JP2001131833A - Carbon yarn and method for producing the same - Google Patents

Carbon yarn and method for producing the same

Info

Publication number
JP2001131833A
JP2001131833A JP30229099A JP30229099A JP2001131833A JP 2001131833 A JP2001131833 A JP 2001131833A JP 30229099 A JP30229099 A JP 30229099A JP 30229099 A JP30229099 A JP 30229099A JP 2001131833 A JP2001131833 A JP 2001131833A
Authority
JP
Japan
Prior art keywords
yarn
temperature
fiber
acrylic
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30229099A
Other languages
Japanese (ja)
Other versions
JP4238436B2 (en
JP2001131833A5 (en
Inventor
Shiyouji Murai
彰児 村井
Motoi Mizuhashi
基 水橋
Masaru Tanaka
勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30229099A priority Critical patent/JP4238436B2/en
Publication of JP2001131833A publication Critical patent/JP2001131833A/en
Publication of JP2001131833A5 publication Critical patent/JP2001131833A5/ja
Application granted granted Critical
Publication of JP4238436B2 publication Critical patent/JP4238436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a carbon yarn which has a high level elastic modulus and a high level compression strength enabling the expression of a high compression strength in a obtained composite material, and to provide a method for stably producing the carbon yarn. SOLUTION: A method for producing carbon yarns, comprising subjecting an acrylic yarn having a single filament elongation variation rate of <=10% as a precursor yarn to a flame-resisting treatment at a temperature of 200 to 300 deg.C in an oxidative atmosphere, subjecting the treated acrylic yarn to a preliminary carbonization treatment at a temperature of 400 to 500 deg.C at a temperature-rising rate of 20 to 100 deg.C/min in an inactive atmosphere, and further, subjecting the treated product to a carbonization treatment at a temperature of 1,800 to 2,000 deg.C in an inactive atmosphere, characterized by treating the acrylic yarn in a drawn ratio of 1.1 to 1.3 in the preliminary carbonization treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維及びその
製造方法に関する。詳しくは、複合材料の大幅な性能向
上に寄与する高い圧縮強度を有する炭素繊維、及びかか
る炭素繊維の製造方法に関する。
[0001] The present invention relates to a carbon fiber and a method for producing the same. More specifically, the present invention relates to a carbon fiber having a high compressive strength that contributes to a significant improvement in performance of a composite material, and a method for producing such a carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維は、比強度や比弾性率が優れる
ため、ゴルフシャフト、釣り竿などのスポーツレジャー
分野や宇宙航空分野を中心として、用途が拡大してい
る。それに伴い、一層の品質の向上が望まれているが、
炭素繊維の引張強度、引張弾性率は改善傾向にあるもの
の、圧縮強度の向上が不充分であり、使用する用途によ
っては依然として適用できないことがある。
2. Description of the Related Art Since carbon fibers have excellent specific strength and specific elastic modulus, their applications are expanding mainly in the field of sports and leisure, such as golf shafts and fishing rods, and the field of aerospace. Along with that, further improvement in quality is desired,
Although the tensile strength and the tensile modulus of the carbon fiber tend to be improved, the improvement in the compressive strength is insufficient, and it may still not be applicable depending on the intended use.

【0003】炭素繊維を構造材に適用する場合は、高い
レベルの引張弾性率を反映させながら、一層の軽量化を
実現するため、構造材の厚みを薄くすることが多いが、
この場合、炭素繊維自体の圧縮強度が不足すると、構造
材全体の圧縮強度が低下する。
[0003] When carbon fiber is applied to a structural material, the thickness of the structural material is often reduced in order to further reduce the weight while reflecting a high level of tensile modulus.
In this case, if the compressive strength of the carbon fiber itself is insufficient, the compressive strength of the entire structural material decreases.

【0004】特開昭63−211326号公報に、アク
リル系繊維を炭化処理する際に、温度を2200℃以上
とし、繊維を積極的に延伸して、その配向緩和を抑制
し、高引張弾性率、高圧縮強度の炭素繊維を得る技術が
開示されている。ところが、熱処理温度が高いために、
炭素繊維の結晶サイズが大きくなり、圧縮強度は、期待
された程向上していない。
Japanese Patent Application Laid-Open No. 63-213326 discloses that when carbonizing an acrylic fiber, the temperature is raised to 2200 ° C. or higher, the fiber is actively stretched, its orientation relaxation is suppressed, and a high tensile modulus is obtained. A technique for obtaining carbon fibers having high compressive strength has been disclosed. However, due to the high heat treatment temperature,
The crystal size of the carbon fibers has increased, and the compressive strength has not improved as expected.

【0005】また、特開平4-19219公報に、電子
線照射によって炭素繊維を非晶化する技術が開示されて
おり、また、特開平2-259118公報に、炭素繊維
表層をエッチングする技術が開示されている。これら技
術によれば、炭素繊維表層の結晶サイズは小さくなる
が、炭化処理の最高温度が2000℃以上となるため、
炭素繊維全体として結晶サイズは小さくならず、圧縮強
度の向上は不充分であった。
Further, Japanese Patent Application Laid-Open No. 4-19219 discloses a technique for amorphizing carbon fibers by electron beam irradiation, and Japanese Patent Application Laid-Open No. 2-259118 discloses a technique for etching the surface layer of carbon fibers. Have been. According to these techniques, the crystal size of the carbon fiber surface layer is reduced, but since the maximum temperature of the carbonization treatment is 2000 ° C. or higher,
The crystal size was not reduced as a whole carbon fiber, and the improvement in compressive strength was insufficient.

【0006】圧縮強度を損なわず、炭素繊維に高引張弾
性率を実現するためには、炭化処理において、温度を1
800〜2000℃とするとともに、1.1以上の倍率
で積極的に延伸しなければならないが、かかる方法によ
れば、得られる炭素繊維に糸切れや毛羽が多量に生じる
傾向があった。
[0006] In order to realize a high tensile modulus of carbon fiber without impairing the compressive strength, it is necessary to set the temperature to 1 in the carbonization treatment.
The temperature must be 800 to 2000 ° C., and the film must be actively stretched at a magnification of 1.1 or more. However, according to such a method, a large amount of yarn breakage or fluff tends to occur in the obtained carbon fiber.

【0007】また、炭素繊維の製造において通常採用さ
れることの多い紡糸法である乾湿式紡糸法によれば、凝
固浴中で、凝固が進行途上にある糸条が、糸道ガイド等
に強く接触すると、糸条を構成する単糸に架かる張力に
差が生じ、かかるアクリル系繊維を延伸しながら炭化処
理すると、繊維束内において、伸度の低い単糸が延伸の
張力に抗しきれず、糸切れが生じるなどして、得られる
炭素繊維の品位が大きく低下していた。
[0007] According to the dry-wet spinning method, which is a spinning method often used in the production of carbon fibers, a yarn which is undergoing coagulation in a coagulation bath is strongly applied to a yarn path guide or the like. Upon contact, a difference occurs in the tension applied to the single yarns constituting the yarn, and when the acrylic fiber is carbonized while being drawn, the single yarn having a low elongation cannot fully withstand the drawing tension in the fiber bundle. The quality of the obtained carbon fiber was greatly reduced due to, for example, yarn breakage.

【0008】このように従来より、炭素繊維の特性改善
のため、製糸や、炭化処理等の熱処理時の延伸倍率を調
節するなど様々な手法が検討されてきたが、これらによ
れば、アクリル系繊維の配向性が充分に向上されず、高
い強度特性が要求される用途にも問題なく適用できる、
引張弾性率と圧縮強度が高レベルで両立した炭素繊維は
得られていなかった。
As described above, various techniques have conventionally been studied to improve the properties of carbon fibers, such as adjusting the draw ratio during heat treatment such as spinning and carbonization. The orientation of the fiber is not sufficiently improved and can be applied without problems to applications requiring high strength properties.
A carbon fiber having both high tensile modulus and high compressive strength was not obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高レベルの
引張弾性率を有し、得られる複合材料に高い圧縮強度を
発現させる高レベルの圧縮強度を有する炭素繊維、およ
びかかる炭素繊維を安定に製造する方法を提供せんとす
るものである。
DISCLOSURE OF THE INVENTION The present invention provides a carbon fiber having a high level of tensile modulus, a high level of compressive strength that allows the resulting composite material to exhibit high compressive strength, and a method for stabilizing such carbon fiber. To provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を達
成するために、次の構成を有する。即ち、引張弾性率が
340〜450GPa、広角X線回折より測定される炭
素網面の(002)面の結晶サイズLcが2.4〜3.2n
m、ASTM D695による圧縮強度が1450〜2
000MPaであるアクリル系炭素繊維である。
The present invention has the following configuration to achieve the above object. That is, the tensile modulus is 340 to 450 GPa, and the crystal size Lc of the (002) plane of the carbon network plane measured by wide-angle X-ray diffraction is 2.4 to 3.2 n.
m, compressive strength according to ASTM D695 is 1450-2
Acrylic carbon fiber of 000 MPa.

【0011】また、本発明は、上記課題を達成するため
に、次の構成を有する。即ち、単糸伸度変動率が10%
以下であるアクリル系繊維を前駆体繊維とし、酸化性雰
囲気下、温度200〜300℃で耐炎化処理し、続いて
不活性雰囲気下、温度400〜500℃、昇温速度20
〜100℃/分で前炭化処理し、さらに不活性雰囲気
下、温度1800〜2000℃で炭化処理する炭素繊維
の製造方法であって、前記前炭化処理において、アクリ
ル系繊維の延伸倍率を1.1〜1.3として処理するこ
とを特徴とするアクリル系炭素繊維の製造方法である。
The present invention has the following configuration in order to achieve the above object. That is, the variation rate of the single yarn elongation is 10%.
The following acrylic fiber is used as a precursor fiber and subjected to a flame-proof treatment at a temperature of 200 to 300 ° C. in an oxidizing atmosphere, and subsequently at a temperature of 400 to 500 ° C. and a heating rate of 20 in an inert atmosphere.
A method for producing carbon fibers in which a carbonization treatment is performed at a temperature of 1800 to 2000 ° C. in an inert atmosphere at a temperature of 1 to 100 ° C./min. This is a method for producing an acrylic carbon fiber, which is treated as 1 to 1.3.

【0012】[0012]

【発明の実施の形態】本発明者らは、鋭意検討の結果、
アクリル系繊維を前駆体繊維とし、酸化性雰囲気下、耐
炎化、前炭化処理し、さらに不活性雰囲気下、温度18
00〜2000℃で炭化処理することで得られる炭素繊
維の製造方法において、前記アクリル系繊維の単糸伸度
変動率を特定値以下とし、前記前炭化処理時のアクリル
系繊維の延伸倍率を特定範囲内とすることにより、高レ
ベルの引張弾性率と、圧縮強度を兼ね備える炭素繊維が
容易かつ安定に得られ、前記した課題を一挙に解決する
ことを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies and as a result,
Acrylic fiber as precursor fiber, oxidizing atmosphere, flame resistance, pre-carbonization treatment, and further, under inert atmosphere, temperature 18
In the method for producing carbon fibers obtained by carbonizing at 00 to 2000 ° C., the single yarn elongation variation of the acrylic fibers is set to a specific value or less, and the draw ratio of the acrylic fibers at the time of the pre-carbonizing is specified. By setting the content within the above range, it has been found that carbon fibers having both a high level of tensile modulus and compressive strength can be easily and stably obtained, and the above-mentioned problems can be solved at once.

【0013】本発明の炭素繊維は、引張弾性率が340
〜450GPa、好ましくは360〜420GPaであ
る炭素繊維である。340GPa未満では、圧縮強度の
不足は顕在化しないが、適用する用途によっては、引張
弾性率が不足することがある。また450GPaを越え
ると炭素網面の結晶サイズLcが拡大し、圧縮強度が不
足することがある。
The carbon fiber of the present invention has a tensile modulus of 340.
To 450 GPa, preferably 360 to 420 GPa. If it is less than 340 GPa, the lack of compressive strength will not be apparent, but the tensile modulus may be insufficient depending on the application to which it is applied. On the other hand, if it exceeds 450 GPa, the crystal size Lc of the carbon network plane increases, and the compressive strength may be insufficient.

【0014】また、本発明の炭素繊維は、広角X線回折
より測定される炭素網面の(002)面の結晶サイズLcが
2.4〜3.2nmである炭素繊維である。2.4nm
未満であると、引張弾性率が不足することがあり、3.
2nmを越えると圧縮強度が不足することがある。
The carbon fiber of the present invention is a carbon fiber having a (002) plane crystal size Lc of 2.4 to 3.2 nm as measured by wide-angle X-ray diffraction. 2.4 nm
If it is less than 3, the tensile modulus may be insufficient.
If it exceeds 2 nm, the compressive strength may be insufficient.

【0015】さらに、本発明の炭素繊維は、後述する、
ASTM D695による圧縮強度が1450MPa以
上、好ましくは1500MPa以上である炭素繊維であ
る。1450MPa未満であると、例えばゴルフシャフ
ト等、構造材に高レベルの耐圧縮特性が要求される用途
では、適用できないことがある。なお、圧縮強度は、2
000MPaあれば、本発明の効果を奏するに当たり、
充分であることが多い。
Further, the carbon fiber of the present invention is described below.
It is a carbon fiber having a compressive strength according to ASTM D695 of 1450 MPa or more, preferably 1500 MPa or more. If it is less than 1450 MPa, it may not be applicable in applications where a high level of compression resistance is required for a structural material such as a golf shaft. The compressive strength is 2
000MPa, in order to achieve the effects of the present invention,
Often sufficient.

【0016】本発明において、上述したような炭素繊維
は、例えば、以下に示すような、本発明の炭素繊維の製
造方法によって製造することができる。
In the present invention, the above-mentioned carbon fiber can be produced, for example, by the following method for producing a carbon fiber of the present invention.

【0017】本発明の炭素繊維の前駆体である、アクリ
ル系繊維の原料としては、通常、アクリロニトリル90
重量%以上、アクリロニトリルと共重合しうる共重合体
が10重量%以下で構成されるアクリル系共重合体が使
用できる。
The raw material of the acrylic fiber, which is the precursor of the carbon fiber of the present invention, is usually acrylonitrile 90
An acrylic copolymer composed of at least 10% by weight of a copolymer copolymerizable with acrylonitrile can be used.

【0018】前記共重合体としては、アクリル酸、メタ
アクリル酸、イタコン酸、およびそれらのメチルエステ
ル、エチルエステル、プロピルエステル、ブチルエステ
ル、アルカリ金属塩、アンモニウム塩、アリルスルホン
酸、メタリルスルホン酸、スチレンスルホン酸、及びそ
れらのアルカリ金属塩からなる群から選ばれる少なくと
も1種が使用できる。
Examples of the copolymer include acrylic acid, methacrylic acid, itaconic acid, and their methyl esters, ethyl esters, propyl esters, butyl esters, alkali metal salts, ammonium salts, allylsulfonic acid, methallylsulfonic acid. And at least one selected from the group consisting of styrenesulfonic acid, and alkali metal salts thereof.

【0019】アクリル系重合体は、乳化重合、塊状重
合、溶液重合など従来公知の重合法により合成される。
また、溶媒としては、ジメチルアセトアミド、ジメチル
スルホキシド、ジメチルホルムアミド、硝酸、ロダンソ
−ダ水溶液などが用いられ、紡糸原液が調整される。
The acrylic polymer is synthesized by a conventionally known polymerization method such as emulsion polymerization, bulk polymerization, and solution polymerization.
As the solvent, dimethylacetamide, dimethylsulfoxide, dimethylformamide, nitric acid, an aqueous solution of rhodasoda, or the like is used, and a spinning solution is prepared.

【0020】アクリル系重合体は、得られる炭素繊維の
物性をより高める観点から、その極限粘度[η]が1以
上、好ましくは1.35以上、より好ましくは1.7以
上であるのが良い。ここで極限粘度[η]の上限値とし
ては、紡糸を安定させる観点から、5以下とするのが良
い。
The acrylic polymer has an intrinsic viscosity [η] of 1 or more, preferably 1.35 or more, and more preferably 1.7 or more, from the viewpoint of further improving the physical properties of the obtained carbon fiber. . Here, the upper limit of the intrinsic viscosity [η] is preferably 5 or less from the viewpoint of stabilizing spinning.

【0021】アクリル系繊維は、前記した紡糸原液を使
用し、口金から、2〜10mmのエア−ギャップを通過
させて凝固浴中に吐出して糸条となし、凝固浴中に設置
された折返ガイドを含む複数の糸道ガイドを介して、糸
条を凝固浴から引き取る乾湿式紡糸法で紡糸するのが好
ましい。この際、凝固浴液には紡糸原液に用いた溶媒と
同種の溶媒を主成分とする水溶液を使用するのが好まし
い。ここで、「折返ガイド」とは、凝固浴内に設置され
た糸道ガイドの内、搬送される糸条の接触角が最大とな
る糸道ガイドをいう。
The acrylic fiber is discharged from the spinneret into a coagulation bath through a spinneret through an air gap of 2 to 10 mm to form a yarn. The yarn is preferably spun by a dry-wet spinning method in which the yarn is drawn from a coagulation bath through a plurality of yarn guides including a guide. At this time, it is preferable to use, as the coagulation bath solution, an aqueous solution mainly composed of the same solvent as the solvent used for the spinning solution. Here, the "return guide" refers to a yarn path guide in which the contact angle of the conveyed yarn is the maximum among the yarn path guides installed in the coagulation bath.

【0022】本発明において、アクリル系繊維の繊度は
0.3〜1d、好ましくは0.5〜0.8dであるのが
良い。0.3d未満であると、製糸工程で、繊維から発
生する粉塵が微細となり環境面の問題が生じることがあ
り、1dを越えると、後の耐炎化工程、前炭化工程、及
び炭化工程で、均一な熱処理が困難となることがある。
In the present invention, the fineness of the acrylic fiber is 0.3 to 1 d, preferably 0.5 to 0.8 d. If it is less than 0.3d, dust generated from the fibers will be fine in the spinning process, which may cause environmental problems.If it exceeds 1d, in the subsequent flameproofing step, pre-carbonization step, and carbonization step, Uniform heat treatment may be difficult.

【0023】また、アクリル系繊維のフィラメント数は
1、000〜30、000フィラメント、好ましくは
3、000〜24、000フィラメントであるのが良
い。1、000フィラメント未満では、糸切れが増すこ
とがあり、30、000フィラメントを越えると、耐炎
化工程で被処理繊維束中に蓄熱量が増し、燃焼消失する
ことがある。
The number of filaments of the acrylic fiber is preferably 1,000 to 30,000 filaments, and more preferably, 3,000 to 24,000 filaments. If the number of filaments is less than 1,000, yarn breakage may increase. If the number of filaments exceeds 30,000, the amount of heat stored in the fiber bundle to be treated in the oxidization-resistant step may increase, resulting in burning out.

【0024】本発明においては、後述する測定法によ
る、単糸伸度変動率(CV)により、繊維を構成する単
糸の伸度バラツキを指標化することができる。かかる伸
度バラツキは、折返ガイド等糸道ガイドへ糸条の接触が
不足する等により、糸条を構成する単糸に架かる張力差
により惹起される。
In the present invention, the variation in elongation of the single yarn constituting the fiber can be indexed by the elongation change rate (CV) of the single yarn by a measuring method described later. Such variation in elongation is caused by a difference in tension between the single yarns constituting the yarn due to insufficient contact of the yarn with the yarn guide such as a folded guide.

【0025】本発明では、前記単糸伸度変動率(CV)
は、10%以下とすることが必要であり、好ましくは8
%以下にするのが良い。10%を越えると、前炭化処理
におけるアクリル系繊維の延伸性が低下し、繊維内の伸
度の低い単糸が、炭化処理時の延伸に抗し切れず糸切れ
を生じたり、毛羽が増すことがある。
In the present invention, the single yarn elongation variation (CV)
Should be 10% or less, preferably 8%
% Is better. If it exceeds 10%, the stretchability of the acrylic fiber in the pre-carbonization treatment is reduced, and the single yarn having low elongation in the fiber is not resistant to the drawing during the carbonization treatment, and the yarn breaks or the fluff increases. Sometimes.

【0026】かかる観点から、凝固浴内において、糸条
に架かる張力は1.5〜7×10-4N/d(d:デニー
ル)の範囲に規制するのが好ましい。1.5×10-4
/d未満であると、糸条を構成する単糸に架かる張力に
差が生じ、繊維の配向性が低下することがある。7×1
-4N/dを超えると、折返ガイドとの強い接触により
糸条断面が変形したり、折返ガイドに糸条が一時的に強
く圧着された後、急激に脱離することにより糸切れが生
じることがある。
From this point of view, it is preferable that the tension applied to the yarn in the coagulation bath is regulated in the range of 1.5 to 7 × 10 −4 N / d (d: denier). 1.5 × 10 -4 N
If it is less than / d, a difference occurs in the tension applied to the single yarns constituting the yarn, and the orientation of the fibers may be reduced. 7x1
If it exceeds 0 -4 N / d, the thread cross section will be deformed due to strong contact with the turn-back guide, or the thread will be suddenly detached from the turn-back guide after it has been temporarily strongly pressed, and the breakage will occur. May occur.

【0027】糸条に架かる張力は、糸条を張力計で挟み
込み測定できる。張力計としては、例えば、エイコー測
器(株)製、型番:HS−4000等が使用できる。
The tension applied to the yarn can be measured by sandwiching the yarn with a tensiometer. As the tensiometer, for example, a model number: HS-4000 manufactured by Eiko Sokki Co., Ltd. can be used.

【0028】本発明において、前記折返ガイドは、糸条
が凝固浴に導入されてから、折返ガイドに接触するまで
の時間Tを0.5〜5秒の範囲に設置するのが良い。
0.5秒未満であると、凝固状態が不十分なまま、糸条
が折返ガイドに強く接触するため、糸切れが生じること
がある。5秒を越えると、折返ガイドに接触するまでに
糸条の凝固が必要以上に進行してしまい、凝固浴内で糸
条に架かる張力を適宜調整しても、糸条の配向性が十分
に向上しないことがある。
In the present invention, it is preferable that the time T between the time when the yarn is introduced into the coagulation bath and the time when the yarn comes into contact with the return guide is set in the range of 0.5 to 5 seconds.
If the time is less than 0.5 seconds, the yarn may come into strong contact with the folding guide while the coagulation state is insufficient, so that the yarn may be broken. If the time exceeds 5 seconds, the coagulation of the yarn proceeds more than necessary before contacting the folding guide, and even if the tension applied to the yarn in the coagulation bath is appropriately adjusted, the orientation of the yarn is sufficiently high. May not improve.

【0029】凝固浴での処理の後、毛羽の増加を防ぎ、
繊維の配向性をより高める観点から、浴中で1.15〜
1.5として延伸する。この後、糸条に工程油剤を付与
し、乾燥緻密化することもできる。ここで用いる油剤に
は耐熱性が高く、離型性に優れ、単糸間接着を防止する
効果の高いアミノ変性シリコ−ンを主成分とする油剤を
用いるのが好ましい。さらにこの後、気体雰囲気中や加
熱熱媒中で延伸することもできる。この際、加圧スチ−
ムを熱媒として延伸すると、繊維の配向性がさらに高ま
り好ましい。
After treatment in the coagulation bath, the increase in fluff is prevented,
From the viewpoint of further increasing the orientation of the fiber, 1.15 to 15.
Stretch as 1.5. Thereafter, a process oil agent can be applied to the yarn to dry and densify it. As the oil agent used here, it is preferable to use an oil agent having an amino-modified silicone as a main component, which has high heat resistance, excellent releasability, and a high effect of preventing adhesion between single yarns. Thereafter, the film can be stretched in a gas atmosphere or in a heating medium. At this time, pressurized steel
Stretching using a heating medium as a heat medium is preferable because the orientation of the fibers is further increased.

【0030】次に、耐炎化処理、前炭化処理、炭化処理
と各処理を経て、炭素繊維が製造される。
Next, a carbon fiber is manufactured through each of a flame-proofing treatment, a pre-carbonization treatment, and a carbonization treatment.

【0031】耐炎化処理では、アクリル系繊維を酸化性
雰囲気中、200〜300℃、好ましくは240〜28
0℃で処理する。200℃未満であると、ニトリル基の
閉環反応が進行しないため耐炎化が不充分となることが
あり、300℃を越えると耐炎化が完了する以前に繊維
が燃焼消失することがある。
In the oxidation treatment, the acrylic fiber is placed in an oxidizing atmosphere at 200 to 300 ° C., preferably 240 to 28 ° C.
Treat at 0 ° C. If the temperature is lower than 200 ° C., the ring-closing reaction of the nitrile group does not proceed, so that the flame resistance may be insufficient. If the temperature exceeds 300 ° C., the fibers may burn and disappear before the flame resistance is completed.

【0032】耐炎化処理時の延伸倍率は、いわゆる配向
緩和を抑えるために、0.95〜1.1、好ましくは1
〜1.1とするのが良い。1.1を越えると毛羽が増す
ことがある。
The stretching ratio at the time of the oxidation treatment is 0.95 to 1.1, preferably 1 to reduce so-called relaxation of orientation.
It is better to be 1.1. If it exceeds 1.1, fluff may increase.

【0033】耐炎化処理では、通常、被処理繊維の比重
が1.25〜1.6g/cm3、好ましくは1.3〜
1.5g/cm3になるまで処理される。1.6g/c
3を越えると、得られる炭素繊維の比重が低下し、引
張弾性率が不足することがある。
In the oxidation treatment, the specific gravity of the fiber to be treated is usually 1.25 to 1.6 g / cm 3 , preferably 1.3 to 1.6 g / cm 3 .
Treated to 1.5 g / cm 3 . 1.6 g / c
When it exceeds m 3 , the specific gravity of the obtained carbon fiber is reduced, and the tensile modulus may be insufficient.

【0034】耐炎化処理後、前炭化処理する。ここで
は、繊維を不活性雰囲気下、温度400〜500℃、昇
温速度20〜100℃/分、好ましくは40〜70℃/
分で処理する。
After the oxidation treatment, a pre-carbonization treatment is performed. Here, the fiber is heated in an inert atmosphere at a temperature of 400 to 500 ° C. at a heating rate of 20 to 100 ° C./min, preferably 40 to 70 ° C./min.
Process in minutes.

【0035】昇温速度が20℃/分未満であると、糸速
を遅くせねばならず、製造コストが上昇することがあ
り、100℃/分を越えると糸切れが生じることがあ
る。
If the heating rate is less than 20 ° C./min, the yarn speed must be reduced, and the production cost may increase. If it exceeds 100 ° C./min, thread breakage may occur.

【0036】前炭化処理時の延伸倍率は1.1〜1.3
とする必要があり、好ましくは1.15〜1.25とす
るのが良い。1.1未満であると、得られる炭素繊維に
おいて、引張弾性率が不足することがあり、1.3を越
えると糸切れが生じることがある。
The stretching ratio at the time of the pre-carbonization treatment is 1.1 to 1.3.
And it is preferably set to 1.15 to 1.25. If it is less than 1.1, the resulting carbon fiber may have insufficient tensile modulus, and if it exceeds 1.3, thread breakage may occur.

【0037】前炭化処理後、炭化処理する。ここでは、
繊維を不活性雰囲気下、温度1800〜2000℃で処
理する。1800℃未満であると、得られる炭素繊維に
おいて、引張弾性率が不足することがあり、2000℃
を越えると結晶サイズが大きくなり、圧縮強度の向上が
不充分となることがある。
After the pre-carbonization, carbonization is performed. here,
The fibers are treated under an inert atmosphere at a temperature of 1800-2000C. When the temperature is lower than 1800 ° C., the tensile modulus of the obtained carbon fiber may be insufficient, and
If it exceeds, the crystal size becomes large and the improvement in compressive strength may be insufficient.

【0038】炭化処理時の延伸倍率は0.95〜1.
1、好ましくは0.98〜1.05とするのが良い。
0.95未満であると、得られる炭素繊維において、引
張弾性率が不足することがあり、1.1を越えると糸切
れが生じることがある。
The stretching ratio during the carbonization treatment is 0.95 to 1.
1, preferably 0.98 to 1.05.
If it is less than 0.95, the tensile modulus of the obtained carbon fiber may be insufficient, and if it exceeds 1.1, thread breakage may occur.

【0039】[0039]

【実施例】以下実施例により、本発明をさらに具体的に
説明する。実施例、比較例においては、各物性値は、以
下に示す方法により測定した。 <単糸伸度変動率(CV)>被測定繊維(アクリル系繊
維)を、チャック間距離(試長)を25mmとして引張
試験機にセットし、引張速度を1mm/分として単糸の
伸度を測定する。ここでは、引張試験機として、テンシ
ロン万能型引張試験機、東洋ボールドウイン社製、型
番:UTM−111−500を使用する。
The present invention will be described more specifically with reference to the following examples. In the examples and comparative examples, each property value was measured by the following method. <Variation of single yarn elongation (CV)> The fiber to be measured (acrylic fiber) was set in a tensile tester with a chuck distance (test length) of 25 mm, and the elongation of the single yarn was set at a tensile speed of 1 mm / min. Is measured. Here, as the tensile tester, a Tensilon universal tensile tester, manufactured by Toyo Baldwin Co., Ltd., model number: UTM-111-500 is used.

【0040】得られたS−Sカーブ(n=100)よ
り、単糸伸度変動率(CV)を、次式より求める。
From the obtained SS curve (n = 100), the single yarn elongation variation rate (CV) is determined by the following equation.

【0041】CV=〔√[[ΣXi2-(ΣXi)2/n]/(n-1)]〕/
(ΣXi/n)×100(Xi;単糸の伸度(%)、n;サンプ
ル数) <引張弾性率>被測定炭素繊維に、ユニオンカーバイド
(株)製、ベークライト(登録商標)ERL−4221
を1000g(930重量%)、三フッ化ホウ素モノエ
チルアミン(BF3・MEA)を30g(3重量%)及
びアセトンを40g(4重量%)混合したエポキシ樹脂
組成物を含浸させ、次に130℃で、30分間加熱し、
硬化させ、樹脂含浸ストランドとする。JIS R76
01に示される樹脂含浸ストランド試験法に従い、引張
強度と引張弾性率を求める。 <炭素網面の(002)面の結晶サイズLc> A.測定試料の作製 被測定炭素繊維から、長さ4cmの試験片を切り出し、
金型とコロジオン・アルコール溶液を用いて固め、角柱
形状とし測定試料とする。 B.測定条件 X線源:CuKα(Niフィルター使用) 出力:40kV、20mA C.結晶サイズLcの測定 透過法により得られた面指数(002)のピークの半値幅か
ら、次のScherrerの式を用いて計算して求める。 Lc(hkl)=Kλ/β0cosθB 但し、 Lc(hkl):微結晶の(hkl)面に垂直な方向の
平均の大きさ K:1.0,λ:15.418nm(X線の波長)、
β0:(βE2−β121/2 βE:見かけの半値幅(測定値)、β12:1.05×1
-2rad θB:Braggの回折角 <毛羽数>炭化処理後、単糸が切断された部分が炭素繊
維の束から約1cmを越えて露出している部分を毛羽と
みなし、繊維長10m当たりの個数を数える。その個数
を1m当たりにに換算して毛羽数とする。 <圧縮強度> A.樹脂組成物の調整 次に示す原料樹脂を混合し、30分間攪拌して樹脂組成
物を得る。 ・ビスフェノールAジグリシジルエーテル樹脂、エピコ
ート1001(油化シェルエポキシ社製、登録商標)、
27重量% ・ビスフェノールAジグリシジルエーテル樹脂、エピコ
ート828(油化シェルエポキシ社製、登録商標)、3
1重量% ・フェノールノボラックポリグリシジルエーテル樹脂、
エピクロン−N740(大日本インキ化学工業社製、登
録商標)、31重量% ・ポリビニルホルマール樹脂、ビニレックスK(チッソ
社製、登録商標)、3重量% ・ジシアンジアミド、DICY7(大日本インキ化学工
業社製、登録商標)、41重量% ・3,4−ジクロロフェニル−1,1−ジメチルウレ
ア、DCMU99(保土谷化学社製、硬化剤)、4重量
% 次に、前記樹脂組成物をシリコン塗布ペーパ上に離型紙
にコーティングして得た樹脂フィルムを、円周約2.7
mの、60〜70℃に温調した鋼製ドラムに巻き付け
る。
CV = [√ [[ΣXi 2- (ΣXi) 2 / n] / (n-1)]] /
(ΣXi / n) × 100 (Xi: elongation (%) of single yarn, n: number of samples) <Tensile modulus> Bakelite (registered trademark) ERL-4221 manufactured by Union Carbide Co., Ltd. was applied to the carbon fiber to be measured.
Is impregnated with an epoxy resin composition in which 1000 g (930% by weight), boron trifluoride monoethylamine (BF 3 .MEA) 30 g (3% by weight) and acetone 40 g (4% by weight) are mixed, and then 130 ° C. And heat for 30 minutes,
It is cured to form a resin-impregnated strand. JIS R76
In accordance with the resin impregnated strand test method shown in No. 01, the tensile strength and the tensile modulus are determined. <Crystal size Lc of (002) plane of carbon network plane> Preparation of measurement sample From the carbon fiber to be measured, a test piece having a length of 4 cm was cut out,
Using a mold and a collodion-alcohol solution, solidify to form a prism and use it as a measurement sample. B. Measurement conditions X-ray source: CuKα (using Ni filter) Output: 40 kV, 20 mA Measurement of crystal size Lc The crystal size Lc is calculated from the half width of the peak of the plane index (002) obtained by the transmission method using the following Scherrer equation. Lc (hkl) = Kλ / β 0 cosθ B However, Lc (hkl): average direction perpendicular to the (hkl) plane of the crystallite size K: 1.0, λ: wavelength of 15.418nm (X-ray ),
β 0 : (β E2 −β 12 ) 1/2 β E : Apparent half width (measured value), β 12 : 1.05 × 1
0 -2 rad θ B : Bragg diffraction angle <number of fluff> After carbonization, the portion where the single yarn is cut out from the bundle of carbon fibers and is exposed more than about 1 cm is regarded as fluff, and the fiber length is 10 m. Count the number of hits. The number of fluffs is converted to the number of fluffs per meter. <Compressive strength> Preparation of Resin Composition The following starting resins are mixed and stirred for 30 minutes to obtain a resin composition. Bisphenol A diglycidyl ether resin, Epicoat 1001 (registered trademark, manufactured by Yuka Shell Epoxy),
27% by weight Bisphenol A diglycidyl ether resin, Epikote 828 (registered trademark, manufactured by Yuka Shell Epoxy), 3
1% by weight ・ Phenol novolak polyglycidyl ether resin,
Epicron-N740 (manufactured by Dainippon Ink and Chemicals, Inc., registered trademark), 31% by weight ・ Polyvinyl formal resin, Vinylex K (registered trademark, manufactured by Chisso Corporation), 3% by weight ・ Dicyandiamide, DICY7 (Dainippon Ink & Chemicals, Inc.) 3,4-dichlorophenyl-1,1-dimethylurea, DCMU99 (hardening agent, manufactured by Hodogaya Chemical Co., Ltd.), 4% by weight Next, the resin composition was coated on silicon-coated paper. The resin film obtained by coating the release paper on the circumference is about 2.7 circumference.
m of a steel drum temperature-controlled to 60-70 ° C.

【0042】この上に、炭素繊維を、クリールから巻き
出し、トラバースを介して配列する。さらにその上か
ら、前記樹脂フィルムで再度覆い、ロールで回転しなが
ら、加圧し樹脂を繊維内に含浸せしめ、幅300mm、
長さ2.7mの一方向プリプレグを作成する。ここで、
プリプレグの繊維目付はドラムの回転数とトラバースの
送り速度を変化させ、190g/m2に調整する。ま
た、プリプレグの樹脂量は約35重量%とする。
On this, the carbon fibers are unwound from the creel and arranged via traverses. Furthermore, from above, the resin film is covered again, and while rotating with a roll, pressure is applied to impregnate the resin into the fiber, and the width is 300 mm.
Create a 2.7 m long unidirectional prepreg. here,
The basis weight of the prepreg is adjusted to 190 g / m 2 by changing the rotation speed of the drum and the feed speed of the traverse. The resin content of the prepreg is about 35% by weight.

【0043】このプリプレグを繊維方向を引き揃えて積
層し、温度130℃、圧力0.3MPaで、2時間硬化
させ、厚さが1mmの積層板を成形する。
The prepregs are laminated in the same fiber direction, and cured at a temperature of 130 ° C. and a pressure of 0.3 MPa for 2 hours to form a laminated plate having a thickness of 1 mm.

【0044】次に、この積層板に、試験片の被破壊部分
以外を補強する板を接着層の厚さが均一となるよう接着
剤等で固着させ、一方向積層板を作製する。
Next, a plate that reinforces the portion other than the portion to be destroyed of the test piece is fixed to the laminate with an adhesive or the like so that the thickness of the adhesive layer is uniform, thereby producing a one-way laminate.

【0045】この積層板から、被破壊部分が中心になる
ように、厚さ約1±0.1mm、幅12.7±0.13
mm、長さ80±0.013mm、ゲージ部の長さ5±
0.13mmの試験片を切り出す。
From this laminated plate, a thickness of about 1 ± 0.1 mm and a width of 12.7 ± 0.13 so that the portion to be destroyed becomes the center.
mm, length 80 ± 0.013mm, gauge part length 5 ±
A test piece of 0.13 mm is cut out.

【0046】この試験片より、ASTM D695に示
される圧縮治具を使用し、歪み速度1.27mm/分の
条件で測定し、繊維体積分率60%に換算して積層板の
圧縮強度を得る。 (実施例1〜4、比較例1〜4)アクリロニトリル9
9.5モル%、イタコン酸0.5モル%からなる極限粘
度[η]が1.80のアクリル共重合体を20重量%含
むジメチルスルホキシド(以下、DMSOと略記)の溶
液を調整し、親水性を向上させるため、pH8.0まで
アンモニアガスを吹き込んで紡糸原液を調整した。
The test piece was measured using a compression jig shown in ASTM D695 under the condition of a strain rate of 1.27 mm / min, and converted to a fiber volume fraction of 60% to obtain the compressive strength of the laminate. . (Examples 1-4, Comparative Examples 1-4) Acrylonitrile 9
A solution of dimethyl sulfoxide (hereinafter abbreviated as DMSO) containing 20% by weight of an acrylic copolymer having an intrinsic viscosity [η] of 1.80 and consisting of 9.5% by mole and 0.5% by mole of itaconic acid was prepared. In order to improve the properties, the spinning solution was adjusted by blowing ammonia gas to pH 8.0.

【0047】次に、この紡糸原液を45℃に温調し、孔
数3000の口金から、4mmのエア−ギャップを通過
させて、DMSOと水とからなる凝固浴中に吐出し、糸
条張力を5×10-4N/dに規制しつつ、折返ガイドで
方向を転換し、引き取りローラで搬送速度を6m/分と
して水切りガイドを通過させながら、凝固浴から引き取
り、単糸総数3000本の凝固糸条を得た。ここで、折
返ガイドには、走行する糸条と接触する部分において、
表面粗さRaが0.1、ビッカース硬度が2000のポ
アフリー(登録商標、日本セラテックス社製)を素材と
して用いた。
Next, this spinning stock solution was adjusted to a temperature of 45 ° C., discharged from a 3,000-hole die through a 4 mm air gap into a coagulation bath composed of DMSO and water, and the yarn tension was adjusted. While controlling the flow rate to 5 × 10 −4 N / d, the direction is changed by a turn-back guide, the transfer speed is set to 6 m / min by a take-off roller, and the sheet is taken out of a coagulation bath while passing through a draining guide. A coagulated yarn was obtained. Here, the folding guide has a portion in contact with the running yarn,
Pore-free having a surface roughness Ra of 0.1 and a Vickers hardness of 2000 was used as a material.

【0048】次いで、糸条を水洗後、全4槽からなる浴
延伸工程に導き、第4槽の温度が90℃の熱水中で倍率
3で延伸した。
Next, the yarn was washed with water and then led to a bath stretching step comprising a total of four tanks, and the fourth tank was drawn at a magnification of 3 in hot water at a temperature of 90 ° C.

【0049】さらに、糸条をアミノ変性シリコ−ンを含
む、油剤濃度が2重量%のシリコ−ン系油剤浴中を通過
させ、油剤を糸条重量に対して0.7重量%付与した。
Further, the yarn was passed through a silicone oil bath containing an amino-modified silicone and having an oil agent concentration of 2% by weight, and the oil agent was applied at 0.7% by weight based on the weight of the yarn.

【0050】次に、150℃に温調した加熱ロ−ラで乾
燥緻密化し、加圧スチ−ム延伸装置で倍率4で延伸した
後、180℃に温調した加熱ロ−ラで乾燥処理し、単糸
繊度0.73d、総繊度2190dのアクリル系繊維を
得た。
Next, it is dried and densified by a heating roller adjusted to 150 ° C., stretched at a magnification of 4 by a pressure steam stretching apparatus, and dried by a heating roller adjusted to 180 ° C. Thus, an acrylic fiber having a single yarn fineness of 0.73d and a total fineness of 2190d was obtained.

【0051】各実施例、比較例の製造条件、得られたア
クリル系繊維の単糸について、破断伸度(n=100の
平均値)とその単糸伸度変動率(CV)をそれぞれ表1
に示す。
Table 1 shows the production conditions of each Example and Comparative Example, and the breaking elongation (average value of n = 100) and the elongation variation (CV) of the single yarn of the obtained acrylic fiber.
Shown in

【0052】このアクリル系繊維4本を、耐炎化処理前
に合糸して、総繊度8760dの繊維とし、空気雰囲気
中、温度240〜280℃、倍率1で延伸しながら耐炎
化処理し、耐炎化繊維とした。
The four acrylic fibers are plied before the flame-proofing treatment to obtain a fiber having a total fineness of 8760 d. The fiber is subjected to a flame-proofing treatment while stretching at a temperature of 240 to 280 ° C. and a magnification of 1 in an air atmosphere. It was a synthetic fiber.

【0053】この耐炎化繊維を、窒素雰囲気中、最高雰
囲気温度が800℃の前炭化炉で、温度400〜500
℃、昇温速度を100℃/分、倍率を各実施例、比較例
で変化させて延伸しながら前炭化処理し、さらに窒素雰
囲気中、温度1800〜2200℃、倍率0.98で延
伸しながら炭化処理して、炭素繊維を得た。
The flame-resistant fiber was placed in a nitrogen atmosphere in a pre-carbonization furnace having a maximum atmosphere temperature of 800 ° C. and a temperature of 400 to 500.
° C, the rate of temperature rise is 100 ° C / min, the magnification is changed in each of the examples and the comparative examples, the carbonization is performed while stretching, and the film is further stretched in a nitrogen atmosphere at a temperature of 1800 to 2200 ° C and a magnification of 0.98. Carbonization was performed to obtain a carbon fiber.

【0054】さらに、得られた炭素繊維に40ク−ロン
/gの電荷を与え、硫酸水溶液中で陽極酸化処理を施し
た。
Further, the obtained carbon fiber was given an electric charge of 40 cron / g and anodized in a sulfuric acid aqueous solution.

【0055】各実施例、比較例の製造条件、得られた炭
素繊維について、引張弾性率、結晶サイズ、毛羽数、複
合材料の圧縮強度をそれぞれ表1に示す。 (比較例5、6)凝固浴内の糸条張力を1.25×10
-4N/d、糸条を凝固浴から引き取る速度を15m/分
とした以外は、実施例3と同条件で炭素繊維を得た。
Table 1 shows the production conditions of each Example and Comparative Example, and the tensile modulus, crystal size, number of fluffs, and compressive strength of the composite material for the obtained carbon fibers. (Comparative Examples 5 and 6) The yarn tension in the coagulation bath was 1.25 × 10
-4 except that N / d, the velocity of taking up from the coagulating bath yarn was 15 m / min, thereby obtaining the carbon fiber under the same conditions as in Example 3.

【0056】各比較例の製造条件、得られたアクリル系
繊維の単糸について、破断伸度(n=100の平均値)
とその単糸伸度変動率(CV)を、得られた炭素繊維に
ついて、引張弾性率、結晶サイズ、毛羽数、複合材料の
圧縮強度をそれぞれ表1に示す。 (比較例7)凝固浴内の糸条張力を7.9×10-4N/
d、糸条を凝固浴から引き取る速度を15m/分とした
以外は、実施例3と同条件で炭素繊維を得た。
The production conditions of each comparative example and the breaking elongation (average value of n = 100) of the obtained single yarn of acrylic fiber
Table 1 shows the tensile modulus, the crystal size, the number of fluffs, and the compressive strength of the composite material of the obtained carbon fiber. (Comparative Example 7) The yarn tension in the coagulation bath was set to 7.9 × 10 −4 N /
d, A carbon fiber was obtained under the same conditions as in Example 3 except that the speed at which the yarn was drawn from the coagulation bath was 15 m / min.

【0057】本例の製造条件、得られたアクリル系繊維
の単糸について、破断伸度(n=100の平均値)とそ
の単糸伸度変動率(CV)を、得られた炭素繊維につい
て、引張弾性率、結晶サイズ、毛羽数、複合材料の圧縮
強度をそれぞれ表1に示す。
The production conditions of this example, the elongation at break (average value of n = 100) and the elongation variation (CV) of the single yarn of the obtained acrylic fiber were measured for the obtained carbon fiber. Table 1 shows the tensile modulus, the crystal size, the number of fluffs, and the compressive strength of the composite material.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【発明の効果】本発明によれば、高レベルの引張弾性率
を有し、得られる複合材料に高レベルの圧縮強度を発現
させる炭素繊維、およびかかる炭素繊維を安定に製造す
る方法が提供できる。
According to the present invention, it is possible to provide a carbon fiber having a high level of tensile modulus and exhibiting a high level of compressive strength in the obtained composite material, and a method for stably producing such a carbon fiber. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L037 AT02 CS03 FA05 FA06 FA09 FA10 PA55 PA65 PA69 PC05 PC11 PC13 PF29 PF45 PS02 PS17 UA10 UA12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L037 AT02 CS03 FA05 FA06 FA09 FA10 PA55 PA65 PA69 PC05 PC11 PC13 PF29 PF45 PS02 PS17 UA10 UA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】引張弾性率が340〜450GPa、広角
X線回折より測定される炭素網面の(002)面の結晶サイ
ズLcが2.4〜3.2nm、ASTM D695によ
る圧縮強度が1450〜2000MPaであるアクリル
系炭素繊維。
1. A tensile modulus of 340 to 450 GPa, a crystal size Lc of a (002) plane of a carbon network plane measured by wide-angle X-ray diffraction is 2.4 to 3.2 nm, and a compressive strength according to ASTM D695 is 1450 to Acrylic carbon fiber of 2000 MPa.
【請求項2】単糸伸度変動率が10%以下であるアクリ
ル系繊維を前駆体繊維とし、酸化性雰囲気下、温度20
0〜300℃で耐炎化処理し、続いて不活性雰囲気下、
温度400〜500℃、昇温速度20〜100℃/分で
前炭化処理し、さらに不活性雰囲気下、温度1800〜
2000℃で炭化処理する炭素繊維の製造方法であっ
て、前記前炭化処理において、アクリル系繊維の延伸倍
率を1.1〜1.3として処理することを特徴とするア
クリル系炭素繊維の製造方法。
2. An acrylic fiber having a single yarn elongation variation rate of 10% or less is used as a precursor fiber under an oxidizing atmosphere at a temperature of 20%.
Oxidation treatment at 0 to 300 ° C., and then under an inert atmosphere,
Pre-carbonization treatment at a temperature of 400 to 500 ° C. and a heating rate of 20 to 100 ° C./min.
A method for producing carbon fibers to be carbonized at 2000 ° C., wherein the pre-carbonization treatment is performed by setting the draw ratio of the acrylic fibers to 1.1 to 1.3. .
JP30229099A 1999-10-25 1999-10-25 Carbon fiber manufacturing method Expired - Fee Related JP4238436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30229099A JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30229099A JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Publications (3)

Publication Number Publication Date
JP2001131833A true JP2001131833A (en) 2001-05-15
JP2001131833A5 JP2001131833A5 (en) 2006-04-13
JP4238436B2 JP4238436B2 (en) 2009-03-18

Family

ID=17907222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30229099A Expired - Fee Related JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4238436B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069511A1 (en) * 2005-12-13 2007-06-21 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber
US7638110B1 (en) 2008-07-02 2009-12-29 Toho Tenax Co., Ltd. Carbon fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber
WO2007069511A1 (en) * 2005-12-13 2007-06-21 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JPWO2007069511A1 (en) * 2005-12-13 2009-05-21 東レ株式会社 Carbon fiber, method for producing polyacrylonitrile-based precursor fiber for carbon fiber production, and method for producing carbon fiber
US8137810B2 (en) 2005-12-13 2012-03-20 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP4957251B2 (en) * 2005-12-13 2012-06-20 東レ株式会社 Carbon fiber, method for producing polyacrylonitrile-based precursor fiber for carbon fiber production, and method for producing carbon fiber
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber
US8236273B2 (en) 2007-12-30 2012-08-07 Toho Tenax Co., Ltd. Method of producing pre-oxidation fiber and carbon fiber
US7638110B1 (en) 2008-07-02 2009-12-29 Toho Tenax Co., Ltd. Carbon fiber

Also Published As

Publication number Publication date
JP4238436B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4957251B2 (en) Carbon fiber, method for producing polyacrylonitrile-based precursor fiber for carbon fiber production, and method for producing carbon fiber
US8822029B2 (en) Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
KR100570592B1 (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2003073932A (en) Carbon fiber
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP7388193B2 (en) Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composite materials
JP4238436B2 (en) Carbon fiber manufacturing method
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
JP2002054031A (en) Carbon fiber and method for producing the same
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP2007092185A (en) Polyacrylonitrile polymer for carbon fiber precursor fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
RU2784511C2 (en) Carbon fiber bundle, its production method, prepreg and composite material reinforced with carbon fiber
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2002061035A (en) Carbon fiber and method for manufacturing the same, and carbon fiber reinforced composite material
JP2007107106A (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber and method for producing the same
JPH08209457A (en) Carbon fiber and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees