JP6031571B2 - Copper powder for conductive paste and method for producing the same - Google Patents

Copper powder for conductive paste and method for producing the same Download PDF

Info

Publication number
JP6031571B2
JP6031571B2 JP2015168469A JP2015168469A JP6031571B2 JP 6031571 B2 JP6031571 B2 JP 6031571B2 JP 2015168469 A JP2015168469 A JP 2015168469A JP 2015168469 A JP2015168469 A JP 2015168469A JP 6031571 B2 JP6031571 B2 JP 6031571B2
Authority
JP
Japan
Prior art keywords
copper
fine particles
particles
particle size
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015168469A
Other languages
Japanese (ja)
Other versions
JP2016006234A (en
Inventor
優樹 金城
優樹 金城
真一 末永
真一 末永
英史 藤田
英史 藤田
実 岸田
実 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015168469A priority Critical patent/JP6031571B2/en
Publication of JP2016006234A publication Critical patent/JP2016006234A/en
Application granted granted Critical
Publication of JP6031571B2 publication Critical patent/JP6031571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性ペースト用銅粉およびその製造方法に関し、特に、積層セラミックコンデンサや積層セラミックインダクタなどの積層セラミック電子部品の内部電極や、小型積層セラミックコンデンサや積層セラミックインダクタなどの外部電極を形成するための導電性ペーストに使用する銅粉およびその製造方法に関する。   The present invention relates to copper powder for conductive paste and a method for manufacturing the same, and in particular, forms internal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors, and external electrodes such as small multilayer ceramic capacitors and multilayer ceramic inductors. The present invention relates to a copper powder used in a conductive paste for manufacturing and a manufacturing method thereof.

積層セラミックコンデンサの一般的な製造方法では、まず、チタン酸バリウム系セラミックなどの誘電体セラミックグリーンシートを複数枚用意し、各々のシートの上に、内部電極用の導電性ペーストを所定のパターンで印刷し、これらのシートを積み重ねて圧着することによって、誘電体セラミックグリーンシートと導電性ペースト層が交互に積層された積層体を作製する。この積層体を所定の形状の複数のチップに切断した後、高温で同時に焼成して、積層セラミックコンデンサの素体を作製する。次いで、この素体の内部電極が露出する端面に、導電性粉体、ガラス粉末および有機ビヒクルを主成分とする外部電極用の導電性ペーストを塗布し、乾燥した後、高温で焼成することによって外部電極を形成する。その後、必要に応じて外部電極にニッケルやスズなどのめっき層を電気めっきなどにより形成する。   In a general manufacturing method of a multilayer ceramic capacitor, first, a plurality of dielectric ceramic green sheets such as barium titanate ceramics are prepared, and a conductive paste for internal electrodes is formed in a predetermined pattern on each sheet. By printing and stacking and pressing these sheets, a laminated body in which dielectric ceramic green sheets and conductive paste layers are alternately laminated is produced. The multilayer body is cut into a plurality of chips having a predetermined shape and then simultaneously fired at a high temperature to produce a multilayer ceramic capacitor element body. Next, a conductive paste for an external electrode mainly composed of conductive powder, glass powder and an organic vehicle is applied to the end face where the internal electrode of the element body is exposed, dried, and then fired at a high temperature. External electrodes are formed. Thereafter, if necessary, a plating layer of nickel, tin, or the like is formed on the external electrode by electroplating or the like.

従来、このような積層セラミックコンデンサなどの内部電極を形成するための導電性ペーストに使用する金属材料として、パラジウム、銀−パラジウム、白金などが使用されていたが、これらは高価な貴金属であるため、コストがかかるという問題があった。そのため、近年では、ニッケルや銅などの卑金属を使用するのが主流になってきており、現在では、主にニッケル微粒子(積層セラミックコンデンサの大きさや容量などにもよるが、一般に平均粒径0.1〜0.5μmのニッケル微粒子)が使用されている。また、銅は、ニッケルと比べて、導電率が高く、融点が低いため、積層セラミックコンデンサの特性を改善し、焼成時の低温化などの生産時の省エネに寄与することが可能であり、今後の内部電極用の金属材料の有望な一つとして期待されている。   Conventionally, palladium, silver-palladium, platinum, and the like have been used as metal materials used in conductive pastes for forming internal electrodes such as multilayer ceramic capacitors, but these are expensive noble metals. There was a problem of cost. Therefore, in recent years, the use of base metals such as nickel and copper has become mainstream, and at present, nickel fine particles (although depending on the size and capacity of the multilayer ceramic capacitor, the average particle size is generally 0. 0). 1 to 0.5 μm nickel fine particles) are used. Also, copper has higher electrical conductivity and lower melting point than nickel, so it can improve the characteristics of multilayer ceramic capacitors and contribute to energy saving during production, such as lower temperatures during firing. It is expected as a promising metal material for internal electrodes.

一方、近年、積層セラミックコンデンサなどの高容量化や小型化のために、内部電極の薄層化が求められている。また、積層セラミックコンデンサなどの用途の拡大により、内部インダクタが小さく、高周波数特性としてGHzオーダーまで使用可能な特性を有する積層セラミックコンデンサなどが求められている。   On the other hand, in recent years, there has been a demand for thinner internal electrodes in order to increase the capacity and size of multilayer ceramic capacitors and the like. In addition, with the expansion of applications such as multilayer ceramic capacitors, multilayer ceramic capacitors having small internal inductors and high frequency characteristics that can be used up to GHz order are required.

このような背景から、積層セラミックコンデンサなどの内部電極用の金属材料として、単分散した微粒子で、粒度分布がシャープで、粗粒を含まないなどの特性を有する銅微粒子が求められている。   From such a background, as a metal material for an internal electrode such as a multilayer ceramic capacitor, copper fine particles having characteristics such as monodispersed fine particles, a sharp particle size distribution, and no coarse particles are required.

現在、銅微粒子は、主に積層セラミックコンデンサなどの外部電極用の導電性ペーストに使用されており、銅微粒子の大きさは、積層セラミックコンデンサなどの大きさにもよるが、0.5〜10μm程度であり、球状、フレーク状、不定形状などの様々な形状の銅微粒子が使用されている。また、一般的な外部電極用の導電性ペーストには、上記の大きさや形状の銅微粒子が混合されて使用されている。   At present, copper fine particles are mainly used in conductive pastes for external electrodes such as multilayer ceramic capacitors. The size of copper fine particles depends on the size of the multilayer ceramic capacitors, but is 0.5 to 10 μm. The copper fine particles having various shapes such as spherical shape, flake shape, and irregular shape are used. Also, general conductive paste for external electrodes is used by mixing copper fine particles of the above size and shape.

このような銅微粒子の製造方法として、硫酸銅溶液をL−アルコスビン酸またはL−アスコルビン酸塩類で還元する方法(例えば、特許文献1参照)、硫酸銅溶液をD−エリソルビン酸またはD−エリソルビン酸塩類で還元する方法(例えば、特許文献2参照)、硫酸銅溶液を水素化ホウ素化合物で還元する方法(例えば、特許文献3参照)、硫酸銅溶液をヒドロキシル(−OH)基を含む芳香族化合物で還元する方法(例えば、特許文献4参照)、銅イオン、還元剤および錯化剤からなる混合水溶液に反応開始剤を添加して還元反応させた後に、銅イオン、還元剤、pH調整剤を添加して銅微粉末を製造する方法(例えば、特許文献5参照)、2価の銅イオンを有する銅塩水溶液に水酸化アルカリを混合して酸化第二銅を生成し、還元糖を加えて酸化第二銅を酸化第一銅に還元し、さらにヒドラジン系還元剤を加えて酸化第一銅を還元する方法(例えば、特許文献6参照)、硫黄系化合物と保護コロイドを存在させた溶媒液中において、酸化銅をヒドラジンなどの還元剤と反応させて銅微粒子を製造する方法(例えば、特許文献7参照)などが提案されている。   As a method for producing such copper fine particles, a method of reducing a copper sulfate solution with L-arcosbic acid or L-ascorbate (see, for example, Patent Document 1), a copper sulfate solution with D-erythorbic acid or D-erythorbic acid A method of reducing with a salt (for example, see Patent Document 2), a method of reducing a copper sulfate solution with a borohydride compound (for example, see Patent Document 3), and an aromatic compound containing a hydroxyl (—OH) group in the copper sulfate solution. After reducing the reaction by adding a reaction initiator to a mixed aqueous solution composed of copper ions, a reducing agent and a complexing agent (for example, see Patent Document 4), the copper ions, the reducing agent and the pH adjuster are added. A method for producing a copper fine powder by adding (see, for example, Patent Document 5) A cupric oxide is produced by mixing an alkali hydroxide with a copper salt aqueous solution having a divalent copper ion, A method of reducing cuprous oxide to cuprous oxide and reducing cuprous oxide by adding a hydrazine-based reducing agent (for example, see Patent Document 6), a solvent in which a sulfur-based compound and a protective colloid are present A method of producing copper fine particles by reacting copper oxide with a reducing agent such as hydrazine in a liquid (for example, see Patent Document 7) has been proposed.

特開昭63−186803号公報(第1頁)JP 63-186803 A (first page) 特開昭63−186805号公報(第1頁)JP 63-186805 (first page) 特開昭63−186811号公報(第1頁)JP-A 63-186811 (first page) 特開平1−225705号公報(第1頁)JP-A-1-225705 (first page) 特開昭63−274706号公報(第2頁)JP-A 63-274706 (2nd page) 特開2003−342621号公報(段落番号0012)JP 2003-342621 A (paragraph number 0012) 特開2004−256857号公報(段落番号0006−0013)Japanese Patent Laying-Open No. 2004-256857 (paragraph numbers 0006-0013)

しかし、特許文献1の方法で得られる銅微粒子の平均粒径は、1.0〜1.8μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、pHを調整した銅イオンの水溶液とpHを調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   However, the average particle diameter of copper fine particles obtained by the method of Patent Document 1 is 1.0 to 1.8 μm, which is not sufficient for use as copper fine particles for internal electrodes. In addition, using an aqueous solution of copper ions adjusted in pH and an aqueous solution of a reducing agent adjusted in pH, copper particles are reduced to copper particles through cuprous oxide, so the control of the particle size is unstable and condensation ( (Bonding between particles) occurs, the shape is not constant, and the particle size distribution may be broad.

また、特許文献2の方法で得られる銅微粒子の平均粒径は、0.8〜2.0μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、pH調整した銅イオンの水溶液とpH調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 2 is 0.8 to 2.0 μm, which is not sufficient for use as copper fine particles for internal electrodes. In addition, since the pH-adjusted aqueous solution of copper ions and the aqueous solution of reducing agent adjusted in pH are used to reduce copper ions to copper particles through cuprous oxide, the control of the particle size is unstable, and condensation (particles May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献3の方法で得られる銅微粒子の平均粒径は、0.3〜0.7μmであり、特許文献1および2の方法で得られる銅微粒子と比べれば小さい銅微粒子を得ることができるが、この場合も内部電極用の銅微粒子として使用するには、まだ十分ではない。また、還元剤として水素化ホウ素化合物を使用するため、還元剤のpH調整時にpHが低いと、自己分解が起こり、作業性や安定性が悪くなる場合がある。一方、pHを高くすれば水素化ホウ素化合物は安定するが、その場合、銅イオンの還元反応が亜酸化銅を経て行われるので、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 3 is 0.3 to 0.7 μm, and it is possible to obtain small copper fine particles as compared with the copper fine particles obtained by the methods of Patent Documents 1 and 2. Although this is possible, it is still not sufficient for use as copper fine particles for internal electrodes. In addition, since a borohydride compound is used as the reducing agent, if the pH is low when adjusting the pH of the reducing agent, self-decomposition occurs, and workability and stability may deteriorate. On the other hand, if the pH is increased, the borohydride compound becomes stable. In this case, since the reduction reaction of copper ions is performed through cuprous oxide, the control of the particle size is unstable, and condensation (bonding between particles) occurs. ) May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献4の方法で得られる銅微粒子の平均粒径は、0.7〜1.5μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、還元剤としてヒドロキノンを使用しており、反応pHや反応温度などを調整しても、銅粒子をさらに微粒子化するのは困難である。また、pH調整した銅イオンの水溶液とpH調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 4 is 0.7 to 1.5 μm, which is not sufficient for use as copper fine particles for internal electrodes. Further, hydroquinone is used as a reducing agent, and even if the reaction pH, reaction temperature, etc. are adjusted, it is difficult to further reduce the copper particles. In addition, since the pH-adjusted aqueous solution of copper ions and the aqueous solution of reducing agent adjusted in pH are used to reduce copper ions to copper particles through cuprous oxide, the control of the particle size is unstable, and condensation (particles May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献5の方法で得られる銅微粒子の平均粒径は、0.16〜0.61μmであり、平均粒径から判断すれば、内部電極用の銅粉として使用することができると考えられる。しかし、この方法では、還元反応を高pH領域(pH12〜13.5)で行っているので、銅イオンから水酸化銅、酸化銅、亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 5 is 0.16 to 0.61 μm, and it can be used as copper powder for internal electrodes if judged from the average particle diameter. It is done. However, in this method, since the reduction reaction is performed in a high pH region (pH 12 to 13.5), in order to reduce copper ions to copper particles via copper hydroxide, copper oxide, and cuprous oxide, The control is unstable, condensation (bonding between particles) occurs, the shape is not constant, and the particle size distribution may be broad.

また、特許文献6の方法で得られる銅微粒子の平均粒径は、0.5〜4.0μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、この方法の反応は、2価の銅イオンから生成した酸化第一銅を酸化第二銅に還元した後にさらに銅粒子に還元する反応であり、酸化第二銅から銅粒子への還元反応は、溶解析出型といわれる反応である。この方法をある程度粒径が大きい銅粒子の製造に用いる場合には、安定した制御を行うことができ、粒度分布をシャープすることができるが、内部電極用の銅微粒子として用いられるような微細な銅微粒子を得るのが困難であり、(連晶粒子や凝結粒子を含まない)個々に分離した微細粒子を得るのが困難である。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 6 is 0.5 to 4.0 μm, which is not sufficient for use as copper fine particles for internal electrodes. The reaction of this method is a reaction in which cuprous oxide generated from divalent copper ions is reduced to cupric oxide and then further reduced to copper particles. Reduction reaction from cupric oxide to copper particles Is a reaction called dissolution precipitation type. When this method is used for the production of copper particles having a large particle size, stable control can be performed and the particle size distribution can be sharpened, but the fine particles used as copper fine particles for internal electrodes can be used. It is difficult to obtain copper fine particles, and it is difficult to obtain finely separated fine particles (not including intergrowth particles and condensed particles).

さらに、特許文献7の方法で得られる銅微粒子の平均粒径は、一次粒子径が0.25〜0.5μm、二次粒子径が0.3〜0.6μmであり、平均粒径から判断すれば、内部電極用の銅粉として使用することができると考えられる。また、タップ密度が3.2〜3.4g/cmと微粒子にしては高タップ密度であり、分散性に優れているといえる。しかし、特許文献7の方法の反応は、硫黄化合物の存在下における反応であるため、銅微粒子の内部や表面に硫黄化合物が含まれる可能性がある。一般に、硫黄は電子部品の信頼性に悪影響を与える物質であるため、導電性ペースト用銅粉に含まれるのは好ましくない。 Furthermore, the average particle diameter of the copper fine particles obtained by the method of Patent Document 7 is 0.25 to 0.5 μm for the primary particle diameter and 0.3 to 0.6 μm for the secondary particle diameter, and is determined from the average particle diameter. If so, it can be used as copper powder for internal electrodes. In addition, it can be said that the tap density is 3.2 to 3.4 g / cm 3 and the fine particles have a high tap density and are excellent in dispersibility. However, since the reaction of the method of Patent Document 7 is a reaction in the presence of a sulfur compound, there is a possibility that the sulfur compound is contained inside or on the surface of the copper fine particles. In general, since sulfur is a substance that adversely affects the reliability of electronic components, it is not preferable to contain it in copper powder for conductive paste.

したがって、本発明は、このような従来の問題点に鑑み、単分散した微粒子で、粒度分布がシャープで、粗粒を含まない球状の銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉およびそのような導電性ペースト用銅粉を安定して製造することができる方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention is a monodispersed fine particle having a sharp particle size distribution and containing no coarse particles, while avoiding adverse effects on electrical characteristics. An object of the present invention is to provide a copper powder for conductive paste that enables thinning of the electrode and a method for stably producing such copper powder for conductive paste.

本発明者らは、上記課題を解決するために鋭意研究した結果、銅を含む水溶液に、空気を吹き込みながら、錯化剤を添加して銅を錯体化させた後、空気の吹き込みを停止し、還元剤を添加して銅粒子を還元析出させることにより、単分散した微粒子で、粒度分布がシャープで、粗粒を含まない球状の銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉を安定して製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors added a complexing agent to complex copper by blowing air into an aqueous solution containing copper, and then stopped blowing air. By adding a reducing agent to reduce and precipitate copper particles, monodispersed fine particles, sharp particle size distribution, and spherical copper fine particles that do not contain coarse particles, while avoiding adverse effects on electrical characteristics The present inventors have found that copper powder for conductive paste that enables electrode thinning can be stably produced, and have completed the present invention.

すなわち、本発明による導電性ペースト用銅粉の製造方法は、銅を含む水溶液に、空気を吹き込みながら、錯化剤を添加して銅を錯体化させた後、空気の吹き込みを停止し、還元剤を添加して銅粒子を還元析出させることを特徴とする。   That is, the method for producing a copper powder for conductive paste according to the present invention includes adding a complexing agent while complexing copper while blowing air into an aqueous solution containing copper, and then stopping the blowing of air and reducing the air. An agent is added to reduce and precipitate copper particles.

この導電性ペースト用銅粉の製造方法において、錯化剤が、アンモニア、酢酸、蟻酸、グルコン酸、クエン酸、クエン酸三ナトリウム、酒石酸ナトリウムおよびエチレンジアミン四酢酸二ナトリウムからなる群から選ばれる少なくとも1種の錯化剤であるのが好ましい。また、還元剤が、次亜リン酸、次亜リン酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウムおよびホルマリンからなる群から選ばれる少なくとも1種の還元剤であるのが好ましい。また、銅を含む水溶液が、亜酸化銅または酸化銅を含む水溶液であるのが好ましい。また、銅を錯体化させる時間が15分間以上であるのが好ましい。さらに、錯化剤の添加量が銅に対して0.035〜0.065当量であるのが好ましく、還元剤の添加量が銅に対して3当量以上であるのが好ましい。   In this method for producing copper powder for conductive paste, the complexing agent is at least one selected from the group consisting of ammonia, acetic acid, formic acid, gluconic acid, citric acid, trisodium citrate, sodium tartrate and disodium ethylenediaminetetraacetate. A seed complexing agent is preferred. The reducing agent is preferably at least one reducing agent selected from the group consisting of hypophosphorous acid, sodium hypophosphite, hydrazine, sodium borohydride and formalin. Moreover, it is preferable that the aqueous solution containing copper is an aqueous solution containing cuprous oxide or copper oxide. The time for complexing copper is preferably 15 minutes or longer. Furthermore, the addition amount of the complexing agent is preferably 0.035 to 0.065 equivalent to copper, and the addition amount of the reducing agent is preferably 3 equivalents or more to copper.

また、本発明による導電性ペースト用銅粉は、レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μm、最大粒径(Dmax)が1.5μm以下であり、化学吸着法によって測定されたBET比表面積が3m/g以上であることを特徴とする。 The copper powder for conductive paste according to the present invention has a 50% particle size (D 50 ) of 0.1 to 0.5 μm and a maximum particle size (D max ) of 1 as measured by a laser diffraction particle size distribution measuring device. The BET specific surface area measured by the chemical adsorption method is 3 m 2 / g or more.

さらに、本発明による導電性ペーストは、導電性粉体として上記の導電性ペースト用銅粉を含むことを特徴とする。   Furthermore, the conductive paste according to the present invention is characterized by containing the above-described copper powder for conductive paste as a conductive powder.

本発明によれば、単分散した微粒子で、粒度分布がシャープで、粗粒を含まない球状の銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉を安定して製造することができる。   According to the present invention, monodispersed fine particles are spherical copper fine particles having a sharp particle size distribution and containing no coarse particles, and are capable of reducing the thickness of an electrode while avoiding adverse effects on electrical characteristics. Copper powder for adhesive paste can be produced stably.

実施例および比較例において錯化剤として投入したクエン酸の当量に対する銅粉の最大粒径(Dmax)を示す図である。It is a figure which shows the largest particle size ( Dmax ) of the copper powder with respect to the equivalent of the citric acid thrown in as an complex agent in an Example and a comparative example. 実施例および比較例において還元剤として投入した抱水ヒドラジンの当量に対する銅粉の最大粒径(Dmax)を示す図である。It is a figure which shows the largest particle size ( Dmax ) of copper powder with respect to the equivalent of the hydrazine hydrate input as a reducing agent in an Example and a comparative example. 実施例および比較例において錯体化処理時間に対する銅粉の最大粒径(Dmax)を示す図である。In an Example and a comparative example, it is a figure which shows the largest particle size ( Dmax ) of the copper powder with respect to complexing process time. 実施例および比較例で得られた銅粉の最大粒径(Dmax)を示す図である。It is a figure which shows the largest particle size ( Dmax ) of the copper powder obtained by the Example and the comparative example. 実施例1で得られた銅粉のSEM写真(×20,000)である。2 is a SEM photograph (× 20,000) of the copper powder obtained in Example 1. FIG. 実施例1で得られた銅粉のSEM写真(×50,000)である。2 is an SEM photograph (× 50,000) of the copper powder obtained in Example 1. FIG. 比較例7で得られた銅粉のSEM写真(×20,000)である。10 is a SEM photograph (× 20,000) of the copper powder obtained in Comparative Example 7. 比較例7で得られた銅粉のSEM写真(×50,000)である。It is a SEM photograph (x50,000) of the copper powder obtained in Comparative Example 7. 比較例8で得られた銅粉のSEM写真(×20,000)である。10 is a SEM photograph (× 20,000) of the copper powder obtained in Comparative Example 8. 比較例8で得られた銅粉のSEM写真(×50,000)である。10 is a SEM photograph (× 50,000) of the copper powder obtained in Comparative Example 8.

本発明による導電性ペースト用銅粉の製造方法の実施の形態では、銅を含む水溶液に、空気を吹き込みながら、錯化剤を添加して銅を錯体化させた後、空気の吹き込みを停止し、還元剤を添加して銅粒子を還元析出させる。   In the embodiment of the method for producing a copper powder for conductive paste according to the present invention, air is blown into an aqueous solution containing copper, and after adding a complexing agent to complex copper, air blowing is stopped. Then, a reducing agent is added to reduce and precipitate the copper particles.

