JP5036182B2 - Carbon fiber, precursor and method for producing carbon fiber - Google Patents

Carbon fiber, precursor and method for producing carbon fiber Download PDF

Info

Publication number
JP5036182B2
JP5036182B2 JP2005377464A JP2005377464A JP5036182B2 JP 5036182 B2 JP5036182 B2 JP 5036182B2 JP 2005377464 A JP2005377464 A JP 2005377464A JP 2005377464 A JP2005377464 A JP 2005377464A JP 5036182 B2 JP5036182 B2 JP 5036182B2
Authority
JP
Japan
Prior art keywords
fiber
treatment
carbon fiber
range
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005377464A
Other languages
Japanese (ja)
Other versions
JP2007177368A (en
Inventor
秀和 吉川
太郎 尾山
貴也 鈴木
晴光 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2005377464A priority Critical patent/JP5036182B2/en
Publication of JP2007177368A publication Critical patent/JP2007177368A/en
Application granted granted Critical
Publication of JP5036182B2 publication Critical patent/JP5036182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マトリックス材料と炭素繊維を複合化してコンポジットを作製する際に用いる、表面・界面特性に優れた炭素繊維に関する。   The present invention relates to a carbon fiber having excellent surface / interface characteristics, which is used when a composite is produced by combining a matrix material and carbon fiber.

炭素繊維の製造方法としては、原料繊維にポリアクリロニトリル(PAN)等の前駆体繊維(プリカーサー)を使用し、耐炎化処理及び炭素化処理を経て炭素繊維を得る方法が広く知られている(例えば、特許文献1参照)。このようにして得られた炭素繊維は、高い比強度、比弾性率など良好な特性を有している。   As a method for producing carbon fiber, a method of obtaining carbon fiber by using a precursor fiber (precursor) such as polyacrylonitrile (PAN) as a raw material fiber and undergoing a flame resistance treatment and a carbonization treatment is widely known (for example, , See Patent Document 1). The carbon fibers thus obtained have good characteristics such as high specific strength and specific elastic modulus.

近年、炭素繊維を利用した複合材料[例えば、炭素繊維強化プラスチック(CFRP)など]の工業的な用途は、多目的に広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野、自動車分野においては、(1)より高性能化(高強度化、高弾性化)、(2)より軽量化(繊維軽量化及び繊維含有量低減)、(3)複合化した際のより高いコンポジット物性の発現性向上(炭素繊維表面・界面特性の向上)に向けた要求が強まっている。   In recent years, industrial applications of composite materials using carbon fibers [for example, carbon fiber reinforced plastic (CFRP) and the like] have been spreading to various purposes. Especially in the sports / leisure field, aerospace field, and automobile field, (1) higher performance (higher strength, higher elasticity), (2) lighter (fiber weight reduction and fiber content reduction), ( 3) There is an increasing demand for improvement in the appearance of higher composite properties when combined (improvement of carbon fiber surface / interface properties).

炭素繊維と樹脂等のマトリックス材料との複合化において高性能化を追求する為には、マトリックス材料が有する特性も重要であるが、炭素繊維そのもの自体の表面特性、強度及び弾性率を向上させることが必要不可欠である。つまり、炭素繊維表面とマトリックス材料との接着性が高いもの同士を複合化し、マトリックス材料と炭素繊維をより均一に分散することで、複合材料のより高性能なもの(高強度、高弾性)を得ることができる。   In order to pursue high performance in the composite of carbon fiber and matrix material such as resin, the characteristics of the matrix material are also important, but to improve the surface characteristics, strength and elastic modulus of the carbon fiber itself. Is indispensable. In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix material, and dispersing the matrix material and the carbon fiber more uniformly, the composite material with higher performance (high strength, high elasticity) can be obtained. Obtainable.

炭素繊維の表面特性、強度及び弾性率を向上させることについては、従来より検討されている(例えば、特許文献2、3参照)。   Improvement of the surface properties, strength, and elastic modulus of carbon fibers has been studied conventionally (see, for example, Patent Documents 2 and 3).

しかし、従来の炭素繊維は、上記複合材料の要求を満たすには不充分であった。
特開2001−131833号公報 (特許請求の範囲、第5頁) 特公平8−6210号公報 (特許請求の範囲) 特開2003−73932号公報 (特許請求の範囲)
However, conventional carbon fibers are insufficient to satisfy the requirements of the composite material.
JP 2001-131833 A (Claims, page 5) Japanese Patent Publication No. 8-6210 (Claims) JP 2003-73932 A (Claims)

本発明者は、上記問題を解決するため検討を重ねているうちに、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率及び密度が所定範囲にあり、且つ繊維軸方向に配向する襞を表面に有する炭素繊維が、マトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な接着性を発現することを見出し、本発明を完成するに到った。   While the present inventor has repeatedly studied to solve the above problems, the carbon impregnated on the surface has resin-impregnated strand strength, resin-impregnated strand elastic modulus and density in a predetermined range, and is oriented in the fiber axis direction. When the fiber is combined with a matrix material to form a composite, it has been found that the fiber exhibits good adhesion to the matrix material, and the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した炭素繊維を提供することにある。   Therefore, an object of the present invention is to provide a carbon fiber that has solved the above-mentioned problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 樹脂含浸ストランド強度が6100MPa以上、樹脂含浸ストランド弾性率が340GPa以上、密度が1.76g/cm3以上であり、且つ繊維軸方向に配向する襞を表面に有する炭素繊維。 [1] A carbon fiber having a resin-impregnated strand strength of 6100 MPa or more, a resin-impregnated strand elastic modulus of 340 GPa or more, a density of 1.76 g / cm 3 or more, and a surface having wrinkles oriented in the fiber axis direction.

〔2〕 走査型プローブ顕微鏡で2μmの範囲で測定した襞の間隔が0.1〜0.3μm、走査型プローブ顕微鏡で5μmの範囲で測定した自乗平均面粗さRms(5μ)が20〜40nm、0.5μmの範囲で測定した自乗平均面粗さRms(0.5μ)が2〜12nmである〔1〕に記載の炭素繊維。   [2] The distance between the ridges measured in the range of 2 μm with a scanning probe microscope is 0.1 to 0.3 μm, and the root mean square roughness Rms (5 μ) measured in the range of 5 μm with a scanning probe microscope is 20 to 40 nm. The carbon fiber according to [1], wherein the root mean square surface roughness Rms (0.5 μ) measured in the range of 0.5 μm is 2 to 12 nm.

〔3〕 X線光電子分光器により測定される炭素繊維の表面酸素濃度(O/C)が0.13以上、表面窒素濃度(N/C)が0.05以下、広角X線回折による結晶子サイズが2nm以上、且つラマン分光法で測定される1360cm-1バンド強度(D)と1580cm-1バンド強度(G)とのバンド強度比(D/G)が1.3以下である〔1〕に記載の炭素繊維。 [3] Carbon fiber surface oxygen concentration (O / C) measured by X-ray photoelectron spectrometer is 0.13 or more, surface nitrogen concentration (N / C) is 0.05 or less, crystallite by wide-angle X-ray diffraction The size is 2 nm or more, and the band intensity ratio (D / G) between 1360 cm −1 band intensity (D) and 1580 cm −1 band intensity (G) measured by Raman spectroscopy is 1.3 or less [1] Carbon fiber described in 1.

〔4〕 広角X線回折(回折角17°)による配向度が90.5%以下であるアクリル系繊維が耐炎化処理及び炭素化処理されてなる〔1〕に記載の炭素繊維。   [4] The carbon fiber according to [1], wherein an acrylic fiber having an orientation degree of 90.5% or less by wide-angle X-ray diffraction (diffraction angle 17 °) is subjected to a flameproofing treatment and a carbonization treatment.

〔5〕 ジメチルホルムアミドに12時間浸漬した場合の重量減少比が7%以下の耐炎化繊維が焼成されてなる〔1〕に記載の炭素繊維。   [5] The carbon fiber according to [1], wherein a flameproof fiber having a weight reduction ratio of 7% or less when immersed in dimethylformamide for 12 hours is fired.

本発明の炭素繊維は、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率、及び密度が高いことに加えて、繊維軸方向に配向する襞を表面に有するので、マトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、毛羽や糸切れの無い繊維でもある。   In addition to having high resin-impregnated strand strength, resin-impregnated strand elastic modulus, and high density, the carbon fiber of the present invention has wrinkles oriented in the fiber axis direction on the surface, so when composited with a matrix material It functions as a reinforcing material having good adhesion to the matrix material. Moreover, this carbon fiber is also a fiber without fuzz and yarn breakage.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維は、樹脂含浸ストランド強度が6100MPa以上、好ましくは6150MPa以上、樹脂含浸ストランド弾性率が340GPa以上、好ましくは340〜370GPa、密度が1.76g/cm3以上、好ましくは1.76〜1.80g/cm3であり、且つ繊維軸方向に配向する襞を表面に有する。 The carbon fiber of the present invention has a resin-impregnated strand strength of 6100 MPa or more, preferably 6150 MPa or more, a resin-impregnated strand elastic modulus of 340 GPa or more, preferably 340 to 370 GPa, and a density of 1.76 g / cm 3 or more, preferably 1.76. It has ˜1.80 g / cm 3 and wrinkles oriented in the fiber axis direction on the surface.

以上の構成にすることにより、本発明の炭素繊維は、上述したように、マトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、毛羽や糸切れの無い繊維でもある。   With the above configuration, the carbon fiber of the present invention functions as a reinforcing material having good adhesion to the matrix material when combined with the matrix material to form a composite as described above. Moreover, this carbon fiber is also a fiber without fuzz and yarn breakage.

次に、本発明を図面を参照して詳細に説明する。   Next, the present invention will be described in detail with reference to the drawings.

図1は、本発明の炭素繊維の一例を示す概略部分断面図である。図1に示されるように、本例の炭素繊維2は、繊維軸方向に配向する襞を表面に有する。即ち、繊維軸を通る任意の切断面で切断した繊維断面の周方向に沿って曲折を繰返す波状形状に形成されてなる。図1において、4は波状形状の山であり、6は波状形状の谷である。   FIG. 1 is a schematic partial cross-sectional view showing an example of the carbon fiber of the present invention. As shown in FIG. 1, the carbon fiber 2 of this example has ridges on the surface that are oriented in the fiber axis direction. That is, it is formed in a wavy shape that repeats bending along the circumferential direction of the fiber cross section cut at an arbitrary cut surface passing through the fiber axis. In FIG. 1, 4 is a wave-shaped peak, and 6 is a wave-shaped valley.

aは山と山との間隔(襞の間隔)を示す。bは山と谷との高低差(襞の粗さ)を示す。cは微少な範囲部分の面粗さ(表面粗さ)を示す。襞の間隔a及び襞の粗さbは、走査型プローブ顕微鏡を用いて測定できる。   a indicates the interval between the peaks (the interval between the ridges). b represents the difference in height (roughness of the ridge) between the peaks and valleys. c shows the surface roughness (surface roughness) of a minute range portion. The distance a between the wrinkles and the roughness b of the wrinkles can be measured using a scanning probe microscope.

本発明の炭素繊維において、襞の間隔aは、走査型プローブ顕微鏡で2μmの範囲における測定値で0.1〜0.3μmが好ましい。襞の粗さbは、走査型プローブ顕微鏡で5μmの範囲で測定した自乗平均面粗さRms(5μ)で20〜40nmが好ましく、表面粗さcは、走査型プローブ顕微鏡で0.5μmの範囲で測定した自乗平均面粗さRms(0.5μ)で2〜12nmが好ましい。平均繊維直径は4.5〜6.0μmが好ましく、5.0〜6.0μmがより好ましい。   In the carbon fiber of the present invention, the distance a between the ridges is preferably 0.1 to 0.3 μm as measured by a scanning probe microscope in the range of 2 μm. The roughness b of the ridge is preferably 20 to 40 nm in terms of the root mean square roughness Rms (5 μ) measured in the range of 5 μm with a scanning probe microscope, and the surface roughness c is in the range of 0.5 μm with a scanning probe microscope. 2 to 12 nm is preferable in terms of the root mean square surface roughness Rms (0.5 μ) measured in (1). The average fiber diameter is preferably 4.5 to 6.0 μm, more preferably 5.0 to 6.0 μm.

本発明の炭素繊維において、X線光電子分光器(ESCA)により測定される炭素繊維の表面酸素濃度(O/C)は0.13以上が好ましく、0.13〜0.20が更に好ましい。表面酸素濃度(O/C)が0.13未満の場合は、炭素繊維とマトリックス樹脂との接着性が劣り、得られる複合材料の物性低下の原因になる。一方、表面酸素濃度(O/C)が0.20を超える場合は、炭素繊維自体の強度が低下する。   In the carbon fiber of the present invention, the surface oxygen concentration (O / C) of the carbon fiber measured by an X-ray photoelectron spectrometer (ESCA) is preferably 0.13 or more, more preferably 0.13 to 0.20. When the surface oxygen concentration (O / C) is less than 0.13, the adhesion between the carbon fiber and the matrix resin is inferior, causing a decrease in physical properties of the resulting composite material. On the other hand, when the surface oxygen concentration (O / C) exceeds 0.20, the strength of the carbon fiber itself decreases.

表面窒素濃度(N/C)は0.05以下が好ましい。表面窒素濃度(N/C)が0.05を超える場合は、必要とする炭素繊維物性が得られないので好ましくない。   The surface nitrogen concentration (N / C) is preferably 0.05 or less. When the surface nitrogen concentration (N / C) exceeds 0.05, the required carbon fiber properties cannot be obtained, which is not preferable.

広角X線回折による結晶子サイズは2nm以上が好ましく、2.1〜2.5nmが更に好ましい。本発明炭素繊維は、グラファイト面が成長した結晶部とアモルファスな非晶部が混在した構造を有している。結晶子サイズが2nm未満の場合は、グラファイト面の成長が貧弱であり、高強度の炭素繊維が得られなくなるので好ましくない。   The crystallite size by wide-angle X-ray diffraction is preferably 2 nm or more, and more preferably 2.1 to 2.5 nm. The carbon fiber of the present invention has a structure in which a crystal part where a graphite surface is grown and an amorphous part are mixed. When the crystallite size is less than 2 nm, the growth of the graphite surface is poor, and a high-strength carbon fiber cannot be obtained.

ラマン分光法で測定される1360cm-1バンド強度(D)と1580cm-1バンド強度(G)とのバンド強度比(D/G)が1.3以下が好ましく、更に0.95〜1.3の範囲が好ましい。 The band intensity ratio (D / G) between 1360 cm −1 band intensity (D) and 1580 cm −1 band intensity (G) measured by Raman spectroscopy is preferably 1.3 or less, more preferably 0.95 to 1.3. The range of is preferable.

アモルファスな非晶部は1360cm-1にバンド強度(D)のピークを示し、グラファイト面が成長した結晶部は1580cm-1にバンド強度(G)のピークを示す。そのため、バンド強度比(D/G)が1.3を超える場合は、グラファイト面の成長が貧弱であり、高強度の炭素繊維が得られなくなるので好ましくない。また、バンド強度比(D/G)が0.95未満の場合は、グラファイト面の成長が著しく、構造の柔軟性が損なわれるため、好ましくない。 The amorphous amorphous part shows a peak of band intensity (D) at 1360 cm −1 , and the crystal part where the graphite surface has grown shows a peak of band intensity (G) at 1580 cm −1 . Therefore, when the band intensity ratio (D / G) exceeds 1.3, the growth of the graphite surface is poor, and high strength carbon fibers cannot be obtained. Moreover, when the band intensity ratio (D / G) is less than 0.95, the growth of the graphite surface is remarkable, and the flexibility of the structure is impaired.

本発明の炭素繊維は、広角X線回折(回折角17°)による配向度が90.5%以下、好ましくは89〜90%のアクリル系繊維が耐炎化処理及び炭素化処理されてなることが好ましい。配向度が90%を超える場合は、炭素繊維の原料となるアクリル繊維の延伸率を高くしなければならず、糸切れの発生を招く虞が有り、好ましくない。   The carbon fiber of the present invention is obtained by subjecting an acrylic fiber having an orientation degree by wide-angle X-ray diffraction (diffraction angle of 17 °) to 90.5% or less, preferably 89 to 90%, subjected to flameproofing treatment and carbonization treatment. preferable. When the degree of orientation exceeds 90%, it is necessary to increase the stretch rate of the acrylic fiber that is the raw material of the carbon fiber, which may cause breakage of the yarn, which is not preferable.

本発明の炭素繊維は、ジメチルホルムアミド(DMF)に12時間浸漬した場合の重量減少比が7%以下の耐炎化繊維が炭素化処理されてなることが好ましい。重量減少比が7%を超える場合は、耐炎化が終了していないばかりではなく、炭素化工程での糸切れや、得られた炭素繊維の強度低下を招くので好ましくない。   The carbon fiber of the present invention is preferably obtained by carbonizing a flame resistant fiber having a weight reduction ratio of 7% or less when immersed in dimethylformamide (DMF) for 12 hours. When the weight reduction ratio exceeds 7%, not only flame resistance is not completed, but also yarn breakage in the carbonization process and strength reduction of the obtained carbon fiber are caused, which is not preferable.

本発明の炭素繊維は、例えば、以下の方法により製造することができる。   The carbon fiber of the present invention can be produced, for example, by the following method.

<前駆体繊維>
本例の炭素繊維の製造方法に用いる前駆体繊維は、従来公知のものが何ら制限なく使用できる。そのなかでもアクリル系繊維が好ましく、広角X線回折(回折角17°)による配向度が90.5%以下のアクリル系繊維がより好ましい。具体的にはアクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合した紡糸溶液を紡糸して、炭素繊維原料とする。紡糸方法としては湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、最終的に得られた炭素繊維が表面に襞を形成し、樹脂との接着性が期待できるので、湿式紡糸方法がより好ましい。また、凝固した後は、水洗・乾燥・延伸して炭素繊維原料とすることが好ましい。
<Precursor fiber>
A conventionally well-known thing can be used without a restriction | limiting for the precursor fiber used for the manufacturing method of the carbon fiber of this example. Among them, acrylic fibers are preferable, and acrylic fibers having an orientation degree by wide-angle X-ray diffraction (diffraction angle 17 °) of 90.5% or less are more preferable. Specifically, a spinning solution obtained by polymerizing a monomer containing 90% by mass or more, preferably 95% by mass or more of acrylonitrile is spun to obtain a carbon fiber raw material. As the spinning method, either a wet or dry wet spinning method can be used. However, since the finally obtained carbon fiber forms wrinkles on the surface and adhesiveness with the resin can be expected, the wet spinning method is used. More preferred. Moreover, after solidifying, it is preferable to wash with water, dry and stretch to obtain a carbon fiber raw material.

<耐炎化処理>
得られた前駆体繊維は、引き続き加熱空気中200〜280℃で耐炎化処理される。この時の処理は、一般的に、延伸倍率0.85〜1.30の範囲で処理されるが、高強度・高弾性率の炭素繊維を得るためには、0.95以上がより好ましい。この耐炎化処理は、繊維密度1.3〜1.5g/cm3の耐炎化繊維とするものであり、耐炎化時の張力(延伸配分)は特に限定されるものでは無い。
<Flame resistance treatment>
The obtained precursor fiber is subsequently flameproofed at 200 to 280 ° C. in heated air. The treatment at this time is generally carried out in the range of a draw ratio of 0.85 to 1.30, but 0.95 or more is more preferable in order to obtain a carbon fiber with high strength and high elastic modulus. This flameproofing treatment is to obtain flameproofed fibers having a fiber density of 1.3 to 1.5 g / cm 3 , and the tension (stretch distribution) at the time of flameproofing is not particularly limited.

<第一炭素化処理>
本例の炭素繊維の製造方法においては、上記耐炎化繊維を、不活性雰囲気中で、第一炭素化工程において、300〜900℃の温度範囲内で、1.03〜1.06の延伸倍率で一次延伸処理し、次いで0.9〜1.01の延伸倍率で二次延伸処理して繊維密度1.50〜1.70g/cm3の第一炭素化処理繊維を得る。
<First carbonization treatment>
In the carbon fiber production method of the present example, the flame-resistant fiber is stretched at a draw ratio of 1.03 to 1.06 within a temperature range of 300 to 900 ° C. in the first carbonization step in an inert atmosphere. The first carbonized fiber having a fiber density of 1.50 to 1.70 g / cm 3 is obtained by performing a second stretching process at a stretching ratio of 0.9 to 1.01.

<第一炭素化処理・一次延伸処理>
上記第一炭素化工程において、一次延伸処理では、耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲、同繊維の密度が1.5g/cm3に達するまでの範囲、且つ同繊維の広角X線測定(回折角26°)における結晶子サイズが1.45nmに達するまでの範囲で、1.03〜1.06の延伸倍率で、延伸処理を行う。
<First carbonization treatment / primary stretching treatment>
In the first carbonization step, in the primary stretching treatment, the density of the fiber reaches 1.5 g / cm 3 in the range from the point when the elastic modulus of the flameproof fiber decreases to the minimum value until it increases to 9.8 GPa. In the range up to and until the crystallite size in the wide-angle X-ray measurement (diffraction angle 26 °) of the same fiber reaches 1.45 nm, the drawing treatment is performed at a draw ratio of 1.03 to 1.06.

上記の耐炎化繊維弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲は、図2に示すβの範囲である。   The range from the time when the flame-resistant fiber elastic modulus decreases to the minimum value until it increases to 9.8 GPa is the range of β shown in FIG.

耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲で延伸(1.03〜1.06倍)を行うことにより、糸切れを抑制し、低弾性率部が効率的に延伸され高配向化が可能となり、緻密な一次延伸処理繊維を得ることができる。   By performing stretching (1.03 to 1.06 times) in the range from the point when the elastic modulus of the flame resistant fiber decreases to a minimum value until it increases to 9.8 GPa, the yarn breakage is suppressed, and the low elastic modulus part Can be efficiently drawn and highly oriented, and a dense primary drawn fiber can be obtained.

これに対し、弾性率が極小値に低下する前(αの範囲)での1.03倍以上の延伸は、糸切れを増加させ、著しい強度低下を招くので好ましくない。   On the other hand, stretching of 1.03 times or more before the elastic modulus decreases to the minimum value (range α) is not preferable because it increases yarn breakage and causes a significant decrease in strength.

また、弾性率が極小値まで低下し、次いで9.8GPaに増加した後(γの範囲)での1.03倍以上の延伸は、繊維の弾性率が高く、無理な延伸を強いるので、繊維欠陥・ボイドを増加させ、延伸の効果を損なうので好ましくない。よって、上記弾性率の範囲内で一次延伸処理を行う。   In addition, stretching of 1.03 times or more after the elastic modulus decreases to a minimum value and then increases to 9.8 GPa (in the range of γ) has a high elastic modulus of the fiber and forces excessive stretching. This is undesirable because it increases defects and voids and impairs the effect of stretching. Therefore, the primary stretching process is performed within the above elastic modulus range.

耐炎化繊維の密度が1.5g/cm3に達するまでの範囲で延伸(1.03〜1.06倍)を行うことにより、ボイドの生成を抑制しながら、配向度の向上が出来、高品位の一次延伸処理繊維を得ることができる。 By stretching (1.03 to 1.06 times) until the density of the flameproof fiber reaches 1.5 g / cm 3 , the degree of orientation can be improved while suppressing the generation of voids. A quality primary stretch-treated fiber can be obtained.

これに対し、密度が1.5g/cm3より高い範囲での1.03倍以上の一次延伸は、無理な延伸によりボイドの生成を増長し、最終的な炭素繊維の構造欠陥、密度低下を招くため好ましくない。よって、上記密度の範囲内で一次延伸処理を行う。 On the other hand, primary stretching of 1.03 times or more in a range where the density is higher than 1.5 g / cm 3 increases void formation by excessive stretching, resulting in structural defects and density reduction of the final carbon fiber. Since it invites, it is not preferable. Therefore, the primary stretching process is performed within the above density range.

なお、一次延伸における延伸倍率が1.03倍未満では、延伸の効果が少なく、高強度の炭素繊維を得ることができないので好ましくない。延伸倍率が1.06倍より高いと、糸切れを招き、高品位及び高強度の炭素繊維を得ることはできないので好ましくない。   In addition, if the draw ratio in primary drawing is less than 1.03, it is not preferable because the effect of drawing is small and high-strength carbon fibers cannot be obtained. When the draw ratio is higher than 1.06 times, yarn breakage is caused, and high-quality and high-strength carbon fibers cannot be obtained.

<第一炭素化処理・二次延伸処理>
第一炭素化処理・二次延伸処理においては、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける範囲、及び、図3に示されるように一次延伸処理後の繊維の広角X線測定(回折角26°)における結晶子サイズが1.45nmより大きくならない範囲で0.9〜1.01倍の延伸倍率で延伸処理を行う。
<First carbonization treatment / secondary stretching treatment>
In the first carbonization treatment / secondary stretching treatment, the fiber density after the primary stretching treatment continues to increase during the secondary stretching treatment, and the wide angle of the fiber after the primary stretching treatment as shown in FIG. Stretching is performed at a stretching ratio of 0.9 to 1.01 within a range where the crystallite size in X-ray measurement (diffraction angle 26 °) does not become larger than 1.45 nm.

二次延伸処理中における一次延伸処理後の繊維の密度は、図4に示されるように温度上昇につれて、変化しない(上昇しない)条件と、上昇し続ける条件と、上昇後下降する条件(二次延伸処理中に繊維密度が低下する条件)とがある。   As shown in FIG. 4, the density of the fiber after the primary stretching treatment during the secondary stretching treatment does not change (does not rise), rises continuously, and falls after the rise (secondary as shown in FIG. 4). And a condition in which the fiber density decreases during the stretching process).

これらの条件のうち、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける条件で0.9〜1.01倍の延伸倍率で延伸処理を行うことにより、好ましくは変化しない区間を含むことなく又は低下することなく上昇し続ける条件で延伸処理を行うことにより、ボイド生成を抑制し、最終的に緻密な炭素繊維を得ることができる。   Among these conditions, the section where the fiber density after the primary stretching process continues to rise during the secondary stretching process is preferably not changed by performing the stretching process at a stretching ratio of 0.9 to 1.01 times. By performing the stretching treatment under the condition of continuing to increase without containing or decreasing, void formation can be suppressed and finally a dense carbon fiber can be obtained.

これに対し、二次延伸処理中に繊維密度が低下すると、ボイドの生成を増長し、緻密な炭素繊維を得ることができず、好ましくない。また、二次延伸処理中に繊維密度が変化しない区間を含むと、二次延伸処理の効果が見られないので、好ましくない。よって、二次延伸処理は繊維密度が上昇し続ける範囲である。   On the other hand, if the fiber density is lowered during the secondary stretching treatment, void formation is increased, and dense carbon fibers cannot be obtained, which is not preferable. In addition, it is not preferable to include a section in which the fiber density does not change during the secondary stretching process because the effect of the secondary stretching process is not observed. Therefore, the secondary stretching treatment is a range in which the fiber density continues to rise.

また、一次延伸処理後の繊維の広角X線測定(回折角26°)における結晶子サイズが1.45nmより大きくならない範囲で0.9〜1.01倍の延伸倍率で延伸処理を行うことにより、結晶が成長することなく、緻密化され、ボイドの生成も抑制でき、最終的に高い緻密性を有した炭素繊維を得ることができる。   Further, by performing a stretching treatment at a stretching ratio of 0.9 to 1.01 times in a range where the crystallite size in the wide-angle X-ray measurement (diffraction angle 26 °) of the fiber after the primary stretching treatment does not become larger than 1.45 nm. Without being grown, the crystals are densified, the formation of voids can be suppressed, and finally, carbon fibers having high density can be obtained.

これに対し、結晶子サイズが1.45nmより大きくなる範囲での二次延伸処理は、ボイドの生成を増長すると共に、糸切れによる品位低下を招き、高強度の炭素繊維を得ることができず、好ましくない。よって、二次延伸処理は上記結晶子サイズの範囲内で行う。   On the other hand, the secondary stretching treatment in the range where the crystallite size is larger than 1.45 nm increases the generation of voids and causes a deterioration in quality due to yarn breakage, and a high-strength carbon fiber cannot be obtained. It is not preferable. Therefore, the secondary stretching treatment is performed within the above crystallite size range.

なお、二次延伸処理における延伸倍率が0.9倍未満では、配向度の低下が著しく、高強度の炭素繊維を得ることができないので好ましくない。延伸倍率が1.01倍より高いと、糸切れを招き、高品位及び高強度の炭素繊維を得ることはできないので好ましくない。よって、二次延伸処理における延伸倍率は0.9〜1.01の範囲内が好ましい。   In addition, if the draw ratio in the secondary drawing treatment is less than 0.9 times, the degree of orientation is remarkably lowered, and high strength carbon fibers cannot be obtained. When the draw ratio is higher than 1.01, it is not preferable because yarn breakage is caused and high-quality and high-strength carbon fibers cannot be obtained. Therefore, the draw ratio in the secondary stretching treatment is preferably in the range of 0.9 to 1.01.

また、高強度の炭素繊維を得るためには、第一炭素化処理繊維の広角X線測定(回折角26°)における配向度が76.0%以上あることが好ましい。   In order to obtain high-strength carbon fibers, it is preferable that the degree of orientation of the first carbonized fiber in the wide-angle X-ray measurement (diffraction angle 26 °) is 76.0% or more.

76.0%未満では最終的に高強度の炭素繊維を得ることができないので好ましくない。   If it is less than 76.0%, a high-strength carbon fiber cannot be finally obtained, which is not preferable.

上記のごとくして、第一炭素化工程における耐炎化繊維の一次延伸処理、二次延伸処理は行われ、第一炭素化処理繊維となる。また、上記第一炭素化工程は、一つの炉若しくは二つ以上の炉で、連続的若しくは別々に処理しても差し支えなく、前述の処理条件範囲内での処理によるところであれば何ら問題はない。   As described above, the primary stretching process and the secondary stretching process of the flame-resistant fiber in the first carbonization step are performed to obtain the first carbonized fiber. In addition, the first carbonization step may be processed continuously or separately in one furnace or two or more furnaces, and there is no problem as long as the process is performed within the above-described processing condition range. .

<第二炭素化処理>
上記第一炭素化処理繊維を、不活性雰囲気中で、第二炭素化工程において800〜1600℃の温度範囲内で、同工程を一次処理と二次処理とに分けて延伸処理して第二炭素化処理繊維を得る。
<Second carbonization treatment>
The first carbonized fiber is stretched in an inert atmosphere in a second carbonization step within a temperature range of 800 to 1600 ° C. by dividing the step into a primary treatment and a secondary treatment. Carbonized fiber is obtained.

<第二炭素化処理・一次延伸処理>
第二炭素化工程の一次処理では、第一炭素化処理繊維の密度が一次処理中上昇し続ける範囲、同繊維の窒素含有量が10質量%以上の範囲、且つ同繊維の広角X線測定(回折角26°)における結晶子サイズが1.47nmより大きくならない範囲で同繊維を延伸処理する。
<Second carbonization treatment / primary stretching treatment>
In the primary treatment of the second carbonization step, the density of the first carbonized fiber continues to increase during the primary treatment, the nitrogen content of the fiber is in the range of 10% by mass or more, and the wide-angle X-ray measurement of the fiber ( The fiber is drawn in a range where the crystallite size at a diffraction angle of 26 ° does not become larger than 1.47 nm.

上記第一炭素化処理繊維の第二炭素化工程一次処理における、密度及び広角X線測定(回折角26°)での結晶子サイズの、変化及び条件範囲の一例を、それぞれ図5及び6に示す。   Examples of changes in the crystallite size and the condition range in the density and wide-angle X-ray measurement (diffraction angle 26 °) in the second carbonization step primary treatment of the first carbonized fiber are shown in FIGS. 5 and 6, respectively. Show.

なお、第二炭素化工程一次処理での繊維張力(F MPa)は、第一炭素化工程後の繊維直径、即ち繊維断面積(S mm2)により変わるため、本発明においては張力ファクターとして繊維応力(B mN)を用い、この繊維応力の範囲は下式
1.24 > B > 0.46
〔但し、B = F × S
S = πD2 / 4
Dは第一炭素化処理繊維の直径(mm)〕
を満たす範囲としている。
In addition, since the fiber tension (F MPa) in the second carbonization process primary treatment varies depending on the fiber diameter after the first carbonization process, that is, the fiber cross-sectional area (S mm 2 ), the fiber is used as the tension factor in the present invention. Using stress (B mN), the fiber stress range is: 1.24>B> 0.46
[However, B = F x S
S = πD 2/4
D is the diameter of the first carbonized fiber (mm)]
It is set as the range which satisfies.

ここで繊維断面積は、JIS−R−7601に規定する測微顕微鏡による方法において繊維直径をn=20で測定し、その平均値を用い、真円として算出した値を使用している。   Here, the fiber cross-sectional area uses a value calculated as a perfect circle by measuring the fiber diameter at n = 20 in the method using a microscopic microscope specified in JIS-R-7601 and using the average value.

<第二炭素化処理・二次延伸処理>
上記方法により得られた一次処理繊維は、引き続いて以下の二次処理を施す。
<Second carbonization treatment / secondary stretching treatment>
The primary treated fiber obtained by the above method is subsequently subjected to the following secondary treatment.

この二次処理においては、一次処理繊維の密度が変化しない又は低下する範囲で同繊維を延伸処理する。   In this secondary treatment, the fiber is stretched in a range where the density of the primary treated fiber does not change or decreases.

上記一次処理繊維の二次処理における密度の変化及び条件範囲の一例を図7に示す。   An example of density change and condition range in the secondary treatment of the primary treated fiber is shown in FIG.

なお、第二炭素化工程二次処理での繊維張力(H MPa)も、一次処理時と同様に第一炭素化工程後の繊維直径、即ち繊維断面積(S mm2)により変わるため、本発明においては張力ファクターとして繊維応力(E mN)を用い、この繊維応力の範囲は下式
0.60 > E > 0.23
〔但し、E = H × S
S = πD2 / 4
Dは第一炭素化処理繊維の直径(mm)〕
を満たす範囲としている。
Note that the fiber tension (H MPa) in the secondary treatment in the second carbonization step also changes depending on the fiber diameter after the first carbonization step, that is, the fiber cross-sectional area (S mm 2 ), as in the primary treatment. In the present invention, fiber stress (E mN) is used as a tension factor, and the range of this fiber stress is expressed by the following formula 0.60>E> 0.23.
[However, E = H x S
S = πD 2/4
D is the diameter of the first carbonized fiber (mm)]
It is set as the range which satisfies.

なお、第二炭素化処理繊維の伸度は2.10%以上、より好ましくは2.20%以上であることが好ましい。また、第二炭素化処理繊維の直径は5〜6.5μmであることが好ましい。   The elongation of the second carbonized fiber is preferably 2.10% or more, more preferably 2.20% or more. The diameter of the second carbonized fiber is preferably 5 to 6.5 μm.

<第三炭素化処理>
上記第二炭素化処理繊維を、引き続き不活性雰囲気中で、第三炭素化工程において1600〜2100℃の温度範囲内で処理することにおいて、以下の範囲を満たす処理を行う。
<Third carbonization treatment>
In the third carbonization step, the second carbonized fiber is subsequently processed in a temperature range of 1600 to 2100 ° C. in an inert atmosphere, and a process that satisfies the following range is performed.

なお、第三炭素化工程処理での繊維張力(J MPa)は、第二炭素化処理後の繊維直径、即ち繊維断面積(K mm2)により変わるため、本発明においては張力ファクターとして繊維応力(G mN)を用い、この繊維応力の範囲は下式
2.80 > G > 0.65
〔但し、G = J × K
K = πL2 / 4
Lは第二炭素化処理繊維の直径(mm)〕
を満たす範囲としている。
In addition, since the fiber tension (J MPa) in the third carbonization process treatment changes depending on the fiber diameter after the second carbonization treatment, that is, the fiber cross-sectional area (K mm 2 ), the fiber stress is used as a tension factor in the present invention. (G mN) is used, and the fiber stress range is represented by the following formula 2.80>G> 0.65.
[However, G = J × K
K = πL 2/4
L is the diameter of the second carbonized fiber (mm)]
It is set as the range which satisfies.

また、これら焼成工程は、単一設備で連続して処理する事も、数個の設備で連続して処理する事も可能であり、特に限定するものではない。   Moreover, these baking processes can be processed continuously with a single facility or with several facilities, and are not particularly limited.

<表面処理>
上記第三炭素化処理繊維は、引き続いて表面処理を施す。表面処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、電解処理による表面処理が好ましい。表面処理において用いる電解液のpHは特に限定するものではないが、0〜5.5の範囲が好ましい。酸化還元電位(ORP)は+400mV以上、好ましくは+500mV以上であり、前記pHとORPとの積は0〜2300、より好ましくは100以下である。この電解液としては、無機酸、無機酸塩等を用いることができるが、硫酸、硝酸、塩酸等の無機酸がより好ましい。
<Surface treatment>
The third carbonized fiber is subsequently subjected to a surface treatment. For the surface treatment, a gas phase or a liquid phase treatment can be used, but surface treatment by electrolytic treatment is preferable from the viewpoint of easy process control and productivity. The pH of the electrolytic solution used in the surface treatment is not particularly limited, but is preferably in the range of 0 to 5.5. The oxidation-reduction potential (ORP) is +400 mV or more, preferably +500 mV or more, and the product of the pH and the ORP is 0 to 2300, more preferably 100 or less. As the electrolytic solution, an inorganic acid, an inorganic acid salt, or the like can be used, but an inorganic acid such as sulfuric acid, nitric acid, or hydrochloric acid is more preferable.

<サイジング処理>
上記第三炭素化処理繊維は、引き続いてサイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
<Sizing process>
The third carbonized fiber is subsequently subjected to a sizing process. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

このようにして得られた炭素繊維は、繊維軸方向に配向する襞を表面に有するので、マトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率、及び密度が高いことに加えて、毛羽や糸切れの少ない繊維である。   The carbon fibers obtained in this way have wrinkles oriented in the fiber axis direction on the surface, so that when composited with a matrix material, it functions as a reinforcing material having good adhesion to the matrix material. . Moreover, this carbon fiber is a fiber with less fuzz and yarn breakage in addition to high resin-impregnated strand strength, resin-impregnated strand elastic modulus, and high density.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件、並びに、前駆体繊維、耐炎化繊維及び炭素繊維の物性についての評価方法は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the processing method in each Example and a comparative example, and the evaluation method about the physical property of a precursor fiber, a flame-resistant fiber, and a carbon fiber were implemented with the following method.

<密度>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
<Density>
Measured by Archimedes method. The sample fiber was degassed in acetone and measured.

<広角X線測定(回折角17°又は26°)における結晶子サイズ、配向度>
X線回折装置:理学電機製RINT1200L、コンピュータ:日立2050/32を使用し、回折角17°又は26°における結晶子サイズを回折パターンより、配向度を半値幅より求めた。
<Crystallite size and orientation degree in wide-angle X-ray measurement (diffraction angle 17 ° or 26 °)>
Using an X-ray diffractometer: RINT1200L manufactured by Rigaku Corporation and a computer: Hitachi 2050/32, the crystallite size at a diffraction angle of 17 ° or 26 ° was determined from the diffraction pattern, and the degree of orientation was determined from the half width.

<単繊維弾性率>
JIS R 7606(2000)に規定された方法により第一炭素化工程一次延伸処理繊維の単繊維弾性率を測定した。
<Single fiber elastic modulus>
The single fiber elastic modulus of the first carbonized process primary stretch treated fiber was measured by the method defined in JIS R 7606 (2000).

<ストランド強度、弾性率>
JIS R 7601に規定された方法により第二炭素化処理繊維、第三炭素化処理繊維(炭素繊維)のストランド強度、弾性率を測定した。
<Strand strength, elastic modulus>
The strand strength and elastic modulus of the second carbonized fiber and the third carbonized fiber (carbon fiber) were measured by the method defined in JIS R7601.

<炭素繊維の表面酸素濃度O/C及び表面窒素濃度N/C>
炭素繊維の表面酸素濃度O/C及び表面窒素濃度N/Cは、次の手順に従ってXPS(ESCA)によって求めた。
<Carbon fiber surface oxygen concentration O / C and surface nitrogen concentration N / C>
The surface oxygen concentration O / C and the surface nitrogen concentration N / C of the carbon fiber were determined by XPS (ESCA) according to the following procedure.

炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10-6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。N1sピーク面積は、394〜406eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求めた。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求めた。炭素繊維表面の表面窒素濃度N/Cは、上記N1sピーク面積とC1sピーク面積の比で計算して求めた。 After cutting the carbon fibers and arranging them on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As a correction of the peak accompanying charging at the time of measurement, first, the binding energy value B. of the main peak of C 1s . E. Is adjusted to 284.6 eV. The N 1s peak area is obtained by drawing a straight base line in the range of 394 to 406 eV, the O 1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C 1s peak area is It was determined by drawing a straight baseline in the range of 282 to 296 eV. The surface oxygen concentration O / C on the surface of the carbon fiber was determined by calculating the ratio of the O 1s peak area to the C 1s peak area. The surface nitrogen concentration N / C on the carbon fiber surface was determined by calculating the ratio of the N 1s peak area to the C 1s peak area.

<バンド強度比(D/G)>
ラマン分光装置は、ジョバン・イボン社製シングル顕微鏡レーザーラマン分光装置T64000を使用した。励起光源としてAr+レーザー(λ=514.5nm)を用い、出力は20mWであった。得られたチャートより、ベースライン補正をし、1360cm-1バンド強度(D)、1580cm-1バンド強度(G)を算出し、バンド強度比(D/G)を求めた。同様の測定を3回繰り返し、その平均値を求め、測定材料のバンド強度比とした。
<Band intensity ratio (D / G)>
As the Raman spectroscope, a single microscope laser Raman spectroscope T64000 manufactured by Joban Yvon was used. An Ar + laser (λ = 514.5 nm) was used as an excitation light source, and the output was 20 mW. Baseline correction was performed from the obtained chart, 1360 cm −1 band intensity (D) and 1580 cm −1 band intensity (G) were calculated, and a band intensity ratio (D / G) was obtained. The same measurement was repeated 3 times, the average value was calculated | required, and it was set as the band intensity ratio of the measurement material.

<炭素繊維形状測定方法>
波状形状の山と谷との高低差(襞の粗さ)及び、微少な範囲部分の面粗さ(表面粗さ)は、自乗平均面粗さとして求められる。測定方法は、評価用炭素繊維を測定用ステンレス円盤上にのせ、サンプルの両端を固定した物を走査型プローブ顕微鏡(DI社製 SPM NanoscopeIII)を使用し、Tapping Modeで測定した。得られたデータを付属のソフトを用いて二次曲線補正を行い、自乗平均面粗さを求めた。
<Carbon fiber shape measurement method>
The difference in height between the wavy peaks and valleys (roughness of the ridges) and the surface roughness (surface roughness) of the minute range portion are obtained as the root mean square surface roughness. For the measurement method, the carbon fiber for evaluation was placed on a stainless steel disk for measurement, and a sample in which both ends of the sample were fixed was measured with a scanning probe microscope (SPM Nanoscope III, manufactured by DI) with a tapping mode. The obtained data was subjected to quadratic curve correction using the attached software, and the root mean square surface roughness was obtained.

波状形状の山と山との間隔(襞の間隔)は、同走査型プローブ顕微鏡を用いて2μm四方の範囲を測定し、得られた形状像から襞の数を計測した。同様の測定を5回繰り返し、その平均値を求め、襞の間隔とした。   The interval between wavy peaks and peaks (gap interval) was measured in a 2 μm square range using the same scanning probe microscope, and the number of wrinkles was measured from the obtained shape image. The same measurement was repeated 5 times, the average value was obtained, and it was set as the interval of the wrinkles.

実施例1
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式又は乾湿式紡糸し、水洗・乾燥・延伸・オイリングして繊維直径9.1μm、広角X線回折(回折角17°)による配向度が89.7%のアクリル系前駆体繊維を得た。この繊維を加熱空気中、入口温度(最低温度)200℃、出口温度(最高温度)260℃の熱風循環式耐炎化炉で耐炎化処理し、繊維密度1.34g/cm3、DMFに12時間浸漬した場合の重量減少比が5.0%のアクリル系耐炎化繊維を得た。
Example 1
A copolymer spinning stock solution of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet or dry-wet spun, washed with water, dried, drawn and oiled, and a fiber diameter of 9.1 μm, wide-angle X-ray. An acrylic precursor fiber having an orientation degree of 89.7% by diffraction (diffraction angle 17 °) was obtained. This fiber was flameproofed in heated air in a hot air circulation type flameproofing furnace having an inlet temperature (minimum temperature) of 200 ° C. and an outlet temperature (maximum temperature) of 260 ° C., and a fiber density of 1.34 g / cm 3 and DMF for 12 hours. An acrylic flameproof fiber having a weight reduction ratio of 5.0% when immersed was obtained.

次いで、この耐炎化繊維を不活性雰囲気中、入口温度(最低温度)300℃、出口温度(最高温度)800℃の第一炭素化炉において、一次延伸・二次延伸処理を表1に示す条件で実施した。   Next, this flame-resistant fiber was subjected to the conditions shown in Table 1 for primary stretching and secondary stretching in an inert atmosphere in a first carbonization furnace having an inlet temperature (minimum temperature) of 300 ° C. and an outlet temperature (maximum temperature) of 800 ° C. It carried out in.

一次延伸は図2のβの範囲内で、延伸倍率1.05倍で処理した。この一次延伸処理後の繊維、即ち一次延伸処理繊維は、単繊維弾性率8.8GPa、密度1.40g/cm3、結晶子サイズ1.20nmの、糸切れのない繊維であった。 The primary stretching was performed at a stretching ratio of 1.05 within the range of β in FIG. The fiber after the primary stretching treatment, that is, the primary stretch-treated fiber was a fiber having a single fiber elastic modulus of 8.8 GPa, a density of 1.40 g / cm 3 , and a crystallite size of 1.20 nm and having no yarn breakage.

その後この一次延伸処理繊維を、引き続き第一炭素化工程において、二次延伸が終了するまで密度が上昇し続ける範囲、且つ結晶子サイズが1.45nmより大きくならない範囲(図3、図4)で、延伸倍率1.00倍で二次延伸処理したところ、密度1.70g/cm3、配向度79.0%、繊維直径5.9μm、繊維断面積2.73×10-5mm2の、糸切れのない第一炭素化処理繊維を得た。 Thereafter, in the first carbonization step, the primary stretched fiber is continuously increased in density until the secondary stretching is completed, and the crystallite size is not larger than 1.45 nm (FIGS. 3 and 4). When subjected to secondary stretching treatment at a stretching ratio of 1.00 times, a density of 1.70 g / cm 3 , an orientation degree of 79.0%, a fiber diameter of 5.9 μm, a fiber cross-sectional area of 2.73 × 10 −5 mm 2 , A first carbonized fiber without yarn breakage was obtained.

次いで、この第一炭素化処理繊維を不活性雰囲気中、入口温度(最低温度)800℃、出口温度(最高温度)1550℃の第二炭素化炉において、一次処理・二次処理を以下に示す条件で実施した。   Next, primary treatment and secondary treatment of the first carbonized fiber in an inert atmosphere in a second carbonization furnace having an inlet temperature (minimum temperature) of 800 ° C. and an outlet temperature (maximum temperature) of 1550 ° C. are shown below. Conducted under conditions.

先ず、上記第一炭素化処理繊維を、密度及び結晶子サイズについて、図5及び6に示す範囲内に調節すると共に、繊維張力29.9MPa、繊維応力0.817mNで延伸処理し、一次処理繊維を得た。   First, the first carbonized fiber is adjusted to have a density and a crystallite size within the ranges shown in FIGS. 5 and 6, and is subjected to a drawing treatment with a fiber tension of 29.9 MPa and a fiber stress of 0.817 mN to obtain a primary treated fiber. Got.

その後この一次処理繊維を、引き続き第二炭素化工程において二次処理が終了するまで、密度を図7に示す範囲内に調節すると共に、繊維張力14.9MPa、繊維応力0.408mNで延伸処理し、第二炭素化処理繊維を得た。得られた繊維の直径は5.2μm、繊維断面積2.12×10-5mm2であり、密度1.805g/cm3、伸度2.20%であった。 Thereafter, the density of the primary treated fiber is adjusted within the range shown in FIG. 7 until the secondary treatment is completed in the second carbonization step, and the fiber is stretched at a fiber tension of 14.9 MPa and a fiber stress of 0.408 mN. A second carbonized fiber was obtained. The obtained fiber had a diameter of 5.2 μm, a fiber cross-sectional area of 2.12 × 10 −5 mm 2 , a density of 1.805 g / cm 3 , and an elongation of 2.20%.

その後、上記第二炭素化処理繊維を、引き続き第三炭素化工程において、不活性雰囲気中、入口温度(最低温度)1600℃、出口温度(最高温度)1900℃で、繊維張力76.9MPa、繊維応力1.633mNで延伸処理し、第三炭素化処理繊維を得た。   Thereafter, the second carbonized fiber is subsequently subjected to a third carbonization step in an inert atmosphere at an inlet temperature (minimum temperature) of 1600 ° C. and an outlet temperature (maximum temperature) of 1900 ° C., with a fiber tension of 76.9 MPa, fiber A third carbonized fiber was obtained by drawing with a stress of 1.633 mN.

次いで、この第三炭素化処理繊維を、pH0.1、酸化還元電位(ORP)+600mV、前記pHとORPとの積60に調節した電解液(硝酸の水溶液)を用いて表面処理を施した。   Next, the third carbonized fiber was subjected to surface treatment using an electrolytic solution (aqueous nitric acid solution) adjusted to pH 0.1, oxidation-reduction potential (ORP) +600 mV, and a product 60 of the pH and ORP.

引き続き公知の方法で、サイジング剤を施し、乾燥して密度1.77g/cm3、繊維直径5.1μm、ストランド強度6130MPa、ストランド弾性率343GPa、配向度84.2%、結晶子サイズ2.2nmの炭素繊維を得た。 Subsequently, a sizing agent was applied by a known method and dried to a density of 1.77 g / cm 3 , a fiber diameter of 5.1 μm, a strand strength of 6130 MPa, a strand elastic modulus of 343 GPa, an orientation degree of 84.2%, and a crystallite size of 2.2 nm. Obtained carbon fiber.

また、繊維表面には襞が観察され、襞の間隔0.20μm、襞の粗さRms(5μ)25.0nm、表面粗さRms(0.5μ)6.2nm、表面酸素濃度(O/C)0.14、表面窒素濃度(N/C)0.025、バンド強度比(D/G)1.293と、複合材料用の炭素繊維として良好な物性が得られた。   Moreover, wrinkles are observed on the fiber surface, wrinkle spacing 0.20 μm, wrinkle roughness Rms (5 μ) 25.0 nm, surface roughness Rms (0.5 μ) 6.2 nm, surface oxygen concentration (O / C ) 0.14, surface nitrogen concentration (N / C) 0.025, band intensity ratio (D / G) 1.293, and good physical properties as a carbon fiber for a composite material were obtained.

実施例2〜3及び比較例1〜14
実施例1で得られた耐炎化繊維を表1〜5に示す条件で処理した以外は、実施例1と同様に、第一炭素化処理、第二炭素化処理、第三炭素化処理、表面処理、サイジング処理を行い、表1〜5に示す物性の第一炭素化繊維、第二炭素化繊維、及び表面処理、サイジング処理後の炭素繊維を得た。
Examples 2-3 and Comparative Examples 1-14
Except having processed the flameproof fiber obtained in Example 1 on the conditions shown in Tables 1-5, similarly to Example 1, the 1st carbonization process, the 2nd carbonization process, the 3rd carbonization process, the surface Treatment and sizing treatment were performed to obtain first carbonized fibers and second carbonized fibers having physical properties shown in Tables 1 to 5, and carbon fibers after surface treatment and sizing treatment.

但し、比較例4及び10では第二炭素化工程以降を、比較例5及び6では第一炭素化二次延伸処理工程以降を通過させることができなかった。   However, in Comparative Examples 4 and 10, the second carbonization step and subsequent steps could not be passed, and in Comparative Examples 5 and 6, the first carbonized secondary stretching step and subsequent steps could not be passed.

以上の結果、実施例2〜3で得られた炭素繊維は表1に示すように、実施例1と同様に複合材料用の炭素繊維として良好な物性が得られた。これに対し、比較例1〜3、7〜9及び11〜14では表1〜5に示すように炭素繊維は得られたものの、複合材料用の炭素繊維として良好な物性ではなかった。   As a result, as shown in Table 1, the carbon fibers obtained in Examples 2 to 3 had good physical properties as carbon fibers for composite materials as in Example 1. On the other hand, in Comparative Examples 1-3, 7-9, and 11-14, although carbon fiber was obtained as shown in Tables 1-5, it was not a physical property favorable as carbon fiber for composite materials.

実施例4及び比較例15〜16
実施例1で得られた第二炭素化繊維を表6に示す温度条件で第三炭素化処理した以外は、実施例1と同様に、第三炭素化処理、表面処理、サイジング処理を行い、表6に示す物性の表面処理、サイジング処理後の炭素繊維を得た。
Example 4 and Comparative Examples 15-16
Except that the second carbonized fiber obtained in Example 1 was subjected to the third carbonization treatment under the temperature conditions shown in Table 6, the third carbonization treatment, the surface treatment, and the sizing treatment were performed in the same manner as in Example 1. Carbon fibers after surface treatment and sizing treatment with physical properties shown in Table 6 were obtained.

以上の結果、実施例4で得られた炭素繊維は表6に示すように、実施例1と同様に複合材料用の炭素繊維として良好な物性が得られた。これに対し、比較例15〜16で得られた炭素繊維は表6に示すように、複合材料用の炭素繊維として良好な物性ではなかった。   As a result of the above, as shown in Table 6, the carbon fiber obtained in Example 4 had good physical properties as a carbon fiber for a composite material as in Example 1. On the other hand, as shown in Table 6, the carbon fibers obtained in Comparative Examples 15 to 16 were not good physical properties as carbon fibers for composite materials.

実施例5〜8及び比較例17〜23
実施例1で得られた第三炭素化繊維を表7〜9に示す条件で表面処理した以外は、実施例1と同様に、表面処理、サイジング処理を行い、表7〜9に示す物性の表面処理、サイジング処理後の炭素繊維を得た。
Examples 5-8 and Comparative Examples 17-23
Except having surface-treated the third carbonized fiber obtained in Example 1 under the conditions shown in Tables 7 to 9, surface treatment and sizing treatment were performed in the same manner as in Example 1, and the physical properties shown in Tables 7 to 9 were obtained. Carbon fiber after surface treatment and sizing treatment was obtained.

以上の結果、実施例5〜8で得られた炭素繊維は表7〜9に示すように、実施例1と同様に複合材料用の炭素繊維として良好な物性が得られた。これに対し、比較例17〜23で得られた炭素繊維は表7〜9に示すように、複合材料用の炭素繊維として良好な物性ではなかった。   As a result, as shown in Tables 7 to 9, the carbon fibers obtained in Examples 5 to 8 had good physical properties as carbon fibers for composite materials as in Example 1. On the other hand, the carbon fibers obtained in Comparative Examples 17 to 23 were not good physical properties as carbon fibers for composite materials as shown in Tables 7 to 9.

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

Figure 0005036182
Figure 0005036182

本発明の炭素繊維の一例を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows an example of the carbon fiber of this invention. 第一炭素化工程における一次延伸時の温度上昇に対するPAN系耐炎化繊維の弾性率の推移を示すグラフである。It is a graph which shows transition of the elasticity modulus of the PAN-type flameproof fiber with respect to the temperature rise at the time of primary extending | stretching in a 1st carbonization process. 第一炭素化工程における一次延伸時の温度上昇に対するPAN系耐炎化繊維の結晶子サイズの推移を示すグラフである。It is a graph which shows transition of the crystallite size of the PAN-type flameproof fiber with respect to the temperature rise at the time of primary extending | stretching in a 1st carbonization process. 第一炭素化工程における二次延伸時の温度上昇に対する一次延伸処理繊維の密度の推移を示すグラフである。It is a graph which shows transition of the density of the primary extending | stretching process fiber with respect to the temperature rise at the time of secondary extending | stretching in a 1st carbonization process. 第二炭素化工程における一次処理時の温度上昇に対する第一炭素化処理繊維の密度の推移を示すグラフである。It is a graph which shows transition of the density of the 1st carbonization process fiber with respect to the temperature rise at the time of the primary process in a 2nd carbonization process. 第二炭素化工程における一次処理時の温度上昇に対する第一炭素化処理繊維の結晶子サイズの推移を示すグラフである。It is a graph which shows transition of the crystallite size of the 1st carbonization process fiber with respect to the temperature rise at the time of the primary process in a 2nd carbonization process. 第二炭素化工程における二次処理時の温度上昇に対する一次処理繊維の密度の推移を示すグラフである。It is a graph which shows transition of the density of the primary processing fiber with respect to the temperature rise at the time of the secondary processing in a 2nd carbonization process.

符号の説明Explanation of symbols

2 炭素繊維
4 波状形状の山
6 波状形状の谷
a 波状形状の山と山との間隔(襞の間隔)
b 波状形状の山と谷との高低差(襞の粗さ)
c 微少な範囲部分の面粗さ(表面粗さ)
2 Carbon fiber 4 Wave-shaped peaks 6 Wave-shaped valleys a Spacing between wave-shaped peaks and peaks (gap spacing)
b Height difference between corrugated peaks and valleys (rough roughness)
c Surface roughness of surface area (surface roughness)

Claims (1)

樹脂含浸ストランド強度が6100〜6300MPa、樹脂含浸ストランド弾性率が340〜370GPa、密度が1.76〜1.80g/cm3 、平均繊維直径が5.0〜6.0μm、X線光電子分光器により測定される炭素繊維の表面酸素濃度(O/C)が0.13〜0.15、表面窒素濃度(N/C)が0.018〜0.042、広角X線回折による結晶子サイズが2〜2.5nm、且つラマン分光法で測定される1360cm -1 バンド強度(D)と1580cm -1 バンド強度(G)とのバンド強度比(D/G)が1.130〜1.300であり、且つ繊維軸方向に配向する襞を表面に有し、走査型プローブ顕微鏡で2μmの範囲で測定した襞の間隔が0.20〜0.25μm、走査型プローブ顕微鏡で5μmの範囲で測定した自乗平均面粗さRms(5μ)が23.0〜37.4nm、0.5μmの範囲で測定した自乗平均面粗さRms(0.5μ)が4.3〜9.9nmである炭素繊維。 Resin impregnated strand strength is 6100 to 6300 MPa, resin impregnated strand elastic modulus is 340 to 370 GPa, density is 1.76 to 1.80 g / cm 3 , average fiber diameter is 5.0 to 6.0 μm, by X-ray photoelectron spectrometer The surface oxygen concentration (O / C) of the carbon fiber to be measured is 0.13 to 0.15, the surface nitrogen concentration (N / C) is 0.018 to 0.042, and the crystallite size by wide-angle X-ray diffraction is 2 The band intensity ratio (D / G) between 1360 cm −1 band intensity (D) and 1580 cm −1 band intensity (G) measured by Raman spectroscopy is 1.130 to 1.300 . and have a fold oriented in the fiber axis direction on the surface, the interval of the pleats measured in the range of 2μm with a scanning probe microscope was measured in a range of 0.20~0.25Myuemu, 5 [mu] m with a scanning probe microscope square Average surface roughness Rms (5 mu) is 23.0~37.4Nm, root-mean-square was measured in the range of 0.5μm roughness Rms (0.5 [mu]) is 4.3~9.9nm der Ru carbon fibers.
JP2005377464A 2005-12-01 2005-12-28 Carbon fiber, precursor and method for producing carbon fiber Expired - Fee Related JP5036182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377464A JP5036182B2 (en) 2005-12-01 2005-12-28 Carbon fiber, precursor and method for producing carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005348048 2005-12-01
JP2005348048 2005-12-01
JP2005377464A JP5036182B2 (en) 2005-12-01 2005-12-28 Carbon fiber, precursor and method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2007177368A JP2007177368A (en) 2007-07-12
JP5036182B2 true JP5036182B2 (en) 2012-09-26

Family

ID=38302828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377464A Expired - Fee Related JP5036182B2 (en) 2005-12-01 2005-12-28 Carbon fiber, precursor and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP5036182B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264150B2 (en) * 2007-11-06 2013-08-14 東邦テナックス株式会社 Carbon fiber strand and method for producing the same
ES2385125T3 (en) * 2007-11-06 2012-07-18 Toho Tenax Co., Ltd. Carbon fiber strand and process for its production
CN101910480B (en) 2007-12-30 2012-02-15 东邦特耐克丝株式会社 Processes for producing flameproof fiber and carbon fiber
US7638110B1 (en) 2008-07-02 2009-12-29 Toho Tenax Co., Ltd. Carbon fiber
JP5393070B2 (en) * 2008-07-04 2014-01-22 東邦テナックス株式会社 Carbon fiber and method for producing the same
JP5125867B2 (en) * 2008-08-07 2013-01-23 東レ株式会社 Reinforced fiber substrate, laminate and composite material
JP2010047865A (en) * 2008-08-21 2010-03-04 Toho Tenax Co Ltd Carbon fiber for composite material and composite material produced by using the same
JP5635740B2 (en) * 2009-03-26 2014-12-03 東邦テナックス株式会社 Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP6998923B2 (en) 2019-09-19 2022-01-18 株式会社豊田中央研究所 Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098688A (en) * 1983-08-05 1992-03-24 Hercules Incorporated Carbon fibres
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP4238436B2 (en) * 1999-10-25 2009-03-18 東レ株式会社 Carbon fiber manufacturing method
JP4533518B2 (en) * 2000-08-31 2010-09-01 東邦テナックス株式会社 Fiber reinforced composite material using high strength and high elongation carbon fiber
JP2002302828A (en) * 2001-04-04 2002-10-18 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JP2002371438A (en) * 2001-06-14 2002-12-26 Toray Ind Inc Graphitized fiber and composite material
JP2003073932A (en) * 2001-08-30 2003-03-12 Mitsubishi Rayon Co Ltd Carbon fiber
JP2005133274A (en) * 2003-10-10 2005-05-26 Mitsubishi Rayon Co Ltd Carbon fiber and composite material containing the same
JP4271019B2 (en) * 2003-12-16 2009-06-03 東邦テナックス株式会社 Carbon fiber manufacturing method

Also Published As

Publication number Publication date
JP2007177368A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5036182B2 (en) Carbon fiber, precursor and method for producing carbon fiber
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
TWI521108B (en) Method for producing flame-resistant fiber bundle and mfthod for producing carbon fiber bundle
JP2009114578A (en) Carbon fiber strand and process for producing the same
US7638110B1 (en) Carbon fiber
JP4662450B2 (en) Carbon fiber manufacturing method
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
CN110832127B (en) Carbon fiber bundle and method for producing same
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JP4088500B2 (en) Carbon fiber manufacturing method
JP5383158B2 (en) Carbon fiber and method for producing the same
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
JP4565978B2 (en) Carbon fiber manufacturing method
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP2004197278A (en) Method for producing carbon fiber
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP4088543B2 (en) High-strength carbon fiber and method for producing the same
Nurmukhametova et al. Carbon fiber. Overview
JP2004107836A (en) Method for producing carbon fiber
JP4626939B2 (en) Carbon fiber manufacturing method
JP4454364B2 (en) Carbon fiber manufacturing method
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method
JP2006283228A (en) Carbon fiber, and method for producing precursor and carbon fiber
JP6105427B2 (en) Carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees