JP4221484B2 - 金属磁性粉末およびその製造法 - Google Patents

金属磁性粉末およびその製造法 Download PDF

Info

Publication number
JP4221484B2
JP4221484B2 JP2003317307A JP2003317307A JP4221484B2 JP 4221484 B2 JP4221484 B2 JP 4221484B2 JP 2003317307 A JP2003317307 A JP 2003317307A JP 2003317307 A JP2003317307 A JP 2003317307A JP 4221484 B2 JP4221484 B2 JP 4221484B2
Authority
JP
Japan
Prior art keywords
particles
magnetic powder
fept
metal
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003317307A
Other languages
English (en)
Other versions
JP2005082863A (ja
Inventor
和幸 田路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2003317307A priority Critical patent/JP4221484B2/ja
Priority to KR1020030067678A priority patent/KR101016560B1/ko
Priority to US10/812,078 priority patent/US20050051241A1/en
Publication of JP2005082863A publication Critical patent/JP2005082863A/ja
Priority to US12/285,857 priority patent/US20090050240A1/en
Priority to US12/292,063 priority patent/US8157889B2/en
Application granted granted Critical
Publication of JP4221484B2 publication Critical patent/JP4221484B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles

Description

本発明は,高密度磁気記録媒体,ナノスケール・エレクトロニクス,永久磁石材料,生体分子標識剤,薬剤キャリアなどに用いることのできる金属磁性粉末およびその製造方法に関するものである。本発明の金属磁性粉末は厳密には後述の一般式(1) によって特徴づけられる金属粒子からなるが,T=Fe,M=Ptである場合のFePt系合金が代表例として挙げられるので,本明細書では該金属磁性粒子を代表して単にFePt粒子,若しくはFePtナノ粒子と呼ぶことがある。
高密度磁気記録媒体では,記録密度の上昇のために記録単位のサイズ低下が必要であるが,従来のスパッタ薄膜を用いた媒体では,熱ゆらぎや結晶粒子サイズの微細化やバラツキ等の問題から高記録密度化の限界に近づいている。このようなことから,最近,高密度磁気記録媒体として,熱ゆらぎの問題がなく,高い異方性を有し且つ大きな保磁力を示すFePt系の磁性金属ナノ粒子が注目されている。
このような磁性金属ナノ粒子に関して,特許文献1には,鉄ペンタカルボニルの熱分解反応と,白金(II)アセチルアセトナートのポリオールによる還元作用を同時に行わせることにより,単分散状態のFePt合金粒子を生成する方法が記載されている。非特許文献1には,オクタンを油相,CTAB(cetyl trimethyl ammonium bromide)を界面活性剤とした,油中水滴型(W/O type)逆ミセルを反応場として,水素化ホウ素を用いて金属イオンを還元する方法が記載されている。
これらの方法で得られるFePt粒子の結晶構造は,不規則相であるfcc(面心立方晶)構造であるため,ナノオーダーの粒子では常温において超常磁性を示す。したがって強磁性粒子として使用する場合は,熱処理によってL10規則相(fct(面心正方晶)構造)に結晶構造転移させる必要がある。
この熱処理は,不規則相から規則相への結晶構造転移温度(Tt)以上で処理する必要があるが,一般に450℃以上の高温で行う。この熱処理の際,熱により粒子同士の合体による巨大化が起こるために粒度分布の分布幅が広がり,粒子は単磁区と多磁区構造に混在するようになって高密度磁気記録媒体には適さなくなる。したがって,粒子合成直後の粒径を保存したまま,強磁性を有するFePt粒子を得るためには,粒子同士の合体を防止する保護剤で粒子を被覆することや,何らかの方法によりTtを低下させ,熱処理温度がより低温で実施できるようにすることが有効である。
非特許文献2には,ポリオール法によるFePt粒子合成の際に,Ag,Cu,Sb,Bi,Pbなどの元素を添加すると,fcc構造からfct構造への結晶構造転移温度(Tt) を低下できる旨が記載されている。
特許第3258295号公報(特開2000-54012号公報) Journal of Applied Physics, Vol.87, No.9, 1 May 2000, p.5615-5617 電子材料2002年1月, p61-67
特許文献1,非特許文献1および2の方法で得られるFePt粒子は,反応直後のものは磁性を持たないfcc(面心立方晶)構造であり,そのままでは磁気記録媒体用途の磁性粒子として利用することはできない。このため,fct結晶構造転移温度(Tt)以上に加熱処理することにより,強磁性を発現するfct(面心正方晶)構造に転移させる必要がある。
しかし,該方法で得られるFePt粒子の結晶構造転移温度は450℃程度である。このため,fct構造に転移するには450℃以上の温度での熱処理が必要である。したがって,このFePt粒子からなる集合体(粉体)をそのまま450℃以上の温度に加熱すると,金属粒子同士が合体して巨大化してしまい,fct構造が得られたとしても,高密度記録媒体の用途に適したナノ粒子形態とはならないし,粒子同士の合体が一様に進行しないのが普通であるから,粒径分布が発生し,これに伴って磁気特性に大きな分布を生じて,実用上の問題となる。
加熱によって粒子同士が合体して巨大化するのを防止するには,各粒子が互いに所定の間隔をあけて位置決めされた状態で(例えば基板上に各粒子が所定位置に固定された状態で),該熱処理を行うことが必要である。しかし,このような熱処理を実現するには,粒子の規則的な配置を行うための精密技術が必要である。それが技術的に可能であるとしても,反応直後に得られたFePt粒子が既にfct構造を有していれば,このような熱処理が省略もしくは簡略(例えば熱処理温度の低下)になるので,そのメリットは甚大である。
FePt合金に対する添加元素の効果により,Tt温度を低下させる報告もあるが,反応後の熱処理が必要であることに変わりはなく,fct構造へ転移させるための熱処理温度も少なくとも300℃以上を必要とし,基板・基体として使用できる材料に制限を受けるなど,実用上の問題も多い。さらに,fcc構造のFePt粒子を基板に位置決めした状態で熱処理して各粒子をfct構造に転移させる場合,この熱処理過程で各粒子は1軸の結晶磁気異方性をもつが,その軸の方向は,例えば基板に対してみると,ランダムである。その軸を基板に対して或る方向に配向させるには,磁場中での熱処理などが必要となるが,これは,実用上大変困難である。また,基板に粒子をのせた状態で熱処理を実施すると粒子は焼結等により基板に結合するから,その粒子を粉体として他の基板や基体へ再配列することも極めて困難である。もし,各粒子がすでに1軸の結晶磁気異方性を有しており,しかも,各粒子が自由に流動できる粉体の状態にあれば,従来の塗布型磁気記録媒体で用いられている磁場中乾燥の技術を適用して,各粒子を樹脂に分散させ且つ基板に対して常温で1軸配向させることが容易に行える。
したがって,本発明の課題は,反応直後に得られた粒子が,既にfct構造を有している金属磁性粉体を得ることにあり,これによって熱処理を省略もしくは簡略化できる流動性のある金属磁性粉体を得ることにある。
本発明者(ら)は,合成反応終了の時点でfct構造を有しているナノ粒子からなる金属磁性粉体を得ることに成功した。
すなわち本発明によれば,主成分とそれらの組成が下記の一般式(1) ,すなわち
〔TX1-XY1-Y ・・・・(1)
ただし,(1) 式において,T:FeまたはCoの1種または2種,M:PtまたはPdの1種または2種,Z:Ag,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種,X:0.3〜0.7,Y:0.7〜1.0を表す,
で表され,残部が製造上不可避な不純物からなる金属の磁性粒子からなり,
メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲,室温での飽和磁化量σsが20 emu/g以上,透過電子顕微鏡(TEM)観察による1次粒径の平均値が30nm以下である,流動性を有する金属磁性粉末を提供する。本発明に従う金属磁性粉末は,磁気トルク測定による異方性磁界Hkが好ましくは12.4kOe以上であり,1次粒径の平均値が好ましくは20nm以下,さらに好ましくは10nm以下である。
さらに本発明によれば,下記の一般式(1) ,すなわち
〔TX1-XY1-Y ・・・・(1)
ただし,(1) 式において,T:FeまたはCoの1種または2種,M:PtまたはPdの1種または2種,Z:Ag,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種,X:0.3〜0.7,Y:0.7〜1.0を表す,
で表される物質の粒子からなる金属磁性粉末を製造するにあたり,
前記のTおよびM,さらに必要に応じてZの成分を含む金属塩を,沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液に溶解し,この溶液を270℃以上の温度に保持して該金属塩を該多価アルコールおよび/またはこれらの誘導体で還元し,この還元によって該物質の粒子を合成すること,
そのさい,この還元によって合成された粒子が,合成されたままの状態において,メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲,室温での飽和磁化σsが20 emu/g以上,透過電子顕微鏡(TEM)観察による1次粒径の平均値が30nm以下である,
を特徴とする金属磁性粉末の製造法を提供する。
前記の多価アルコールとしては,トリエチレングリコールまたはテトラエチレングリコールの1種または2種であることができ,T,MおよびZ成分の塩としては,これらの成分のアセチルアセトナートであることができる。
特許文献1や非特許文献1および2のように,合成されたFePtナノ粒子を熱処理することによってfct構造とするのではなく,合成された段階ですでにfct構造を有するFePtナノ粒子を得ることを課題として,出来るだけ沸点の高い多価アルコール類を還元剤として使用することにより,FePtナノ粒子を合成することを試みた。その結果,沸点が270℃以上の多価アルコール類を使用し,反応温度を270℃以上として,該多価アルコール中のFeイオンおよびPtイオンを還流下で還元すると,fct構造を含むFePtナノ粒子が直接に合成されることがわかった。
使用する多価アルコールとしては,トリエチレングリコールまたはテトラエチレングリコールが最も好ましい。しかし,これに限らず,沸点が270℃以上の多価アルコールまたはその誘導体であれば,本発明で使用できる。エチレングリコールは沸点が197℃と低いので好ましくない(例えば後記の比較例2)。該多価アルコール中のFeイオンおよびPtイオンは,代表的には,鉄(III) アセチルアセトナートおよび白金 (II) アセチルアセトナートによって供給するのがよい。
以下に本発明で特定する事項について説明する。
〔金属の成分と組成〕
本発明の金属磁性粒子は,主成分とそれらの組成が下記の一般式(1) で表されるものである。
〔TX1-XY1-Y ・・・・(1)
ただし,TはFeまたはCoの1種または2種,MはPtまたはPdの1種または2種を表し,ZはAg,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種である。TとMは代表的にはFeとPtである。面心正方晶を形成する組成としてはX=0.5が理想的であるが,X:0.3〜0.7の範囲でも,面心正方晶が10〜100%の金属組織を得ることができる。Z成分は ポリオール法によるFePt粒子合成の際にfcc構造からfct構造への結晶構造転移温度(Tt) を低下させることができるが,場合によっては含有しなくてもよい。すなわち,Yの値は,Zの種類によって最適値は異なるが0.7〜1.0の範囲であればよい。Yが0.7未満の場合にはZが多くなりすぎてfct構造の発現を阻害するため,磁気特性の急激な悪化が起きるので好ましくない。本発明に従う金属磁性粒子の組成分析はEDX測定で行うことができる。なお,金属成分としては,(1) 式で表される成分組成の金属粒子からなることが理想的であるが,製造上不可避的に混入する不純物が存在することは許容される。
本発明に従う金属磁性粒子の成分組成は,前記のようにFePtが代表的である。このため,以下にFePt粒子を用いて説明するが,本明細書において,FePt粒子と言えば, 実際には式(1) による金属磁性粒子を意味するものとする。
〔面心正方晶の割合〕
本発明に従うFePt粒子粉末は,メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲にある。一般に,金属組織中における或る金属相の割合(その結晶構造の割合)は,X線回折のピーク強度の比較によって行われる場合が多い。しかし,本発明が対象とするFePt合金などでは,fcc構造(面心立方晶)とfct構造(面心正方晶)のX線回折パターンが殆ど同じであり,またfct構造のみから得られる(001)と(110)の反射は強度が非常に弱いので,これらのピークだけで定量化を行うことは困難である。
しかし,メスバウワー分光法で計測されるFePt合金についての強磁性構造の体積割合を解析することによって,そのfct構造の体積割合を算出することができる。そこで本発明においては,FePt粒子のfct構造の体積割合については,Fe原子のメスバウアー分光測定による強磁性構造の体積割合の解析によって,すなわち,Fe原子のメスバウアー分光測定による磁気秩序下にあるFe原子の個数割合を求めることによって,これをfct構造の体積割合とする。
fct構造すなわち面心正方晶の体積割合(容積%)が10vol.%未満では磁気異方性が小さくなり,磁気記録材料として必要な保持力,および熱安定性が得られなくなる。磁気異方性が大き過ぎる場合には保磁力が大きくなりすぎるため,磁気記録媒体用途に用いることが困難になることもあるが,強力な永久磁石用途にはむしろ好適である。したがって,本発明の金属磁性粒子の面心正方晶(fct)の割合は,体積割合で10〜100%とする。
〔粒径〕
本発明に従うFePt粒子粉末は,透過電子顕微鏡(TEM)観察による1次粒子の平均値が30nm以下,好ましくは20nm以下,さらに好ましくは10nm以下である。1次粒子はそれ以上には分けられない最小単位の粒子を言う。本発明に従って合成されたfct構造をもつFePt粒子粉末は,その合成された段階では,1次粒子の粒子間に静磁場作用が働くことから,多数の1次粒子が群をなして存在することが多い。すなわち,多数の1次粒子が集まって一つの群をなし,この群の多数が分散した状態に成りやすい。多数の1次粒子からなる一つの群を2次粒子と言う。この2次粒子の粒径は合成反応の条件によって様々であるが,後記の実施例のものでは約100μm程度である。いずれにしても,このような2次粒子が形成されていても,全体としてこの流動性を有する粉体を構成している。
〔磁気特性〕
本発明に従うFePt粒子粉末は,合成されたままの状態で(熱処理を施さない状態で)fct構造を有することから,磁気トルク測定による異方性磁界Hkが10kOe 以上を示す。異方性磁界Hkは,Msを飽和磁化量(emu/g)とすると,次の(2) 式に示すとおり,異方性定数Kuと直接関係する磁気特性である。
Hk=2Ku/Ms ・・(2)
この異方性定数Kuから,(3) 式によって熱安定因子を求めることができる。
<熱安定因子>=KuV/κT ・・(3)
ここで,Vは粒子の体積,κはボルツマン定数,Tは温度である。熱安定因子は磁気記録媒体の熱安定性の指標であり,この値が60以下では実際の使用には適さないと言われている(細江譲ほか,日本応用磁気学会誌 vol.22, No.12, 1998 参照)。
この熱安定因子が小さいと,記録が自然に消えてしまうという現象が起きる。高記録密度を達成するためには,磁性粒子が記録波長に対し十分に小さいことが重要であることから,(3) 式の粒子体積Vが十分に小さいことが必要となり,よって,熱安定因子を大きくするためには,異方性定数Kuが大きいことが必要である。このことから,(2) 式より,Kuが大きいためには,異方性磁界Hkと飽和磁化Msが大きいことが重要であり,実際の磁気記録用磁性粉としては,室温で,異方性磁界Hkは10kOe以上,飽和磁化量σs は20emu/g 以上であるのが望ましい。すなわち,Hkが10kOe 未満,σs が20emu/g 未満ではその磁性粒子の熱安定性は著しく不安定になり,磁気記録用途としては不適となる。本発明に従うFePt粒子粉末は室温での異方性磁界Hkが10.0kOe以上,飽和磁化量σs が20 emu/g以上を示すものであるから,磁性粒子として熱安定性に優れ,磁気記録媒体用磁性粉体として好適である。
なお保磁力については,合成されたままの状態のFePt粒子粉末は互いに静磁場相互作用によって連接している場合があり,この粒子の連接が生じると, 全体として帯状の形状となって形状磁気異方性を示すようになる。したがって,保磁力の測定は,FePt粒子の結晶磁気異方性のほかに,この形状磁気異方性による保磁力を測定することにもなりかねない。各粒子が接することなく互いに離れた位置に固定された状態での保磁力が測定できれば,それが, 本発明のfct構造をもつFePt粒子の真の保磁力の値となる。
〔結晶構造転移開始温度〕
本発明に従うFePt粒子粉末はfct構造が10〜100vol.%であり,fcc構造はその残部である。この残りのfcc構造をfct構造に転移するための転移開始温度は,特許文献1や非特許文献1のように全てfcc構造のFePt粒子をfct構造に転移するための転移開始温度(450℃以上)より低くなる。後記の実施例1のものではfct構造が殆どを占めるので,転移開始温度は観測できなかった。この転移開始温度は,示差走査熱量計の測定による発熱ピークから決定することができる。
〔製造法〕
従来のFePt粒子の製造法(例えば特許文献1や非特許文献1の正方)では,得られるFePt粒子の結晶構造は不規則相であるfcc(面心立方晶)構造である。したがって,これを,強磁性を発現するL10規則相(fct構造)に相変態させるためには,結晶構造転移開始温度(Tt)以上での熱処理(450℃以上)を必要とする。これらの従来の製法では鉄ペンタカルボニルの熱分解や,水素化ホウ素の強力な還元力による金属イオンの還元反応を利用しており,反応速度の速い製法であると言える。
他方,本発明者らは先に,FeとPtの双方をアセチルアセトナート錯体からポリオール還元するという反応速度を抑えた手法によれば,FePt粒子の結晶構造転移開始温度(Tt)を310℃程度まで低下できることを知見した。このとき用いたポリオールはエチレングリコール(沸点:197.6℃)であり,反応温度は200℃であった。この例を後記の比較例2に示した。
FeとPtでは,Ptのほうが還元されやすいため,反応速度の速い製造方法では,粒子内に組成偏析を生じることが予想されるが,この場合に熱処理によりL10規則相に転移させるためには,粒子内におけるFeとPtの相互拡散が必要であり,このためにTtが450℃以上の高温となる。一方,反応速度を低下させた場合には粒子内の組成偏析を生じにくく,そのためTtを低下させることができる。比較例2において,Tt=280℃を示したのは,この理由によるものと考えられる。しかし,比較例2のものは磁気トルク測定による異方性磁界Hkが3.7kOe と低いことから,合成されたままの状態では磁気異方性を示すfct構造の存在量は非常に少ないと見ることができる。これでは,本発明の既述の課題は達成できない。
ところが,エチレングリコールよりも更に沸点の高いポリオール,例えばトリエチレングリコールやテトラエチレングリコールなどを使用し,反応温度を更に高くすると,合成された状態でfct構造の多いFePt粒子粉末を得ることができることが判明した。また,このFePt粒子の合成反応における溶液(溶媒)の最高到達温度と前記の異方性磁界Hkの関係において,溶媒の最高温度が270℃よりも低いと Hk≧10.0kOeの条件を満たさなくなることがわかった。
すなわち,FeとPtの双方をアセチルアセトナート錯体からポリオール還元するという反応速度を抑えた手法において,該ポリオールとして沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液を使用し,該錯体からポリオール還元によってFePt粒子を270℃以上の温度で合成するならば,合成されたFePt粒子は,合成されたままの状態において,メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲,室温での飽和磁化σsが30 emu/g以上,透過電子顕微鏡(TEM)観察による1次粒径の平均値が30nm以下である,流動性を有するFePt粒子粉末が得られることがわかった。トリエチレングリコールやテトラエチレングリコールは沸点が270℃以上である。したがって,これらを含む液体を溶媒として用いて溶媒の最高温度を270℃以上とすることにより,本発明に従うFePt粒子粉末を有利に製造することができる。
この合成反応において,反応溶液に分散剤を含有させておくこともできる。分散剤は粒子表面に吸着して粒子同士の凝集を抑制するのに有効である。また,分散剤の種類と添加量を適切にすることによって,合成されるFePt粒子の粒径を制御することも可能である。使用できる分散剤としては,金属粒子表面に吸着しやすいN原子を有するアミン基,アミド基,およびアゾ基を有する界面活性剤か,またチオール基,およびカルボキシル基のいずれかを構造中に含有する有機分子が好適である。
この合成反応においては,前記のように,その反応速度を制御することが重要である。そのための方法として溶媒中の金属濃度を制御することも重要である。すなわち金属原料の濃度を抑えることにより,生成する金属の過飽和度を低下させ,核発生および粒子成長の速度を低下させることができる。ポリオールと金属塩中に含まれる全ての金属イオンのモル比,すなわち,ポリオール/全金属イオンのモル比が1000以上であれば,本発明に従うFePt粒子を有利に製造することができる。
当該合成反応で得られるFePt粒子の異方性磁界Hkは,反応時間によっても変化する。一般に,反応時間の増加に伴ってHkが増加する。このため,充分大きなHkを得るためには反応時間は1時間以上,好ましくは2時間以上,さらに好ましくは3.5時間以上とするのがよい。
以下に実施例を挙げて,本発明をさらに説明する。
〔実施例1〕
テトラエチレングリコール(沸点:327℃)100mLに,鉄(III) アセチルアセトナートと白金 (II) アセチルアセトナートをそれぞれ1.30m mol/L添加して溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ,容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら,該溶液を160rpmの回転速度で撹拌しつつ加熱し,320℃の温度で3時間半の還流を行って,反応を終了した。反応終了後の液に3倍量のメタノールを添加したあと,遠心分離器にかけたあと,上澄み液を取り除いた。上澄み液を除いたあとの残留分(粒子粉末)にメタノール100mLを添加して超音波洗浄槽に装填し,この超音波洗浄槽で該粒子粉末を分散させ,得られた分散液を遠心分離器にかけたあと上澄み液を取り除いた。得られた残留分(粒子粉末)を同じくメタノールを加えて超音波洗浄槽および遠心分離器で処理する洗浄操作を,さらに2回繰り返した。最後に上澄み液を分別して得られたFePtナノ粒子粉末含有物を,以下の試験に供した。
図1は,得られたFePtナノ粒子粉末の透過電子顕微鏡(TEM)像であり,この像から測定される1次粒子の平均粒径は図1の(A)に見られるように約5nmである。また図1の(B)に見られるように,この平均粒径5nmの1次粒子は所々で集合して大きな群をなし,その一つの群が1個の2次粒子(写真に写っている箇所での2次粒子の平均粒径は約100nm)を形成しているが,この2次粒子からなる粉体は,全体としては流動性を有している。
該FePtナノ粒子粉末をエネルギー分散X線分光器(TMR−EDX)を用いて組成分析を行ったところ,原子比でFe:Pt=59:41であった。また,このFePtナノ粒子粉末をメスバウアー分光測定に供したところ,図2の結果が得られた。図2に見られるように,室温でL10規則相の強磁性秩序に対応するスペクトルが観測され,フィッティングにより求めたL10規則相の割合(強磁性構造の体積割合すなわち面心正方晶の割合)は52vol.%であった。
該FePtナノ粒子粉末をX線回折(XRD)に供し,図3のバターン(a)を得た。図3(a)に見られるように,超格子反射(001)と(110)に対応する回折ピークが存在しており,面心正方晶の存在が明らかである。
該FePtナノ粒子粉末を磁気トルク測定に供したところ,その異方性磁界Hkは31kOeであった。さらに,示差走査熱量計(Differential Scanning Calorimeter)によって,該FePtナノ粒子粉末の転移開始温度の計測を試みたが,明確な転移温度は観測されなかった。これは既にfct化が充分に進行しているからであると推定される。
該FePtナノ粒子粉末の飽和磁化量σsは,SQUID磁気測定装置により測定した磁場5Tにおいて,52emu/g であった。
〔比較例1〕
260℃の温度で3時間半の還流を行った以外は,実施例1を繰り返した。得られたFePtナノ粒子粉末について,実施例1と同様に,TEM観察,TMRによる組成分析,メスバウアー分光測定,X線回折,磁気トルク測定および示差熱分析計(DSC)による計測を行った。
その結果,TEM観察による1次粒子の平均粒径は5.4nm,TMRによる組成分析では原子比でFe:Pt=58:42のFePtナノ粒子からなることがわかった。しかし,メスバウアー分光測定では,その結果を図4に示したが,室温でL10規則相の磁気秩序に対応するスペクトルは観測されなかった。このことから,このFePtナノ粒子粉末はL10規則相の割合は0vol.%であることが推定された。事実,X線回折では図3のパターン(b)に見られるように,超格子反射(001)と(110)に対応する回折ピークは存在せず,またDSCによっても明確な転移温度が観測され,その転移開始温度は280℃であった。なお,磁気トルク測定による異方性磁界Hkは3.7kOe であり,飽和磁化量σsは16emu/g であった。
〔比較例2〕
テトラエチレングリコールに代えてエチレングリコール(沸点:197.6℃)を使用し,200℃の温度で3時間半の還流を行った以外は,実施例1を繰り返した。得られたFePtナノ粒子粉末について,実施例1と同様に,TEM観察,TMRによる組成分析,メスバウアー分光測定,X線回折,磁気トルク測定および示差熱分析計(DSC)による計測を行った。
その結果,TEM観察による1次粒子の平均粒径は4nm,TMRによる組成分析では原子比でFe:Pt=56:44のFePtナノ粒子からなることがわかったが,メスバウアー分光測定では室温でL10規則相の磁気秩序に対応するスペクトルは観測されなかった。このことから,このFePtナノ粒子粉末はL10規則相の割合は0vol.%であることが推定された。事実,X線回折では,超格子反射(001)と(110)に対応する回折ピークは存在しなかった。またDSCによって転移温度が観測され,その転移開始温度は310℃であった。磁気トルク測定による異方性磁界Hkは1.7kOe であり,飽和磁化量σsは5.1emu/g であった。
本発明に従う金属磁性粉末の1次粒子と2次粒子の例を示す透過電子顕微鏡(TEM)写真である。 本発明に従う金属磁性粉末について,メスバウワー分光測定結果の例を示す図である。 本発明に従う金属磁性粉末についてのX線回折チャートを比較例のそれと対比して示した図である。 比較例の金属粉末について,メスバウワー分光測定結果の例を示す図である。

Claims (7)

  1. 主成分とそれらの組成が下記の一般式(1)、すなわち
    〔TX1-XY1-Y・・・・(1)
    ただし(1)式において、T:FeまたはCoの1種または2種、M:PtまたはPdの1種または2種、Z:Ag、Cu、Bi、Sb、PbおよびSnからなる群から選ばれる少なくとも1種、X:0.3〜0.7、Y:0.7〜1.0を表す、
    で表され、残部が製造上不可避な不純物からなる金属の磁性粒子からなり、
    メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100 %の範囲、室温での飽和磁化量σsが20 emu/g以上、透過電子顕微鏡(TEM)観察による粒径の平均値が30 nm以下の1次粒子が集合して形成された2次粒子からなり、流動性を有する金属磁性粉末。
  2. 磁気トルク測定による異方性磁界Hkが10.0 kOe以上である請求項1に記載の金属磁性粉末。
  3. 1次粒径の平均値が20 nm以下である請求項1または2に記載の金属磁性粉末。
  4. 下記の一般式(1)、すなわち
    〔TX1-XY1-Y・・・・(1)
    ただし、(1)式において、T:FeまたはCoの1種または2種、M:PtまたはPdの1種または2種、Z:Ag、Cu、Bi、Sb、PbおよびSnからなる群から選ばれる少なくとも1種、X:0.3〜0.7、Y:0.7〜1.0を表す、
    で表される物質の粒子からなる金属磁性粉末を製造するにあたり、
    前記のTおよびM、さらに必要に応じてZの成分を含む金属塩を、沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液に溶解し、この溶液を270℃以上の温度に保持して該金属塩を該多価アルコールおよび/またはこれらの誘導体で還元し、この還元によって該物質の粒子を合成すること、
    そのさい、この合成された粒子が、合成された状態において、メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100 %の範囲、室温での飽和磁化σsが20 emu/g以上、透過電子顕微鏡(TEM)観察による粒径の平均値が30 nm以下の1次粒子が集合して形成された2次粒子からなること、
    を特徴とする金属磁性粉末の製造法。
  5. 多価アルコールが、トリエチレングリコールまたはテトラエチレングリコールの1種または2種である請求項4に記載の金属磁性粉末の製造法。
  6. T、MおよびZ成分の塩がこれらの成分のアセチルアセトナートである請求項4または5に記載の金属磁性粉末を製造する方法。
  7. 反応温度270℃以上に保持する時間が1時間以上である請求項4ないし6のいずれかに記載の金属磁性粉末の製造法。
JP2003317307A 2003-09-09 2003-09-09 金属磁性粉末およびその製造法 Expired - Lifetime JP4221484B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003317307A JP4221484B2 (ja) 2003-09-09 2003-09-09 金属磁性粉末およびその製造法
KR1020030067678A KR101016560B1 (ko) 2003-09-09 2003-09-30 금속 자성 분말 및 이의 제조방법
US10/812,078 US20050051241A1 (en) 2003-09-09 2004-03-30 Magnetic metal powder and method of producing the powder
US12/285,857 US20090050240A1 (en) 2003-09-09 2008-10-15 Magnetic metal power and method of producing the powder
US12/292,063 US8157889B2 (en) 2003-09-09 2008-11-12 Magnetic metal powder and method of producing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317307A JP4221484B2 (ja) 2003-09-09 2003-09-09 金属磁性粉末およびその製造法

Publications (2)

Publication Number Publication Date
JP2005082863A JP2005082863A (ja) 2005-03-31
JP4221484B2 true JP4221484B2 (ja) 2009-02-12

Family

ID=34225279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317307A Expired - Lifetime JP4221484B2 (ja) 2003-09-09 2003-09-09 金属磁性粉末およびその製造法

Country Status (3)

Country Link
US (3) US20050051241A1 (ja)
JP (1) JP4221484B2 (ja)
KR (1) KR101016560B1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048250A (ja) * 2003-07-30 2005-02-24 Dowa Mining Co Ltd 金属磁性粒子の集合体およびその製造法
JP4625980B2 (ja) * 2004-08-16 2011-02-02 Dowaエレクトロニクス株式会社 fcc構造を有する磁気記録媒体用合金粒子粉末の製造法
JP4734521B2 (ja) * 2006-01-06 2011-07-27 国立大学法人東北大学 金属磁性粉およびその製造法
TWI421353B (zh) * 2011-03-18 2014-01-01 Univ Nat Taiwan 具奈米級釘紮效應的磁性材料
CN102218543B (zh) * 2011-05-20 2013-01-23 湖北大学 一步合成面心四方结构FePt纳米粒子的方法及其产品
GB2536226B (en) * 2015-03-09 2019-11-27 Crfs Ltd Frequency discriminator
CN104677925A (zh) * 2015-03-23 2015-06-03 贵州电力试验研究院 一种测定混合物中各铁氧化物所占比例的方法
CN107498066B (zh) * 2017-09-07 2019-05-24 浙江工业大学 一种铂铜纳米线材料的制备方法及其应用
CN112585295B (zh) * 2018-08-09 2023-04-04 Jx金属株式会社 溅射靶、磁性膜以及垂直磁记录介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159306A (ja) 1982-03-17 1983-09-21 Hitachi Maxell Ltd 金属磁性粉末の製造方法
US6262129B1 (en) 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
US6331364B1 (en) * 1999-07-09 2001-12-18 International Business Machines Corporation Patterned magnetic recording media containing chemically-ordered FePt of CoPt
US6254662B1 (en) * 1999-07-26 2001-07-03 International Business Machines Corporation Chemical synthesis of monodisperse and magnetic alloy nanocrystal containing thin films
JP2003166040A (ja) * 2001-02-08 2003-06-13 Hitachi Maxell Ltd 金属合金微粒子及びその製造方法
US6875253B2 (en) * 2001-02-08 2005-04-05 Hitachi Maxell, Ltd. Metal alloy fine particles and method for producing thereof
JP2003113401A (ja) 2001-10-09 2003-04-18 Fuji Photo Film Co Ltd 硬磁性ナノ粒子、磁気記録媒体
US6676729B2 (en) * 2002-01-02 2004-01-13 International Business Machines Corporation Metal salt reduction to form alloy nanoparticles
JP2005048250A (ja) * 2003-07-30 2005-02-24 Dowa Mining Co Ltd 金属磁性粒子の集合体およびその製造法
JP4490201B2 (ja) * 2004-08-04 2010-06-23 Dowaホールディングス株式会社 凹凸表面をもつ微細な合金粒子粉末およびその製造法
JP4625980B2 (ja) * 2004-08-16 2011-02-02 Dowaエレクトロニクス株式会社 fcc構造を有する磁気記録媒体用合金粒子粉末の製造法

Also Published As

Publication number Publication date
KR101016560B1 (ko) 2011-02-22
US8157889B2 (en) 2012-04-17
KR20050026840A (ko) 2005-03-16
US20090050240A1 (en) 2009-02-26
JP2005082863A (ja) 2005-03-31
US20050051241A1 (en) 2005-03-10
US20110005353A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
EP1627699B1 (en) Face-centered cubic structure alloy particles and method of manufacturing
EP1661646B1 (en) Aggregate of magnetic alloy particles
US6254662B1 (en) Chemical synthesis of monodisperse and magnetic alloy nanocrystal containing thin films
Sun Recent advances in chemical synthesis, self‐assembly, and applications of FePt nanoparticles
Jeyadevan et al. Towards direct synthesis of fct-FePt nanoparticles by chemical route
US6676729B2 (en) Metal salt reduction to form alloy nanoparticles
US8157889B2 (en) Magnetic metal powder and method of producing the powder
US20090311556A1 (en) SYNTHESIS, FUNCTIONALIZATION AND ASSEMBLY OF MONODISPERSE HIGH-COERCIVITY SILICA-CAPPED FePt NANOMAGNETS OF TUNABLE SIZE, COMPOSITION AND THERMAL STABILITY FROM IMCROEMULSIONS
Frey et al. Magnetic nanoparticle for information storage applications
Takahashi et al. Direct synthesis of Pt based L1 structured nanoparticles
US7964013B2 (en) FeRh-FePt core shell nanostructure for ultra-high density storage media
Kang et al. Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles
Luna et al. Exchange anisotropy in Co80Ni20/oxide nanoparticles
JP4729682B2 (ja) 金属磁性粉の製造法
JP4452847B2 (ja) 金属磁性粉の製造法
JP4157936B2 (ja) 磁性粉およびその製造法
JP4541068B2 (ja) 磁性合金粒子の分散液
JP3957176B2 (ja) 多元系合金ナノ粒子の製造方法
Balela Synthesis and characterization of cobalt nanoparticles prepared by liquid-phase reduction
JP2005330526A (ja) ナノ粒子群の製造方法
Nikles et al. Magnetic Nanoparticles: Granular Recording Media
Kitamoto et al. Direct Synthesis of Ferromagnetic Fe-Pt Nanoparticles By Using a High-Pressure Chemical Solution Route with Microwave Irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081017

R150 Certificate of patent or registration of utility model

Ref document number: 4221484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term