JP2005154834A - Ruthenium ultrafine powder and its production method - Google Patents

Ruthenium ultrafine powder and its production method Download PDF

Info

Publication number
JP2005154834A
JP2005154834A JP2003395152A JP2003395152A JP2005154834A JP 2005154834 A JP2005154834 A JP 2005154834A JP 2003395152 A JP2003395152 A JP 2003395152A JP 2003395152 A JP2003395152 A JP 2003395152A JP 2005154834 A JP2005154834 A JP 2005154834A
Authority
JP
Japan
Prior art keywords
powder
ruthenium
raw material
ultrafine powder
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395152A
Other languages
Japanese (ja)
Inventor
Makoto Akai
誠 赤井
Takeshi Kan
剛 韓
Tomonori Ueno
友典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003395152A priority Critical patent/JP2005154834A/en
Publication of JP2005154834A publication Critical patent/JP2005154834A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide ruthenium ultrafine powder having a mean particle diameter of ≤1 μm with high mass-productivity and stability. <P>SOLUTION: The ruthenium ultrafine powder is substantially composed of Ru, and its average particle diameter is controlled to ≤1 μm by thermal plasma treatment. The ruthenium ultrafine powder can be produced by vaporizing ruthenium powder as the raw material using thermal plasma, forcedly cooling the same with an inert gas, performing flocculation so as to be ultrafine powder, and further, conveying the same to a filter so as to be recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、触媒や粉末冶金原料などの用途に使用可能な、ルテニウム超微粉末およびその製造方法に関するものである。   The present invention relates to a ruthenium ultrafine powder that can be used for applications such as catalysts and powder metallurgical raw materials, and a method for producing the same.

従来、触媒用のルテニウム粉末は、例えば塩化物水溶液の液中還元による方法によって製造されていた(特許文献1参照)。また、粉末冶金用のルテニウム粉末としては、例えば金属塩の酸化還元による方法によって製造されていた(特許文献2参照)。   Conventionally, ruthenium powder for a catalyst has been produced by, for example, a method of reducing an aqueous chloride solution in a liquid (see Patent Document 1). Moreover, as ruthenium powder for powder metallurgy, it was manufactured, for example by the method by the oxidation reduction of a metal salt (refer patent document 2).

ルテニウムは、白金族元素のひとつであり、グラム単価が高価であるだけでなく、比重も大きいため、同じ体積当たりの価格が極めて高い。従って、使用される分野を問わず、低価格化のためには、用いるルテニウムの量を可能な限り少なくしたいという強い要求がある。例えば、触媒用途の場合には、反応の面積を多くするために、同じ重量であればなるべく多くの表面積を持った粉末が望ましく、このためには、粉末の粒径は、細かい方が良いとされている。   Ruthenium is one of the platinum group elements, and not only is the gram unit price expensive, but also has a large specific gravity, so the price per volume is extremely high. Therefore, regardless of the field of use, there is a strong demand to reduce the amount of ruthenium used as much as possible in order to reduce the price. For example, in the case of a catalyst application, in order to increase the reaction area, a powder having as much surface area as possible is desirable for the same weight, and for this purpose, a finer particle size is better. Has been.

また、ルテニウムは、融点が約2500℃と高いために、非常に難焼結性の材料でもある。粉末冶金用途の場合には、焼結性の高さが重要な要素となる。このためにも、粉末の粒径は細かい方が良いとされている。
特開昭62−294118号公報 特開昭50−102560号公報
Ruthenium is also a very difficult-to-sinter material because of its high melting point of about 2500 ° C. In the case of powder metallurgy applications, high sinterability is an important factor. For this reason, it is said that the finer the particle size of the powder, the better.
JP 62-294118 A JP 50-102560 A

上述のような、従来のルテニウム粉末の製造方法は、有効な手法ではあるが、製造速度が遅く、量産性に欠けるという欠点があった。特許文献2の手法の場合には、得られる粉末の粒径は数μm以上であり、平均粒径が1μm以下のルテニウム超微粉末を安定して量産することは困難であった。特許文献1の手法の場合には、結晶性が悪く、粉末の表面の凹凸が大きく荒れているために、粉末の流動性が悪いという問題があった。   Although the conventional method for producing ruthenium powder as described above is an effective method, it has a drawback in that the production rate is slow and mass productivity is lacking. In the case of the technique of Patent Document 2, the particle size of the obtained powder is several μm or more, and it is difficult to stably mass-produce ruthenium ultrafine powder having an average particle size of 1 μm or less. In the case of the method of Patent Document 1, there is a problem that the flowability of the powder is poor because the crystallinity is poor and the irregularities on the surface of the powder are greatly roughened.

本発明の目的は、平均粒径1μm以下という超微細なルテニウム超微粉末を安定して提供することである。   An object of the present invention is to stably provide an ultrafine ruthenium ultrafine powder having an average particle size of 1 μm or less.

直径1μm以下といった超微細な金属粉末が製造可能な方法は幾つかあるが、その中でも量産性と安定性の高い方法は、金属原料を蒸気化し、それを凝集させて回収する方法である。しかし、本発明が製造の対象とするルテニウム粉末においては、元素Ruは融点が約2500℃、沸点が約4900℃という極めて難溶解、難蒸発性の材料であり、通常の加熱方法ではとても蒸発させることは困難な元素種である。   There are several methods that can produce an ultrafine metal powder having a diameter of 1 μm or less. Among them, a method with high mass productivity and stability is a method in which a metal raw material is vaporized and then aggregated and recovered. However, in the ruthenium powder to be manufactured by the present invention, the element Ru is an extremely difficult-to-dissolve and hardly-evaporable material having a melting point of about 2500 ° C. and a boiling point of about 4900 ° C. It is a difficult element species.

そこで、本発明者は、高いエネルギーの熱プラズマ処理に着目した。つまり、熱プラズマでは1万度を超えるような高温の発生が可能であり、この極めて高い温度を利用することによってルテニウムのような高融点、高沸点材料でも、溶融、気化できると考えた。そして、試行を繰り返した結果、熱プラズマを利用した手法によれば、超微細なルテニウム粉末、特には各種の触媒や粉末冶金原料に最適なルテニウム超微粉末とできることを知見し、本発明に到達した。   Therefore, the present inventor has focused on high energy thermal plasma processing. In other words, it was considered that thermal plasma can generate a high temperature exceeding 10,000 degrees, and by using this extremely high temperature, even a high melting point and high boiling point material such as ruthenium can be melted and vaporized. As a result of repeated trials, it was discovered that ultra-fine ruthenium powder, particularly ruthenium ultra-fine powder suitable for various catalysts and powder metallurgy raw materials, can be obtained by the method using thermal plasma, and the present invention has been achieved. did.

すなわち本発明は、(1)実質的にRuでなる微粉末であって、熱プラズマ処理により平均粒径が1μm以下に調整されていることを特徴とするルテニウム超微粉末である。   That is, the present invention is (1) a ruthenium ultrafine powder characterized in that it is a fine powder substantially made of Ru, and the average particle size is adjusted to 1 μm or less by thermal plasma treatment.

また、(2)Ruを含む原料を熱プラズマ中に通して気化させ、凝集させることで、平均粒径が1μm以下に調整された実質的にRuでなる微粉末を得ることを特徴とするルテニウム超微粉末の製造方法、(3)あるいはさらに、凝集は、原料が気化された蒸気に不活性ガスを接触させて行なうことを特徴とするルテニウム超微粉末の製造方法、(4)あるいはさらに、原料は、実質的にRuでなる粉末であることを特徴とするルテニウム超微粉末の製造方法である。   (2) Ruthenium characterized by obtaining a fine powder substantially made of Ru having an average particle diameter adjusted to 1 μm or less by vaporizing and aggregating a raw material containing Ru through thermal plasma. A method for producing ultrafine powder, (3) or, further, agglomeration is carried out by bringing an inert gas into contact with the vaporized raw material, (4) or further, The raw material is a ruthenium ultrafine powder manufacturing method characterized in that the raw material is a powder substantially made of Ru.

本発明によれば、例えば触媒用、粉末冶金原料用に適したルテニウム超微粉末を安定して量産することが可能となる。   According to the present invention, it is possible to stably mass-produce ruthenium ultrafine powder suitable for, for example, a catalyst and a powder metallurgy raw material.

上述したように、本発明の重要な特徴は、ルテニウムという難溶融、難蒸発性の材料を気化させるにあたり、熱プラズマという強力な熱源を用いる点である。そして、その特別な熱源を用いたことで気化させた原料蒸気を凝集させることにより、1μm以下のルテニウム粉末を得るところに特徴を有する。ここで、本発明のルテニウム超微粉末とは、平均粒径で1μm以下の粉末を言い、1μm以下とするのは、先述の理由により、特に触媒や粉末冶金原料の用途に好ましいからである。   As described above, an important feature of the present invention is that a powerful heat source called thermal plasma is used to vaporize a hardly meltable and hardly vaporizable material called ruthenium. And, it is characterized in that ruthenium powder of 1 μm or less is obtained by agglomerating the raw material vapor evaporated by using the special heat source. Here, the ultrafine ruthenium powder of the present invention means a powder having an average particle diameter of 1 μm or less, and the reason why it is 1 μm or less is that it is particularly preferable for use as a catalyst or a powder metallurgical raw material for the reasons described above.

本発明のルテニウム超微粉末の製造方法について説明する。図1は、そのための装置構成の一例を示すものである。図1において、原料は、ガスに乗せた原料粉末4として原料供給管3を通って、高周波プラズマトーチ2により発生させた熱プラズマ5中に供給される。そして、その供給された原料粉末は、ほとんど瞬時に気化し、搬送ガス6に乗ってチャンバー1から回収容器7へと運ばれるうちに凝集し、超微粉末となる。ポンプ8によって差圧が与えられている回収容器7は内部にフィルタがセットされており、このフィルタで粉末が回収される。   The method for producing the ruthenium ultrafine powder of the present invention will be described. FIG. 1 shows an example of an apparatus configuration for that purpose. In FIG. 1, a raw material is supplied as a raw material powder 4 on gas through a raw material supply pipe 3 into a thermal plasma 5 generated by a high-frequency plasma torch 2. The supplied raw material powder is vaporized almost instantaneously and agglomerates while being carried on the carrier gas 6 from the chamber 1 to the collection container 7 and becomes ultra fine powder. A filter is set in the collection container 7 to which the differential pressure is given by the pump 8, and powder is collected by this filter.

まず、熱プラズマ中に投入する原料としては、ルテニウムを含む原料であればよいが、製造するルテニウム超微粉末の高純度と均一かつ超微細な粒度分布を達成するためには、実質的にRuでなる原料粉末であることが好ましい。例えば従来の金属塩酸化還元法で得たルテニウム粉末などを用いることができる。   First, the raw material to be introduced into the thermal plasma may be a raw material containing ruthenium, but in order to achieve the high purity and uniform and ultrafine particle size distribution of the ruthenium ultrafine powder to be produced, it is substantially Ru. The raw material powder is preferably For example, ruthenium powder obtained by a conventional metal hydrochloride reduction method can be used.

次に、熱源としては、図1では高周波プラズマの例を示すが、直流プラズマにも適用可能である。但し、直流プラズマはプラズマの速度が速いために、原料(原料粉末)のプラズマ滞在時間が短く、蒸発を促進するためには高周波プラズマを使用することが好ましい。プラズマの動作ガスとしては、アルゴン、ヘリウムなどが用いられる。水素を用いることも可能であって、水素を用いた場合には得られる粉末の粒径が微細になる傾向があることから、好ましい。   Next, as an example of the heat source, FIG. 1 shows an example of high-frequency plasma, but it can also be applied to DC plasma. However, since direct current plasma has a high plasma speed, the plasma residence time of the raw material (raw material powder) is short, and it is preferable to use high frequency plasma in order to promote evaporation. Argon, helium, or the like is used as a plasma working gas. Hydrogen can also be used, and the use of hydrogen is preferable because the particle size of the resulting powder tends to be fine.

そして、搬送ガスとしては、アルゴンやヘリウムなどの不活性ガスを用いることが、酸化抑制の面で好ましい。搬送ガスは、気化したRuの蒸気を強制冷却する役割を兼ねており、凝集して得られる粉末の形状や粒径などに強い影響を与える。その影響は、容器形状や排気効率、ガス種などにも依存しているため、一概には説明しにくいが、流量が増えるに従って微粒子化、単粒子化する傾向にある。   And as carrier gas, it is preferable in terms of oxidation suppression to use inert gas, such as argon and helium. The carrier gas also serves to forcibly cool the vaporized Ru vapor, and has a strong influence on the shape and particle size of the powder obtained by agglomeration. The influence depends on the shape of the container, the exhaust efficiency, the gas type, and the like, and is difficult to explain in general. However, as the flow rate increases, it tends to become fine particles or single particles.

熱プラズマ処理に供する原料には、金属塩酸化還元法で得た、純度99.9%Ruの平均粒径10μmの粉末を用いた。そして、この原料粉末を、流量1NL/minのArガスと混ざった状態で、毎分20gづつプラズマ中に投入した。プラズマの発生には、出力10kWの小型高周波プラズマ発生装置を用いた。動作ガスにはArガスを流量20NL/minで用いた。搬送ガスにはArガスを流量150NL/minで用いた。   As a raw material to be subjected to the thermal plasma treatment, a powder having a purity of 99.9% Ru and an average particle diameter of 10 μm obtained by a metal oxyhydrochlorination method was used. And this raw material powder was thrown into the plasma at a rate of 20 g per minute in a state mixed with Ar gas having a flow rate of 1 NL / min. A small high-frequency plasma generator with an output of 10 kW was used for plasma generation. Ar gas was used as the working gas at a flow rate of 20 NL / min. Ar gas was used as the carrier gas at a flow rate of 150 NL / min.

以上の操業条件にて装置を10分間稼動した後、60分間冷却して、フィルタに付着した粉末を回収し、回収した粉末の粒径を電子顕微鏡で測定した。粒径は最も大きなものでも0.1μm程度であり、目標とする1μm以下の平均粒径を十分に満足するものであった。なお、得られたルテニウム超微粉末の純度は99.9%、比表面積は9.4m/gであり、この値から計算した粉末の平均粒径は0.05μmであった。また、X線の半価幅から超微粉末の有する結晶粒のサイズを測定したところ、平均で約50nmであり、ほぼ単結晶の粒子からなる超微粉末が得られた。 The apparatus was operated for 10 minutes under the above operating conditions, then cooled for 60 minutes, the powder adhering to the filter was recovered, and the particle size of the recovered powder was measured with an electron microscope. The largest particle size was about 0.1 μm, and sufficiently satisfied the target average particle size of 1 μm or less. The obtained ruthenium ultrafine powder had a purity of 99.9% and a specific surface area of 9.4 m 2 / g, and the average particle diameter of the powder calculated from this value was 0.05 μm. Further, when the size of the crystal grains of the ultrafine powder was measured from the half-value width of the X-ray, the average was about 50 nm, and an ultrafine powder consisting of almost single crystal particles was obtained.

本発明であれば、例えば触媒や粉末冶金原料といった用途に最適なルテニウム超微粉末とすることができる。   If it is this invention, it can be set as the ruthenium ultrafine powder optimal for uses, such as a catalyst and a powder metallurgy raw material, for example.

本発明を達成するための、粉末製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the powder manufacturing apparatus for achieving this invention.

符号の説明Explanation of symbols

1 チャンバー、2 (高周波)プラズマトーチ、3 原料供給管、4 ガスに乗せた原料粉末、5 (高周波)熱プラズマ、6 搬送ガス、7 回収容器(フィルタ入り)、8 ポンプ   1 chamber, 2 (high frequency) plasma torch, 3 raw material supply pipe, 4 raw material powder on gas, 5 (high frequency) thermal plasma, 6 carrier gas, 7 collection container (with filter), 8 pump

Claims (4)

実質的にRuでなる微粉末であって、熱プラズマ処理により平均粒径が1μm以下に調整されていることを特徴とするルテニウム超微粉末。 A ruthenium ultrafine powder characterized in that it is a fine powder substantially made of Ru and having an average particle size adjusted to 1 μm or less by thermal plasma treatment. Ruを含む原料を熱プラズマ中に通して気化させ、凝集させることで、平均粒径が1μm以下に調整された実質的にRuでなる微粉末を得ることを特徴とするルテニウム超微粉末の製造方法。 Production of ultrafine ruthenium powder characterized in that a raw material containing Ru is vaporized by passing it through thermal plasma and agglomerated to obtain a fine powder consisting essentially of Ru with an average particle size adjusted to 1 μm or less. Method. 凝集は、原料が気化された蒸気に不活性ガスを接触させて行なうことを特徴とする請求項2に記載のルテニウム超微粉末の製造方法。 Aggregation is carried out by bringing an inert gas into contact with vapor obtained by evaporating the raw material. The method for producing a ruthenium ultrafine powder according to claim 2. 原料は、実質的にRuでなる粉末であることを特徴とする請求項2または3に記載のルテニウム超微粉末の製造方法。 The method for producing a ruthenium ultrafine powder according to claim 2 or 3, wherein the raw material is a powder substantially made of Ru.
JP2003395152A 2003-11-26 2003-11-26 Ruthenium ultrafine powder and its production method Pending JP2005154834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395152A JP2005154834A (en) 2003-11-26 2003-11-26 Ruthenium ultrafine powder and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395152A JP2005154834A (en) 2003-11-26 2003-11-26 Ruthenium ultrafine powder and its production method

Publications (1)

Publication Number Publication Date
JP2005154834A true JP2005154834A (en) 2005-06-16

Family

ID=34720986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395152A Pending JP2005154834A (en) 2003-11-26 2003-11-26 Ruthenium ultrafine powder and its production method

Country Status (1)

Country Link
JP (1) JP2005154834A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287054A (en) * 2008-05-27 2009-12-10 Toda Kogyo Corp Method for producing inorganic material and metallic material by high frequency plasma process
CN101289229B (en) * 2007-01-29 2010-12-22 日矿金属株式会社 Method for producing ammonium hexachlororuthenate and ruthenium powder, as well as ammonium hexachlororuthenate
KR101143860B1 (en) 2009-12-24 2012-05-22 희성금속 주식회사 Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
WO2012150757A1 (en) * 2011-05-04 2012-11-08 희성금속 주식회사 Preparation method of ruthenium (ru) powder for preparation of ruthenium target
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
KR101285284B1 (en) 2011-04-26 2013-07-11 희성금속 주식회사 Manufacturing method of a high purity Ru powder and target using a waste Ru target

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289229B (en) * 2007-01-29 2010-12-22 日矿金属株式会社 Method for producing ammonium hexachlororuthenate and ruthenium powder, as well as ammonium hexachlororuthenate
JP2009287054A (en) * 2008-05-27 2009-12-10 Toda Kogyo Corp Method for producing inorganic material and metallic material by high frequency plasma process
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
KR101143860B1 (en) 2009-12-24 2012-05-22 희성금속 주식회사 Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
KR101285284B1 (en) 2011-04-26 2013-07-11 희성금속 주식회사 Manufacturing method of a high purity Ru powder and target using a waste Ru target
WO2012150757A1 (en) * 2011-05-04 2012-11-08 희성금속 주식회사 Preparation method of ruthenium (ru) powder for preparation of ruthenium target
KR101206416B1 (en) 2011-05-04 2012-11-29 희성금속 주식회사 Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target

Similar Documents

Publication Publication Date Title
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
Lo et al. Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS)
JP4754488B2 (en) Methods for the synthesis, separation and purification of powder materials
TWI554344B (en) Nickel fine powder and its manufacturing method
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
RU2489232C1 (en) Method of producing metal nano-sized powders
JP2011195888A5 (en)
WO2003037553A1 (en) Method and apparatus for the production of metal powder
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JP6596476B2 (en) Silicon-containing powder
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
JPH11350010A (en) Production of metal powder
US20050150759A1 (en) Powder and coating formation method and apparatus
JP2004124257A (en) Metal copper particulate, and production method therefor
JP2005154834A (en) Ruthenium ultrafine powder and its production method
Zeng et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma
JP2012246203A (en) Method for manufacturing spherical titanium oxide particle
JP6236022B2 (en) Method for producing silicon-containing powder
KR20120136227A (en) Low temperature sintering method of high melting point metal and high melting point metal compact manufactured by method thereof
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
CN111515408A (en) NiTi alloy powder and preparation method and application thereof
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPS63170212A (en) Production of hyper-fine powder of metal boride
JP2009287105A (en) Method for producing spherical titanium based powder