JP3976729B2 - メモリセル、メモリセル構成、および製造方法 - Google Patents

メモリセル、メモリセル構成、および製造方法 Download PDF

Info

Publication number
JP3976729B2
JP3976729B2 JP2003507893A JP2003507893A JP3976729B2 JP 3976729 B2 JP3976729 B2 JP 3976729B2 JP 2003507893 A JP2003507893 A JP 2003507893A JP 2003507893 A JP2003507893 A JP 2003507893A JP 3976729 B2 JP3976729 B2 JP 3976729B2
Authority
JP
Japan
Prior art keywords
layer
memory cell
trench
region
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003507893A
Other languages
English (en)
Other versions
JP2004531084A (ja
JP2004531084A5 (ja
Inventor
ヘルベルト パルム,
ヨーゼフ ヴィルマー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2004531084A publication Critical patent/JP2004531084A/ja
Publication of JP2004531084A5 publication Critical patent/JP2004531084A5/ja
Application granted granted Critical
Publication of JP3976729B2 publication Critical patent/JP3976729B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明は、電気的に書き込み可能および消去可能な不揮発性フラッシュメモリに関する。これは、SONOS原理(半導体−酸化物−窒化物−酸化物−半導体)により構成され、かつ、仮想接地(virtual−ground)NORアーキテクチャにおいて用いられ得る不揮発性メモリセルを記載する。
極小の不揮発性メモリセルは、マルチメディアアプリケーションにおいて極めて高い集積密度を得るために必要とされる。半導体技術の進行中の発達は、益々大きい記憶容量を可能にし、まもなくギガバイトの領域に到達する。しかしながら、リソグラフィによって決定される最小の構造は、縮小し続け、例えば、トンネル酸化物の厚さ等の他のパラメータは、もはや対応して拡大縮小され得ない。プレーナトランジスタにおける構造の縮小にともなうチャネル長さの低減は、ソースとドレインとの間のパンチスルーの出現を回避するために、チャネルドーピングの増加を必要とする。これは、閾値電圧を上昇させ、これは、通常、ゲート酸化物の厚さを低減することによって補償される。
しかしながら、チャネル−ホットエレクトロンによってプログラムされ得、かつホットホール(Boaz Eitanによる米国特許5,768,192号、米国特許第6,011,725号、WO第99/60631号を参照)を用いて消去され得るプレーナSONOSメモリセルは、ゲート酸化物と等価の厚さを有する制御誘電体を必要とする。しかしながら、実行可能なプログラムサイクルの数(メモリセルの「耐久性」)が許容し得ない態様で低下することなく、この厚さを必要に応じて低減することはできない。従って、チャネル内のドーパント濃度が過度に高くなるように選択する必要がないことを保証する、十分に大きいチャネル長さが必要とされる。なぜなら、それでない場合、閾値電圧が過度に上昇するからである。
J.Tanakaらによる公報「A Sub−0.1μm Grooved Gate MOSFET with High Immunity to Short−Channel Effects」in IEDM 93、537〜540ページ(1993年)は、p基板上のトランジスタを記載する。ここで、ゲート電極は、nソース領域とnドレイン領域との間のトレンチ内に配置され、従って、このようにして、曲線状のチャネル領域が基板に形成される。
K.Nakagawaらによる公報「A Flash EEPROM Cell with Self−Aligned Trench Transistor & Isolation Structure」in 2000 IEEE Symposium on VLSI Technology Digest of Technical Papers」は、フローティングゲート電極を有するメモリセルとしてのトランジスタを記載する。この電極は、nソース領域とnドレイン領域との間に配置され、基板のpウェルの中に伸びる。フローティングゲート電極と制御ゲート電極との間に、酸化物−窒化物−酸化物層シーケンスの誘電層が位置する。
Eiji Kamiyaによる米国第6,080,624号は、フラッシュEEPROMメモリセルを有する不揮発性半導体メモリを記載する。ゲート誘電体、記憶媒体として提供されるフローティングゲート電極、中間誘電体としてのONO膜、制御ゲート電極、および被覆層としての窒化物膜が基板に付与されて、パターニングされる。ソース領域およびドレイン領域は、導入された拡散により形成される。さらなる窒化物層が、表面全体に付与され、電気的絶縁がゲート電極のウェブ間に存在する空間に導入される。このようにして、形成される絶縁帯は、ワード線の方向に走り、ビット線は、上面に付与される導体トラックによって形成される。
独国特許第195 45 903 A1号は、読み出し専用メモリセル構成を記載する。ここで、プレーナMOSトランジスタは、互いに平行に走るロウに配置される。隣接し合うロウは、長手方向のトレンチの底面に沿って、および隣接し合うトレンチ間に存在するウェブ上を交互に走る。従って、下部ソース/ドレイン領域が長手方向のトレンチの底面に形成され、上部ソース/ドレイン領域は、トレンチ間に存在するウェブの上面に形成される。誘電層は、ゲート誘電体としてソース/ドレイン領域に配置され、SiOを含むスペーサによって、長手方向のトレンチの側壁に付加される。ONO層シーケンスは、ゲート誘電体として提供され得る。ビット線は、長手方向のトレンチを横断して走り、ワード線は、長手方向のトレンチと平行に走る。
本発明の目的は、極めて小さい表面積を必要とするメモリセル構成のメモリセルを提示すること、および関連する製造方法を提示することである。
この目的は、請求項1の特徴を有するメモリセルによって、請求項6の特徴を有するメモリセルを含む構成によって、および請求項9の特徴を有する方法によって達成される。構成は、独立請求項から明らかである。
本発明によるメモリセルは、書き込みおよび読み出しの十分に短いアクセス時間を維持しながら、同時に、メモリセルの寸法をさらに低減することが、ビット線が十分に低い抵抗を有する場合にのみ可能であるという発見に基づく。この目的で、メモリトランジスタのドーピングされたソース/ドレイン領域に、ビット線に帯状にパターニングされた別個の層または層シーケンスが配置され、この層が特に、メタライゼーションとして、ソース/ドレイン領域と導通するように接続されて、ビット線の抵抗を低減することによってビット線が形成される。この層または層シーケンスは、これらの層または層シーケンスが完全に導電性材料で形成されているか、その層膜の一部だけが導電性材料で形成されているかに関わらず、非常に一般的には、帯状に形成され、かつ、上述の目的で、十分に低い抵抗を有する少なくとも1つの層シーケンスを含む層または層シーケンスである。以下の記載および請求項において、このような、少なくとも層膜における十分に導電性の層または層シーケンスは、それぞれ、導電層と呼ばれる。このために、特に、ドーピングポリシリコン、タングステン、タングステンシリサイド、コバルト、コバルトシリサイド、チタンおよびチタンシリサイドからなる群より選択された少なくとも1つの材料が適切である。
ソース/ドレイン領域がシリコンから形成された場合、メタライゼーションは、好適には、自己整合シリサイドの短縮形を表す「サリサイド」として公知の方法を用いて製造されたシリサイド化された金属層であり得る。別の実施形態において、好適には、同様に、シリコン上に、ポリシリコンおよびWSiまたはWN/Wを含む、メタライゼーションとして設けられた層シーケンス、ならびに、ハードマスクのために適切な例えば、酸化物または窒化物等の材料を含む被覆する電気的絶縁層がメモリトランジスタのソース/ドレイン領域上に存在する。ビット線構造のメタライゼーションは、基板上に直接、および必要に応じて、部分的に酸化物で覆われた領域の上にパターニングされる。
個々のメモリトランジスタのソース/ドレイン領域は、高ドーズ量のソース/ドレインの注入を用いて、または適切な層から、例えば、ポリシリコンからドーパントを拡散させることによって製作される。ソース/ドレイン領域に付与された帯状のメタライゼーションは、メタライゼーションの良好な導電性に基づいて、特に低い抵抗を有するビット線を形成する。この意味合いで、メタライゼーションは、金属含有層、または少なくとも勤続の様な特性を有する導体トラックであると理解される。同ビット線のソース/ドレイン領域は、半導体材料において、予め、導通するように互いに接続される必要がない。しかしながら、好適には、ビット線は、さらに半導体材料におけるメタライゼーションが提供された帯状のドーピング領域とともに埋め込みビット線として設計される。
半導体材料から離れた上面上で、ビット線構造は、好適には、窒化物層で被包され、帯として設計され、かつ、製造プロセスにおいて、それに整合したトランジスタのチャネル領域を生成するためのエッチングマスクとして利用される。好適には、境界層、メモリ層、およびさらなる境界層から形成された層シーケンスを含み、かつONOの態様で形成されるメモリ層が付与された後、ワード線を製造するための層シーケンスが堆積され、かつ好適には、帯状にドライエッチングによってパターニングされる。
境界層は、メモリ層のエネルギーバンドギャップよりも高いエネルギーバンドギャップを有する材料から製作され、従って、メモリ層に捕獲される電荷キャリアは、そこに配置された状態である。好適には、メモリ層のために適切である材料は、窒化物であり、酸化物は、特に、周囲の材料として適切である。シリコン材料系を用いるメモリセルの場合、メモリ層は、ONO層シーケンスの例において、約5eVのエネルギーバンドギャップを有するシリコン窒化物であり、周囲の境界層は、約9eVのエネルギーバンドギャップを有するシリコン酸化物である。メモリ層は、エネルギーバンドギャップが、境界層のエネルギーバンドギャップよりも小さい異なった材料であり得、この場合、エネルギーバンドギャップ間の差は、電荷キャリアの良好な電気の閉じ込めを保証するために十分に大きい必要がある。境界層としてのシリコン酸化物と組み合わせて、メモリ層のために用いられる材料は、例えば、タンタル酸化物、ハフニウムシリケート、チタン酸化物(化学量論的組成の場合TiO)、ジルコニウム酸化物(化学量論的組成の場合ZrO)、アルミニウム酸化物(化学量論的組成の場合Al)または本質的に導電性(非ドーピング)シリコンであり得る。
トランジスタを互いに絶縁するために、アンチパンチ注入(anti−punch implantation)として知られる種々の入射角度でドーパントを注入することによって、隣接し合うメモリセルのトランジスタのチャネル領域間に電気的絶縁が生成され得る。代替的構成は、この絶縁が、酸化物で充填される凹部によって生成されることを提供する。これは、STI(シャロートレンチアイソレーション)の態様で行われる。
このタイプのメモリセルは、メモリトランジスタが十分に大きいゲート長さを有するにもかかわらず、それぞれのメモリセルを、用いられるフォトリソグラフィの規模で、可能な最小のクロスポイントセルとして生成することを可能にする。本発明による構造は、最小の駆動周辺部を有する大きいセルブロックを可能にし、その結果、高いセル効率をもたらす。本発明により形成されたメモリセル構造は、さらに、特に、STI構造の上に配置されるビット線構造を生成するために用いられ得る。
ここで、本発明によるメモリセルおよび関連する製造方法が、添付の図に示された例を参照して、より詳細に説明される。
図0は、ワード線WLn−1、WL、WLn+1およびビット線BLi−1、BL、BLi+1の構成を平面図で示す。ビット線は、この場合、埋め込みビット線の形態であり、覆われた輪郭として破線を用いて示される。ワード線は、好適には、金属導体トラックとして、構成の上面に配置される。メモリのメモリセルは、各場合について、ビット線の中間領域とワード線との交差点に配置される。これは、用いられ得る可能な最小のメモリセルに対して従来用いられるクロスポイントセルという用語の起源である。各場合について、本発明による1つのメモリセルが、このようなメモリセル構成の交差点に位置する。各場合について、読み出されるか、またはプログラムされるべきメモリセルは、ビット線およびワード線を用いてそれ自体公知の方法でアドレス指定される。すべてのメモリセルは、示されたビット線およびワード線を介する接続と組み合わせて、仮想接地NORアーキテクチャのメモリを形成する。しかしながら、原則的に、本発明によるメモリセルは、他のメモリアーキテクチャでも用いられ得る。メモリのメモリセル構成におけるメモリセルの構造は、好適な製造方法を参照して以下に記載される。
図1は、本発明によるメモリセル構造を説明することを目的とした、第1の中間生成物、および、好適な製造方法に基づいたメモリセルフィールドにおけるその構成の断面図を示す。製造は、好適には、駆動エレクトロニクスを生成するためにも用いられるCMOSプロセスの部分を成す。この目的で、トレンチは、基板上に成長する半導体ボディ、または半導体層、または半導体層シーケンスにおいてエッチングされ、)として酸化物で充填される。従来、半導体材料の上面は、最初に、それ自体公知のパッド酸化物およびパッド窒化物で覆われる。STIトレンチエッチングは、適切な写真技術を用いて行われる。酸化物の充填が導入された後、上面が平坦化され、これは、例えば、CMP(化学的機械的研磨)により公知の方法で達成され得る。パッド窒化物は、その後、エッチングによって除去される。pウェルおよびnウェル、すなわち、半導体材料の中に深く伸び、かつ、駆動周辺部およびメモリセルのために提供されるドーピング領域が、シリコンを半導体材料として用いた場合、好適には、マスクされたボロン注入イオンおよびリン注入、次に、注入のアニーリングによって製造される。図1は、さらに、半導体ボディ1、例えば、シリコン基板において形成されたpウェル10、および、例えば、酸化物を用いて生成されたエッジ絶縁部分12を断面図で示す。
最初に設けられたパッド酸化物の除去に続いて、適切な厚さの酸化物層13が成長させられ、次に、このメモリセルフィールドの外側のエッチングストップ層として利用される。この製造プロセスの例示的実施形態において、その後、注入(例えば、リン)を導入するために適切な写真技術が用いられ、これによって、高いn型導電率でドーピングされる領域11(n+領域)がpウェル10の上部分に形成され、この領域は、次に製造されるべきソース/ドレイン領域のために提供される。メモリセルフィールドの領域において、湿式化学手段によってメモリセルの形成のために必要とされる酸化物層を除去するために必要とされない酸化物層13を除去するために、好適には、同じフォトマスクが用いられる。
図2aは、さらなる層シーケンスが付与およびパターニングされた後の、図1に示された断面図を示す。この層シーケンスは、本発明に関連する、ビット線構造の、帯状にパターニングされた導電層8を形成するために用いられる。図2aに示される例示的実施形態の場合、この目的で、好適な実施形態において、まず、ソース/ドレイン領域のコンタクト接続のために、関連する符号の導電型のポリシリコン層14が、その後、この場合、タングステンシリサイド(WSi)の金属含有層15が実際の低抵抗性ビット線として続き、および、次に、ハードマスク16の材料(例えば、酸化物)が電気的絶縁のために付与されて、帯状に構造化される。WSiの代わりに、タングステン窒化物およびタングステンを含む層シーケンスが設けられ得る。導電層は、さらに、チタンおよび/またはチタンシリサイドを有し得る。導電層8の帯状のパターニングは、好適には、写真技術および異方性エッチングによって行われ、ここで、注入された領域の半導体ボディまたは半導体層の半導体材料がわずかにエッチングされたか否かは重要でない。導電層8の帯状の部分は、好適には、酸化物から製作されたスペーサ17によって側方で絶縁される。
図2bは、図2aに示された部分を示す。この図から、この例示的実施形態において、ポリシリコン層14および金属含有層15を含み、所望でならば、多層であってもよい導電層8がエッジ絶縁部分12を越えて長手方向に伸びる。これらの層の帯状パターニングのためのエッチングは、エッジ絶縁部分12の酸化物によってセルフィールドのエッジで境界付けられる。エッジ絶縁部分12の埋め込み部分で終端するビット線は、帯状にパターニングされた導電層の部分によってエッジ絶縁部分12を越えて伸び、従って、コンタクトは、実際のメモリセルフィールドの外側のビット線によって製作され得る。
上面のビット線構造、およびマスクとして酸化物で覆われた領域を用いて、トレンチ28は、図3に示されたように、自己整合して(例えば、反応性イオンエッチング、RIEを用いて)エッチングされ、これらのトレンチは、活性領域のために、特に、個々のメモリセルにおいて提供される。ソース/ドレイン領域3、4は、これらの間に形成される。さらに、良好な性能を達成するために、各場合について、トレンチの底面に提供されるメモリトランジスタのチャネル領域の部分23における所定のゲート電圧に存在する電荷キャリア濃度が十分に高くなければならないことを考慮に入れる必要がある。pウェルの場合、この濃度は電子濃度である。有利な構成において、メモリセルのウェル10は、1017cm−3の典型的なドーパント濃度を有し、チャネル領域のドーパント濃度は、トレンチの底面に提供されたチャネル領域の部分23における注入によって、長手方向の外側の領域におけるよりも、中心においてより大きい程度で変更される。この目的で、まず、犠牲層(例えば、通常、約6nmの厚さで、熱的に生成される犠牲酸化物)を付与することが望ましい。その後、割り当てられたドーパントが注入され、pドーピングウェルの示された例において、これは、ドーパントとして、例えば、通常、20keVのエネルギーを有する、1012cm−2〜1014cm−2の量のヒ素である。犠牲層は、除去される。酸化物の場合、これは、希釈したHFを用いて行われ得る。
層シーケンスは、下部境界層5、メモリ層6および上部境界層7を含む層シーケンスは、表面全体に付与される。この層シーケンスは、実際の記憶媒体として提供され、冒頭で記載されたように、例えば、それ自体公知のONO層シーケンスであり得る。この場合、下部境界層5は、例えば、約2.5nm〜8nmの厚さの酸化物であり(下部酸化物は、好適には、熱的に生成される)、メモリ層6は、約1nm〜5nmの厚さの窒化物であり得(好適には、LPCVD、減圧化学気相成長によって堆積される)、上部境界層7は、同様に、約3nm〜12nmの厚さの酸化物であり得る。
このようにして達成され得る構造は、図3において断面図で示される。メモリセルフィールドは、適切な写真技術によって覆われ、従って、周辺の領域において、境界層を含むメモリ層が除去され得る。メモリ層は、さらに、ゲート電極および/またはトレンチ28間に提供されたトレンチの底面のメモリの領域においても除去され、これにより、メモリ層は、それぞれのトレンチの壁面間および/または2つの隣接し合うトレンチ間で中断される。従って、駆動周辺部のために、まず、高電圧トランジスタ用のゲート酸化物、その後、適切な場合、低電圧トランジスタ用の比較的薄いゲート酸化物が成長させられる。閾値電圧は、さらなるマスクおよび注入を用いて調整され得る。
図4aに示される断面図は、ゲート電極2のために提供された導電性ドーピングポリシリコン層18、ならびに、ワード線のために提供された金属含有層19(この場合、WSi)およびハードマスク層20の堆積後の構造を示す。実際のワード線は、金属含有層19の低抵抗性の金属または金属含有材料によって形成される。タングステンシリサイドの代わりに、異なった金属のシリサイド、または多層金属含有層が存在し得る。ハードマスク層20の材料は、例えば、圧縮酸化物である。
図4aに描かれるこの断面図は、図4bおよび図4cに示される。図4bに示される断面において、境界層5、7間のメモリ層6の層シーケンスは、ビット線のために提供され、この例において、ポリシリコン層14および金属含有層15から形成され、かつハードマスク16によってここから絶縁される帯状の導電層8の上に位置する。図4cに見出され得る、ビット線の導電層の2つの帯状の部分間のゲート電極2の断面の位置において、メモリ層6は、ゲート電極のために提供されるトレンチの底面に伸びる。ポリシリコン層18、金属含有層19およびハードマスク層20を含む、付与された層シーケンスは、図4bおよび図4cから見出され得るように、帯状に形成され、これにより、ビット線を横断して走るワード線が形成される。ワード線のエッジは、スペーサ21によって絶縁される。スペーサは、それ自体公知の方法で、スペーサの材料、好適には、酸化物からなる層が、表面全体に酸化物を等方的に付与され、かつ、実質的に、スペーサ21の極めて垂直の部分のみが帯状のエッチングされたワード線のエッジに残るように異方的にエッチングバックされことによって形成される。これに代わって、ゲート電極と下部ワード線との間の空間は、完全に、または部分的にスペーサの材料で充填された状態で残され得る。
この方法工程において、駆動周辺部のトランジスタのゲート電極は、同時にパターニングされ得る。メモリセルフィールドの領域において、ゲート電極のエッチングは、上部境界層7またはONO層シーケンスにて停止する。さらに、必要に応じて、ゲートの再酸化を実行して、隣接し合うトランジスタの絶縁用のアンチパンチ注入22を導入することが可能である。
さらに、トランジスタを製造するための、それ自体公知のさらなる従来の方法工程、例えば、LDD(lightly doped drain)注入、およびHDD注入、あるいは窒化物のパシベーション層の堆積、およびBPSG(boron−doped phosphosilicate glass)およびCMPによる平坦化等が同様に良好に提供され得る。完成させるためのさらなる工程は、ビアホールの製造および充填、ならびにメタライゼーションおよびパシベーション層の製造である。これらの製造工程は、メモリコンポーネントの製造から、それ自体公知である。
図4.1は、代替的構成を示し、ここで、埋め込みビット線を形成するためのビット線注入は、これに付与された材料から外へ拡散することによって完全または部分的に置き換えられる。これは、このタイプの製造によって、ソースおよびドレインのために提供されるドーピング領域11の製造もまた省略され得ることを意味する。導電層8は、その後、ドーパントが少なくとも下部層部分(実施例においてはドーピングポリシリコン層14が記載される)から、半導体ボディ1または半導体層の半導体材料の中に拡散し得るように付与される。このようにして、図4.1には線の境界線で示されたソース/ドレイン領域110が形成される。さらに、好適な構成において、メモリセルのウェルは、チャネル領域のドーパント濃度が、長手方向の外側の領域におけるよりも中心において、より大きい程度で変更されるようにトレンチの底面に配置されるメモリトランジスタのチャネル領域の部分23の中に注入されることによって改変される。これは、図3を参照した上述の方法と同様の方法で行われる。
図4.11は、さらなる実施形態を示し、ここで、本実施例においては主に、メモリ層6および境界層5、7を別々の部分に含む層シーケンスと隣接して形成されるソース/ドレイン領域3a、3b、4a、4bを製造するために、スペーサ17を製造する前に、ソースおよびドレインの導電型の符号のドーパントの注入が導入される。この場合もまた、次に続く熱処理工程の1つにおけるソース/ドレイン領域に加えて、ドーピング領域111を形成する目的で、ポリシリコン層14からドーパントを拡散させるために提供することが可能である。この例示的実施形態においても、トレンチの底面に配置されるメモリトランジスタのチャネル領域の部分23が、上述の態様で注入することによって好適に改変される。
図4.2bおよび図4.2cは、さらなる例示的実施形態の図4bおよび図4cに対応する断面を示し、ここで、さらなる絶縁領域が、メモリセルを互いに境界付ける目的で半導体材料に存在する。これは、チャネル領域が過度に接近して配置される態様が、すなわち、隣接し合うメモリトランジスタ間の絶縁問題に至り得るからである。本明細書中に開示されるプロセス設計は、隣接するメモリセルがSTI構造を用いて互いに分離されるように改変され得る。この目的で、シャロートレンチアイソレーションのために提供されたトレンチの態様で、狭く深いトレンチがワード線間の半導体材料の中にエッチングされる。
図4.2bおよび図4.2cは、このタイプの絶縁領域24、好適には、例えば、シリコンの酸化とSiOの堆積との組み合わせによって製造され得る酸化物を有する例示的実施形態の断面を示し、図4.2bは、ビット線に沿う領域を示し、図4.2cは、2つのビット線間の領域を示す。この場合、ゲート電極のために提供されたトレンチからのエッチングが絶縁領域24で停止し、これにより、ワード線を横断する方向で、図4.2cに示される態様で、メモリ層6が、実質的に2つの層レベル上、および絶縁領域24の側面に付与される。ゲート電極のために提供されたトレンチのエッチングが絶縁領域24の材料にて停止するという事実は、トレンチが、絶縁領域24間の空間にのみ形成されることを意味する。従って、メモリトランジスタのチャネル領域間に、各場合について、1つのこのような絶縁領域24が残り、これは、これらのチャネル領域を互いに分離する。これは、残っている層構造および残っているパターニングを、他の例示的実施形態と比較して改変することはない。
ビット線の抵抗を低減するために帯状にパターニングされた導電層8は、サリサイド(自己整合シリサイド)法を用いて、ビット線をメタライゼーションすることによっても製造され得る。これは、図3.3a〜図3.3aに示される、図3に示されるものに対応する断面を参照して説明される。しかしながら、図3に示される例示的実施形態と異なって、導電層は、ソースおよびドレインのためにドーピングされた領域11に直接付与されず、むしろ、まず、ハードマスクのために適切な材料から製作されたパターニング層25のみがこのドーピング領域11に付与され、その後、この層は、帯状にパターニングされる。このパターニング層は、好適には、例えば、酸化物のスペーサ26によって長手方向に境界付けされる。境界層5、7、および、これらの間に配置されたメモリ層6の、例えば、ONO層シーケンス等の層シーケンスは、ゲート電極のために提供されたトレンチ28がエッチングされた後、上述の方法で表面全体に付与される。メモリセルフィールドの周辺部において駆動するために提供されたトランジスタの領域において、メモリ層シーケンスは、駆動トランジスタのために、除去され、かつ少なくとも1つのゲート酸化物と置き換えられ得る。
図3.3bに示されるように、トレンチ28は、ゲート電極2のために提供された材料、好適にはドーピングシリコンで充填される。その後、好適には、CMPを用いて構成の上面が部分的にはく離および平坦化される方法工程が続く。この方法工程がパターニング層25の材料に関して可能な限り均一に終了することを保証するために、パターニング層は、好適には、窒化物から形成される。メモリ層6および境界層5、7は、パターニング層25の上面で除去される。これは、パターニング層を再び上部からアクセスできるようにする。
図3.3bは、中に形成されたpウェル10、ソースおよびドレインのためのドーピング領域11、およびゲート電極2の材料で充填されたトレンチを有する半導体ボディ1を、側方がスペーサ26によって境界付けされたパターニング層25の帯状部分間に示す。パターニング層の上面27は露出される。この場合もまた、ソース/ドレイン領域が導電層の材料からドーパントが実質的に拡散することによって形成された場合、ドーピング領域11の注入が、まず、省略され得る。
その後、好適には、ゲート電極のポリシリコンの熱酸化が行われ、これにより、図3.3cに示された薄い酸化領域29が、その上面に形成されるが、パターニング層の窒化物は、わずかな程度でのみ酸化される。これは、ゲート電極が後からシリサイド化されることを回避する。その後、パターニング層が除去されるが、スペーサ26は、所定の位置に残ることが可能である。パターニング層が窒化物から形成され、スペーサが酸化物から形成された場合、パターニング層の窒化物は、スペーサの酸化物に対して選択的に問題なく除去され得る。半導体材料は、その後、この実施例において、半導体ボディにおけるドーピング領域11を意味する上面において露出される。
ソース/ドレイン領域を製造するための第3の変形として、この実施例において、ソースおよびドレインのための注入が、パターニング層25が除去された後の方法工程においてのみ実行されることも可能である。境界層およびメモリ層の付与は、特に、ONO層シーケンスとしての実施形態において、高温プロセスを必要とするので、そうでない場合、注入後、高濃度で局所的に存在する、すでに注入されたドーパントの拡散が生じ得る。しかしながら、注入が、ONO層構造が付与された後、およびパターニング層が除去された後にのみ実行された場合、この温度によって誘発される拡散は、非常にわずかな程度でのみ生じる。
その後、金属層30、例えば、コバルトは、パターニング層の帯状部分の位置で導電層8として付与される。好適な実施形態において、シリコンは、半導体ボディとして用いられ、金属は、熱処理によってシリサイド、この場合、好適には、コバルトシリサイドに変換される。
この例示的実施形態の製造方法のさらなる工程は、上述の例示的実施形態の図4a〜図4cに対応する図4.3a〜図4.3cを参照して記載される。図4.3aは、ワード線32と平行、かつビット線、および埋め込みビット線上の導電層8の帯状の部分に対して垂直の断面を示す。この図4.3aから、まず、この場合、導電層8として提供される金属層30が、電気的絶縁層31、好適には、酸化物で覆われることが見出され得る。その後、例示的に、ポリシリコン層33、特に、金属シリサイドを含む金属含有層34、およびハードマスク層35を典型的に含む、ワード線32の層シーケンスが、プレーナ表面に付与される。金属含有層34は、特に、タングステンシリサイド、またはこれに付与されたタングステン窒化物と金属タングステンとの二重層であり得る。ワード線として、単一のポリシリコン層33のみを用い、その上にハードマスク層35が直接付与されることも可能である。ポリシリコン、および金属を有しないハードマスクを用いるこの実施形態は、サリサイド法が、例えば、駆動周辺部のトランジスタにおいて繰り返し用いられるべき場合に有利であり得る。図4.3aにおいて、図4.3bおよび図4.3cに図示される部分の位置が示される。
図4.3から、ワード線のために提供される層シーケンス33、34、35が帯形状にパターニングされ、かつ、スペーサ36によって側面で絶縁されることが見出され得る。ONO層シーケンスは、コンポーネントのこの領域において除去される。帯を形成するようにパターニングされたワード線の層シーケンスがゲート電極2の材料に付与される態様もまた見出され得る。この例示的実施形態において、スペーサ36は、さらに、ワード線間の空間を完全または部分的に充填し得る。図4cを参照してすでに記載されたアンチパンチ注入22が、さらに、図4.3cに示される例に組み込まれる。ゲート電極2のワード線に沿ったパターニングは、好適には、ワード線32のために提供されたそうシーケンスのパターニングと共に行われる。さらなる層構造は、上述の例示的実施形態と同様の態様で生成される。駆動周辺部のトランジスタは、それ自体公知のCMOSプロセスにより生成される。
好適な例示的実施形態において、上述のように、規定ドーパント濃度が、特に、注入によって、トレンチの底面に設定される。図5aは、モデル計算に関する図を示し、ここで、図3または図4.1に示される図面の平面における長手方向の寸法が、横座標にμmでプロットされ、半導体ボディの上面または半導体ボディ内の規定の層膜からの距離dが縦座標にμmでプロットされる。典型的な例示的実施形態の同一のドーパント濃度の線が、トレンチ底面の半導体材料の領域において示される。
関連した図5bにおいて、図5aからのそれぞれの座標値d/μmが横座標にプロットされる。cm−3のドーパント濃度D(平方センチメートルごとのドーパント原子の数)が、縦座標にプロットされる。垂直方向の破線は、境界層5、7とメモリ層6との間の境界を示す。ヒ素およびボロンのドーパント濃度のグラフは、それぞれ、実線および破線で記される。この例において、ボロン濃度は、1017cm−3で一定の状態であり、理想的には、2・1017cm−3で一定の状態であるか、または、3・1017cm−3でもよいが、約0.3μm周辺の横座標値の領域において、境界層5の誘電体の中にボロン原子が拡散することによって、わずかに弱められる。好適な例示的実施形態において、下部境界層5の下に、5・1017cm−3〜5・1018cm−3のヒ素ドーパント濃度が、半導体材料の中に20nm深さまで伸びる、トレンチ底面の最深点の下の領域において設定される(図5bにおける寸法R)。これは、特に、典型的には、20keVのエネルギーで、約2・1012cm−2の注入量でヒ素を注入することによって達成され得る(すでに示されたように、後から除去される、約6nmの厚さを有するパッド酸化物を用いて)。このようにして設定されたドーパント濃度の範囲Rは、図5bにおける縦座標に記される。
半導体材料の底面ドーピング、またはウェルドーピングよりも所定のファクタだけ高いボロン濃度の場合、ヒ素濃度に関して示された限界が、このファクタで乗算され得る。従って、半導体材料の中に最も遠く突き出すトレンチの底面の部分に、またはトレンチの底面の中央に位置し、トレンチの底面に対して垂直に、半導体材料の中に20nm伸びるチャネル領域の部分23において、限界が5・1017cm−3〜5・1018cm−3によって決定される範囲に位置するドーパント濃度が設定され、各場合について、この領域において底面ドーピングまたはウェルドーピングとして半導体材料に導入される、cm−3で測定されるドーパントの濃度、および1017cm−3の値からの商で乗算される。ドーパントとして、このようにして生成される導電型がそれぞれ適切な符号を有する場合、示されたもの以外のドーパントもまた適切であり得る。
図0は、ワード線およびビット線の図式的構成を平面図で示す。 図1は、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図2aは、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図2bは、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図3は、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図3.3aは、図3に代わる代替的な例示的実施形態の方法工程からの中間性生物を示す。 図3.3bは、図3に代わる代替的な例示的実施形態の方法工程からの中間性生物を示す。 図3.3cは、図3に代わる代替的な例示的実施形態の方法工程からの中間性生物を示す。 図4aは、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図4bは、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図4cは、好適な製造方法の工程の後の、メモリセルの中間性生物の断面図を示す。 図4.1は、図4aに示された図の代替な例示的実施形態を示す。 図4.11は、図4aに示された図の代替的な例示的実施形態を示す。 図4.2bは、図4bに示された図の代替的な例示的実施形態を示す。 図4.2cは、図4cに示された図の代替的な例示的実施形態を示す。 図4.3aは、さらなる例示的実施形態の4aに対応する。 図4.3bは、さらなる例示的実施形態の4bに対応する。 図4.3cは、さらなる例示的実施形態の4cに対応する。 図5aは、モデル計算の図を示す。 図5bは、モデル計算の図を示す。
符号の説明
1 半導体ボディ
2 ゲート電極
3 ソース/ドレイン領域
3a ソース/ドレイン領域
4 ソース/ドレイン領域
4a ソース/ドレイン領域
4b ソース/ドレイン領域
110 ソース/ドレイン領域
111 ソース/ドレイン領域
5 境界層
6 メモリ層
7 境界層
8 導電層
10 pウェル
11 ドーピング領域
12 エッジ絶縁部分
13 酸化物層
14 ポリシリコン層
15 金属含有層
16 ハードマスク
17 スペーサ
18 ポリシリコン層
19 金属含有層
20 ハードマスク層
21 スペーサ
22 アンチパンチ注入
23 チャネル領域の部分
24 絶縁領域
25 パターニング層
26 スペーサ
27 パターニング層の上面
28 トレンチ
29 薄い酸化領域
30 金属層
31 電気的絶縁層
32 ワード線
33 ポリシリコン層
34 金属含有層
35 ハードマスク層
36 スペーサ

Claims (14)

  1. メモリトランジスタと、
    複数のワード線(WLn−1、WL、WLn+1)と、
    互いに平行な複数のビット線(BLi−1i+1)であって、該複数のワード線(WLn−1、WL、WLn+1)を横断して延びている複数のビット線(BLi−1i+1)と
    を備えたメモリセルであって、
    該メモリトランジスタは、
    半導体ボディ(1)または半導体層の上面に構成されたゲート電極(2)であって、該半導体ボディ(1)および該半導体層のそれぞれは、半導体材料からなり、該ゲート電極(2)は、誘電性材料によって該半導体材料から分離されている、ゲート電極(2)と、
    該半導体材料内に形成されたソース領域(3)と、
    該半導体材料内に形成されたドレイン領域(4)と
    を含み、
    該ゲート電極は、トレンチ内に構成されており、該トレンチは、該ソース領域(3)と該ドレイン領域(4)との間の該半導体材料内に形成されており、
    境界層(5、7)とメモリ層(6)とを含む層シーケンス(5、6、7)が、該ソース領域(3)と該ゲート電極(2)との間、および、該ドレイン領域(4)と該ゲート電極(2)との間に少なくとも存在し、
    該メモリ層(6)は、非ドーピングシリコン、タンタル酸化物、ハフニウムシリケート、チタン酸化物、ジルコニウム酸化物およびアルミニウム酸化物からなる群から選択され、
    導電層(8)は、帯状にパターニングされ、かつ、該ソース領域(3)または該ドレイン領域(4)の上部に形成されており、該導電層(8)は、各ビットラインの一部として設けられている、メモリセル。
  2. 前記ソース領域(3)と前記ドレイン領域(4)との上に存在する前記導電層(8)は、ドーピングポリシリコン、タングステン、タングステンシリサイド、コバルト、コバルトシリサイド、チタンおよびチタンシリサイドからなる群から選択される少なくとも1つの材料を含む、請求項1に記載のメモリセル。
  3. 前記境界層(5、7)は、酸化物からなる、請求項1または2に記載のメモリセル。
  4. 前記複数のビット線(BLi−1i+1)は、前記半導体材料内の帯状のドーピング領域を有する埋め込みビット線として形成されており、前記帯状にパターニングされた導電層(8)が、メタライゼーション層として設けられている、請求項1〜3のいずれか一項に記載のメモリセル。
  5. ドーパントが、底面ドーピングまたはウェルドーピングとして前記半導体材料に導入され、該ドーパントは、濃度を有し、該濃度は、cm−3の単位で測定され、かつ、1017で乗算された係数の値を有し、
    前記トレンチの底面に対して、該半導体材料の中に垂直に多くても20nm延びているチャネル領域の部分(23)において、ドーパント濃度は、該ドーパント濃度の値の係数によって乗算された5・1017cm−3〜5・1018cm−3という範囲内に設定されており、該部分(23)は、該トレンチの底面に位置しているか、または、該トレンチの底面の中心に位置している、請求項1〜4のいずれか一項に記載のメモリセル。
  6. メモリとして提供される構成であって、
    該構成は、
    請求項1から5のいずれか一項に記載のメモリセルを含み、
    前記ゲート電極(2)は、ワード線として設けられた金属含有層、または、別の層シーケンス(19、33、34)と導通するように接続されており、
    該メモリセルの前記ソース領域(3)は、該メモリセルの一方の側に隣接するメモリセルのドレイン領域として設けられており、
    該メモリセルの前記ドレイン領域(4)は、該メモリセルの他方の側に隣接するメモリセルのソース領域として設けられている、構成。
  7. 前記半導体材料上の前記メモリ層(6)を含む層シーケンスが、前記ゲート電極(2)と該半導体材料との間、および、前記ワード線と該半導体材料との間の面全体に付与される、請求項6に記載の構成。
  8. 前記メモリ層(6)は、前記半導体材料内に形成された隣接するトレンチ間で中断されている、請求項6に記載の構成。
  9. 請求項1〜8のいずれか一項に記載のメモリセルまたはその構成を製造する方法であって、
    第1の工程において、帯状の部分を形成するようにパターニングされた導電層(8)の膜が、半導体ボディ(1)または半導体層上に製造され、該第1の工程の前に注入によって、または、該第1の工程の後に該導電層(8)の材料からドーパントを拡散することによって、ソースおよびドレイン用のドーピングされた領域(10;110)が形成され、
    第2の工程において、1つのトレンチ、または、互いに平行に延びている複数のトレンチが、該導電層の帯状の部分間に製造され、これにより、該半導体材料の領域が、ソース領域(3)およびドレイン領域(4)のために、該トレンチの側方にそれぞれ残り、
    第3の工程において、境界層(5)、メモリ層(6)および境界層(7)が、互いに重ねられて面全体に設けられ、
    第4の工程において、それぞれのゲート電極(2)に対して提供された導電性材料が、該トレンチ(単数または複数)に導入され、ワード線として提供される少なくとも1つの導体トラックを形成するようにパターニングされる、方法。
  10. 前記第1の工程において、導電層(8)として、ポリシリコン層(14)と金属含有層(15)とを含む層シーケンスが設けられる、請求項9に記載の方法。
  11. 前記金属含有層(15)は、WSi、WNおよびWからなる群から選択される材料からなる少なくとも1つの層膜を含む、請求項10に記載の方法。
  12. 請求項1〜8のいずれか一項に記載のメモリセルまたはその構成を製造する方法であって、
    第1の工程において、帯状の部分に形成されたパターニング層(25)の少なくとも1つの膜が、半導体ボディ(1)または半導体層上に製造され、
    第2の工程において、1つのトレンチ(28)、または、互いに平行に延びている複数のトレンチが、該帯状の部分間に製造され、これにより、該半導体材料の領域が、ソース領域(3)およびドレイン領域(4)のために、該トレンチの側方にそれぞれ残り、
    第3の工程において、境界層(5)、メモリ層(6)および境界層(7)が、互いに重ねられて面全体に設けられ、
    第4の工程において、それぞれのゲート電極(2)に対して提供された導電性材料が、該トレンチ(単数または複数)に導入され、
    第5の工程において、該パターニング層の該帯状の部分が、導電層(8)の帯状の部分と置き換えられ、
    第6の工程において、ワード線(32)として提供される少なくとも1つの導体トラックが、該トレンチに導入された導電性材料と電気的に接触し、該導電層の該帯状の部分から電気的に絶縁されるように設けられ、
    該第1の工程の前に注入(11)によって、または、の工程の後に該導電層(8)の材料からドーパントを拡散(110)することによって、ソースおよびドレイン用のドーピングされた領域が形成される、方法。
  13. シリコンの半導体ボディまたは半導体層が用いられ、
    前記第5の工程において、シリサイド化された金属の少なくとも1つの膜が、導電層として形成される、請求項12に記載の方法。
  14. コバルトシリサイドの膜が、前記第5の工程において形成される、請求項13に記載の方法。
JP2003507893A 2001-06-21 2002-06-12 メモリセル、メモリセル構成、および製造方法 Expired - Fee Related JP3976729B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10129958A DE10129958B4 (de) 2001-06-21 2001-06-21 Speicherzellenanordnung und Herstellungsverfahren
PCT/DE2002/002141 WO2003001600A2 (de) 2001-06-21 2002-06-12 Speicherzelle, speicherzellenanordnung und herstellungsverfahren

Publications (3)

Publication Number Publication Date
JP2004531084A JP2004531084A (ja) 2004-10-07
JP2004531084A5 JP2004531084A5 (ja) 2005-08-18
JP3976729B2 true JP3976729B2 (ja) 2007-09-19

Family

ID=7688966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507893A Expired - Fee Related JP3976729B2 (ja) 2001-06-21 2002-06-12 メモリセル、メモリセル構成、および製造方法

Country Status (8)

Country Link
US (2) US6548861B2 (ja)
EP (1) EP1399972A2 (ja)
JP (1) JP3976729B2 (ja)
KR (1) KR100629383B1 (ja)
CN (1) CN100524774C (ja)
DE (1) DE10129958B4 (ja)
TW (1) TW567612B (ja)
WO (1) WO2003001600A2 (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897522B2 (en) * 2001-10-31 2005-05-24 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
US6925007B2 (en) 2001-10-31 2005-08-02 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
DE10225410A1 (de) * 2002-06-07 2004-01-08 Infineon Technologies Ag Verfahren zur Herstellung von NROM-Speicherzellen mit Grabentransistoren
US6777725B2 (en) * 2002-06-14 2004-08-17 Ingentix Gmbh & Co. Kg NROM memory circuit with recessed bitline
DE10226964A1 (de) 2002-06-17 2004-01-08 Infineon Technologies Ag Verfahren zur Herstellung einer NROM-Speicherzellenanordnung
DE10229065A1 (de) * 2002-06-28 2004-01-29 Infineon Technologies Ag Verfahren zur Herstellung eines NROM-Speicherzellenfeldes
US6917544B2 (en) 2002-07-10 2005-07-12 Saifun Semiconductors Ltd. Multiple use memory chip
DE10232938B4 (de) * 2002-07-19 2005-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer vergrabenen Bitleitung für einen Halbleiterspeicher
KR100468771B1 (ko) * 2002-10-10 2005-01-29 삼성전자주식회사 모스 트랜지스터의 제조방법
US7136304B2 (en) 2002-10-29 2006-11-14 Saifun Semiconductor Ltd Method, system and circuit for programming a non-volatile memory array
US6888214B2 (en) * 2002-11-12 2005-05-03 Micron Technology, Inc. Isolation techniques for reducing dark current in CMOS image sensors
KR100669645B1 (ko) 2002-11-12 2007-01-16 마이크론 테크놀로지, 인크 씨모스 이미지 센서의 암전류를 감소시키기 위한 접지게이트 및 아이솔레이션 기술
TW575945B (en) * 2002-12-17 2004-02-11 Nanya Technology Corp Method for fabricating a vertical NROM cell
KR100463184B1 (ko) * 2003-01-30 2004-12-23 아남반도체 주식회사 비휘발성 메모리 장치 제조 방법
US7178004B2 (en) 2003-01-31 2007-02-13 Yan Polansky Memory array programming circuit and a method for using the circuit
US6794764B1 (en) * 2003-03-05 2004-09-21 Advanced Micro Devices, Inc. Charge-trapping memory arrays resistant to damage from contact hole information
DE10324550B4 (de) * 2003-05-30 2006-10-19 Infineon Technologies Ag Herstellungsverfahren für eine NROM-Halbleiterspeichervorrichtung
JP4334315B2 (ja) * 2003-10-10 2009-09-30 株式会社ルネサステクノロジ 半導体記憶装置の製造方法
US6965143B2 (en) * 2003-10-10 2005-11-15 Advanced Micro Devices, Inc. Recess channel flash architecture for reduced short channel effect
US7067362B2 (en) * 2003-10-17 2006-06-27 Chartered Semiconductor Manufacturing Ltd. Integrated circuit with protected implantation profiles and method for the formation thereof
US7050330B2 (en) * 2003-12-16 2006-05-23 Micron Technology, Inc. Multi-state NROM device
KR100593599B1 (ko) * 2003-12-30 2006-06-28 동부일렉트로닉스 주식회사 반도체 소자의 제조 방법
US20050251617A1 (en) * 2004-05-07 2005-11-10 Sinclair Alan W Hybrid non-volatile memory system
US7041545B2 (en) * 2004-03-08 2006-05-09 Infineon Technologies Ag Method for producing semiconductor memory devices and integrated memory device
JP2005277171A (ja) * 2004-03-25 2005-10-06 Toshiba Corp 半導体装置およびその製造方法
JP4377751B2 (ja) * 2004-06-10 2009-12-02 シャープ株式会社 クロスポイント構造の半導体記憶装置及びその製造方法
US7279770B2 (en) * 2004-08-26 2007-10-09 Micron Technology, Inc. Isolation techniques for reducing dark current in CMOS image sensors
KR100709823B1 (ko) * 2004-08-26 2007-04-23 주식회사 케이이씨 트렌치형 전계효과트랜지스터 및 그 제조 방법
US7638850B2 (en) 2004-10-14 2009-12-29 Saifun Semiconductors Ltd. Non-volatile memory structure and method of fabrication
KR100630725B1 (ko) * 2004-12-17 2006-10-02 삼성전자주식회사 매립된 비트라인을 가진 반도체 소자 및 그 제조방법
US7186607B2 (en) * 2005-02-18 2007-03-06 Infineon Technologies Ag Charge-trapping memory device and method for production
US7365382B2 (en) * 2005-02-28 2008-04-29 Infineon Technologies Ag Semiconductor memory having charge trapping memory cells and fabrication method thereof
US8053812B2 (en) 2005-03-17 2011-11-08 Spansion Israel Ltd Contact in planar NROM technology
US20060223267A1 (en) * 2005-03-31 2006-10-05 Stefan Machill Method of production of charge-trapping memory devices
KR100715228B1 (ko) * 2005-06-18 2007-05-04 삼성전자주식회사 곡면 구조를 갖는 소노스 메모리 소자 및 그 제조방법
US8338887B2 (en) 2005-07-06 2012-12-25 Infineon Technologies Ag Buried gate transistor
US7399673B2 (en) 2005-07-08 2008-07-15 Infineon Technologies Ag Method of forming a charge-trapping memory device
US7786512B2 (en) 2005-07-18 2010-08-31 Saifun Semiconductors Ltd. Dense non-volatile memory array and method of fabrication
US7468299B2 (en) * 2005-08-04 2008-12-23 Macronix International Co., Ltd. Non-volatile memory cells and methods of manufacturing the same
US7668017B2 (en) 2005-08-17 2010-02-23 Saifun Semiconductors Ltd. Method of erasing non-volatile memory cells
US8116142B2 (en) * 2005-09-06 2012-02-14 Infineon Technologies Ag Method and circuit for erasing a non-volatile memory cell
US7808818B2 (en) 2006-01-12 2010-10-05 Saifun Semiconductors Ltd. Secondary injection for NROM
US9159568B2 (en) * 2006-02-04 2015-10-13 Cypress Semiconductor Corporation Method for fabricating memory cells having split charge storage nodes
KR100762636B1 (ko) 2006-02-14 2007-10-01 삼성전자주식회사 네트워크 단말의 음성 검출 제어 시스템 및 방법
US7692961B2 (en) 2006-02-21 2010-04-06 Saifun Semiconductors Ltd. Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection
US8253452B2 (en) 2006-02-21 2012-08-28 Spansion Israel Ltd Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same
US7760554B2 (en) 2006-02-21 2010-07-20 Saifun Semiconductors Ltd. NROM non-volatile memory and mode of operation
KR100732304B1 (ko) * 2006-03-23 2007-06-25 주식회사 하이닉스반도체 반도체 소자 및 그의 제조 방법
US7701779B2 (en) 2006-04-27 2010-04-20 Sajfun Semiconductors Ltd. Method for programming a reference cell
US20070257293A1 (en) * 2006-05-08 2007-11-08 Josef Willer Semiconductor memory device and method for production of the semiconductor memory device
KR100739532B1 (ko) 2006-06-09 2007-07-13 삼성전자주식회사 매몰 비트라인 형성 방법
JP5200940B2 (ja) 2006-12-15 2013-06-05 日本電気株式会社 不揮発性記憶装置
US7859050B2 (en) * 2007-01-22 2010-12-28 Micron Technology, Inc. Memory having a vertical access device
JP2008192803A (ja) 2007-02-05 2008-08-21 Spansion Llc 半導体装置およびその製造方法
DE102007038925A1 (de) * 2007-08-17 2009-02-19 Qimonda Ag Verfahren zum Herstellen einer aktiven Vorrichtung einer Halbleiterspeichervorrichtung, und eine Halbleiterspeichervorrichtung
US7778073B2 (en) * 2007-10-15 2010-08-17 Qimonda Ag Integrated circuit having NAND memory cell strings
KR20100106017A (ko) * 2009-03-23 2010-10-01 삼성전자주식회사 리세스 채널 트랜지스터 및 이의 제조 방법
WO2011142850A2 (en) 2010-01-22 2011-11-17 The Regents Of The University Of California Etchant-free methods of producing a gap between two layers, and devices produced thereby
US9054133B2 (en) 2011-09-21 2015-06-09 Globalfoundries Singapore Pte. Ltd. High voltage trench transistor
US8999769B2 (en) * 2012-07-18 2015-04-07 Globalfoundries Singapore Pte. Ltd. Integration of high voltage trench transistor with low voltage CMOS transistor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731163A (en) * 1972-03-22 1973-05-01 United Aircraft Corp Low voltage charge storage memory element
US5168334A (en) * 1987-07-31 1992-12-01 Texas Instruments, Incorporated Non-volatile semiconductor memory
JP2662076B2 (ja) * 1990-05-02 1997-10-08 松下電子工業株式会社 不揮発性半導体記憶装置およびその製造方法
JP2889061B2 (ja) * 1992-09-25 1999-05-10 ローム株式会社 半導体記憶装置およびその製法
JP3167457B2 (ja) * 1992-10-22 2001-05-21 株式会社東芝 半導体装置
DE19545903C2 (de) * 1995-12-08 1997-09-18 Siemens Ag Festwertspeicherzellenanordnung und Verfahren zu deren Herstellung
DE19600423C2 (de) * 1996-01-08 2001-07-05 Siemens Ag Elektrisch programmierbare Speicherzellenanordnung und Verfahren zu deren Herstellung
KR100223198B1 (ko) * 1996-04-11 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 높은 강복 전압을 갖는 반도체 장치 및 그 제조 방법
US5768192A (en) 1996-07-23 1998-06-16 Saifun Semiconductors, Ltd. Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping
DE19638439C2 (de) * 1996-09-19 2000-06-15 Siemens Ag Durch Feldeffekt steuerbares, vertikales Halbleiterbauelement und Herstellungsverfahren
JP3641103B2 (ja) 1997-06-27 2005-04-20 株式会社東芝 不揮発性半導体メモリ装置の製造方法
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6013551A (en) * 1997-09-26 2000-01-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacture of self-aligned floating gate, flash memory cell and device manufactured thereby
US6124608A (en) * 1997-12-18 2000-09-26 Advanced Micro Devices, Inc. Non-volatile trench semiconductor device having a shallow drain region
US6127226A (en) * 1997-12-22 2000-10-03 Taiwan Semiconductor Manufacturing Company Method for forming vertical channel flash memory cell using P/N junction isolation
US6215148B1 (en) 1998-05-20 2001-04-10 Saifun Semiconductors Ltd. NROM cell with improved programming, erasing and cycling
EP0967654A1 (en) * 1998-06-26 1999-12-29 EM Microelectronic-Marin SA Non-volatile semiconductor memory device
JP3223885B2 (ja) * 1998-08-17 2001-10-29 日本電気株式会社 電界効果型半導体メモリ装置およびその製造方法
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US6204529B1 (en) * 1999-08-27 2001-03-20 Hsing Lan Lung 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate
US6376315B1 (en) * 2000-03-31 2002-04-23 General Semiconductor, Inc. Method of forming a trench DMOS having reduced threshold voltage
DE10039441A1 (de) 2000-08-11 2002-02-28 Infineon Technologies Ag Speicherzelle, Speicherzellenanordnung und Herstellungsverfahren
US6445037B1 (en) * 2000-09-28 2002-09-03 General Semiconductor, Inc. Trench DMOS transistor having lightly doped source structure

Also Published As

Publication number Publication date
US20030006428A1 (en) 2003-01-09
CN1526170A (zh) 2004-09-01
WO2003001600A3 (de) 2003-08-21
DE10129958A1 (de) 2003-01-09
WO2003001600A2 (de) 2003-01-03
US6548861B2 (en) 2003-04-15
KR100629383B1 (ko) 2006-09-29
US20030151091A1 (en) 2003-08-14
JP2004531084A (ja) 2004-10-07
DE10129958B4 (de) 2006-07-13
CN100524774C (zh) 2009-08-05
US6794249B2 (en) 2004-09-21
KR20040007749A (ko) 2004-01-24
TW567612B (en) 2003-12-21
EP1399972A2 (de) 2004-03-24

Similar Documents

Publication Publication Date Title
JP3976729B2 (ja) メモリセル、メモリセル構成、および製造方法
KR100608407B1 (ko) 비트 라인 생성 방법 및 메모리 셀 어레이 생성 방법 및메모리 셀 어레이
JP4116428B2 (ja) マルチビットメモリセルを作製する方法
JP3966707B2 (ja) 半導体装置及びその製造方法
JP4989630B2 (ja) Nandフラッシュメモリにおけるアレイソース線
JP5781733B2 (ja) 不揮発性メモリセル及びその製造方法
JP2003332469A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2004530296A5 (ja)
JP2008004915A (ja) 柱構造を有するnandフラッシュメモリアレイ及びその製造方法
JP5707224B2 (ja) 半導体装置およびその製造方法
KR100638930B1 (ko) 메모리 셀 및 그 제조 방법
JP2009188293A (ja) 不揮発性半導体記憶装置及びその製造方法
JP5190985B2 (ja) 不揮発性半導体記憶装置及びその製造方法
US8952536B2 (en) Semiconductor device and method of fabrication
JP4445353B2 (ja) 直接トンネル型半導体記憶装置の製造方法
JP2009016615A (ja) 半導体記憶装置
JP4217409B2 (ja) 不揮発性メモリ素子及びその製造方法
JP4093965B2 (ja) メモリセルを製作する方法
JP2009088061A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2005534167A (ja) Nromメモリセル構成の製造方法
KR100608507B1 (ko) Nrom 메모리 셀 어레이의 제조 방법
JP2005531920A (ja) トレンチトランジスタを有するnromメモリセルの製造方法
JP5190986B2 (ja) 不揮発性半導体記憶装置及びその製造方法
KR100589741B1 (ko) Nrom 메모리 셀 구성물을 제조하는 방법
US20090218615A1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees