JP2005235533A - Metal particle dispersion liquid and circuit forming method using the same - Google Patents

Metal particle dispersion liquid and circuit forming method using the same Download PDF

Info

Publication number
JP2005235533A
JP2005235533A JP2004042200A JP2004042200A JP2005235533A JP 2005235533 A JP2005235533 A JP 2005235533A JP 2004042200 A JP2004042200 A JP 2004042200A JP 2004042200 A JP2004042200 A JP 2004042200A JP 2005235533 A JP2005235533 A JP 2005235533A
Authority
JP
Japan
Prior art keywords
particle dispersion
metal
metal particle
water
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004042200A
Other languages
Japanese (ja)
Inventor
Kohei Shimoda
浩平 下田
Kazumasa Okada
一誠 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004042200A priority Critical patent/JP2005235533A/en
Publication of JP2005235533A publication Critical patent/JP2005235533A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a colloidal metal particle dispersion liquid used for forming a pattern of conduction part represented by formation of a circuit wiring and a conduction pad in an electronic field, not generating separation/precipitation by coagulation, excellent in dispersion stability. <P>SOLUTION: The colloidal metal particle dispersion liquid contains metal particles having a maximum particle size of 5 nm or more and 100 nm or less, a dispersant, polymer resin, and a solvent. The polymer resin is soluble in water or a mixed solvent of water and water soluble organic solvent, and the solvent is water or a mixed solvent of water and water soluble organic solvent. The circuit pattern is formed by applying the metal particle dispersion liquid and drawing the pattern on a substrate, and baking it with a temperature of 80°C or higher and 1,500°C or lower. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エレクトロニクス分野での回路配線及び導電パッドの形成に代表される導電部分のパターン形成に使用される金属粒子分散液ならびにこれを用いた回路パターン形成法に関する。   The present invention relates to a metal particle dispersion used for pattern formation of a conductive portion represented by the formation of circuit wiring and conductive pads in the electronics field, and a circuit pattern forming method using the same.

エレクトロニクス分野における、導電部分のパターン形成法として、一般的にはスクリーン印刷法やフォトリソ薄膜法が広く用いられている。ところが、スクリーン印刷法では、導電部分をパターン形成する際にパターンを制御するマスクを必要とする。そして、そのマスクの伸びや変形などにより、パターン形成工程にマスクを用いる工程では、高精度パターンを得ることは困難である。一方、フォトリソ薄膜法では、前記と同様にパターン形成する際にマスクを必要とする。さらに、感光性樹脂をコーティングした後、露光、現像、薄膜回路形成と言った非常に長い工程を有する。   In the field of electronics, generally, a screen printing method or a photolithography thin film method is widely used as a pattern forming method for a conductive portion. However, the screen printing method requires a mask for controlling the pattern when patterning the conductive portion. Then, due to the elongation and deformation of the mask, it is difficult to obtain a highly accurate pattern in the process of using the mask in the pattern forming process. On the other hand, the photolithography thin film method requires a mask when forming a pattern in the same manner as described above. Furthermore, after coating the photosensitive resin, it has very long processes such as exposure, development, and thin film circuit formation.

以上のような問題を解決する手段として、ナノメーターレベル(10−9m)にまで微細化した金属粒子を用い、これらをコロイド分散液にした状態でインクジェット印刷法により、フラットパネルディスプレーの電極形成や、回路パターンの形成をすることが提案されている(特許文献1及び2参照)。その手法では、インクジェットで基板に回路を描画するため、マスクが不要であり、高精度パターンを得られる可能性がある。また、描画後焼き付けるだけであるため、工程簡略化が可能であり、リードタイムを短縮でき、低コスト化にも貢献する。   As means for solving the above-mentioned problems, flat panel display electrodes can be formed by ink jet printing using metal particles miniaturized to the nanometer level (10-9 m) in a colloidal dispersion. It has been proposed to form a circuit pattern (see Patent Documents 1 and 2). In this method, since a circuit is drawn on a substrate by inkjet, a mask is unnecessary, and a high-precision pattern may be obtained. Further, since baking is performed only after drawing, the process can be simplified, the lead time can be shortened, and the cost can be reduced.

ところが、前記したコロイド分散液に使用するナノメーターレベルにまで微細化した金属粒子は、一般にファンデルワールス(van der Waals)力により凝集しやすい。これは、分散安定性に問題を生ずる恐れがあると言うことであり、通常、工業的に使用するには、少なくとも1ヶ月以上、より好ましくは半年以上の分散安定性が望まれる。
特開2002−169486号公報、(0014−0020) 特開2002−324966号公報、(0013−0020)
However, metal particles refined to the nanometer level used in the above-described colloidal dispersion generally tend to aggregate due to van der Waals force. This means that there may be a problem in dispersion stability. Usually, for industrial use, dispersion stability of at least one month or more, more preferably half a year or more is desired.
JP2002-169486, (0014-0020) JP 2002-324966 A, (0013-0020)

本発明の目的は、前記したコロイド分散液に使用する金属粒子が、凝集等により分離・沈降を生じない、分散安定性に優れたコロイド状の金属粒子分散液を提供すると同時に、該金属粒子分散液を用いた回路パターン形成法を提供することにある。   An object of the present invention is to provide a colloidal metal particle dispersion excellent in dispersion stability in which the metal particles used in the colloidal dispersion described above do not cause separation / sedimentation due to aggregation or the like, and at the same time, the metal particle dispersion The object is to provide a circuit pattern forming method using a liquid.

本発明は、最大粒子径5nm以上、100nm以下の金属粒子、分散剤、高分子樹脂及び溶剤を含むコロイド状の金属粒子分散液であって、該高分子樹脂は水もしくは水と水溶性有機溶剤との混合溶剤に可溶であり、該溶剤は水もしくは水と水溶性有機溶剤との混合溶剤であることを特徴とするコロイド状の金属粒子分散液である。このような組成にすることにより、分散安定性に優れたコロイド状態を長期に亘って保てる。   The present invention relates to a colloidal metal particle dispersion containing metal particles having a maximum particle size of 5 nm or more and 100 nm or less, a dispersant, a polymer resin and a solvent, wherein the polymer resin is water or water and a water-soluble organic solvent. The colloidal metal particle dispersion is characterized in that it is soluble in a mixed solvent of and water, or a mixed solvent of water and a water-soluble organic solvent. By setting it as such a composition, the colloidal state excellent in dispersion stability can be maintained over a long period of time.

金属粒子分散液の20℃における粘度が0.2Pa・sec以上、1500Pa・sec以下であると、回路パターン形成される金属層の厚みを4μm以上、100μm以下に厚膜化することができ、かつ分散安定性がより向上し、好ましい。   When the viscosity at 20 ° C. of the metal particle dispersion is 0.2 Pa · sec or more and 1500 Pa · sec or less, the thickness of the metal layer on which the circuit pattern is formed can be increased to 4 μm or more and 100 μm or less, and The dispersion stability is further improved, which is preferable.

前記金属粒子の含有率が5重量%以上であると、回路パターン形成される金属層をより厚膜化でき、好ましい。   When the content of the metal particles is 5% by weight or more, the metal layer on which the circuit pattern is formed can be made thicker, which is preferable.

前記溶剤の含有率が5重量%以上、94重量%以下であると、金属粒子分散液が安定し、好ましい。   When the content of the solvent is 5% by weight or more and 94% by weight or less, the metal particle dispersion is stable and preferable.

金属粒子分散液のζ電位が−80mV以上、−30mV以下であると、分散液自体が安定化し、長期に亘ってコロイド状を保てるため、特に好ましい。   It is particularly preferable that the ζ potential of the metal particle dispersion is −80 mV or more and −30 mV or less because the dispersion itself is stabilized and can maintain a colloidal shape for a long period of time.

金属粒子が、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、錫(Sn)、タングステン(W)、イリジウム(Ir)、プラチナ(Pt)及び金(Au)よりなる群の1種以上より選択される金属、合金、もしくは金属複合体であると、導電性、経済性に富み、好ましい。   Metal particles are chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium A metal, alloy, or metal selected from one or more of the group consisting of (Pd), silver (Ag), tin (Sn), tungsten (W), iridium (Ir), platinum (Pt), and gold (Au) A composite is preferable because of its high conductivity and economical efficiency.

本発明になる金属粒子分散液を用いた回路パターン形成法は、前述したコロイド状の金属粒子分散液を、インクジェット印刷法又はディスペンサー印刷法を用いて、基板上にパターン描画し、これを80℃以上、1500℃以下の温度で焼き付けることを特徴とする。   In the circuit pattern forming method using the metal particle dispersion according to the present invention, the colloidal metal particle dispersion described above is drawn on a substrate using an ink jet printing method or a dispenser printing method, and this is drawn at 80 ° C. The baking is performed at a temperature of 1500 ° C. or lower.

また、前記焼き付けにより形成される回路の、金属層の厚みが4μm以上、100μm以下であると、回路形成後の欠陥等がなく、好ましい。   Moreover, it is preferable that the thickness of the metal layer of the circuit formed by the baking is 4 μm or more and 100 μm or less because there are no defects after the circuit formation.

本発明の金属粒子分散液は、コロイド状態の安定性が良いため、長期保存が可能であり、いつでも使用可能である利点がある。また、本発明の回路パターン形成法により形成された回路パターンは、金属が厚膜化でき、信頼性のある回路形成が可能である。   Since the metal particle dispersion of the present invention has good stability in a colloidal state, it can be stored for a long time and has an advantage that it can be used at any time. In addition, the circuit pattern formed by the circuit pattern forming method of the present invention can be made of a thick metal film, which enables reliable circuit formation.

本発明に用いる最大粒子径5nm以上、100nm以下の金属粒子は公知の製法によって得ることができる。
具体的には、湿式還元法、蒸発法、気相合成法、気相熱分解法などの公知の製法を用いると良く、湿式還元法の一例としては、分散剤と錯化剤を含む水溶液中に3価のチタンイオン、2価のコバルトイオン、2価の錫イオンなどの還元性イオンを利用して対象となる金属イオンを還元することにより得ることができる。このとき、前記還元性金属イオンに共存して安定化された金属イオン(例えば4価のチタンイオン、3価のコバルトイオン、4価の錫イオン等)が含まれていると、還元が急激に進行せず、粒子径が5nm以上、100nm以下の、所望の金属粒子径を得やすい。
Metal particles having a maximum particle diameter of 5 nm or more and 100 nm or less used in the present invention can be obtained by a known production method.
Specifically, a known production method such as a wet reduction method, an evaporation method, a gas phase synthesis method, or a gas phase thermal decomposition method may be used. An example of the wet reduction method is an aqueous solution containing a dispersant and a complexing agent. In addition, it can be obtained by reducing a target metal ion using a reducing ion such as a trivalent titanium ion, a divalent cobalt ion, or a divalent tin ion. At this time, if a metal ion (for example, a tetravalent titanium ion, a trivalent cobalt ion, a tetravalent tin ion, or the like) that is stabilized by coexisting with the reducing metal ion is contained, the reduction rapidly occurs. It does not proceed and it is easy to obtain a desired metal particle diameter having a particle diameter of 5 nm or more and 100 nm or less.

本発明に使用する金属粒子は、最大粒子径が5nm以上、100nm以下のものを使用する。ここで、最大粒子径は、レーザードップラー法などの公知の粒度分布測定方法により求められる。
最大粒子径が100nmを超えると、いかに安定化された分散状態であっても、金属粒子と分散媒との比重差により沈降現象が起こりやすいためである。最大粒子径は、5nm以上であれば、問題なく使用できる。5nm未満では、金属粒子としての取り扱いが厄介である。
The metal particles used in the present invention have a maximum particle size of 5 nm or more and 100 nm or less. Here, the maximum particle size is determined by a known particle size distribution measurement method such as a laser Doppler method.
This is because when the maximum particle diameter exceeds 100 nm, no matter how stabilized the dispersion state is, precipitation is likely to occur due to the difference in specific gravity between the metal particles and the dispersion medium. If the maximum particle size is 5 nm or more, it can be used without any problem. If it is less than 5 nm, handling as metal particles is troublesome.

本発明に用いる分散剤は、カチオン系分散剤、アニオン系分散剤、両性分散剤、ノニオン系分散剤のいずれでも使用できるが、対象となる金属粒子により種類と量を適宜選択する。分散剤としては、カルボキシル基、水酸基、アミノ基、ニトロ基、スルフォン基、フェニル基、ラウリル基、ステアリル基、ドデシル基、オレイル基等の金属粒子に対して親和性を有する分散剤を好適に用いることができる。その量は金属の種類、粒子径などから適正化することができ、一般的には金属粒子の粒子径が小さい程、その比表面積が大きくなるため多量に添加する必要がある。   As the dispersant used in the present invention, any of a cationic dispersant, an anionic dispersant, an amphoteric dispersant, and a nonionic dispersant can be used, and the type and amount are appropriately selected depending on the target metal particles. As the dispersant, a dispersant having affinity for metal particles such as a carboxyl group, a hydroxyl group, an amino group, a nitro group, a sulfone group, a phenyl group, a lauryl group, a stearyl group, a dodecyl group, and an oleyl group is preferably used. be able to. The amount can be optimized based on the type of metal, particle size, etc. Generally, the smaller the particle size of the metal particles, the larger the specific surface area.

また、本発明には高分子樹脂と溶剤を用いる。高分子樹脂は、水もしくは水と水溶性有機溶剤との混合溶剤に可溶であり、水との親和性が良い樹脂を選択する。そして、溶剤は水もしくは水と水溶性有機溶剤との混合溶剤であることを特徴とする。以上のような組成であると、金属粒子が前記分散剤の作用により電気二重層を形成しやすくなり、金属粒子間に静電気的な斥力が働き、分散安定性に優れたコロイド状の金属粒子分散液となる。   In the present invention, a polymer resin and a solvent are used. As the polymer resin, a resin that is soluble in water or a mixed solvent of water and a water-soluble organic solvent and has a good affinity for water is selected. The solvent is water or a mixed solvent of water and a water-soluble organic solvent. When the composition is as described above, the metal particles can easily form an electric double layer by the action of the dispersing agent, and electrostatic repulsion acts between the metal particles, and the colloidal metal particle dispersion excellent in dispersion stability. Become a liquid.

前記高分子樹脂は、水との親和性が良い樹脂であれば種類を問わないが、特に好ましくは、メチルセルロース、ヒドロキシセルロース等のセルロース系樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルアセタール等のビニル系樹脂、メタクリル酸系共重合樹脂、メチルアクリレート系共重合樹脂等のアクリル系樹脂から選択するのが良い。   The polymer resin is not particularly limited as long as it has a good affinity with water, but particularly preferably, a cellulose resin such as methylcellulose or hydroxycellulose, or a vinyl resin such as polyvinyl alcohol, polyvinylpyrrolidone, or polyvinyl acetal. It is preferable to select from acrylic resins such as methacrylic acid copolymer resins and methyl acrylate copolymer resins.

前記水溶性有機溶剤は、水溶性であれば特に種類を問わないが、好ましくはメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、ジエチレングリコール、プロピレングリコール、ポリエチレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のエーテル類の他、グリセリン,2−ピロリドン等の有機溶剤を使用できる。
水溶性有機溶剤は、金属粒子分散液全体に対して5重量%以上、94重量%以下含まれると良い。水溶性有機溶剤の含有量が5重量%未満であると、金属粒子表面への溶剤の被覆が不十分であり、その結果、金属粒子の分散が不安定となる。94重量%を越えると、金属粒子分散液中の金属含有量が小さくなりすぎる。
The water-soluble organic solvent is not particularly limited as long as it is water-soluble, but preferably alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethylene glycol, diethylene glycol, propylene glycol, In addition to glycols such as polyethylene glycol, ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether, organic solvents such as glycerin and 2-pyrrolidone can be used.
The water-soluble organic solvent is preferably contained in an amount of 5 wt% or more and 94 wt% or less with respect to the entire metal particle dispersion. When the content of the water-soluble organic solvent is less than 5% by weight, the coating of the solvent on the surface of the metal particles is insufficient, and as a result, the dispersion of the metal particles becomes unstable. If it exceeds 94% by weight, the metal content in the metal particle dispersion becomes too small.

本発明になる金属粒子分散液は、該金属粒子分散液によって回路をパターン形成する金属層の厚みを確保する必要から、粘性がある程度あるのが好ましい。その目安として20℃における粘度が、0.2Pa・sec以上、1500Pa・sec以下とするのが良い。粘度を大きくするには、分散液に加える高分子樹脂の量を多めにするのが効果的である。粘度が0.2Pa・sec未満であると、回路パターン形成時にダレ、にじみが起こりやすく、形成されたパターンの金属層が厚膜化しにくい。また、長期保管等における分散安定性が不十分となる。粘度が1500Pa・secを越えると、インクジェット印刷法はもとより、ディスペンサー印刷法でも流動性が悪く、回路パターン形成が困難になる。   The metal particle dispersion according to the present invention preferably has a certain degree of viscosity because it is necessary to secure the thickness of the metal layer for patterning the circuit with the metal particle dispersion. As a guideline, the viscosity at 20 ° C. is preferably 0.2 Pa · sec or more and 1500 Pa · sec or less. In order to increase the viscosity, it is effective to increase the amount of the polymer resin added to the dispersion. When the viscosity is less than 0.2 Pa · sec, sagging and bleeding are likely to occur during circuit pattern formation, and the metal layer of the formed pattern is difficult to thicken. Further, the dispersion stability in long-term storage or the like becomes insufficient. When the viscosity exceeds 1500 Pa · sec, not only the ink jet printing method but also the dispenser printing method has poor fluidity, and circuit pattern formation becomes difficult.

金属粒子分散液中における金属粒子の含有率は、5重量%以上、90重量%以下が好ましい。金属粒子の含有率が5重量%未満であると、パターン形成された金属層が厚膜化されにくいため、回路抵抗を大きくする原因になる。また、金属粒子の含有率が90重量%を越えると、分散液の粘度が急激に大きくなるため、回路パターン形成がしにくくなる。   The content of the metal particles in the metal particle dispersion is preferably 5% by weight or more and 90% by weight or less. If the content of the metal particles is less than 5% by weight, the patterned metal layer is difficult to increase in thickness, which causes an increase in circuit resistance. On the other hand, when the content of the metal particles exceeds 90% by weight, the viscosity of the dispersion liquid increases rapidly, so that it is difficult to form a circuit pattern.

本発明になる金属粒子分散液は、コロイド状を維持するために、ζ電位が−80mV以上、−30mV以下であるのが好ましい。分散液のζ電位が−30mVを越えると金属粒子分散液のコロイド状が不安定になり、分散液の分散安定性を保持しにくくなるため、分散液としての製品寿命を短くする。ζ電位は、低いほど好ましいが、過度に低い電位であっても、分散安定性に大きな差異はないため、経済性も考慮して−80mV以上であれば良い。   In order to maintain the colloidal shape, the metal particle dispersion according to the present invention preferably has a ζ potential of −80 mV or more and −30 mV or less. When the ζ potential of the dispersion exceeds −30 mV, the colloidal shape of the metal particle dispersion becomes unstable, and it becomes difficult to maintain the dispersion stability of the dispersion, thereby shortening the product life as the dispersion. The ζ potential is preferably as low as possible, but even if it is an excessively low potential, there is no significant difference in dispersion stability.

本発明における金属粒子分散液に用いる、最大粒子径が5nm以上、100nm以下の金属粒子は、金属粒子の大きさが5nm以上、100nm以下であれば、どのような金属を選択しても金属粒子分散液として安定する。しかし、用途から判断して導電性が良い金属を選択するのが好ましく、また、非常に微細な金属粒子とするため、経済的に考慮する必要がある。さらに粒子形状としては、球状、鱗片状、樹枝状、不定形等種々あるが、球状の粒子が使用上最適である。本発明における使用金属としては、前記した湿式還元法で容易に得られる金属を用いるのが好ましい。すなわち、Cr、Mn、Fe、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Ag、Sn、W、Ir、Pt及びAuよりなる群の1種以上より選択される金属、合金、もしくは金属複合体であるのがよい。
より好ましくはNi、Cu、Pd、Ag、PtおよびAuよりなる群の1種以上より選択される金属、合金、金属複合体が好ましく、さらに好ましくはNi、Cu、Pd、Ag、Pt、Au、AgPd合金、AgPt合金よりなる群の1種以上より選択される金属が好ましい。
The metal particles having a maximum particle size of 5 nm or more and 100 nm or less used for the metal particle dispersion in the present invention may be any metal as long as the size of the metal particles is 5 nm or more and 100 nm or less. Stable as a dispersion. However, it is preferable to select a metal having good conductivity in view of the application, and because it is very fine metal particles, it needs to be considered economically. Furthermore, there are various particle shapes such as a spherical shape, a scale shape, a dendritic shape, and an irregular shape, but a spherical particle is optimal for use. As the metal used in the present invention, it is preferable to use a metal that can be easily obtained by the wet reduction method described above. That is, a metal, alloy, or metal selected from one or more of the group consisting of Cr, Mn, Fe, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Ag, Sn, W, Ir, Pt, and Au It should be a complex.
More preferably, a metal, an alloy, or a metal composite selected from one or more members selected from the group consisting of Ni, Cu, Pd, Ag, Pt, and Au is more preferable, and Ni, Cu, Pd, Ag, Pt, Au, A metal selected from one or more members selected from the group consisting of an AgPd alloy and an AgPt alloy is preferable.

以上に述べた本発明になる金属粒子分散剤を用いてパターンを描画する手段は、インクジェット印刷法及び/又はディスペンサー印刷法を用いるのが良い。
この回路パターン形成により、描画された回路パターンは、80℃以上、1500℃以下の温度で焼き付ける。80℃以上の温度で焼き付けると、パターン化された金属層が強固になるため、微細かつ厚膜の回路パターン形成が可能となる。また、回路パターンの導電性が安定し、経時変化が起こりにくい。80℃未満の温度で焼き付けると、金属層が十分に結着しないため、特に導電性の経時変化が起こりやすい。
好ましくは、80℃以上で、かつ使用する金属の融点以下の温度範囲を用いるのが良い。
As a means for drawing a pattern using the metal particle dispersant according to the present invention described above, an ink jet printing method and / or a dispenser printing method may be used.
By this circuit pattern formation, the drawn circuit pattern is baked at a temperature of 80 ° C. or higher and 1500 ° C. or lower. When the baking is performed at a temperature of 80 ° C. or higher, the patterned metal layer becomes strong, so that a fine and thick circuit pattern can be formed. In addition, the conductivity of the circuit pattern is stable and changes with time are unlikely to occur. When the baking is performed at a temperature of less than 80 ° C., the metal layer is not sufficiently bound, so that the electrical conductivity is likely to change with time.
Preferably, a temperature range of 80 ° C. or higher and lower than the melting point of the metal to be used is used.

前記手段で得られる回路パターンは、その金属層の厚みが4μm以上、100μm以下となるようにパターン形成するとよい。インクジェット印刷法の場合には吐出液滴の径を大きくする、ディスペンサー印刷法の場合にはスキャン速度を遅くする等の調整により、金属層の厚みを調整できる。金属層の厚みが4μm以上であれば、回路抵抗を低減でき、かつ形成された金属層の凹凸や欠陥に影響される回路抵抗増大化も無視できるものとなる。金属層の厚みは、100μm以下とするのがよい。微細化する回路パターンでは、回路幅がたかだか数百μm以下であるから、100μmを越える厚みは必要でない。   The circuit pattern obtained by the above means is preferably formed so that the thickness of the metal layer is 4 μm or more and 100 μm or less. In the case of the inkjet printing method, the thickness of the metal layer can be adjusted by adjusting the diameter of the ejected droplets, and in the case of the dispenser printing method, by adjusting the scanning speed. When the thickness of the metal layer is 4 μm or more, the circuit resistance can be reduced, and an increase in circuit resistance that is affected by the unevenness and defects of the formed metal layer can be ignored. The thickness of the metal layer is preferably 100 μm or less. In a circuit pattern to be miniaturized, since the circuit width is at most several hundred μm or less, a thickness exceeding 100 μm is not necessary.

以下に、本発明になる金属粒子分散液の実施例をあげるが、本発明は以下の実施例によって限定されるものではない。
(実施例1)
湿式還元法を用いて、粒子表面にカチオン系分散剤がコーティングされている球状Ag粒子を作製し、レーザードップラー式粒度分布計を用いてこの粒子の粒径を求めたところ、最大粒子径は20nmであった。このAg粒子と、別途用意したポリビニルアルコールを、水溶媒に分散させ、金属粒子濃度30重量%、高分子樹脂濃度10重量%の、水を溶媒とする金属粒子分散液を作製した。
できたコロイド状の金属粒子分散液は、20℃における粘度が0.5Pa・secであった。また、ζ電位を測定したところ、−35mVであった。
この金属粒子分散液を20℃の暗所中に720時間放置した後、分散性を確認した結果、沈殿や濁りの形成はなく、分散性は良好であった。
Examples of the metal particle dispersion according to the present invention will be given below, but the present invention is not limited to the following examples.
(Example 1)
Using a wet reduction method, spherical Ag particles whose surface is coated with a cationic dispersant were prepared, and the particle size of the particles was determined using a laser Doppler particle size distribution analyzer. The maximum particle size was 20 nm. Met. The Ag particles and separately prepared polyvinyl alcohol were dispersed in a water solvent to prepare a metal particle dispersion using water as a solvent and having a metal particle concentration of 30% by weight and a polymer resin concentration of 10% by weight.
The resulting colloidal metal particle dispersion had a viscosity at 20 ° C. of 0.5 Pa · sec. Further, when the ζ potential was measured, it was −35 mV.
This metal particle dispersion was allowed to stand in a dark place at 20 ° C. for 720 hours, and as a result of confirming the dispersibility, there was no formation of precipitation or turbidity, and the dispersibility was good.

(実施例2)
種々の最大粒子径を有するAgの粒子を用いて、実施例1と同様の配合組成による金属粒子分散液を作製した。詳細を表1に示す。
出来上がったコロイド状の金属粒子分散液を、実施例1の評価と同様、20℃の暗所で720時間放置し、分散安定性を調査した。その結果を表2に示すように、調査したどの配合においても沈殿や濁りはみられず、分散安定性は良好であった。
(Example 2)
Metal particle dispersions having the same composition as in Example 1 were prepared using Ag particles having various maximum particle sizes. Details are shown in Table 1.
The finished colloidal metal particle dispersion was left in a dark place at 20 ° C. for 720 hours in the same manner as in Example 1, and the dispersion stability was investigated. As shown in Table 2, no precipitation or turbidity was observed in any of the investigated formulations, and the dispersion stability was good.

Figure 2005235533
Figure 2005235533

(比較例1)
最大粒子径が120nmのAg粒子を用い、実施例1及び実施例2と同様の配合組成による金属粒子分散液を作製した。また、ここで作製した金属粒子分散液も、実施例1及び2と同様に、20℃の暗所に720時間放置し、その後分散安定性を調査した。この比較例1は、Ag粒子の沈殿が生じており、分散安定性不良と判断した。この結果より、金属粒子が最大120nmであっても、分散安定性はやや不足しており、金属粒子が最大100nm以下では分散安定性を満足することが解った。
(Comparative Example 1)
Using Ag particles having a maximum particle size of 120 nm, metal particle dispersions having the same composition as in Example 1 and Example 2 were prepared. Also, the metal particle dispersion prepared here was left in a dark place at 20 ° C. for 720 hours in the same manner as in Examples 1 and 2, and then the dispersion stability was investigated. In Comparative Example 1, Ag particles were precipitated, and it was determined that the dispersion stability was poor. From this result, it was found that even when the metal particles were 120 nm at the maximum, the dispersion stability was slightly insufficient, and when the metal particles were 100 nm or less at the maximum, the dispersion stability was satisfied.

(比較例2)
実施例1で用いたものと同じの、カチオン系分散剤がコーティングされた最大粒子径20nmのAg粒子を含む水溶液を用意し、これに高分子樹脂を添加せず、そのまま撹拌した後、20℃の暗所で720時間放置した。その後、分散安定性を調査したところ、Agの沈殿がみられた。この結果より、金属粒子が十分微細なものであっても、高分子樹脂の存在が無いと長期保存は困難であることが解った。
(Comparative Example 2)
The same aqueous solution as that used in Example 1 and containing Ag particles with a maximum particle diameter of 20 nm coated with a cationic dispersant was prepared, and the mixture was stirred as it was without adding a polymer resin. For 720 hours in the dark. Thereafter, when the dispersion stability was examined, precipitation of Ag was observed. From this result, it was found that even if the metal particles are sufficiently fine, long-term storage is difficult without the presence of the polymer resin.

(実施例3)
実施例1で用いたものと同じの、カチオン系分散剤がコーティングされた最大粒子径20nmのAg粒子を含む水溶液を用意し、これに表2に示す粘度となるようにポリビニルアルコールを加え混合した。できたコロイド状の金属粒子分散液はどれも20℃の暗所においた720時間後の分散安定性については良好であった。
これらの金属粒子分散液をノズル内径が0.02mmのディスペンサーを用いてガラス基板上に直線パターンを形成した。そのままの状態で、金属粒子分散液の滲み性を評価した。評価の基準は、ディスペンサーのノズル内径より3倍以上とならないものを良好とした。また、2倍以下のものを特に良好と判断した。結果を表2に併記する。
(Example 3)
The same aqueous solution containing Ag particles having a maximum particle diameter of 20 nm coated with a cationic dispersant, which was the same as that used in Example 1, was prepared, and polyvinyl alcohol was added and mixed so as to have the viscosity shown in Table 2. . All of the resulting colloidal metal particle dispersions had good dispersion stability after 720 hours in a dark place at 20 ° C.
A linear pattern of these metal particle dispersions was formed on a glass substrate using a dispenser having a nozzle inner diameter of 0.02 mm. In the state as it is, the bleeding property of the metal particle dispersion was evaluated. The standard of evaluation was determined to be good if it was not more than 3 times the nozzle inner diameter of the dispenser. Moreover, the thing of 2 times or less was judged as especially favorable. The results are also shown in Table 2.

Figure 2005235533
Figure 2005235533

表2の結果から、金属粒子分散液の保管時における分散安定性は、広い粘度域において良好であるが、ディスペンサー等でのパターン形成時において、低粘度の液は滲みが大きくなる傾向を示す。以上から20℃における粘度が、0.2Pa・sec以上の金属粒子分散液を用いるのが好ましい。   From the results in Table 2, the dispersion stability during storage of the metal particle dispersion is good in a wide viscosity range, but the low viscosity liquid shows a tendency to increase bleeding when forming a pattern with a dispenser or the like. From the above, it is preferable to use a metal particle dispersion having a viscosity at 20 ° C. of 0.2 Pa · sec or more.

(実施例4)
粒子表面に両性分散剤がコーティングされている球状のAu粒子を分散させた水溶液を用意した。この液の固形分濃度は50重量%であった。レーザードップラー式粒度分布計を用いてこの粒子の粒子径を求めたところ、最大粒子径は45nmであった。この液にポリビニルアルコールを加え、混合し、粘度を20℃で10Pa・secに調整した。この液を20℃の暗所で720時間放置したが、沈殿や濁りが発生せず、分散安定性は良好であった。
この金属粒子分散液を用い、実施例3で用いたディスペンサーによる直線パターンを形成した。塗布後の線幅は0.035mmであり、滲み性も特に良好であることが確認された。
Example 4
An aqueous solution in which spherical Au particles having an amphoteric dispersant coated on the particle surface was dispersed was prepared. The solid content concentration of this liquid was 50% by weight. When the particle size of the particles was determined using a laser Doppler particle size distribution analyzer, the maximum particle size was 45 nm. Polyvinyl alcohol was added to this liquid and mixed, and the viscosity was adjusted to 10 Pa · sec at 20 ° C. This solution was allowed to stand for 720 hours in a dark place at 20 ° C., but no precipitation or turbidity occurred, and the dispersion stability was good.
Using this metal particle dispersion, a linear pattern was formed by the dispenser used in Example 3. The line width after coating was 0.035 mm, and it was confirmed that the bleeding property was particularly good.

(実施例5)
粒子表面にカチオン系分散剤がコーティングされている球状のAg粒子を分散させた水−エチルアルコール混合溶液を用意した。この液の固形分濃度は50重量%であり、Agの最大粒子径は22nmであった。また、水とエチルアルコールの比率は1:1としている。この液にポリビニルアセタールを加え、粘度を20℃で10Pa・secに調整した。出来上がった金属粒子分散液は、20℃の暗所で720時間放置しても分散安定性は良好であった。また、前記ディスペンサーを用いた直線パターンの形成では、塗布後の線幅が0.035mmとなり、滲み性も特に良好であった。
(Example 5)
A water-ethyl alcohol mixed solution in which spherical Ag particles coated with a cationic dispersant on the particle surface was dispersed was prepared. The solid content concentration of this liquid was 50% by weight, and the maximum particle diameter of Ag was 22 nm. The ratio of water to ethyl alcohol is 1: 1. Polyvinyl acetal was added to this liquid, and the viscosity was adjusted to 10 Pa · sec at 20 ° C. The finished metal particle dispersion had good dispersion stability even when left in a dark place at 20 ° C. for 720 hours. Further, in the formation of the linear pattern using the dispenser, the line width after application was 0.035 mm, and the bleeding property was particularly good.

(実施例6)
粒子表面にノニオン系分散剤がコーティングされている球状のPd粒子を分散させた水−ジエチレングリコール混合溶液を用意した。この液の固形分濃度は15重量%であり、Agの最大粒子径は97nmであった。また、水:ジエチレングリコールの比率は2:3としている。この液にエチルセルロースを加え、粘度を20℃で1Pa・secに調整した。出来上がった金属粒子分散液は、20℃の暗所で720時間放置しても分散安定性は良好であった。また、前記ディスペンサーを用いた直線パターンの形成では、塗布後の線幅が0.05mmとなり、滲み性も良好であった。
(Example 6)
A water-diethylene glycol mixed solution in which spherical Pd particles coated with a nonionic dispersant on the particle surface was dispersed was prepared. The solid content concentration of this liquid was 15% by weight, and the maximum particle diameter of Ag was 97 nm. The ratio of water: diethylene glycol is 2: 3. Ethyl cellulose was added to this liquid, and the viscosity was adjusted to 1 Pa · sec at 20 ° C. The finished metal particle dispersion had good dispersion stability even when left in a dark place at 20 ° C. for 720 hours. Moreover, in the formation of the linear pattern using the dispenser, the line width after coating was 0.05 mm, and the bleeding property was good.

(実施例7)
粒子表面にカチオン系分散剤がコーティングされている球状のAg粒子を分散させた水−ジエチレングリコール混合溶液を数種類用意した。この複数の液の固形分濃度は表3に示すように変化させた。ここで、Agの最大粒子径は20nmであった。また、水とジエチレングリコールの比率は2:3としている。この液それぞれにエチルセルロースを加え、すべて粘度を20℃で1Pa・secに調整した。出来上がった複数の金属粒子分散液は、20℃の暗所で720時間放置してもすべて分散安定性は良好であった。また、前記ディスペンサーを用いた直線パターンの形成では、塗布後の線幅がどれも0.05mmとなり、滲み性も良好であった。
前記で得られた、それぞれの金属粒子濃度を有する金属粒子分散液を用いて、ガラス基板上に塗布層を形成した後、大気雰囲気中300℃で60分の熱処理をした。出来上がった金属層を、4端子法で体積固有抵抗測定した。結果を表3に併記する。ここで体積固有抵抗が、1.0×10−5Ω・cm以内であれば、良好と判断した。また、3.0×10−6Ω・cm以内であれば特に良好とした
(Example 7)
Several types of water-diethylene glycol mixed solutions in which spherical Ag particles coated with a cationic dispersant were dispersed on the particle surface were prepared. The solid content concentrations of the plurality of liquids were changed as shown in Table 3. Here, the maximum particle diameter of Ag was 20 nm. The ratio of water to diethylene glycol is 2: 3. Ethylcellulose was added to each of these solutions, and the viscosity was adjusted to 1 Pa · sec at 20 ° C. All of the resulting metal particle dispersions had good dispersion stability even when left in a dark place at 20 ° C. for 720 hours. Further, in the formation of the linear pattern using the dispenser, the line width after application was 0.05 mm, and the bleeding property was good.
A coating layer was formed on a glass substrate using the metal particle dispersions having the respective metal particle concentrations obtained above, and then heat-treated at 300 ° C. for 60 minutes in an air atmosphere. The resulting metal layer was subjected to volume resistivity measurement by a four-terminal method. The results are also shown in Table 3. Here, if the volume resistivity was within 1.0 × 10 −5 Ω · cm, it was judged to be good. Also, it was particularly good if it was within 3.0 × 10 −6 Ω · cm

Figure 2005235533
Figure 2005235533

表3の結果より、金属粒子の含有率(固形分濃度)が5重量%以上含まれると形成された金属層の体積固有抵抗を低くすることができる。好ましくは、金属粒子の含有率が5重量%以上とし、体積固有抵抗を1.0×10−5Ω・cmの範囲にするのがよい。 From the results in Table 3, the volume resistivity of the formed metal layer can be reduced when the content (solid content concentration) of the metal particles is 5 wt% or more. Preferably, the content of the metal particles is 5% by weight or more, and the volume resistivity is in the range of 1.0 × 10 −5 Ω · cm.

(実施例8)
実施例1に用いたものと同じ、カチオン系分散剤がコーティングされている球状Ag粒子が分散する水溶液を用意した。レーザードップラー式粒度分布計によりAgの粒子径を求めたところ、Agの最大粒子径は21nmであった。また、固形分濃度は、30重量%であった。この液にポリビニルアルコールを加え、樹脂濃度が10重量%となるように調節した。得られた液を分取し、pH調整のため、酢酸とアンモニア水を用い、数種のpHを示す複数の金属粒子分散液を作製した。
これらの金属粒子分散液を、レーザーゼータ電位計(ELS−6000、大塚電子(株)製)によりζ電位を計測した。結果を表4に示す。
得られた数種の金属粒子分散液を20℃の暗所で720時間放置し、分散安定性を調べたが、沈殿や濁りなどの問題もなく、分散安定性は良好であった。
上記と併行して、20℃の暗所で6ヶ月間放置したものを観察したところ、表4に示す結果となった。この分散性長期安定性試験により、金属粒子分散液のζ電位が−30mV以下であると、長期保管にも優れている結果を得た。
(Example 8)
The same aqueous solution in which spherical Ag particles coated with a cationic dispersant were dispersed, as used in Example 1, was prepared. When the particle diameter of Ag was determined by a laser Doppler particle size distribution analyzer, the maximum particle diameter of Ag was 21 nm. Moreover, solid content concentration was 30 weight%. Polyvinyl alcohol was added to this solution to adjust the resin concentration to 10% by weight. The obtained liquid was collected, and a plurality of metal particle dispersions having several pH values were prepared using acetic acid and aqueous ammonia for pH adjustment.
The zeta potential of these metal particle dispersions was measured with a laser zeta electrometer (ELS-6000, manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 4.
The obtained several kinds of metal particle dispersions were allowed to stand for 720 hours in a dark place at 20 ° C., and the dispersion stability was examined. The dispersion stability was good without problems such as precipitation and turbidity.
In parallel with the above, what was left to stand in a dark place at 20 ° C. for 6 months was observed, and the results shown in Table 4 were obtained. By this dispersibility long-term stability test, it was found that the ζ potential of the metal particle dispersion was −30 mV or less, which was excellent in long-term storage.

Figure 2005235533
Figure 2005235533

(実施例9)
実施例3で用いたものと同じ、カチオン系分散剤がコーティングされた最大粒子径20nmのAg粒子を含む水溶液を用意し、粘度を20℃で0.5Pa・secとなるようにポリビニルアルコールを加え混合した。できたコロイド状の金属粒子分散液はどれも20℃の暗所においた720時間後の分散安定性については良好であった。
この金属粒子分散液を用いて、ガラス基板面に内径0.02mmのディスペンサーによりパターン描画した。複数枚作製し、表5に記載する焼き付け温度で、大気雰囲気中30分焼き付けした。ここで得られた、各焼き付け温度で作製された金属層を有するガラス基板を、高温高湿試験に供した。試験条件は、85℃で保った恒温槽に85%RHの湿度を加え、10時間放置した。試験前後における体積固有抵抗を測定し、試験前の抵抗値を基準に試験後の抵抗値の低下率を採取したところ、表5に示す結果を得た。このことから、本発明における金属粒子分散液を用いて、回路パターンを作製する場合、80℃以上の焼き付け温度を採用するのが好ましい。
Example 9
Prepare the same aqueous solution containing Ag particles with a maximum particle diameter of 20 nm coated with a cationic dispersant, as used in Example 3, and add polyvinyl alcohol so that the viscosity is 0.5 Pa · sec at 20 ° C. Mixed. All of the resulting colloidal metal particle dispersions had good dispersion stability after 720 hours in a dark place at 20 ° C.
Using this metal particle dispersion, a pattern was drawn on a glass substrate surface with a dispenser having an inner diameter of 0.02 mm. A plurality of sheets were produced and baked at the baking temperature shown in Table 5 for 30 minutes in the air atmosphere. The obtained glass substrate having a metal layer produced at each baking temperature was subjected to a high temperature and high humidity test. As test conditions, a humidity of 85% RH was added to a thermostat kept at 85 ° C. and left for 10 hours. When the volume resistivity before and after the test was measured and the rate of decrease in the resistance value after the test was sampled based on the resistance value before the test, the results shown in Table 5 were obtained. From this, when producing a circuit pattern using the metal particle dispersion liquid in the present invention, it is preferable to employ a baking temperature of 80 ° C. or higher.

Figure 2005235533
Figure 2005235533

(実施例10)
実施例3で用いたものと同じ、カチオン系分散剤がコーティングされた最大粒子径20nmのAg粒子を含む水溶液を用意し、粘度を20℃で0.5Pa・secとなるようにポリビニルアルコールを加え混合した。できたコロイド状の金属粒子分散液はどれも20℃の暗所においた720時間後の分散安定性については良好であった。
この金属粒子分散液を用いて、ガラス基板面に内径0.02mmのディスペンサーによりパターン描画した。パターン描画の際、ディスペンサーヘッドのスキャン速度を種々変えることにより、表6に示すAg層の膜厚を得た。乾燥後、大気雰囲気中200℃で60分焼き付けた後、4端子法で体積固有抵抗を測定した。結果を表6に併記する。
この結果より、金属層の厚みは、4μm以上あると回路抵抗を抑えられ、好ましい回路パターン形成ができる。
(Example 10)
Prepare the same aqueous solution containing Ag particles with a maximum particle diameter of 20 nm coated with a cationic dispersant, as used in Example 3, and add polyvinyl alcohol so that the viscosity is 0.5 Pa · sec at 20 ° C. Mixed. All of the resulting colloidal metal particle dispersions had good dispersion stability after 720 hours in a dark place at 20 ° C.
Using this metal particle dispersion, a pattern was drawn on a glass substrate surface with a dispenser having an inner diameter of 0.02 mm. The thickness of the Ag layer shown in Table 6 was obtained by changing the scanning speed of the dispenser head during pattern drawing. After drying, baking was performed at 200 ° C. for 60 minutes in the air atmosphere, and then the volume resistivity was measured by a four-terminal method. The results are also shown in Table 6.
From this result, when the thickness of the metal layer is 4 μm or more, the circuit resistance can be suppressed and a preferable circuit pattern can be formed.

Figure 2005235533
Figure 2005235533

Claims (8)

最大粒子径5nm以上、100nm以下の金属粒子、分散剤、高分子樹脂及び溶剤を含むコロイド状の金属粒子分散液であって、該高分子樹脂は水もしくは水と水溶性有機溶剤との混合溶剤に可溶であり、該溶剤は水もしくは水と水溶性有機溶剤との混合溶剤であることを特徴とするコロイド状の金属粒子分散液。   A colloidal metal particle dispersion containing metal particles having a maximum particle diameter of 5 nm or more and 100 nm or less, a dispersant, a polymer resin and a solvent, wherein the polymer resin is water or a mixed solvent of water and a water-soluble organic solvent. A colloidal metal particle dispersion, wherein the solvent is water or a mixed solvent of water and a water-soluble organic solvent. 金属粒子分散液の20℃における粘度が0.2Pa・sec以上、1500Pa・sec以下である請求項1に記載のコロイド状の金属粒子分散液。   The colloidal metal particle dispersion according to claim 1, wherein the viscosity of the metal particle dispersion at 20 ° C is 0.2 Pa · sec or more and 1500 Pa · sec or less. 前記金属粒子の含有率が5重量%以上、90重量%以下である請求項1又は2に記載のコロイド状の金属粒子分散液。   The colloidal metal particle dispersion according to claim 1 or 2, wherein the content of the metal particles is 5 wt% or more and 90 wt% or less. 前記溶剤の含有率が5重量%以上、94重量%以下である請求項1乃至3のいずれかに記載のコロイド状の金属粒子分散液。   The colloidal metal particle dispersion according to any one of claims 1 to 3, wherein the content of the solvent is 5 wt% or more and 94 wt% or less. 金属粒子分散液のζ電位が−80mV以上、−30mV以下である請求項1乃至4のいずれかに記載のコロイド状の金属粒子分散液。   The colloidal metal particle dispersion according to any one of claims 1 to 4, wherein the metal particle dispersion has a ζ potential of -80 mV or more and -30 mV or less. 金属粒子が、クロム、マンガン、鉄、ニッケル、銅、亜鉛、モリブデン、ルテニウム、ロジウム、パラジウム、銀、錫、タングステン、イリジウム、プラチナ及び金よりなる群の1種以上より選択される金属、合金、もしくは金属複合体である請求項1乃至5のいずれかに記載のコロイド状の金属粒子分散液。   A metal, an alloy, wherein the metal particles are selected from one or more of the group consisting of chromium, manganese, iron, nickel, copper, zinc, molybdenum, ruthenium, rhodium, palladium, silver, tin, tungsten, iridium, platinum and gold; Alternatively, the colloidal metal particle dispersion according to any one of claims 1 to 5, which is a metal composite. インクジェット印刷法及び/又はディスペンサー印刷法を用いて、請求項1に記載されるコロイド状の金属粒子分散液を、基材上にパターン描画し、これを80℃以上、1500℃以下の温度で焼き付けることを特徴とする金属粒子分散液を用いた回路パターン形成法。   Using the inkjet printing method and / or the dispenser printing method, the colloidal metal particle dispersion described in claim 1 is patterned on a substrate and baked at a temperature of 80 ° C. or higher and 1500 ° C. or lower. A circuit pattern forming method using a metal particle dispersion. 前記焼き付けにより形成されるパターンの、金属層の厚みが4μm以上、100μm以下である、請求項7に記載の金属粒子分散液を用いた回路パターン形成法。   The circuit pattern formation method using the metal-particle dispersion liquid of Claim 7 whose thickness of the metal layer of the pattern formed by the said baking is 4 micrometers or more and 100 micrometers or less.
JP2004042200A 2004-02-19 2004-02-19 Metal particle dispersion liquid and circuit forming method using the same Pending JP2005235533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042200A JP2005235533A (en) 2004-02-19 2004-02-19 Metal particle dispersion liquid and circuit forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042200A JP2005235533A (en) 2004-02-19 2004-02-19 Metal particle dispersion liquid and circuit forming method using the same

Publications (1)

Publication Number Publication Date
JP2005235533A true JP2005235533A (en) 2005-09-02

Family

ID=35018268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042200A Pending JP2005235533A (en) 2004-02-19 2004-02-19 Metal particle dispersion liquid and circuit forming method using the same

Country Status (1)

Country Link
JP (1) JP2005235533A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194174A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
JP2007194175A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
JP2007207577A (en) * 2006-02-01 2007-08-16 Mitsui Mining & Smelting Co Ltd Multi-component based metal particle slurry, and conductive ink or conductive paste using its slurry
JP2010139341A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Method for analyzing ti-based precipitate in welding part of steel member
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
US20120031656A1 (en) * 2009-04-24 2012-02-09 Yoshio Oka Substrate for printed wiring board, printed wiring board, and methods for producing same
JP2017045542A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194174A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
JP2007194175A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
JP2007207577A (en) * 2006-02-01 2007-08-16 Mitsui Mining & Smelting Co Ltd Multi-component based metal particle slurry, and conductive ink or conductive paste using its slurry
JP4638825B2 (en) * 2006-02-01 2011-02-23 三井金属鉱業株式会社 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry
JP2010139341A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Method for analyzing ti-based precipitate in welding part of steel member
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
US20120031656A1 (en) * 2009-04-24 2012-02-09 Yoshio Oka Substrate for printed wiring board, printed wiring board, and methods for producing same
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
JP2017045542A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure

Similar Documents

Publication Publication Date Title
JP5453813B2 (en) Metal nanoparticle dispersion and method for producing the same
US9580811B2 (en) Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP4978844B2 (en) Copper fine particle dispersion and method for producing the same
JP4934993B2 (en) Conductive paste and wiring board using the same
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5332624B2 (en) Metal nanoparticle dispersion and method for producing the same
JP4844805B2 (en) Method for forming metal coating
WO2007083710A1 (en) Conductive paste and wiring board using same
JP2005235533A (en) Metal particle dispersion liquid and circuit forming method using the same
JP2009191354A (en) Method for synthesizing metal nanoparticle
JP5041440B2 (en) Method for producing fine particle dispersion, and fine particle dispersion
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JP6329703B1 (en) Conductive paste and conductive pattern forming method
JP4254313B2 (en) Conductive ink and method for producing the same
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP2010153184A (en) Electrode forming composition, method of manufacturing conductive base material, and the conductive base material
JP6348241B1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
JP5332625B2 (en) Metal nanoparticle dispersion and method for producing the same
JP2014067566A (en) Conductive paste
WO2018150697A1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
JP4302456B2 (en) Metal powder dispersion method and metal powder dispersion obtained by the method
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2012147014A (en) Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
JP4616599B2 (en) Fluid composition, electrode formed using the same, and wiring pattern
JP4302453B2 (en) Ni powder dispersion method and Ni powder dispersion obtained by the method

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609