JP4245571B2 - 充電制御回路及び充電装置 - Google Patents

充電制御回路及び充電装置 Download PDF

Info

Publication number
JP4245571B2
JP4245571B2 JP2005032512A JP2005032512A JP4245571B2 JP 4245571 B2 JP4245571 B2 JP 4245571B2 JP 2005032512 A JP2005032512 A JP 2005032512A JP 2005032512 A JP2005032512 A JP 2005032512A JP 4245571 B2 JP4245571 B2 JP 4245571B2
Authority
JP
Japan
Prior art keywords
charging
current
voltage
constant
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005032512A
Other languages
English (en)
Other versions
JP2006223030A (ja
Inventor
淳 森
学 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005032512A priority Critical patent/JP4245571B2/ja
Priority to US11/348,237 priority patent/US7372235B2/en
Priority to CNB2006100064808A priority patent/CN100444498C/zh
Publication of JP2006223030A publication Critical patent/JP2006223030A/ja
Application granted granted Critical
Publication of JP4245571B2 publication Critical patent/JP4245571B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、例えば携帯電話等の二次電池への充電を制御する充電制御回路及びこれを備えた充電装置に関し、特に充電時の発熱の低減を図った充電制御回路及び充電装置に関する。
一般に、携帯電話等では、電源として二次電池(蓄電池)が使用されている。従来の携帯電話等の電池を充電する充電装置について、図7を参照して説明する。図7に示すように、従来の充電装置101は、二次電池111に充電電流を供給する充電電流供給部110と、充電電流供給部110を制御する充電制御装置120とを有する。充電電流供給部110は、アダプタ電圧に接続される充電用トランジスタ112、ダイオード114、検出抵抗113、及び二次電池111が直列に接続されて構成される。充電用トランジスタ112に流れる充電電流Iが二次電池111に供給され、二次電池111が充電される。
充電制御回路120は、充電用トランジスタ112から二次電池111に供給される充電電流Iに応じて検出抵抗113の両端に現れる電圧を検出し、この検出結果に応じて充電用トランジスタ112を制御する。すなわち、充電制御回路120は、検出抵抗113の両端に現れる電圧を検出する検出回路130と、この検出結果に応じた制御信号S1を出力する制御回路140と、制御信号S1に応じて充電用トランジスタ112を制御するオペアンプ141とを有する。検出回路130は、その−端子(反転入力端子)が検出抵抗113の一端と外部接続端子117及び抵抗133を介して接続され、+端子(非反転入力端子)が検出抵抗113の他端と外部接続端子118及び抵抗134を介して接続されたオペアンプ131を有する。更に、オペアンプ131の−端子には、その出力との間に帰還抵抗132が接続され、また+端子には接地に接続された抵抗135が接続されている。この充電制御回路120は、検出抵抗113の両端に現れる電圧が一定になるように充電用トランジスタ112を制御している。
また、このような二次電池の充電を制御する回路として、特許文献1には、充電初期に二次電池を短時間で急速充電するために充電用トランジスタをオンし、満充電後は、二次電池が急速充電に伴う過充電を行わないように微小電流で充電動作を継続させるために充電用トランジスタをオフし、充電用トランジスタよりも小さいトランジスタをオンさせる方法が開示されている。
ところで、近年、二次電池を有する機器にもさまざまな機能が搭載されるにつれて、その電池容量も増大させる必要が出てきた。その電池容量の増大に伴い、その充電時間を短縮するために充電電流を増大する傾向にある。
充電電流を増大させると、発熱量が多くなってしまう。そこで、二次電池を有する機器に、所定の電流値以上の電流を流さないような電流制限機能を有するアダプタ(以下、電流制限付きアダプタという。)を使用して充電するものがある。電流制限付きアダプタの特性は図8のとおりである。電流制限付きアダプタは、図8に示すように、所定の最大電
流以上の電流が流れるとアダプタ電圧が低下する。このようなアダプタを使用し、一般的な充電方式である定電流−定電圧充電を行なうことによって、大きな充電電流を供給して充電を行なう定電流充電期間にその発熱を抑えている。
図9(a)乃至図9(b)は、それぞれ充電時の時間に対する電流及び電圧特性を示す模式図である。充電時間は、一般的に、図9(a)に示すように、予備充電期間T1、定電流充電期間T2、定電圧充電期間T3を有する。予備充電期間T1は、二次電池が例えば3.2Vなどの所定の電圧V1まで、一定の電流IS1で充電する期間である。また、定電流充電期間T2は、二次電池が例えば4.2Vなどの所定の電圧V2まで、上記電流IS1より大きい一定の電流IS2で充電する期間である。また、定電圧充電期間T3は、二次電池が例えば4.2Vなどの所定の電圧V2に達した後、この電圧V2を一定に維持するよう充電電流IS3を制御して充電する期間である。
この場合、アダプタ電圧は図9(b)のように変化する。例えばアダプタ電圧が5.5Vの場合、予備充電期間T1は、比較的小さい電流IS1で充電するため、その電圧値Vadpは5.5Vに維持される。この間、二次電池は、電圧V1まで除々に充電される。そして、電圧V1まで充電されると定電流充電期間T2となる。定電流充電時、充電電流がたとえば所定の電流値を超えると、図9(b)に示すように、電流制限付きアダプタはそのアダプタ電圧Vadpを下げるように動作する。
したがって、この期間は、
(アダプタ電圧−充電電圧)×充電電流
で示される充電用トランジスタに加わる電力はアダプタ電圧Vadpが一定電圧を供給するものに比べて小さくなる。
その後、二次電池が電圧V2まで充電されると定電圧充電期間T3となり、二次電池の電圧Vb=V2を維持するよう、充電電流IS3が除々に減少するよう制御される。
特開平9−84276号公報
このように、充電時間を短縮化するべく充電電流を増大させると発熱量が多くなってしまう。そこで、本願発明者等は、定電流充電期間において発熱量を低減させることができる充電制御の方法及び回路、並びにこれを備えた充電装置について既に出願している(特願2004−280845号)。また、上述のように、電流制限付きアダプタを使用して発熱量を低減させる方法がある。
図9(c)は、充電時間とその電流源の温度との関係を示す模式図である。二次電池の電圧が所定の電圧値V2に到達すると、充電制御回路は二次電池の電圧をV2以上に上昇させず、一定電圧に維持したままで充電(定電圧充電)を始める。この定電圧充電においては二次電池を充電するための充電電流が徐々に減少するように充電用トランジスタを制御する。このとき、接続されているアダプタは充電電流が減少するため、その電圧を例えば本来の電圧5.5Vに戻すよう上昇させる。したがって、このときアダプタ電圧Vadpと二次電池の充電電圧Vbとの差が最も大きくなる。すなわち、
(アダプタ電圧−充電電圧)×充電電流
で示される充電用トランジスタに加わる電力は、定電圧充電に移行直後にピークを迎えることとなる。これにより、充電用トランジスタの発熱もピークを向かえ、通常小さいパッケージに搭載されている充電用トランジスタからは大きな熱が発生してしまう。したがって、定電流充電期間のみならず、定電圧充電期間等においても同じく発熱量を低減させることが望ましい。
本発明にかかる充電制御回路は、二次電池に第1の電流を供給する充電用トランジスタを制御する充電用トランジスタ制御部と、前記二次電池に第2の電流を供給する充電電流供給部を有し、定電圧充電が開始されると前記第1の電流と共に前記電流供給部からの前記第2の電流を充電電流として前記二次電池を充電するものである。
本発明においては、定電圧充電期間において、外部の充電用トランジスタからの第1の電流を二次電池に供給することに併せて、充電制御回路に含まれる充電電流供給部からの第2の電流を供給することにより、充電用トランジスタのみで充電を行なうときに比べて第1の電流量を減らすことができる。すなわち、定電圧充電期間における充電電流に起因する発熱を分散させ低減することができる。
本発明にかかる充電装置は、二次電池に第1の電流を供給する充電用トランジスタと、前記充電用トランジスタを制御する充電制御回路とを備え、前記充電制御回路は、前記二次電池に第2の電流を供給する電流供給部を有し、定電圧充電が開始されると前記二次電池に前記第1の電流を供給すると共に前記電流供給部により前記第2の充電電流を供給するものである。
本発明においては、定電圧充電期間において充電用トランジスタからの第1の電流と電流供給部からの第2の電流とにより二次電池を充電するため、定電圧充電期間であっても第1の電流と第2の電流とに分流することで発熱を分散することができ、結果、充電装置としての発熱を低減することができる。
本発明に係る充電装置及び充電制御回路によれば、定電流充電期間における充電による発熱を抑えることができる。
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、充電時の発熱を分散させることができる充電制御回路及びこれを使用した充電装置に適用したものである。本実施の形態においては、例えば携帯電話等に使用される二次電池を充電する際の予備充電、定電流充電、定電圧充電の各充電期間における充電装置の発熱を低く抑える方法について説明する。
上述したように、一般に、二次電池の充電は、定電流で充電される定電流充電期間(T1、T2)と、定電圧で充電される定電圧充電期間T3とを有する。定電流充電期間においては、例えば10〜150mA程度の小さい電流値IS1で、例えば3〜3.4V程度の所定の電圧V1まで充電を行う予備充電期間T1と、所定の電圧値V1から例えば4.2V等の目的の電圧V2まで大きい電流値IS2で充電を行う定電流充電期間(本充電期間)T2とを有する。本発明の第1の実施の形態にかかる充電装置は、これらの充電期間のうち、定電圧充電期間T3における発熱を低減させるものである。
第1の実施の形態
図1は、本発明の実施の形態にかかる充電装置を示す図である。充電装置1aは、二次電池11を充電する第1の充電電流供給部10と、充電電流供給部10を制御すると共に二次電池11を充電可能な充電制御回路20aとを有する。
充電電流供給部10は、二次電池11に直列に接続されたPチャンネルFET(field effect transistor)などからなる充電用トランジスタ12を有する。充電用トランジスタ12は、アダプタ電圧Vadpに接続され、二次電池11に第1の電流として電流I1を供給する。充電電流供給部10には、後述するように、充電制御回路20aから第2の
電流I2が供給される。本実施の形態における充電装置における二次電池11は、定電流充電期間T2には電流I1が充電電流Iとして二次電池11に供給され、この充電電流Iにより充電される。また、定電圧充電期間T3には、電流I1と電流I2とが充電電流Iとして二次電池11に供給され、この充電電流Iにより充電される。
充電電流供給部10は、更に、充電電流Iを検出するための検出抵抗13、及びアダプタ電圧から二次電池11方向へのみ電流を流すためのダイオード14を有する。
充電制御回路20aは、1つのICからなるものであって、検出抵抗13の両端に現れる電圧に応じて充電電流Iを検出する検出回路30aと、この検出結果に応じて充電用トランジスタ12を制御する充電用トランジスタ制御部40aと、二次電池11に電流I2を供給する電流源50と、電流I1に応じて、電流源50が供給する電流I2を制御する電流源制御部60aとを有する。電流源50及び電流源制御部60aは、第2の電流を供給する充電電流供給部として機能する。
すなわち、本実施の形態における充電制御回路20aは、定電流充電期間T2及び定電圧充電期間T3において充電電流供給部10の充電用トランジスタ12を制御する制御回路としての機能と、定電圧充電期間T3において二次電池11を充電する充電電流供給部としての機能とを有する。すなわち、定電圧充電期間T3においては、電流I1を制御すると共に電流I2により二次電池11の充電を行う。この定電圧充電期間T3において充電電流Iを電流I1、I2に分流することで、電流制限付きアダプタにより充電する充電装置において、定電流充電期間T2から定電圧充電期間T3への移行直後に増大してしまう充電用トランジスタ12へ供給される電力を抑え、発熱を低減することができる。
ここで、本実施の形態においては、定電流期間T1、T2においては、充電用トランジスタ12による電流I1=充電電流Iとして二次電池11を充電するものとして説明するが、後述するように、定電流期間T2において、電流I1、I2により二次電池11の充電を行なうようにしてもよいことは勿論である。また、予備充電期間T1を有する場合においては、この予備充電期間T1においても、電流I1、I2により予備充電を行なうようにしてもよい。更に、本実施の形態においては、電流制限付きアダプタに接続して充電装置を充電する場合について説明するが、そのようなアダプタを使用しない場合であっても、予備充電期間T1、定電流充電期間T2、定電圧充電期間T3の各充電期間の一部又は全部において、電流I1、I2により充電電流を分流して充電することで、充電用トランジスタ12及び充電装置全体の発熱を低減することができる。
検出回路30aは、検出抵抗13の両端に現れる電位差に応じた出力をするオペアンプ31を有する。このオペアンプ31の−端子(反転入力端子)には、その出力と接続された帰還抵抗32が接続される。更にオペアンプ31の−端子には、検出抵抗13の一端と外部接続端子17を介して接続された抵抗33が接続される。また、オペアンプ31の+端子(非反転入力端子)には、接地された抵抗35が接続されると共に、検出抵抗13の他端の外部接続端子18を介して接続された抵抗34が接続される。検出回路30aは、検出抵抗13に流れる充電電流I=第1の電流I1+第2の電流I2に応じて検出抵抗13の両端に現れる電位差を検出し、この電位差に応じた検出結果を充電用トランジスタ制御部40aへ出力する。
充電用トランジスタ制御部40aは、二次電池11の電圧値(充電電圧)に応じて充電用トランジスタ12を制御するオペアンプ41aを有する。オペアンプ41aの+端子は、外部接続端子18と接続され、二次電池11の充電電圧とされる。また、−端子は、接地に接続された電源42に接続され、基準電圧VREF1とされる。基準電圧VREF1は、定電圧充電が開始される例えば4.2Vなどの電圧V2となっている。充電用トランジスタ制御部40aは、二次電池11の充電電圧Vbと基準電圧VREF1との電位差に応じた信号(制御信号)を出力し、外部接続端子15を介して充電用トランジスタ12のゲートに供給する。充電用トランジスタ制御部40aは、二次電池11の充電電圧Vbが基準電圧VREFと同一となるよう、充電用トランジスタ12に流れる電流I1を制御する。
更に、充電制御回路20aは、アダプタ電圧Vadpに接続された際に、アダプタ電圧Vadpが供給される電源端子21を有する。充電制御回路20aには図示しないアダプタ検出回路を有し、このアダプタ検出回路によりアダプタ電圧に接続されたことを検出すると、充電制御回路20aは、後述するように二次電池11の充電動作を開始する。
電流源50は、電流源制御部60aからの出力(制御信号)が+端子に供給されるオペアンプ51を有する。また、オペアンプ51の出力にベースが接続されたトランジスタ52を有する。このトランジスタ52のコレクタには、トランジスタ53、54からなり、一端がアダプタ電圧に接続されたカレントミラー回路55が接続され、トランジスタ52のエミッタには、接地に接続された抵抗56が接続される。この電流源50は、電流源制御部60aからの制御信号に応じてトランジスタ52がオンし、カレントミラー回路55から電流I2を、外部接続端子16を介して充電電流供給部10へ出力する。外部接続端子16は、充電用トランジスタ12とダイオード14との接点に接続されている。したがって、電流I2は、充電電流供給部10へ出力されると充電用トランジスタ12から供給される電流I1と合流し、電流I1と共にダイオード14及び検出抵抗13を経て二次電池11に供給される。
電流源制御部60aは、+端子に比較電位VREF2の電源64が接続され、−端子に電流検出回路30の出力が接続されたオペアンプ61と、オペアンプ61の出力に応じた電流を流す可変電流回路62と、可変電流回路62と接地電位の間に接続された抵抗63とをさらに備える。比較電位VREF2は、下記を満たす。
比較電位VREF2=抵抗R0×電流値IS2×GAIN
ここで、抵抗R0は、抵抗13の抵抗値であり、電流値IS2は定電流充電期間T2における充電電流Iの値で、例えば500mAなどである。また、GAINは、オペアンプ31のゲインである。
抵抗63には並列にスイッチSW1が設けられており、二次電池11の充電電圧Vbの値に応じてそのオンオフが制御される。スイッチSW1は、充電電流Vbが定電流充電となる電圧値V2(例えば4.2V)に達するまではオンされ、オペアンプ51の+端子を接地し、二次電池11の充電電圧Vb=V2になったタイミング、すなわち定電流充電期間T2から定電圧充電期間T3へ移行するタイミングでオフされ、オペアンプ51の+端子を可変電流回路62と接続させるものである。これらオペアンプ61、可変電流回路62および抵抗63は、充電電流Iに応じて電流I2に流れる電流量を制御するものである。
これらの構成により、二次電池11の充電電圧Vbが電圧V2に達するまでの定電流期間T2において、二次電池11に一定値の電流I1が充電電流Iとして供給され、二次電池11の充電電圧Vbが電圧V2で一定とされながら充電される定電圧充電期間T3において、電流I1及び電流I2が充電電流Iとして供給されよう制御される。
次に、本実施の形態における充電装置1aの充電動作について説明する。先ず、アダプタ電圧Vadpが接続され、二次電池11の定電流充電が開始される充電電圧=電圧V1(例えば3.2V)又は定電圧充電が開始される充電電圧=電圧V2(例えば4.2V)未満であるか否かに応じた信号がオペアンプ41aから出力される。例えば電圧V2未満であれば定電流充電を開始するため充電用トランジスタ12をオンする。充電用トランジスタ12がオンすることにより電流I1が流れる。ここで、予備充電期間T1、定電流充電期間(本充電期間)T2は、スイッチSW1がオンし、電流源50から電流I2が供給されることはない。
充電電圧Vbが所定電圧V2に達するまでの定電流充電期間T2(図9(b)参照)においては、充電電流I=I1が予備充電期間に比して大きく、アダプタの電流制限により、アダプタが電圧Vadpを下げる。充電用トランジスタ12にかかる電力、すなわち
(アダプタ電圧Vadp−充電電圧)×電流I1
で示される電力は、アダプタ電圧Vadpの値が下がるので、予備充電期間T1においてアダプタの一定の電圧値(例えば5.5V)で供給される場合に比べて小さくなり、充電用トランジスタI1の発熱量は小さくなる。
次に、二次電池11の充電電圧Vbが所定電位V2になり、定電圧充電が開始される。まず、充電電圧Vb=V2となるとスイッチSW1がオフされる。スイッチSW1がオフすることによって、オペアンプ61は、オペアンプ31の出力に応じて可変電流回路62を制御し、これに応じて電流源50から電流I2が流れる。電流源50からの電流I2は、電流I1と合流して充電電流Iとして二次電池11に供給される。なお、可変電流回路62は、オペアンプ61に入力される入力端子間の電位差、すなわちオペアンプ31の出力と基準電圧VREFとの電位差が大きければ大きいほど小さい電流となるものである。充電電流Iは、定電圧充電期間T3(図9(a)参照)においては、充電電圧Vbを一定に維持するよう制御される。ここで、定電流充電期間T2においては、充電用トランジスタ12に流れる電流I1=充電電流Iであったのに対し、定電圧充電期間T3においては、充電制御回路20aからの電流I2により、充電用トランジスタ12に流れる電流I1=充電電流I−電流I2となるため、充電用トランジスタ12のみで二次電池を充電する従来の方法に比して、充電用トランジスタ12に流れる電流I1を小さくすることができる。
この定電圧充電が開始されると、充電用トランジスタ12のゲート電圧は徐々に上昇し、これに応じて電流I1が徐々に減少する。電流I1の減少に伴い充電電流Iが減少するため、オペアンプ61の入力端子間の電位差は大きくなる。その結果、可変電流回路62が流す電流が減少し、電流源50の流す電流I2も減少する。このように、電流I1、電流I2の電流値が減少していくため、アダプタ電圧Vadpは元の電圧値(例えば5.5V)に戻る。アダプタ電圧Vadpと充電電圧との差が大きくなるが、充電電流Iは電流源50からも供給されるので充電用トランジスタ12が流す電流I1は少なくてすむ。すなわち、
(アダプタ電圧Vadp−充電電圧)×電流I
の電力における電流Iを、充電制御回路20aからの電流I2と分流することで、充電用トランジスタ12にかかる電力を抑えられ、その結果、発熱を抑えることができる。
ここで、本実施の形態における充電装置1aにおいては、定電圧充電期間T3において電流I1、電流I2は同じ比率でその電流値が減少していくものであるが、後述するように、電流I2の供給により、電流I1が減少を開始するタイミングを定電圧充電期間が開始するタイミングより前としたり、定電圧充電期間において、電流I1、電流I2の減少率を、例えば充電制御回路20a及び充電用トランジスタ12の放熱性に応じた減少率、すなわち充電用トランジスタ12に流れる電流I1の減少率を放熱性がより高い充電制御回路20aからの電流I2の減少率より大きくすることも可能である。これにより、放熱性が低い充電用トランジスタ12の発熱を更に低く抑えることができる。
このように、本実施の形態においては、最も発熱量が大きくなる定電圧充電移行時に、充電用トランジスタ12からだけではなく充電制御回路20aの内部に設けられた電流源50からも電流I2を供給することで、充電用トランジスタ12にて流す電流I1を減らすことができ、結果、充電用トランジスタによる発熱量を抑えることができる。また、充電制御回路20は、1つのICからなり、かつ充電用トランジスタ12に比べてパッケージサイズが大きい。このため、放熱性に優れており、充電制御回路20aの内部に電流源50を設けて電流I2を供給したとしてもその総発熱量は小さくなる。特に、電流制限付きアダプタを用いた場合には、定電圧充電移行時の発熱の問題が顕著となるが、その際、充電電流Iの供給源を分散させることにより、発熱量を有効的に抑えることができる。
第2の実施の形態
次に、本発明の第2の実施の形態について説明する。上述した第1の実施の形態においては、定電圧充電期間に充電電流Iを電流I1、電流I2に分流することで、充電装置の発熱を低く抑えるものであったのに対し、本実施の形態においては、予備充電期間、定電流充電期間においても、充電制御回路20aの電流源50からの電流I2により充電を行なうものである。
図2は、本実施の形態における充電装置1bを示す回路図である。なお、図2に示す第2の実施の形態及び後述する図5に示す第3の実施の形態において、図1に示す第1の実施の形態と同一構成要素には同一の符号を付しその詳細な説明は省略する。
図2に示すように、本実施の形態における充電装置1bは、第1の実施の形態において定電流充電から定電圧充電に切り替わるタイミングで電流源50の制御を開始させるスイッチSW1の替わりに、スイッチSW2を有する。すなわち、本実施の形態における電流源制御部60bは、電源64に加え、オペアンプ61の+端子に基準電圧VREF3を供給する電源65及びスイッチSW2からなる電圧源66を有している。
電源65は、比較電位VREF3の電源であり、電源64は、上述同じく比較電位VREF2の電源である。スイッチSW2は、例えば外部接続端子18などを介して二次電池11の充電電圧Vbを検出し、この充電電圧Vbに応じてオペアンプ61の+端子を比較電位VREF2又はVREF3のいずれかに切り替える。ここで、比較電位VREF3は、下記を満たす。
比較電位VREF3=抵抗R0×電流値IS1×GAIN
ここで、抵抗R0は抵抗13の抵抗値、GAINはオペアンプ31のゲインであって、電流値IS1は予備充電期間T1における充電電流Iの値であり、上述の電流値IS2より小さい値である。
また、充電用トランジスタ制御部40bのオペアンプ41bには、オペアンプ41bをオンオフするスイッチSW3が設けられている。スイッチS3は、例えば外部接続端子18などを介して二次電池11の充電電圧Vbを検出し、この充電電圧Vbに応じてオペアンプ41bのオンオフを制御する。
ここで、本実施の形態においては、予備充電期間T1においては充電用トランジスタ12からの充電は行なわず、充電制御回路20bにおける電流源50からの電流I2のみにて充電を行い、定電流充電期間T2、定電圧充電期間T3においては、充電用トランジスタ12からの電流I1及び充電制御回路20bからの電流I2により、充電電流Iを分流
して充電を行なうものである。
したがって、スイッチSW2は、予備充電期間T1が終わるまで、すなわち二次電池11の充電電圧Vbが定電流充電期間T2の電圧値V1(例えば3.2V)になるまでは、電源65を選択する。これにより、オペアンプ61の+端子はVREF2とされ、電流源50から電流I2=IS1が供給されるよう、電流源50を制御する。
また、スイッチSW3は、充電電圧Vbが定電流充電期間T2における電圧値V2(例えば4.2V)になるまでオペアンプ41bをオフにし、定電流充電期間T2に移行するタイミングでオペアンプ41bをオンする。これにより、充電用トランジスタ12から一定の電流I1が二次電池11へ供給される。このタイミングで同時にスイッチSW3が電源64側に切り替わり、オペアンプ61の+端子はVREF1とされる。これにより、充電電流Iが一定となるよう、一定の電流I2を供給するよう、電流源50を制御する。
次に、本実施の形態における動作について説明する。図3(a)は、予備充電期間〜定電圧充電期間における時間と充電電圧Vbとの関係を示すグラフ図、図3(b)は、予備充電期間〜定電圧充電期間における時間と充電電流Iとの関係を示すグラフ図である。
先ず、二次電池11の充電電圧が電圧V1になるまでの予備充電期間T1において、スイッチSW3はオフされているため、図3(b)に示すように電流I1=0である。この予備充電期間T1においては、電圧源66から基準電圧VREF3が出力され、電流源制御部60bは電流源50が電流I2=IS1(=I)を流すよう制御信号を出力する。
次に、二次電池11の電圧が電圧V1になると、定電流充電期間T2に移行する。この場合、スイッチSW3がオンしてオペアンプ41bが動作を開始し、充電用トランジスタ12に電流I1が流れる。これと共にスイッチSW2が切り替わり、電圧源66からは基準電圧VREF2が出力され、電流源制御部60bは電流源50が充電電流I−電流I2を流すよう制御する。これにより、充電電圧Vbが所定電圧V2(例えば4.2V)になるまで、充電電流Iが一定である定電流充電が行なわれる。オペアンプ41bは、二次電池11の充電電圧VbとVREF1との電位差に応じた制御信号を出力して充電用トランジスタ12を制御する。また、オペアンプ31が抵抗13の両端の電位差に応じて生成する制御信号とVREF2との電位差に応じて可変電流回路62から電流を出力し、電流源50はそれに応じて電流I2を出力することとなる。そして、充電電圧Vbが所定の電圧V2まで上昇すると、定電圧充電期間T3に移行する。定電圧充電期間T3における充電装置101の動作は、上述の充電装置1と同様である。
なお、図3(b)においては、定電流充電期間T2の電流I2=予備充電期間の電流IS1としているが、定電流充電期間T2の電流I2を充電用トランジスタ12に流れる電流I1より大きくしてもよい。上述したように、充電制御回路の方が充電用トランジスタ12のパッケージより放熱性が高い場合には、電流I2を電流I1より大きくすることで、充電用トランジスタ12からの発熱を抑えることができる。
本実施の形態においては、予備充電期間T1においては、充電制御回路20bからの電流I2を使用して充電し、定電流充電期間T2においても定電圧充電期間T3と同じく充電電流Iの供給源を分散させることによって、充電用トランジスタ12からの電流供給量を減らすことができ、充電期間を通して発熱を抑えることができる。
ここで、本実施の形態においては、予備充電期間T1において、充電制御回路20bからの電流I2を使用することとしたが、スイッチSW3のオンオフを適宜制御する等して、充電用トランジスタ12からの電流I1により予備充電を行なうようにしてもよい。また必要であれば、予備充電期間においても、充電電流Iを電流I1と電流I2とに分流し
て充電するようにしてもよい。
次に、本実施の形態における効果について説明する。図4は、本実施の形態における充電制御を適用した場合の温度特性を示すグラフ図である。図4において、外付けFET(実施例)は、本実施の形態における充電制御を適用した場合の充電用トランジスタ12の温度変化を示し、IC(実施例)は、本実施の形態における充電制御を適用した場合の充電制御回路20bの温度変化を示す。また、図4において、外付けFET(比較例)、IC(比較例)として、充電用トランジスタのみで二次電池を充電した場合における充電用トランジスタ11、充電制御回路20bの温度変化を併せて示す。なお、本図では、予備充電期間T1を除く、定電流充電期間T2及び定電圧充電期間T3のみを示す。
図4において、充電時間がおよそ14分の時点が定電流充電から定電圧充電へ移行するタイミングを示し、この定電圧充電直後のTmaxで示す期間(充電時間がおよそ15〜20分の間)、充電電流Iが減少することなるが、これに伴いアダプタ電圧Vadpが上昇している。この期間において、充電用トランジスタ12(FET(実施例)、FET(比較例))に大きな電力が供給されることとなり、表面温度が最も温度が高くなっている。ここで、定電圧充電期間T3において、実施例では、充電制御回路(IC(実施例))からの電流I2による充電が併せて開始されるため、充電用制御回路(IC(実施例))の温度が若干上昇するものの、実施例にかかる充電用トランジスタ(FET(実施例)の表面温度が、比較例にかかる充電用トランジスタFET(比較例)の表面温度より約5℃低下していることが分かる。
第3の実施の形態
次に本発明の第3の実施の形態について説明する。本実施の形態においては、充電電圧をモニターして充電用トランジスタ12に流れる電流I1を制御するものであって、最も発熱が大きい定電圧充電期間T3に以降する前に、予め充電用トランジスタ12に流れる電流I1を低くしておくことで、充電用トランジスタ12の発熱を更に低減させるものである。
図5は、本実施の形態にかかる充電装置を示す回路図であり、図6(a)は、本実施の形態にかかる充電装置の二次電池の充電する際の充電時間と充電電圧の関係を示す模式図、図6(b)は、充電時間と電流I1、電流I2、充電電流Iの関係を示す模式図である。
本実施の形態にかかる充電装置1cの充電制御回路20cは、外部接続端子18を介して供給される充電電圧Vbと電源43との電位差に基づき充電用トランジスタ12を制御する充電用トランジスタ制御部40cと、外部接続端子18を介して供給される充電電圧Vbと電源64との電位差に応じて電流源50を制御する電流源制御部60cとを有する。
充電用トランジスタ制御部40cは、充電用トランジスタを制御するオペアンプ41cと、このオペアンプの−入力端子に基準電圧VREF4を供給する電源43とを有する。オペアンプ41cは、オペアンプ41aと同じくその+端子が充電電圧Vbとされているのに対し、−端子が基準電圧VREF1ではなく基準電圧VREF4とされる。基準電圧VREF1は、定電圧充電の際の充電電圧Vb=所定電圧V2であったのに対し、基準電圧VREF4は、この所定電圧V2未満の値とされる。例えば、所定電圧V2=4.2Vの場合、基準電圧VREF4=4.19Vなどに設定することができる。
また、電流検出回路30はなく、オペアンプ61の替わりに、−端子がVREF2=所定電圧V2とされ、+端子に充電電圧Vbが供給されるオペアンプ71が設けられている。また、可変電流回路62の変わりに、オペアンプ71の入力端子間の電位差が大きければ大きいほど多くの電流を流す特性の可変電流回路72を設ける。更に、オペアンプ51の+端子は、スイッチSW4を介して可変電流回路72、又は定電流源73のいずれかに接続される。その他の構成は、第1の実施の形態と同様である。
次に、本実施の形態における充電装置の動作について説明する。充電用トランジスタ12の制御は、図1と同様である。すなわち、定電流充電期間T2においては、充電電圧VbがVREF4になるまでの間は、一定の電流I1により二次電池11を充電する。
また、定電流充電期間T2においては、スイッチSW4がオペアンプ51の+端子と定電流源73とを接続するように切り替えられおり、定電流源73に応じて電流源50から一定の電流I2が流れる。充電用トランジスタ12は、二次電池の電圧がVREF4で設定した電圧になるとゲートにかかる電圧が上昇し、電流I1が減少する。また、二次電池の電圧がVREF2(4.2V)になると、スイッチSW4はオペアンプ51の+端子と可変電流回路72とを接続するように切り替わり、オペアンプ71は電池の電圧4.2Vを保つように供給電流I2を徐々に減少していく。このとき、VREF4をVREF2よりも小さい電圧値と設定することにより、充電用トランジスタの電流I1を、充電制御回路20cからの電流I2よりも先に減少させることができる。このように、放熱性が劣る充電用トランジスタ12から供給する電流I1を電流I2より先に減少させることによって、上述した期間Tmaxで示す定電圧充電に移行直後の発熱をより抑えることができる。すなわち、充電用トランジスタ12における上記期間Tmaxを定電圧充電期間移行前に設定することができる。充電制御回路20cは、充電用トランジスタ12に比べて放熱性に優れたパッケージに搭載されているものの期間Tmaxにおいては若干発熱するため、これらの期間Tmaxをも充電用トランジスタ12と充電制御回路20cとで分散させることで、その総発熱量をさらに抑えることができる。
なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。例えば、制限付きアダプタに接続される充電装置において、定電圧充電に移行した場合に、発熱が一時的に増加する所定の期間Tmaxのみ、充電電流Iを電流I1、電流I2に分流してもよい。すなわち、上述の図4に示すように、定電圧充電期間に移行後、所定期間Tmaxを経過すると、充電電流Iの減少に伴い、充電用トランジスタの発熱も減少する。したがって、少なくとも発熱が大きい定電圧充電期間移行後の所定期間Tmaxにおいて、充電電流Iを電流I1、電流I2に分流することで、充電装置全体の発熱、充電用トランジスタ12の発熱を分散させるようにしてもよい。
また、定電圧充電期間T3において、充電制御回路からの電流I2のみで充電を行なうことができる。電流制限付きアダプタを使用して二次電池11を充電すると、定電圧充電期間に移行直後の発熱が特に問題となる。しかし、充電電流Iを分流しない場合であっても、充電用トランジスタ12に充電電流Iを流すのに比べると、放熱性が高い充電制御回
路からの電流I2を充電電流Iとして充電することで、充電装置の発熱を抑えることができる。この場合、定電流充電期間においては、充電電流Iを電流I1、電流I2に分流する等すれば、定電流充電期間における発熱を分散させることができる。
本発明の第1の実施の形態にかかる充電装置を示す図である。 本発明の第2の実施の形態にかかる充電装置を示す回路図である。 (a)は、予備充電期間〜定電圧充電期間における時間と充電電圧Vbとの関係を示すグラフ図、(b)は、予備充電期間〜定電圧充電期間における時間と充電電流Iとの関係を示すグラフ図である。 本発明の第2の実施の形態の形態における充電制御を適用した場合の温度特性を示すグラフ図である。 本発明の第3の実施の形態にかかる充電装置を示す回路図である。 (a)は、同充電装置の二次電池の充電する際の充電時間と充電電圧の関係を示す模式図、(b)は、充電時間と電流I1、電流I2、充電電流Iの関係を示す模式図である。 従来の充電装置を示す図である。 電流制限付きアダプタの特性を示す図である。 (a)乃至(c)は、それぞれ充電時の時間に対する電流、電圧、及び温度特性を示す模式図である。
符号の説明
11 充電用トランジスタ、11 二次電池、
12 充電用トランジスタ、
13,32,33,34,35,56,63 抵抗、
14 ダイオード、15,16,17,18 外部接続端子、
20 充電制御回路、21 電源端子、
30 検出回路、31 オペアンプ、
40 充電用トランジスタ制御部、
41a,41b,41c,51,61,71 オペアンプ、
42,43,64,65 電源、
50 電流源、52,53,54 トランジスタ、
55 カレントミラー回路、62,72 可変電流回路

Claims (13)

  1. 二次電池に第1の電流を供給する充電用トランジスタを制御する充電用トランジスタ制御部と、
    前記二次電池に第2の電流を供給する電流源と、前記電流源を制御する電流源制御部とを備える充電電流供給部を有し、
    定電圧充電が開始されると前記第1の電流と共に前記電流供給部からの前記第2の電流を充電電流として前記二次電池を充電し、
    前記電流源制御部は、前記第2の電流が前記二次電池に対して前記第1の電流と一定の比率を保つよう前記電流源を制御する充電制御回路。
  2. 前記充電用トランジスタ制御部及び前記電流源制御部の少なくともいずれか一方は、定電流充電期間では一定の電流で前記二次電池を充電するよう制御する定電流充電モードとなり、前記定電圧充電期間では前記二次電池の充電電圧を一定として充電するよう制御する定電圧充電モードとなる
    ことを特徴とする請求項記載の充電制御回路。
  3. 前記充電用トランジスタ制御部及び前記電流源制御部は、前記定電流充電期間にそれぞれ前記充電用トランジスタ及び前記電流源が前記第1の電流及び前記第2の電流を前記充電電流として前記二次電池に供給するよう制御する
    ことを特徴とする請求項記載の充電制御回路。
  4. 前記充電用トランジスタ制御部及び前記電流源制御部の少なくともいずれか一方は、前記定電流充電期間より前の予備充電期間に前記充電電流より低い充電電流で予備充電するよう制御する予備充電モードとなる
    ことを特徴とする請求項記載の充電制御回路。
  5. 前記電流源制御部は、前記電流源が前記予備充電期間に前記第2の電流を前記充電電流として前記二次電池に供給するよう制御する
    ことを特徴とする請求項記載の充電制御回路。
  6. 電流制限機能を有するアダプタを使用して充電する
    ことを特徴とする請求項1乃至のいずれか1項記載の充電制御回路。
  7. 前記定電流充電期間は、前記二次電池の充電電圧が、第1の電圧から第2の電圧になるまでの期間であり、前記定電圧充電期間は、前記充電電圧が前記第2の電圧に維持される期間であって、
    前記充電用トランジスタ制御部は、前記定電流充電期間に前記定電流充電モードとなり前記第1の電流により前記充電電圧が前記第2の電圧になるまで充電させ、
    前記充電用トランジスタ制御部及び前記電流源制御部は、前記充電電圧が前記第2の電圧となるタイミングで前記定電圧充電モードとなりそれぞれ前記第1の電流及び第2の電流により前記二次電池を充電させる
    ことを特徴とする請求項記載の充電制御回路。
  8. 前記定電流充電期間は、前記二次電池の充電電圧が、第1の電圧から第2の電圧になるまでの期間であり、前記定電圧充電期間は、前記二次電池の充電電圧が前記第2の電圧に維持される期間であって、
    前記電流源制御部は、前記定電流充電期間は前記定電流充電モードとなり前記第の電流により前記充電電圧が前記第2の電圧になるまで充電させ、
    前記充電用トランジスタ制御部は、前記充電電圧が前記第2の電圧となるタイミングでオンし、前記電流源制御部と共に前記定電圧充電モードとなりそれぞれ前記第1の電流及び第2の電流により前記二次電池を充電させる
    ことを特徴とする請求項記載の充電制御回路。
  9. 前記定電流充電期間は、前記二次電池の充電電圧が、第1の電圧から第2の電圧になるまでの期間であり、前記定電圧充電期間は、前記二次電池の充電電圧が前記第2の電圧に維持される期間であって、
    前記充電用トランジスタ制御部及び前記電流源制御部は、前記充電電圧が前記第1の電圧となるタイミングで前記定電充電モードとなり、それぞれ前記第1の電流及び第2の電流により前記二次電池を充電させ、
    前記電流源制御部は、前記充電電圧が前記第2の電圧となるタイミングで前記定電圧充電モードとなり、前記第2の電流により前記二次電池を充電させ、
    前記充電用トランジスタ制御部は、前記電流源制御部より早いタイミングで前記定電圧充電モードに移行し、前記第の電流により前記二次電池を充電させる
    ことを特徴とする請求項記載の充電制御回路。
  10. 前記予備充電期間は前記二次電池の充電電圧が第1の電圧になるまでの期間であり、前記定電流充電期間は、前記充電電圧が、第1の電圧から第2の電圧になるまでの期間であり、前記定電圧充電期間は、前記二次電池の充電電圧が前記第2の電圧に維持される期間であって、
    前記電流源制御部は、前記充電電圧が前記第1の電圧になるまで前記予備充電モードとなり、前記充電電圧が前記第1の電圧となるタイミングで前記定電流充電モードとなり、
    前記充電用トランジスタ制御部は、前記充電電圧が前記第2の電圧となるタイミングでオンし、前記電流源制御部と共に前記定電圧充電モードなる
    ことを特徴とする請求項記載の充電制御回路。
  11. 二次電池に第1の電流を供給する充電用トランジスタと、
    前記充電用トランジスタを制御する充電制御回路とを備え、
    前記充電制御回路は、前記二次電池に第2の電流を供給する電流源と、前記電流源を制御する電流源制御部とを備える電流供給部を有し、定電圧充電が開始されると前記二次電池に前記第1の電流を供給すると共に前記電流供給部により前記第2の電流を供給し、前記電流源制御部は、前記第2の電流が前記二次電池に対して前記第1の電流と一定の比率を保つよう前記電流源を制御する充電装置。
  12. 前記充電制御回路は、前記充電用トランジスタよりも熱抵抗が小さい
    ことを特徴とする請求項11記載の充電装置。
  13. 電流制限機能を有するアダプタを使用して充電する
    ことを特徴とする請求項11又は12記載の充電装置。
JP2005032512A 2005-02-09 2005-02-09 充電制御回路及び充電装置 Expired - Fee Related JP4245571B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005032512A JP4245571B2 (ja) 2005-02-09 2005-02-09 充電制御回路及び充電装置
US11/348,237 US7372235B2 (en) 2005-02-09 2006-02-07 Charging control circuit and charging device including charging transistor control unit
CNB2006100064808A CN100444498C (zh) 2005-02-09 2006-02-09 充电控制电路和充电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032512A JP4245571B2 (ja) 2005-02-09 2005-02-09 充電制御回路及び充電装置

Publications (2)

Publication Number Publication Date
JP2006223030A JP2006223030A (ja) 2006-08-24
JP4245571B2 true JP4245571B2 (ja) 2009-03-25

Family

ID=36779298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032512A Expired - Fee Related JP4245571B2 (ja) 2005-02-09 2005-02-09 充電制御回路及び充電装置

Country Status (3)

Country Link
US (1) US7372235B2 (ja)
JP (1) JP4245571B2 (ja)
CN (1) CN100444498C (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808212B2 (en) * 2006-07-24 2010-10-05 Research In Motion Limited Temperature-based charge and discharge control for a battery
JP5188173B2 (ja) * 2007-12-27 2013-04-24 キヤノン株式会社 充電器
ATE483269T1 (de) * 2008-01-10 2010-10-15 Research In Motion Ltd Akku mit einer thermischen schutzschaltung
JP5118534B2 (ja) * 2008-03-31 2013-01-16 株式会社リコー 充電装置
US8294421B2 (en) * 2008-09-05 2012-10-23 O2Micro Inc Cell balancing systems employing transformers
US8339108B2 (en) * 2008-10-09 2012-12-25 02Micro Inc Charging systems that control power dissipation in a charging path
KR101543668B1 (ko) 2009-01-07 2015-08-12 삼성전자주식회사 스무드 충전 변경 방식을 갖는 부하 충전 회로
US9007025B2 (en) 2010-04-07 2015-04-14 Dell Products, L.P. Systems and methods for configuring and charging hybrid battery systems
CN101931255B (zh) * 2010-09-29 2012-09-26 无锡中星微电子有限公司 充电管理电路
JP5430794B2 (ja) 2011-09-27 2014-03-05 日立マクセル株式会社 リチウムイオン二次電池の充電方法
JP5880105B2 (ja) * 2012-02-14 2016-03-08 ミツミ電機株式会社 充電回路
JP5536122B2 (ja) * 2012-02-20 2014-07-02 Necアクセステクニカ株式会社 充電装置、及び充電方法
CN103986218A (zh) * 2014-06-04 2014-08-13 九江学院 电动车智能快速充电装置及其操作方法
KR102273766B1 (ko) * 2014-08-26 2021-07-06 삼성에스디아이 주식회사 배터리 충전방법 및 이를 이용한 배터리 팩
CN104362686B (zh) * 2014-10-16 2017-07-28 小米科技有限责任公司 充电器及充电方法
KR101651991B1 (ko) * 2014-10-30 2016-08-30 주식회사 엘지화학 전지 급속 충전 방법 및 장치
CN106385061B (zh) * 2015-07-28 2020-03-10 摩托罗拉移动通信软件(武汉)有限公司 一种低压线性充电方法及适配器
CN106253663B (zh) * 2016-09-08 2018-11-13 杰华特微电子(杭州)有限公司 负载电流的控制方法及控制***
EP3806279B1 (en) * 2019-02-28 2023-04-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and charging apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271279A (ja) * 1991-02-25 1992-09-28 Toshiba Corp 電池充電機能付きacアダプタ
JP3306242B2 (ja) * 1995-01-20 2002-07-24 シャープ株式会社 半導体素子並びにそれを用いた充電装置
JP3402867B2 (ja) 1995-09-14 2003-05-06 三洋電機株式会社 蓄電池の充電電圧検出回路
US6326769B1 (en) * 2000-11-29 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Limitation of power dissipation in Li battery
JP2003079137A (ja) * 2001-08-31 2003-03-14 Victor Co Of Japan Ltd 定電流回路
JP2003158829A (ja) * 2001-11-20 2003-05-30 Mitsumi Electric Co Ltd 二次電池用充電制御回路
KR20050010893A (ko) * 2002-06-14 2005-01-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 재충전가능한 배터리를 위한 충전기
JP3848239B2 (ja) * 2002-11-08 2006-11-22 ローム株式会社 電池充電方法、電池充電回路、及び電池を有する携帯電子機器
KR100487622B1 (ko) * 2003-04-25 2005-05-03 엘지전자 주식회사 배터리 충전전류 가변 장치 및 그 방법

Also Published As

Publication number Publication date
US20060176025A1 (en) 2006-08-10
CN1819398A (zh) 2006-08-16
CN100444498C (zh) 2008-12-17
JP2006223030A (ja) 2006-08-24
US7372235B2 (en) 2008-05-13

Similar Documents

Publication Publication Date Title
JP4245571B2 (ja) 充電制御回路及び充電装置
JP4657943B2 (ja) 充電制御用半導体集積回路及びその充電制御用半導体集積回路を使用した2次電池の充電装置
US6664765B2 (en) Lithium-ion battery charger power limitation method
JP2006053898A (ja) 過電流保護回路およびそれを利用した電圧生成回路ならびに電子機器
US8427013B2 (en) Power supply circuit and electronic device
KR102602533B1 (ko) 로드 스위치 회로 및 이를 이용한 배터리 전력 제어 방법
JP6719332B2 (ja) 充電装置
US20130181683A1 (en) Battery Charging Circuit and Reference Signal Generator
US20050275375A1 (en) Battery charger using a depletion mode transistor to serve as a current source
JP2005192382A (ja) 電池電圧により充電電流を調整するコンデンサ充電器及びその方法
US9553461B2 (en) Charge control circuit, charge circuit, and mobile device
US8310207B2 (en) Multi-purpose battery charging circuit
WO2018143290A1 (ja) 充電装置
JP2010279177A (ja) バッテリ充電回路
JP2002189522A (ja) レギュレータ
JP5068631B2 (ja) 定電圧回路
JP4552569B2 (ja) 定電圧電源回路
US7638981B2 (en) Charging device
JP5525791B2 (ja) バッテリチャージシステム
JP2007124740A (ja) 充電回路、電子装置、及び充電回路の電流制御方法
JP2011062034A (ja) 二次電池の充電回路
WO2023134667A1 (zh) 可调驱动单元、驱动组件、电源转换装置、输出控制方法
JP2007028772A (ja) 充電装置、充電方法及び充電プログラム
KR20220168825A (ko) 고속 동적 전압 스케일링을 위한 스위칭 레귤레이터 및 그의 제어 방법
JP2007143217A (ja) 二次電池の充電回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees