is less than 400°C, a long time is required for surface nitriding, and if the temperature exceeds 1000°C, metal aluminum evaporates. The treatment time varies depending on the composition of the atmosphere, particle density, desired nitriding rate, and temperature, but is preferably in the range of 02 to 1000 seconds from the viewpoint of particle size control and operability.

これにより、粒径1μm以下の窒化アルミニウム超微粉
と表面が部分窒化された金属アルミニウム超微粉とが均
一に混合された超微粉を連続的に製造することができる
。得られる超微粉は大気中に取出しても発火等の変質を
生じ難い。
Thereby, it is possible to continuously produce ultrafine powder in which ultrafine aluminum nitride powder with a particle size of 1 μm or less and ultrafine metal aluminum powder whose surface is partially nitrided are uniformly mixed. The resulting ultrafine powder is unlikely to undergo changes such as ignition even if taken out into the atmosphere.

また本発明の処理を行わない場合には600CX志の焼
結が起きるが、本発明で得られるもの(i、1000℃
×3時間の窒化処理においても金属アルミニウム超微粉
同志の焼結を起こすことはない、更にまた、得られる超
微粉が9化アルミニウム超微粉と表面部分窒化よれた耐
酸化性金属アルミニウム超微粉であるため、前記9化焼
結処理に際し、金属アルミニウムと窒素の反応熱を利用
し得られ焼結温度を下げることができ、また金属アルミ
ニウムが窒化アルミニウムとなるとき体積膨張を起こす
ので、より緻密な焼結体が得られる等の優れた効果を有
する。
In addition, when the treatment of the present invention is not performed, sintering of 600CX occurs, but the sintering of 600C
Even in the nitriding treatment for 3 hours, no sintering of the metal aluminum ultrafine powder occurs.Furthermore, the obtained ultrafine powder is aluminum 9ide ultrafine powder and oxidation-resistant metal aluminum ultrafine powder whose surface is partially nitrided. Therefore, during the sintering process, the sintering temperature can be lowered by using the heat of reaction between metal aluminum and nitrogen, and since the volume expands when metal aluminum turns into aluminum nitride, it is possible to achieve more dense sintering. It has excellent effects such as forming solids.

本発明の方法におけるプラズマ発生による混合超微粉を
製造する装置としては第1図(こ示すものが挙げられる
。図中、1は密閉容器、2はアークプラズマ、3は溶融
アルミニウム、4は流動層、5は′8囲気ガス人口を示
す。密閉容器1は窒素ガスを雰囲気ガス人口5より導入
する。
The apparatus for producing mixed ultrafine powder by plasma generation in the method of the present invention includes the one shown in FIG. , 5 indicates the ambient gas population.Nitrogen gas is introduced into the sealed container 1 from the ambient gas population 5.

実施例 第1図に示す装置を使用し、プラズマ発生方体、L−1
τHa 漆’7−/7  / TT:f& 姓ケ末+ 
M 凸ASを、雰囲気は純窒素をそれぞれ用いて、窒化
アルミニウム超微粉と金属アルミニウム超微粉との混合
超微粉を発生させ、該発生した混合超微粉を雰囲気窒素
の気流によって流動層へ搬送した。流動層は800℃で
、処理時間は約1秒であった。
Example Using the apparatus shown in FIG. 1, a plasma generation cube, L-1
τHa Lacquer '7-/7 / TT:f& Last name +
A mixed ultrafine powder of aluminum nitride ultrafine powder and metallic aluminum ultrafine powder was generated using M convex AS and pure nitrogen atmosphere, and the generated mixed ultrafine powder was transported to a fluidized bed by an air flow of atmospheric nitrogen. The temperature of the fluidized bed was 800°C, and the treatment time was about 1 second.

得られた混合超微粉の電子顕微鏡写真を第23図の粉末
X線回折図形より、窒化アルミニラことがなく、第4図
の粉末X線回折図形に示すように、800℃×3時間窒
化熱処理した後も粒成長することがなく、窒化率100
%の窒化アルミニウムの超微粉となることがわかった。
From the powder X-ray diffraction pattern in Figure 23, the electron micrograph of the obtained mixed ultrafine powder shows that there was no nitrided aluminum, and as shown in the powder X-ray diffraction pattern in Figure 4, it was nitrided at 800°C for 3 hours. There is no grain growth even after the process, and the nitriding rate is 100.
% aluminum nitride ultrafine powder.

発明の効果 本発明の方法によると、簡易な装置により耐酸化性と耐
熱性を有する金属アルミニウム超微粉と窒化アルミニウ
ム超微粉との混合超微粉が容易かつ無公害に製造するこ
とができる。また、得られる混合超微粉を窒化処理する
ことにより低温・短時間に高純度の窒化アルミニウム超
微粉とすることができる優れた効果を秦し得られる。
Effects of the Invention According to the method of the present invention, a mixed ultrafine powder of ultrafine metal aluminum powder and ultrafine aluminum nitride powder having oxidation resistance and heat resistance can be easily and pollution-free produced using a simple device. Further, by subjecting the resulting mixed ultrafine powder to a nitriding treatment, it is possible to obtain an excellent effect of producing highly pure aluminum nitride ultrafine powder at low temperatures and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐酸化性金属アルミニウム超微粉と窒化アルミ
ニウム超微粉の混合超微粉を製造する装置の実施態様図
、第2図は混合超微粉の電子顕微鏡写真、第3図は混合
超微粉の粉末X線回折図形、第4図は混合超微粉を窒化
熱処理した後の粉末X線回折図形を示す。 】:密閉容器     2:アークプラズマ3;溶融ア
ルミニウム 4:ハ、−ス 5“雰囲気ガス人口  6:流動層 7:捕集器 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  − 巣10 枇−反 第3巳
Figure 1 is an embodiment of an apparatus for producing a mixed ultrafine powder of oxidation-resistant metal aluminum ultrafine powder and aluminum nitride ultrafine powder, Figure 2 is an electron micrograph of the mixed ultrafine powder, and Figure 3 is the mixed ultrafine powder. X-ray diffraction pattern: FIG. 4 shows the powder X-ray diffraction pattern after the mixed ultrafine powder was subjected to nitriding heat treatment. ]: Sealed container 2: Arc plasma 3; Molten aluminum 4: Ha, -su 5 "Atmospheric gas population 6: Fluidized bed 7: Collector patent applicant Ryu Kawa, Director of the Metals Materials Technology Research Institute, Science and Technology Agency - Su 10 枇- Anti-Third Snake

Claims (1)

【特許請求の範囲】[Claims] 窒素あるいは窒素と不活性ガスの混合ガス雰囲気中で発
生させたアークあるいはプラズマジェットのフレームに
より金属アルミニウムを溶融させて窒化アルミニウムと
金属アルミニウムの混合超微粉を発生させ、該混合超微
粉を窒素雰囲気下の400〜1000℃に加熱した流動
層に導き、金属アルミニウム超微粉表面を部分窒化する
ことを特徴とする窒化アルミニウム超微粉と耐酸化性ア
ルミニウム超微粉の混合超微粉の製造法。
A mixed ultrafine powder of aluminum nitride and metal aluminum is generated by melting metallic aluminum with an arc or plasma jet flame generated in a nitrogen or a mixed gas atmosphere of nitrogen and an inert gas, and the mixed ultrafine powder is melted in a nitrogen atmosphere. A method for producing a mixed ultrafine powder of aluminum nitride ultrafine powder and oxidation-resistant aluminum ultrafine powder, which comprises introducing the ultrafine metallic aluminum powder into a fluidized bed heated to 400 to 1000°C to partially nitridize the surface of the ultrafine metal aluminum powder.
JP61124667A 1986-05-31 1986-05-31 Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder Pending JPS62282635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61124667A JPS62282635A (en) 1986-05-31 1986-05-31 Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61124667A JPS62282635A (en) 1986-05-31 1986-05-31 Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder

Publications (1)

Publication Number Publication Date
JPS62282635A true JPS62282635A (en) 1987-12-08

Family

ID=14891074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61124667A Pending JPS62282635A (en) 1986-05-31 1986-05-31 Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder

Country Status (1)

Country Link
JP (1) JPS62282635A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644234A (en) * 1987-06-27 1989-01-09 Tsukishima Kikai Co Granulation apparatus with plasma jet fluidized layers
US5468697A (en) * 1993-03-16 1995-11-21 Yoshida Kogyo K.K. Composite ultrafine particles of aluminum nitride and rare earth nitride, method for production and sintered article thereof
US5549951A (en) * 1993-09-08 1996-08-27 Ykk Corporation Composite ultrafine particles of nitrides, method for production and sintered article thereof
WO2012115430A2 (en) * 2011-02-21 2012-08-30 서울대학교 산학협력단 Method for preparing aluminum/aluminum nitride or aluminum alloy/aluminum nitride composite materials
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
CN104617213A (en) * 2014-11-07 2015-05-13 佛山科学技术学院 Method for generating aluminum nitride thin film on aluminum plate
CN114289722A (en) * 2021-12-08 2022-04-08 北京科技大学 Preparation method of fine-grained spherical tungsten powder
CN115028459A (en) * 2022-07-22 2022-09-09 成都物熙科技有限公司 Method and device for preparing high-purity superfine aluminum nitride powder body by using plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110012A (en) * 1984-06-22 1986-01-17 Japan Metals & Chem Co Ltd Production of ultrafine metal nitride and production unit
JPS61205606A (en) * 1985-03-07 1986-09-11 Toshiba Ceramics Co Ltd Production of high-purity aluminum nitride powder
JPS62148311A (en) * 1985-12-19 1987-07-02 Chugai Ro Kogyo Kaisha Ltd Process and device for preparing aluminum nitride powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110012A (en) * 1984-06-22 1986-01-17 Japan Metals & Chem Co Ltd Production of ultrafine metal nitride and production unit
JPS61205606A (en) * 1985-03-07 1986-09-11 Toshiba Ceramics Co Ltd Production of high-purity aluminum nitride powder
JPS62148311A (en) * 1985-12-19 1987-07-02 Chugai Ro Kogyo Kaisha Ltd Process and device for preparing aluminum nitride powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644234A (en) * 1987-06-27 1989-01-09 Tsukishima Kikai Co Granulation apparatus with plasma jet fluidized layers
US5468697A (en) * 1993-03-16 1995-11-21 Yoshida Kogyo K.K. Composite ultrafine particles of aluminum nitride and rare earth nitride, method for production and sintered article thereof
US5549951A (en) * 1993-09-08 1996-08-27 Ykk Corporation Composite ultrafine particles of nitrides, method for production and sintered article thereof
WO2012115430A2 (en) * 2011-02-21 2012-08-30 서울대학교 산학협력단 Method for preparing aluminum/aluminum nitride or aluminum alloy/aluminum nitride composite materials
WO2012115430A3 (en) * 2011-02-21 2012-12-20 서울대학교 산학협력단 Method for preparing aluminum/aluminum nitride or aluminum alloy/aluminum nitride composite materials
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
CN104617213A (en) * 2014-11-07 2015-05-13 佛山科学技术学院 Method for generating aluminum nitride thin film on aluminum plate
CN114289722A (en) * 2021-12-08 2022-04-08 北京科技大学 Preparation method of fine-grained spherical tungsten powder
CN114289722B (en) * 2021-12-08 2023-08-29 北京科技大学 Preparation method of fine-grained spherical tungsten powder
CN115028459A (en) * 2022-07-22 2022-09-09 成都物熙科技有限公司 Method and device for preparing high-purity superfine aluminum nitride powder body by using plasma

Similar Documents

Publication Publication Date Title
JP5442260B2 (en) Method for producing densified molybdenum metal powder
JP2008518095A (en) Molybdenum metal powder and its production
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
US6454994B1 (en) Solids comprising tantalum, strontium and silicon
Gras et al. Simultaneous synthesis and consolidation of nanostructured MoSi2
US4719077A (en) Method for the preparation of an alloy of nickel and titanium
US2844492A (en) Method of producing heat resisting metallic materials and formed bodies
US4889665A (en) Process for producing ultrafine particles of ceramics
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
TW201609536A (en) Novel process and product
JPH07309611A (en) Production of aluminum nitride powder
JP2000103608A (en) Production of titanium nitride
JPS6320573B2 (en)
JP2000054009A (en) Production of alloy powder and production of thermoelement using it
JPH01100007A (en) Production of aluminum nitride with cubic system
JPH0227778A (en) Manufacture of thermoelectric element
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPH01275412A (en) Production of aluminum nitride fine powder
JPH0711301A (en) Production of permanent magnet powder material
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPH0460046B2 (en)
Kamble et al. Development of Nanocrystalline LaB₆ Electron Emitters Processed Using Arc Thermal Plasma Route
JP3362742B2 (en) Method for producing nitride powder
JPS6111887B2 (en)
JPH04321505A (en) Production of aluminum nitride