この方法では、銅を含む水溶液中に空気を吹き込みながら銅を錯体化させた後、得られた銅錯体および銅錯イオンの少なくとも一方を含む水溶液に還元剤を添加して、銅の微細な核まで直接還元して成長させるとともに、銅錯体および銅錯イオンの少なくとも一方を形成することによって、反応溶液中の銅の反応性を抑制して、銅の急激な反応による銅粒子同士の凝集、凝結、結合を抑制して銅粒子を得る。このような反応プロセスにより、安価な銅原料から粒子同士の凝集、凝結および結合が抑制された高分散した銅粒子を得ることができる。   In this method, copper is complexed while air is blown into an aqueous solution containing copper, and then a reducing agent is added to the aqueous solution containing at least one of the obtained copper complex and copper complex ions to thereby form fine nuclei of copper. In addition to growth by direct reduction to copper, the reactivity of copper in the reaction solution is suppressed by forming at least one of a copper complex and a copper complex ion, and agglomeration and aggregation of copper particles due to a rapid reaction of copper , Suppressing the binding to obtain copper particles. By such a reaction process, highly dispersed copper particles in which aggregation, aggregation, and bonding between particles are suppressed from an inexpensive copper raw material can be obtained.

湿式反応によって銅粉を製造する従来の一般的な方法では、2価の銅イオンを中和して、水酸化銅を生成させ、温度の調整により脱水反応を促進させて酸化銅を生成させている。また、酸化銅を糖類などの弱い還元剤で亜酸化銅まで一次還元して生成した亜酸化銅を、ヒドラジンなどの強力な還元剤で銅粒子まで二次還元する方法も知られている。この方法の二次還元反応(亜酸化銅から銅への還元)では、亜酸化銅の固体から銅イオンが析出した後、その一部が還元されて銅の微細な核が生成し、その核が成長して銅粒子になる。   In the conventional general method for producing copper powder by wet reaction, divalent copper ions are neutralized to produce copper hydroxide, and the dehydration reaction is promoted by adjusting the temperature to produce copper oxide. Yes. There is also known a method in which cuprous oxide produced by primary reduction of cuprous oxide to cuprous oxide with a weak reducing agent such as saccharide is secondarily reduced to copper particles with a strong reducing agent such as hydrazine. In the secondary reduction reaction (reduction from cuprous oxide to copper) of this method, after copper ions are precipitated from the cuprous oxide solid, a part of it is reduced to produce fine copper nuclei. Grow into copper particles.

この場合、銅イオンが亜酸化銅から溶解する反応と、溶解した銅イオンが銅粒子に還元される反応との2種類の反応が行われる。そのため、銅の微細な核を生成する工程と、その核が成長する工程とを厳密に分離し難く、その結果、二次核が発生し、粒度分布がブロードになり、粒径を制御し難くなる。また、還元初期の銅イオンの供給量が少ないので(大部分の銅は反応溶液中ではなく亜酸化銅中にあるので)、多量の核を発生させ難く、微粒子を得るのが困難である。また、還元剤の添加量を多くしたり、反応温度を高くすることによって、多量の核を発生させるために銅イオンの溶解量を多くすることができたとしても、同時に還元反応を促進させることにもなり、その結果、還元と溶解が同時に起こって、異形粒子(粒子同士が凝結または結合して歪んだ形になった粒子)が多く発生するなどの問題がある。さらに、急激な反応になるため、液噴きや突沸が起こり、反応の安全面や再現性の面からも好ましくない。また、還元剤の失活を抑えるために、反応系に不活性ガスを導入して還元反応を行うことが一般に行われているが、銅を錯体化するための反応系に不活性ガスを導入すると、銅の錯体化が起こり難くなる。   In this case, two types of reactions are performed: a reaction in which copper ions are dissolved from cuprous oxide and a reaction in which the dissolved copper ions are reduced to copper particles. Therefore, it is difficult to strictly separate the process of generating fine copper nuclei and the process of growing the nuclei. As a result, secondary nuclei are generated, the particle size distribution becomes broad, and the particle size is difficult to control. Become. In addition, since the supply amount of copper ions at the initial stage of reduction is small (most of the copper is not in the reaction solution but in cuprous oxide), it is difficult to generate a large amount of nuclei and it is difficult to obtain fine particles. Moreover, even if the amount of copper ions dissolved can be increased to increase the amount of nuclei by increasing the amount of reducing agent added or by increasing the reaction temperature, the reduction reaction can be promoted at the same time. As a result, there is a problem that reduction and dissolution occur at the same time, and a large number of irregularly shaped particles (particles that are distorted due to condensation or bonding between particles) are generated. Furthermore, since the reaction becomes abrupt, liquid jetting or bumping occurs, which is not preferable from the viewpoint of safety and reproducibility of the reaction. In addition, in order to suppress the deactivation of the reducing agent, it is common to introduce an inert gas into the reaction system to carry out the reduction reaction, but the inert gas is introduced into the reaction system for complexing copper. As a result, copper complexation hardly occurs.

そのため、本発明による導電性ペースト用銅粉の製造方法の実施の形態では、反応溶液中に空気を吹き込みながら、好ましくは30℃程度の温度で15分間以上錯体化処理を行った後に、不活性ガスを導入して還元反応を行うことにより、得られた銅錯体および銅錯イオンの少なくとも一方が存在する反応系において、銅錯体および銅錯イオン以外の銅の反応性を抑制して、銅の急激な反応による銅粒子同士の凝集、凝結、結合を抑制している。   Therefore, in the embodiment of the method for producing a copper powder for conductive paste according to the present invention, the air is blown into the reaction solution, preferably after the complexation treatment is performed for 15 minutes or more at a temperature of about 30 ° C. By introducing a gas and performing a reduction reaction, in the reaction system in which at least one of the obtained copper complex and copper complex ion is present, the reactivity of copper other than the copper complex and copper complex ion is suppressed, Aggregation, aggregation, and bonding between copper particles due to rapid reaction are suppressed.

銅を錯体化させて銅錯体および銅錯イオンの少なくとも一方にするのは、銅錯体および銅錯イオンの少なくとも一方が反応溶液中に存在することにより、銅錯体および銅錯イオン以外の銅の反応性を抑制し、銅の急激な反応による銅粒子同士の凝集、凝結、結合を抑制するためである。原料としての銅を含む水溶液は、コスト、入手し易さ、取り扱いの安全性から、塩化銅、硫酸銅、硝酸銅、炭酸銅、酢酸銅、亜酸化銅および酸化銅からなる群から選ばれる少なくとも1種を含む水溶液であるのが好ましく、亜酸化銅スラリーであるのがさらに好ましい。   The complexation of copper into at least one of a copper complex and a copper complex ion is due to the presence of at least one of the copper complex and the copper complex ion in the reaction solution, and the reaction of copper other than the copper complex and the copper complex ion. This is to suppress the cohesion, aggregation, and bonding between copper particles due to the rapid reaction of copper. The aqueous solution containing copper as a raw material is at least selected from the group consisting of copper chloride, copper sulfate, copper nitrate, copper carbonate, copper acetate, cuprous oxide and copper oxide from the viewpoint of cost, availability, and safety of handling. An aqueous solution containing one kind is preferable, and a cuprous oxide slurry is more preferable.

錯化剤としては、銅錯体化や銅錯イオン化を行うことができれば種々の錯化剤を使用することができるが、銅錯体化量や銅錯イオン化量および反応溶液中における銅の反応性を抑制する効果から、アンモニア、酢酸、蟻酸、グルコン酸、クエン酸、クエン酸三ナトリウム、酒石酸ナトリウムおよびエチレンジアミン四酢酸二ナトリウムからなる群から選ばれる少なくとも1種の錯化剤を用いるのが好ましく、クエン酸を用いるのがさらに好ましい。錯化剤の使用量は、少な過ぎると銅錯体化量や銅錯イオン化量が少なくなり、反応溶液中における銅の反応性を抑制する効果が小さくなるため、単分散した微粒子で、粗粒を含まないなどの特性を有する銅微粒子を合成するのが困難になり、一方、多過ぎると反応溶液中における銅の反応性が低くなり過ぎるため、単分散した微粒子で、粗粒を含まないなどの特性を有する銅微粒子を合成するのが困難になるので、反応溶液中に存在するCu1モルに対して錯化剤1モルを1当量とすると、Cuの物質量に対して0.032当量より多く且つ0.084当量未満であるのが好ましく、0.035〜0.065当量であるのがさらに好ましい。   As the complexing agent, various complexing agents can be used as long as copper complexation and copper complex ionization can be performed. However, the amount of copper complexation and the amount of copper complex ionization and the reactivity of copper in the reaction solution can be adjusted. In view of the inhibitory effect, it is preferable to use at least one complexing agent selected from the group consisting of ammonia, acetic acid, formic acid, gluconic acid, citric acid, trisodium citrate, sodium tartrate and disodium ethylenediaminetetraacetate. More preferably, an acid is used. If the amount of complexing agent used is too small, the amount of copper complexation and copper complex ionization will decrease, and the effect of suppressing the reactivity of copper in the reaction solution will be reduced. It becomes difficult to synthesize copper fine particles having characteristics such as not containing, but on the other hand, if too much, the reactivity of copper in the reaction solution becomes too low, so monodispersed fine particles that do not contain coarse particles, etc. Since it becomes difficult to synthesize copper fine particles having characteristics, when 1 mole of complexing agent is 1 equivalent with respect to 1 mole of Cu present in the reaction solution, it is more than 0.032 equivalent with respect to the amount of Cu. And it is preferable that it is less than 0.084 equivalent, and it is further more preferable that it is 0.035-0.065 equivalent.

空気の吹き込み量は、反応溶液中の銅の銅錯体化や銅錯イオン化を行うことができる量であればよい。空気の吹き込み量が少な過ぎると、銅の銅錯体化や銅錯イオン化が不十分になり、微細な銅の核の生成量が少なくなるとともに、反応溶液中における銅の反応性を抑制する効果が小さくなるため、単分散した微粒子で、粗粒を含まないなどの特性を有する銅微粒子を合成するのが困難になる。   The amount of air blown may be an amount capable of performing copper complexation or copper complex ionization of copper in the reaction solution. If the amount of air blown is too small, copper complexation and copper complex ionization of copper will be insufficient, and the amount of fine copper nuclei generated will be reduced, and the copper reactivity in the reaction solution will be suppressed. Therefore, it becomes difficult to synthesize copper fine particles having characteristics such as monodispersed fine particles and no coarse particles.

銅錯体および銅錯イオンの少なくとも一方を銅まで還元する際に添加する還元剤の量が少な過ぎると、還元速度が遅くなり過ぎるため、単分散した微粒子で、粗粒を含まないなどの特性を有する銅微粒子を合成するのが困難になる。したがって、価数が1価の亜酸化銅の銅を還元するのに必要な還元剤の量を1当量として、3当量以上の還元剤を添加するのが好ましい。   If the amount of the reducing agent added when reducing at least one of the copper complex and copper complex ion to copper is too small, the reduction rate will be too slow, so that the monodispersed fine particles do not contain coarse particles. It becomes difficult to synthesize the copper fine particles. Therefore, it is preferable to add 3 equivalents or more of a reducing agent, with the amount of reducing agent required to reduce the cuprous oxide having a monovalent valence being 1 equivalent.

還元反応時の攪拌方法としては、反応液を均一に混合することができる方法であればよく、例えば、マグネチックスターラーにより攪拌する方法や、羽根を備えた攪拌棒を反応溶液中に設置して外部モーターにより回転させて攪拌する方法などが挙げられる。   As a stirring method at the time of the reduction reaction, any method can be used as long as the reaction solution can be mixed uniformly. For example, a stirring method using a magnetic stirrer or a stirring bar equipped with a blade is installed in the reaction solution. Examples of the method include stirring by rotating with an external motor.

還元時の反応温度は、20℃〜100℃であればよく、反応の制御性から60℃〜95℃であるのが好ましい。   The reaction temperature at the time of reduction may be 20 ° C to 100 ° C, and is preferably 60 ° C to 95 ° C from the controllability of the reaction.

還元剤としては、種々の還元剤を用いることができるが、次亜リン酸、次亜リン酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウムおよびホルマリンからなる群から選ばれる少なくとも1種の還元剤を用いるのが好ましく、ヒドラジンを用いるのがさらに好ましい。   Various reducing agents can be used as the reducing agent, and at least one reducing agent selected from the group consisting of hypophosphorous acid, sodium hypophosphite, hydrazine, sodium borohydride, and formalin is used. It is more preferable to use hydrazine.

このようにして得られた銅粉含有スラリーをろ過し、水洗することによって、塊状の銅ケーキが得られる。ろ過および水洗の方法としては、フィルタープレスなどにより粉体を固定した状態で水洗する方法や、スラリーをデカントし、その上澄み液を除去した後に純水を加えて攪拌し、その後、再びデカントして上澄み液を除去する操作を繰り返し行う方法や、ろ過後の銅粉をリパルプした後に再度ろ過する操作を繰り返し行う方法などのいずれでもよいが、銅粉体中に局所的に残留している不純物をできる限り除去することができる方法が好ましく、これにより、乾燥処理中の凝集を防止する効果や、銅粉の表面に存在する官能基の活性度合いが高まることにより脂肪酸を表面処理した際の脂肪酸や表面処理剤などの銅粉への付着率が高まる効果があると考えられる。その後、脂肪酸およびベンゾトリアゾールなどの防錆効果ある物質を低級アルコールなどに溶解し、水洗した銅ケーキに通液またはリパルプさせることにより、その物質で被覆してもよいし、また、銅ケーキの乾燥を早めるために、銅ケーキ中の水分を低級アルコールにより置換してもよい。また、得られた銅ケーキを、酸化させない雰囲気において乾燥(窒素雰囲気中の乾燥や真空乾燥)することによって銅微粒子を得ることができる。また、必要に応じて、乾式解砕処理、篩分け、風力分級などの処理を行ってもよい。   The copper powder-containing slurry thus obtained is filtered and washed with water to obtain a massive copper cake. As a method of filtration and washing with water, a method of washing with powder fixed by a filter press or the like, or decanting the slurry, removing the supernatant liquid, stirring with pure water, and then decanting again Either the method of repeatedly removing the supernatant liquid or the method of repeatedly filtering the filtered copper powder and then re-filtering it may be used, but impurities remaining locally in the copper powder may be removed. A method that can be removed as much as possible is preferable, whereby the effect of preventing aggregation during the drying treatment and the fatty acid when the fatty acid is surface-treated by increasing the activity of the functional groups present on the surface of the copper powder. It is thought that there is an effect of increasing the adhesion rate to the copper powder such as a surface treatment agent. Thereafter, a substance having an antirust effect such as fatty acid and benzotriazole is dissolved in a lower alcohol or the like, and may be coated with the substance by passing or repulping the copper cake after washing with water, or drying the copper cake. In order to speed up the process, the water in the copper cake may be replaced with a lower alcohol. Moreover, copper fine particles can be obtained by drying the obtained copper cake in an atmosphere that does not oxidize (drying in a nitrogen atmosphere or vacuum drying). Moreover, you may perform processes, such as a dry crushing process, sieving, and an air classification, as needed.

上述した本発明による導電性ペースト用銅粉の製造方法の実施の形態によって製造した導電性ペースト用銅粉は、単分散した微粒子で、粒度分布がシャープで、粗粒を含まないものであり、積層セラミックコンデンサの内部電極の導電性ペースト用や外部電極の導電性ペースト用の銅粉として適した銅粉であり、この導電性ペースト用銅粉を用いて、公知の方法により導電性ペーストを製造することができる。このようにして製造した導電性ペーストは、電気的特性への悪影響を回避しながら電極の薄膜化を可能にし、積層セラミックコンデンサの内部電極用や外部電極用の導電性ペーストとして使用することができる。   The copper powder for conductive paste manufactured by the embodiment of the method for manufacturing copper powder for conductive paste according to the present invention described above is a monodispersed fine particle, has a sharp particle size distribution, and does not contain coarse particles. This copper powder is suitable for use as a conductive paste for internal electrodes of multilayer ceramic capacitors and for conductive pastes of external electrodes. Using this copper powder for conductive paste, conductive paste is produced by a known method. can do. The conductive paste produced in this way enables electrode thinning while avoiding adverse effects on electrical characteristics, and can be used as a conductive paste for internal electrodes and external electrodes of multilayer ceramic capacitors. .

また、本発明による導電性ペースト用銅粉の製造方法の実施の形態によって製造した導電性ペースト用銅粉は、レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μm、検出の最大粒径(Dmax)が1.5μm以下である。レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μmであれば、積層セラミックコンデンサなどの高容量化や小型化のために必要な内部電極の薄層化(近年では層の厚さ1.5μm以下)を実現することができる。また、検出の最大粒径(Dmax)が1.5μm以下であれば、内部電極と誘電体セラミックグリーンシートを積層させた際に、内部電極の薄層における粗粒の存在により誘電体層を突き破って絶縁不良を引き起こすおそれがない。 Further, the copper powder for conductive paste manufactured by the embodiment of the method for manufacturing copper powder for conductive paste according to the present invention has a 50% particle size (D 50 ) measured by a laser diffraction particle size distribution measuring device of 0. 0.1 to 0.5 μm, and the maximum particle size (D max ) for detection is 1.5 μm or less. If the 50% particle size (D 50 ) measured by a laser diffraction particle size distribution analyzer is 0.1 to 0.5 μm, the internal electrode necessary for high capacity and miniaturization of a multilayer ceramic capacitor and the like Thinning (in recent years, layer thickness of 1.5 μm or less) can be realized. Further, if the maximum particle size (D max ) of detection is 1.5 μm or less, the dielectric layer is formed due to the presence of coarse particles in the thin layer of the internal electrode when the internal electrode and the dielectric ceramic green sheet are laminated. There is no risk of breaking through and causing poor insulation.

さらに、本発明による導電性ペースト用銅粉の製造方法の実施の形態によって製造した導電性ペースト用銅粉は、化学吸着法によって測定されたBET比表面積が3m/g以上であり、4m/g以上であるのが好ましい。化学吸着法によって測定されたBET比表面積が3m/g以上であれば、単分散した微粒子で粗粒を含まない銅微粒子になり、一方、化学吸着法によって測定されたBET比表面積が3m/gより小さいと、内部電極などを形成するための導電性ペーストに使用する銅粉として適さない粗大粒子を含む可能性があるからである。 Furthermore, the copper powder for conductive paste manufactured by the embodiment of the method for manufacturing the copper powder for conductive paste according to the present invention has a BET specific surface area of 3 m 2 / g or more measured by a chemical adsorption method, and is 4 m 2. / G or more is preferable. If the BET specific surface area measured by the chemical adsorption method is 3 m 2 / g or more, the fine particles are monodispersed fine particles and do not contain coarse particles, while the BET specific surface area measured by the chemical adsorption method is 3 m 2. This is because if it is smaller than / g, it may contain coarse particles that are not suitable as copper powder used in the conductive paste for forming internal electrodes and the like.

以下、本発明による導電性ペースト用銅粉およびその製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the copper powder for electrically conductive paste by this invention and its manufacturing method is described in detail.

[実施例1]
まず、5Lの反応槽内に純水3800gを入れ、反応槽の下部から0.5L/分の流量で空気を吹き込み、反応槽内の攪拌棒を回転させた。次に、錯化剤としてクエン酸(扶桑化学工業株式会社製)5.33g(0.042当量)を反応槽内に投入するとともに、亜酸化銅(日進ケムコ株式会社製のNC−301、平均粒径2.5μm)43.17gとを反応槽内に投入して、30℃で2時間反応させて錯体化処理を行った後、空気の供給を停止して反応槽の上部から2.0L/分の流量で窒素を導入した。次に、90℃まで昇温を行い、還元剤として抱水ヒドラジン(大塚化学工業株式会社製の80%ヒドラジン水和物)40.2g(8.54当量)を反応槽内に投入して還元反応を行い1時間保持した後、攪拌を止め、洗浄し、乾燥させて、銅粒子を得た。
[Example 1]
First, 3800 g of pure water was put into a 5 L reaction tank, air was blown from the lower part of the reaction tank at a flow rate of 0.5 L / min, and the stirring rod in the reaction tank was rotated. Next, while adding 5.33 g (0.042 equivalent) of citric acid (manufactured by Fuso Chemical Co., Ltd.) as a complexing agent into the reaction vessel, cuprous oxide (NC-301 manufactured by Nisshin Chemco Co., Ltd., average) 43.17 g (particle size 2.5 μm) was charged into the reaction vessel and reacted at 30 ° C. for 2 hours to carry out a complexing treatment, and then the air supply was stopped and 2.0 L from the top of the reaction vessel was added. Nitrogen was introduced at a flow rate of / min. Next, the temperature was raised to 90 ° C., and 40.2 g (8.54 equivalents) of hydrazine hydrate (80% hydrazine hydrate manufactured by Otsuka Chemical Co., Ltd.) was charged as a reducing agent into the reaction vessel for reduction. After reacting and holding for 1 hour, stirring was stopped, washed, and dried to obtain copper particles.

[実施例2]
クエン酸の投入量を4.70g(0.037当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 2]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid charged was 4.70 g (0.037 equivalents).

[実施例3]
クエン酸の投入量を8.00g(0.063当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 3]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid charged was 8.00 g (0.063 equivalents).

[実施例4]
抱水ヒドラジンの投入量を15.08g(3.20当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 4]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 15.08 g (3.20 equivalents).

[実施例5]
抱水ヒドラジンの投入量を20.10g(4.27当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 5]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 20.10 g (4.27 equivalents).

[実施例6]
抱水ヒドラジンの投入量を22.62g(4.81当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 6]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 22.62 g (4.81 equivalents).

[実施例7]
抱水ヒドラジンの投入量を27.66g(5.88当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 7]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was changed to 27.66 g (5.88 equivalents).

[実施例8]
抱水ヒドラジンの投入量を30.17g(6.41当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 8]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 30.17 g (6.41 equivalents).

[実施例9]
抱水ヒドラジンの投入量を60.30g(12.81当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 9]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 60.30 g (12.81 equivalents).

[実施例10]
抱水ヒドラジンの投入量を90.45g(19.22当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 10]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of hydrazine hydrate added was 90.45 g (19.22 equivalents).

[実施例11]
30℃で15分間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 11]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 15 minutes.

[実施例12]
30℃で30分間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 12]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 30 minutes.

[実施例13]
30℃で6時間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 13]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 6 hours.

[実施例14]
30℃で12時間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 14]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 12 hours.

[実施例15]
30℃で24時間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 15]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 24 hours.

[実施例16]
30℃で38時間反応させて錯体化処理を行った以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 16]
Copper fine particles were obtained by the same method as in Example 1 except that the complexing treatment was performed by reacting at 30 ° C. for 38 hours.

[比較例1]
窒素雰囲気下において、濃度48.3%のNaOH水溶液0.578kgを純水4.12kgに溶かして27℃に保持したアルカリ水溶液に、硫酸銅五水塩(CuSO4・5H2O)0.6925kgを純水2.20kgに溶かした29℃の硫酸銅水溶液を添加して強攪拌した後、発熱により硫酸銅水溶液およびアルカリ水溶液の温度が34℃まで上昇し、水酸化銅が析出した懸濁液が得られた。この懸濁液のpHは13.74であった。硫酸銅水溶液とアルカリ水溶液は、液中の銅に対して苛性ソーダの当量比が1.25になるように混合した。得られた水酸化銅の懸濁液に、ブドウ糖0.9935kgを純水1.41kgに溶かしたブドウ糖溶液を添加して30分間で70℃まで昇温させた後、15分間保持した。
[Comparative Example 1]
Under a nitrogen atmosphere, 0.578 kg of a 48.3% concentration NaOH aqueous solution was dissolved in 4.12 kg of pure water, and the alkaline aqueous solution kept at 27 ° C. was subjected to 0.6925 kg of copper sulfate pentahydrate (CuSO 4 .5H 2 O). After adding a 29 ° C aqueous copper sulfate solution dissolved in 2.20 kg of pure water and stirring vigorously, the temperature of the aqueous copper sulfate solution and the aqueous alkaline solution rose to 34 ° C due to heat generation, and a suspension in which copper hydroxide was precipitated was gotten. The pH of this suspension was 13.74. The aqueous copper sulfate solution and the aqueous alkaline solution were mixed so that the equivalent ratio of caustic soda to 1.25 in the liquid was 1.25. A glucose solution in which 0.9935 kg of glucose was dissolved in 1.41 kg of pure water was added to the obtained copper hydroxide suspension, the temperature was raised to 70 ° C. over 30 minutes, and then held for 15 minutes.

次いで、液中に0.7L/分の流量で空気を200分間バブリングさせた。このバブリング後の液のpHは6.2であった。この懸濁液を窒素雰囲気中において2日間静置した後、上澄液(pH6.92)を除去して、沈殿をほぼ全量採取した。この沈殿物に純水0.7kgを追加して、得られた懸濁液に抱水ヒドラジン0.065kg(2.1当量)を添加した後、液の温度は発熱反応により50℃まで昇温し、最終的に80℃まで昇温して、反応を終了した。反応終了後の懸濁液を固液分離し、銅粉を採取し、120℃の窒素雰囲気中において乾燥して粒状銅粉を得た。   Next, air was bubbled through the liquid at a flow rate of 0.7 L / min for 200 minutes. The pH of the liquid after the bubbling was 6.2. The suspension was allowed to stand in a nitrogen atmosphere for 2 days, and then the supernatant (pH 6.92) was removed to collect almost all of the precipitate. After adding 0.7 kg of pure water to this precipitate and adding 0.065 kg (2.1 equivalents) of hydrazine hydrate to the resulting suspension, the temperature of the liquid was raised to 50 ° C. by an exothermic reaction. Then, the temperature was finally raised to 80 ° C. to complete the reaction. The suspension after completion of the reaction was subjected to solid-liquid separation, and copper powder was collected and dried in a nitrogen atmosphere at 120 ° C. to obtain granular copper powder.

[比較例2]
クエン酸の投入量を0.51g(0.004当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 2]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid was changed to 0.51 g (0.004 equivalent).

[比較例3]
クエン酸の投入量を2.67g(0.021当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 3]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid charged was 2.67 g (0.021 equivalents).

[比較例4]
クエン酸の投入量を4.06g(0.032当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 4]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid charged was 4.06 g (0.032 equivalents).

[比較例5]
クエン酸の投入量を10.66g(0.084当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 5]
Copper fine particles were obtained in the same manner as in Example 1 except that the amount of citric acid charged was 10.66 g (0.084 equivalent).

[比較例6]
抱水ヒドラジンの投入量を10.05g(2.14当量)とした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 6]
Copper fine particles were obtained by the same method as in Example 1 except that the amount of hydrazine hydrate added was 10.05 g (2.14 equivalents).

[比較例7]
空気を吹き込まないで反応させた(錯体化処理時間を0時間とした)以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 7]
Copper fine particles were obtained by the same method as in Example 1 except that the reaction was performed without blowing air (complexing treatment time was 0 hour).

[比較例8]
錯体化処理の際の供給ガスを空気から窒素にした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Comparative Example 8]
Copper fine particles were obtained by the same method as in Example 1 except that the supply gas in the complexation treatment was changed from air to nitrogen.

これらの実施例および比較例において、錯化剤として投入したクエン酸の当量、還元剤として投入した抱水ヒドラジンの当量および錯体化処理時間を表1に示す。   Table 1 shows the equivalent of citric acid added as a complexing agent, the equivalent of hydrazine hydrate added as a reducing agent, and the complexing treatment time in these Examples and Comparative Examples.

Figure 0006031571
Figure 0006031571

また、実施例および比較例で得られた銅粉の粒度分布、50%粒径(D50)およびDmax(検出の最大粒径)を、レーザー回折式粒度分布測定装置(ベックマン・コールター社製のLS−230)を用いて測定した。なお、測定試料として、実施例および比較例で得られた銅粉と純水をビーカーに入れて超音波分散槽などにより十分に分散させた液を使用した。また、光学モデルとして、液体の屈折率の実数部は、レーザー、PIDS(偏光散乱強度差)450nm、PIDS600nm、PIDS900nmでは1.322、試料の屈折率の実数部は、レーザー、PIDS450nm、PIDS600nm、PIDS900nmでは1.5、試料の屈折率の虚数部は、レーザーでは0、PIDS450nmでは10、PIDS600nm、PIDS900nmでは0.3として設定した。 In addition, the particle size distribution, 50% particle size (D 50 ) and D max (maximum particle size of detection) of the copper powder obtained in Examples and Comparative Examples were measured using a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc.). LS-230). In addition, the liquid which put the copper powder and pure water which were obtained by the Example and the comparative example into the beaker, and was fully disperse | distributed with the ultrasonic dispersion tank etc. was used as a measurement sample. As an optical model, the real part of the refractive index of the liquid is laser, PIDS (polarized light scattering intensity difference) 450 nm, PIDS 600 nm, and PIDS 900 nm are 1.322, and the real part of the sample refractive index is laser, PIDS 450 nm, PIDS 600 nm, and PIDS 900 nm. Is set to 1.5, the imaginary part of the refractive index of the sample is set to 0 for the laser, 10 for the PIDS 450 nm, and 0.3 for the PIDS 600 nm and PIDS 900 nm.

これらの結果を表2に示す。また、錯化剤として投入したクエン酸の当量、還元剤として投入した抱水ヒドラジンの当量および錯体化処理時間に対するDmax(検出の最大粒径)をそれぞれ図1〜図3に示し、実施例および比較例で得られた銅粉のDmax(検出の最大粒径)を図4に示す。 These results are shown in Table 2. Moreover, the equivalent of citric acid added as a complexing agent, the equivalent of hydrazine hydrate added as a reducing agent, and D max (maximum particle size of detection) with respect to the complexing treatment time are shown in FIGS. And Dmax (maximum particle diameter of detection) of the copper powder obtained by the comparative example is shown in FIG.

Figure 0006031571
Figure 0006031571

また、実施例および比較例で得られた銅粉の粒子形状および平均粒径を電界放出形走査電子顕微鏡(SEM)(日立製作所製のS−4700形)により評価した。なお、SEMによって観測した銅単体粒子の平均粒径(単体粒子径)は、粒子200個の50%Heywood径から算出した。また、2万倍の撮影視野を用いて粒子径を算出したが、200個の粒子数を測定できない場合には、視野内における銅単体粒子すべての粒子径を算出した。   Moreover, the particle shape and average particle diameter of the copper powder obtained in Examples and Comparative Examples were evaluated by a field emission scanning electron microscope (SEM) (S-4700, manufactured by Hitachi, Ltd.). In addition, the average particle diameter (single particle diameter) of the copper single particle observed by SEM was calculated from the 50% Heywood diameter of 200 particles. Moreover, although the particle diameter was computed using the imaging | photography visual field of 20,000 times, when the number of 200 particles was not measurable, the particle diameter of all the copper single particle in a visual field was computed.

また、実施例および比較例で得られた銅粉の比表面積をBET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めるとともに、求めた比表面積から銅単体粒子の密度を8.9g/cmとしてBET粒径を算出した。 In addition, the specific surface area of the copper powder obtained in the examples and comparative examples was determined by the BET method using a BET specific surface area measuring device (4 Sorb US manufactured by Yuae Sonics Co., Ltd.), and from the determined specific surface area, single copper particles The BET particle size was calculated with a density of 8.9 g / cm 2 .

これらの結果を表3に示す。また、実施例1で得られた銅粉のSEM写真を図5および図6に示し、比較例7で得られた銅粉のSEM写真を図7および図8に示し、比較例8で得られた銅粉のSEM写真を図9および図10に示す。   These results are shown in Table 3. Moreover, the SEM photograph of the copper powder obtained in Example 1 is shown in FIG. 5 and FIG. 6, the SEM photograph of the copper powder obtained in Comparative Example 7 is shown in FIG. 7 and FIG. SEM photographs of the copper powder are shown in FIGS.

Figure 0006031571
Figure 0006031571

表1〜表3および図1〜図4の結果から、実施例1〜16のように、原料溶液中に錯化剤を投入し、空気を導入して錯体化処理を行った後で還元反応を行うことにより、粒子径の近い粒子同士の粒度分布差((D90−D10)/D50)が0.600〜1.173になり、比較例2〜8の1.255〜5.472と比べて小さくなることから、単分散した微粒子で、粗粒を含まない(最大粒径が1.5μm以下と非常に小さい)などの特性を有する銅微粒子を安定して製造することができることがわかる。 From the results of Tables 1 to 3 and FIGS. 1 to 4, as in Examples 1 to 16, a complexing agent was introduced into the raw material solution, and air was introduced to perform the complexing treatment, followed by a reduction reaction. , The particle size distribution difference ((D 90 -D 10 ) / D 50 ) between particles having similar particle diameters is 0.600 to 1.173, and the comparative examples 2 to 8 of 1.255 to 5. Since it is smaller than 472, it is possible to stably produce copper fine particles having characteristics such as monodispersed fine particles and no coarse particles (the maximum particle size is as small as 1.5 μm or less). I understand.

なお、クエン酸の投入量が4.70〜8.00g(0.037〜0.063当量)の実施例1〜3と、クエン酸の投入量が0.51〜4.06gおよび10.66g(0.004〜0.032当量および0.084当量)の比較例2〜5との比較から、クエン酸の投入量が実施例1〜3の範囲では、銅粉の最大粒径が非常に小さくなることがわかる。また、抱水ヒドラジンの投入量が15.08〜90.45g(3.20〜19.22当量)の実施例1および4〜10と、抱水ヒドラジンの投入量が10.05g(2.14当量)の比較例6との比較から、抱水ヒドラジンの投入量が多くなると、銅粉の最大粒径が非常に小さくなることがわかる。また、錯体化処理時間を15分〜38時間とした実施例1および11〜16と、錯体化処理時間を0時間とした比較例7との比較から、錯体化処理時間が15分以上であると、銅粉の最大粒径が非常に小さくなることがわかる。さらに、空気を吹き込んだ実施例1と、窒素ガスを吹き込んだ比較例8との比較から、空気を吹き込むと、銅粉の最大粒径が非常に小さくなることがわかる。   In addition, Examples 1 to 3 in which the input amount of citric acid was 4.70 to 8.00 g (0.037 to 0.063 equivalent), and the input amounts of citric acid were 0.51 to 4.06 g and 10.66 g. From the comparison with Comparative Examples 2 to 5 (0.004 to 0.032 equivalent and 0.084 equivalent), the maximum particle size of the copper powder is very high when the input amount of citric acid is in the range of Examples 1 to 3. It turns out that it becomes small. Further, Examples 1 and 4 to 10 in which the amount of hydrazine hydrate input was 15.08 to 90.45 g (3.20 to 19.22 equivalents), and the amount of hydrazine hydrate input was 10.05 g (2.14). The comparison with Comparative Example 6 of equivalent) shows that the maximum particle size of the copper powder becomes very small when the amount of hydrazine hydrate added is increased. In addition, from the comparison between Examples 1 and 11 to 16 in which the complexation treatment time was 15 minutes to 38 hours and Comparative Example 7 in which the complexation treatment time was 0 hours, the complexation treatment time was 15 minutes or more. It can be seen that the maximum particle size of the copper powder is very small. Furthermore, from comparison between Example 1 in which air was blown and Comparative Example 8 in which nitrogen gas was blown, it can be seen that the maximum particle size of the copper powder becomes very small when air is blown.

Claims (2)

レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.302〜0.5μm、最大粒径(Dmax)が1.047μm以下であり、化学吸着法によって測定されたBET比表面積が3.445m/g以上であることを特徴とする、導電性ペースト用銅粉。 The 50% particle size (D 50 ) measured by a laser diffraction particle size distribution analyzer was 0.302 to 0.5 μm and the maximum particle size (D max ) was 1.047 μm or less, and was measured by a chemical adsorption method. BET specific surface area is 3.445 m < 2 > / g or more, Copper powder for conductive pastes characterized by the above-mentioned. 導電性粉体として請求項に記載の導電性ペースト用銅粉を含むことを特徴とする、導電性ペースト。 A conductive paste comprising the copper powder for conductive paste according to claim 1 as the conductive powder.
JP2015168469A 2010-09-30 2015-08-28 Copper powder for conductive paste and method for producing the same Active JP6031571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015168469A JP6031571B2 (en) 2010-09-30 2015-08-28 Copper powder for conductive paste and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010220699 2010-09-30
JP2010220699 2010-09-30
JP2015168469A JP6031571B2 (en) 2010-09-30 2015-08-28 Copper powder for conductive paste and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011196635A Division JP5820202B2 (en) 2010-09-30 2011-09-09 Copper powder for conductive paste and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016006234A JP2016006234A (en) 2016-01-14
JP6031571B2 true JP6031571B2 (en) 2016-11-24

Family

ID=55224802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168469A Active JP6031571B2 (en) 2010-09-30 2015-08-28 Copper powder for conductive paste and method for producing the same

Country Status (1)

Country Link
JP (1) JP6031571B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130616B1 (en) * 2017-02-07 2017-05-17 大陽日酸株式会社 Copper fine particles, production method thereof, and sintered body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192728A1 (en) * 2007-06-28 2010-08-05 Nippon Mining & Metals Co., Ltd. Spherical Copper Fine Powder and Process for Producing the Same
JP2010144197A (en) * 2008-12-16 2010-07-01 Mitsui Mining & Smelting Co Ltd Metal powder, and method for producing the same

Also Published As

Publication number Publication date
JP2016006234A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
JP5519938B2 (en) Method for producing copper powder for conductive paste
US7648557B2 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
TWI600776B (en) Silver powder, and electrically conductive paste
JP6274444B2 (en) Method for producing copper powder
JP5827341B2 (en) Reactor for silver powder production and continuous production method
KR101045186B1 (en) Method For Manufacturing Cupper Nanoparticles and Cupper Nanoparticles Using The Same
WO2007004649A1 (en) Highly crystalline silver powder and process for production of the same
JP2012526191A (en) Silver particles and method for producing the same
JP2006336060A (en) Nickel particle powder and production method therefor
JP2013541640A (en) Silver particles and method for producing the same
JP2012525506A (en) Silver particles and method for producing the same
JP6799936B2 (en) Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors
JP4100244B2 (en) Nickel powder and method for producing the same
JP6159505B2 (en) Flat copper particles
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
TWI544977B (en) Copper powder for conductive paste and method for producing same
JP6975527B2 (en) Spherical silver powder and its manufacturing method, and conductive paste
JP2017206751A (en) Manufacturing method of nickel powder
JP2007224422A (en) Silver powder and paste using the same
JP7069311B2 (en) How to make silver powder and conductive paste containing silver powder
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
WO2006118183A1 (en) Tin powder-containing colloidal liquid and method for producing same
JP2015160988A (en) Method of producing nickel powder
JP2015163726A (en) Method of producing nickel powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250