JP2016157843A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2016157843A
JP2016157843A JP2015035364A JP2015035364A JP2016157843A JP 2016157843 A JP2016157843 A JP 2016157843A JP 2015035364 A JP2015035364 A JP 2015035364A JP 2015035364 A JP2015035364 A JP 2015035364A JP 2016157843 A JP2016157843 A JP 2016157843A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
intermediate layer
conversion material
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015035364A
Other languages
Japanese (ja)
Inventor
飯島 喜彦
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015035364A priority Critical patent/JP2016157843A/en
Publication of JP2016157843A publication Critical patent/JP2016157843A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device, excellent in repetitive characteristics of a heat cycle, with long longevity.SOLUTION: The thermoelectric conversion device having a thermoelectric conversion material and an electrode material includes an intermediate layer between a thermoelectric conversion body composed of the thermoelectric conversion material and an electrode composed of the electrode material. The intermediate layer contains at least both a constituting element of the thermoelectric conversion material and a constituting element of the electrode material.SELECTED DRAWING: Figure 2

Description

本発明は、熱電変換装置に関する。   The present invention relates to a thermoelectric conversion device.

現在、世界のエネルギーは、その多くを化石燃料の燃焼エネルギーに依存しているが、熱サイクルを使用する発電システムの場合、そのエネルギーの多くを廃熱として未利用のまま廃棄しているのが現状である。一方、地球環境の保全が世界的規模で議論されるようになり、エネルギーの未利用分の有効利用技術開発が精力的に進められている。   Currently, much of the world's energy depends on the combustion energy of fossil fuels, but in the case of power generation systems that use thermal cycles, most of that energy is discarded as waste heat. Currently. On the other hand, global environmental conservation has been debated on a global scale, and development of effective utilization technology for unused energy has been energetically promoted.

この中で、熱電変換を用いた発電は、比較的低品質の熱においても直接電気に変換することが可能であるため、現状の未利用の廃熱を回収できる技術であり、最近のエネルギー問題や環境問題の深刻化に伴い、熱電変換に対する期待度はますます大きくなっている。   Among these, power generation using thermoelectric conversion can directly convert even relatively low-quality heat into electricity. As the environmental problems become more serious, expectations for thermoelectric conversion are increasing.

この熱電変換とは、異なる2種の金属やp型半導体とn型半導体等の熱電変換材料に温度差を与えると、両端に熱起電力が発生するゼーベック効果を利用して、熱エネルギーを直接電力に変換する技術であり、モーターやタービン等の可動部がまったくなく、また、老廃物もないという優れた特徴を有している。   This thermoelectric conversion is the direct application of thermal energy using the Seebeck effect in which thermoelectromotive force is generated at both ends when a temperature difference is given to two different metals or thermoelectric conversion materials such as p-type and n-type semiconductors. It is a technology that converts power into electric power and has excellent features such as no moving parts such as motors and turbines, and no waste.

図1は、従来の熱電変換装置の一例の概略断面図である。図中、101はセラミック製の高温側基板、102はセラミック製の低温側基板、103は高温側電極、104は低温側電極、105はn型熱電変換材料からなるn型熱電変換体、106はp型熱電変換材料からなるp型熱電変換体である。   FIG. 1 is a schematic cross-sectional view of an example of a conventional thermoelectric conversion device. In the figure, 101 is a ceramic high temperature side substrate, 102 is a ceramic low temperature side substrate, 103 is a high temperature side electrode, 104 is a low temperature side electrode, 105 is an n type thermoelectric converter made of an n type thermoelectric conversion material, and 106 is It is a p-type thermoelectric converter made of a p-type thermoelectric conversion material.

熱電変換装置はn型熱電変換体105とp型熱電変換体106が半田等のろう材を介して、それぞれ高温側電極103と低温側電極104に接合されている。   In the thermoelectric converter, an n-type thermoelectric converter 105 and a p-type thermoelectric converter 106 are joined to a high temperature side electrode 103 and a low temperature side electrode 104, respectively, via a brazing material such as solder.

このように、熱電変換材料と電極材料を使用して熱電変換装置を作製する場合、p型、n型の各熱電変換材料と電極材料とを高温部と低温部で接合する必要がある。   Thus, when producing a thermoelectric conversion apparatus using a thermoelectric conversion material and an electrode material, it is necessary to join each p-type and n-type thermoelectric conversion material and an electrode material at a high temperature part and a low temperature part.

これらの接合は、熱電変換装置を比較的低温で使用する場合は特に問題ないが、比較的高温で使用する場合は、熱電変換材料、電極材料およびその接合に用いる材料との間の熱膨張係数の整合性が重要であり、熱膨張係数の差が大きい場合は、大きな熱応力が発生し、それに起因して接合部分の劣化、故障等が生じる等の問題が生じていた。
これらの問題点を解決するため、以下のような提案がなされていた。
These junctions are not particularly problematic when the thermoelectric conversion device is used at a relatively low temperature, but when used at a relatively high temperature, the coefficient of thermal expansion between the thermoelectric conversion material, the electrode material, and the material used for the junction is used. When the difference in thermal expansion coefficient is large, a large thermal stress is generated, which causes problems such as deterioration of the joint portion and failure.
In order to solve these problems, the following proposals have been made.

例えば、特許文献1(特開平10−209509号公報)には、p型熱電半導体およびn型熱電半導体の接合端部と電極層との間に中間層が形成された熱電変換装置が提案されている。   For example, Patent Document 1 (Japanese Patent Laid-Open No. 10-209509) proposes a thermoelectric conversion device in which an intermediate layer is formed between a junction end of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor and an electrode layer. Yes.

また、特許文献2(特許第3920403号公報には、吸熱側電極と、放熱側電極と、前記吸熱側電極と放熱側電極の間に並列に配置されてその吸熱側電極と放熱側電極により電気的に直列に接続されたP型半導体層とN型半導体層を有する熱電変換装置において、前記吸熱側電極と放熱側電極のうちの少なくとも一方の電極が、両端部付近に前記P型半導体層ならびにN型半導体層と接合する半導体接合領域をそれぞれ有し、その2つの半導体接合領域の間に、当該電極の一方の側端縁から他方の側端縁に向けて当該電極の中心点0付近を通過するように切り込まれた第1の切欠部と、当該電極の他方の側端縁から一方の側端縁に向けて当該電極の中心点0付近を通過するように切り込まれた第2の切欠部とを設けて、平面上において前記電極の一方の側転縁上における第1の切欠部の中心と前記電極の他方の側端縁上における第2の切欠部の中心とが互いにずれており、その第1の切欠部と第2の切欠部の間に幅狭の通電部が形成されている熱電変換装置が提案されている。   Further, Patent Document 2 (Japanese Patent No. 3920403 discloses an endothermic side electrode, a heat radiating side electrode, and the heat absorbing side electrode and the heat radiating side electrode arranged in parallel between the heat absorbing side electrode and the heat radiating side electrode. In a thermoelectric conversion device having a P-type semiconductor layer and an N-type semiconductor layer connected in series, at least one of the heat absorption side electrode and the heat dissipation side electrode is located near both ends of the P type semiconductor layer and Each has a semiconductor junction region to be bonded to the N-type semiconductor layer, and between the two semiconductor junction regions, the vicinity of the center point 0 of the electrode from one side edge to the other side edge of the electrode A first cutout portion that is cut so as to pass through, and a second cutout portion that passes through the vicinity of the center point 0 of the electrode from the other side edge of the electrode toward the one side edge. A notch portion of the The center of the first notch on one side edge of the pole and the center of the second notch on the other side edge of the electrode are offset from each other, and the first notch and the second notch There has been proposed a thermoelectric conversion device in which a narrow energization portion is formed between the notches.

さらに、特許文献3(特許第5405993号公報)には、充填スクッテルダイト構造のSb系の熱電変換部材と、電極部材と、を有する熱電変換モジュールであって、前記熱電変換部材と前記電極部材とが接合部材で接合されており、前記接合部材は、Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなる熱電変換モジュールが提案されている。   Further, Patent Document 3 (Japanese Patent No. 5405993) discloses a thermoelectric conversion module having an Sb-based thermoelectric conversion member having a filled skutterudite structure, and an electrode member, the thermoelectric conversion member and the electrode member. Are bonded by a bonding member, and the bonding member is an Fe-M alloy (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta), Co- A thermoelectric conversion module made of at least one alloy selected from the group consisting of M alloy and Ni-M alloy has been proposed.

しかしながら、上記特許文献1に提案された熱電変換装置によると、熱電半導体の接合端部では凹部が観察され、この凹部に、接合層(材)や中間層(材)や電極層(材)が入り込んだ構造となっていることによって、熱膨張(係数)差に起因する応力を緩和することができているが、中間層が、熱電材料と電極材料の構成元素と同じ構成元素を含む構造となっていないために、応力の緩和はまだ不十分であるという不具合が生じている。   However, according to the thermoelectric conversion device proposed in Patent Document 1, a concave portion is observed at the junction end portion of the thermoelectric semiconductor, and the junction layer (material), the intermediate layer (material), and the electrode layer (material) are formed in the concave portion. Although it is possible to relieve the stress caused by the difference in thermal expansion (coefficient) due to the embedded structure, the intermediate layer includes the same constituent elements as the constituent elements of the thermoelectric material and the electrode material. As a result, there is a problem that stress relaxation is still insufficient.

また、上記特許文献2に提案された熱電変換装置によると、半導体層と電極の熱膨張係数の違いを有効に吸収し、接合強度を保持することにより、熱サイクルを繰り返しても性能劣化が少ない、動作信頼性に優れ、耐用寿命の長い熱電変換装置を提供することができるが、電極形状が複雑なため、生産性が悪く、電極製造の歩留まりも非常に小さくなってしまうという不具合が生じている。   In addition, according to the thermoelectric conversion device proposed in Patent Document 2, the difference in the thermal expansion coefficient between the semiconductor layer and the electrode is effectively absorbed, and the bonding strength is maintained, so that the performance deterioration is small even when the thermal cycle is repeated. Although it is possible to provide a thermoelectric conversion device with excellent operational reliability and a long service life, the electrode shape is complicated, resulting in poor productivity and extremely low electrode manufacturing yield. Yes.

また、上記特許文献3に提案された熱電変換モジュールによると、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材と電極部材との接合を良好に維持することができる熱電変換モジュールを提供することができるが、中間層が、熱電材料と電極材料の構成元素と同じ構成元素を含む構造となっていないために、接合を良好に維持することはまだ不十分であるという不具合が生じている。   Further, according to the thermoelectric conversion module proposed in Patent Document 3, even if the temperature of the thermoelectric conversion module changes significantly due to operation or the like, it is possible to maintain a good junction between the thermoelectric conversion member and the electrode member. Although a conversion module can be provided, it is still insufficient to maintain good bonding because the intermediate layer is not structured to contain the same constituent elements as the constituent elements of the thermoelectric and electrode materials There is a problem.

そこで、本発明の目的は、熱電変換材料と電極材料との接合が良好に維持され、熱サイクルの繰り返し特性が良好な、耐用寿命の長い熱電変換装置を提供することにある。   Accordingly, an object of the present invention is to provide a thermoelectric conversion device having a long useful life, in which the bonding between the thermoelectric conversion material and the electrode material is maintained well, the thermal cycle repeatability is good.

本発明は、熱電変換材料と電極材料とを有する熱電変換装置において、前記熱電変換材料からなる熱電変換体と前記電極材料からなる電極との間に中間層が具備され、前記中間層が、少なくとも前記熱電変換材料の構成元素と前記電極材料の構成元素の両方を含有する組成からなることを特徴とする熱電変換装置である。   The present invention provides a thermoelectric conversion device having a thermoelectric conversion material and an electrode material, wherein an intermediate layer is provided between the thermoelectric conversion body made of the thermoelectric conversion material and the electrode made of the electrode material, and the intermediate layer has at least A thermoelectric conversion device comprising a composition containing both the constituent elements of the thermoelectric conversion material and the constituent elements of the electrode material.

本発明によれば、熱電変換材料と電極材料との接合が良好に維持され、熱サイクルの繰り返し特性が良好な、耐用寿命の長い熱電変換装置を提供することができた。   According to the present invention, it is possible to provide a thermoelectric conversion device having a long service life, in which the bonding between the thermoelectric conversion material and the electrode material is maintained well, the thermal cycle repeatability is good.

従来の熱電変換装置の一例の概略断面図である。It is a schematic sectional drawing of an example of the conventional thermoelectric conversion apparatus. 本発明の実施形態の熱電変換装置の一例を簡略化してその概要を示したものである。An example of the thermoelectric conversion device of the embodiment of the present invention is simplified and an outline thereof is shown. 本発明の実施例1における中間層の概念図を示したものである。The conceptual diagram of the intermediate | middle layer in Example 1 of this invention is shown. 本発明の実施例3における電極一体型p型熱電変換体の概念図を示したものである。The conceptual diagram of the electrode integrated p-type thermoelectric converter in Example 3 of this invention is shown.

以下、本発明の実施形態について図面を用いて説明する。
図2は、本発明の熱電変換装置の一例の概要を示したものである。熱電変換体をp型とn型一対として簡略化して示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows an outline of an example of the thermoelectric conversion device of the present invention. The thermoelectric converter is shown in a simplified form as a pair of p-type and n-type.

図2に示すように本実施の形態の熱電変換装置は、少なくともp型の熱電変換材料からなるp型熱電変換体201、n型の熱電変換材料からなるn型熱電変換体202、中間層203、高温側電極204および低温側電極205を具備している。   As shown in FIG. 2, the thermoelectric conversion device according to the present embodiment includes at least a p-type thermoelectric converter 201 made of a p-type thermoelectric conversion material, an n-type thermoelectric converter 202 made of an n-type thermoelectric conversion material, and an intermediate layer 203. The high temperature side electrode 204 and the low temperature side electrode 205 are provided.

p型の熱電変換材料からなるp型熱電変換体201、n型の熱電変換材料からなるn型熱電変換体202は、中間層203を介して高温側電極204および低温側電極205の電極材料に接合されている。   A p-type thermoelectric converter 201 made of a p-type thermoelectric conversion material and an n-type thermoelectric converter 202 made of an n-type thermoelectric conversion material are used as electrode materials for the high temperature side electrode 204 and the low temperature side electrode 205 via an intermediate layer 203. It is joined.

ここで、p型熱電変換体201およびn型熱電変換体202を構成する熱電変換材料としては、例えばBi−Te系材料、Pb−Te系材料、Ag−Sb−Te系材料、Si−Ge系材料、Fe−Si系あるいはMn−Si系あるいはCr−Si系あるいはMg−Si系のシリサイド系材料、スクッテルダイト系材料、酸化物系材料、有機物系材料をはじめとした種々の熱電材料を用いることができ、特に制限されない。   Here, as the thermoelectric conversion material constituting the p-type thermoelectric converter 201 and the n-type thermoelectric converter 202, for example, a Bi-Te-based material, a Pb-Te-based material, an Ag-Sb-Te-based material, or a Si-Ge-based material. Various thermoelectric materials including materials, Fe-Si-based, Mn-Si-based, Cr-Si-based, or Mg-Si-based silicide-based materials, skutterudite-based materials, oxide-based materials, and organic materials are used. There is no particular limitation.

高温側電極204および低温側電極205を構成する電極材料としては、例えばFeおよびその合金、Coおよびその合金、Niおよびその合金、Auおよびその合金、Agおよびその合金、Cuおよびその合金、Crおよびその合金、Tiおよびその合金、Alおよびその合金をはじめとした金属系材料の他、セラミック材料等の非金属材料および導電性高分子等をはじめとした有機材料を用いることができるが、特に制限することはなく、導電性の材料を用いることができる。   Examples of electrode materials constituting the high temperature side electrode 204 and the low temperature side electrode 205 include Fe and its alloys, Co and its alloys, Ni and its alloys, Au and their alloys, Ag and their alloys, Cu and their alloys, Cr and In addition to metallic materials such as alloys thereof, Ti and alloys thereof, Al and alloys thereof, non-metallic materials such as ceramic materials and organic materials such as conductive polymers can be used, but there is a particular limitation. There is no need to use a conductive material.

ここで、熱電変換材料と電極材料とが直接接合していると、熱電変換材料と電極材料の熱膨張係数の差が大きいとそこで大きな熱応力が生じるため、使用を繰り返しているうちに密着性が低下し、接合部分の一部が破断してしまうという不具合が生じる。   Here, if the thermoelectric conversion material and the electrode material are directly bonded, a large difference in the thermal expansion coefficient between the thermoelectric conversion material and the electrode material will cause a large thermal stress there. Decreases, and a problem arises in that a part of the joint portion is broken.

そこで、本発明では、熱電変換体201、202と電極204、205の間に中間層203を具備しており、熱電変換体(以下、熱電変換材料と称することがある。)201、202は、中間層203を介して電極(以下、電極材料と称することがある。)204、205に接合されている。   Therefore, in the present invention, the intermediate layer 203 is provided between the thermoelectric converters 201 and 202 and the electrodes 204 and 205, and the thermoelectric converters (hereinafter sometimes referred to as thermoelectric conversion materials) 201 and 202 are: Bonded to electrodes (hereinafter also referred to as electrode materials) 204 and 205 via an intermediate layer 203.

中間層203としては、種々の材料を使用することができるが、繰り返し使用した場合にも接合部分が破断しないように、材料を選択することが必要である。そのために、中間層203が、直接接している前記熱電変換材料201,202の構成元素と前記電極材料204,205の構成元素の両方を含有することが重要となる。中間層の構成元素は、熱電変換材料および電極材料の各構成元素以外の元素を含むものであっても良いが、熱電変換材料および電極材料の両方の構成元素を含むことが必要である。   Various materials can be used for the intermediate layer 203, but it is necessary to select materials so that the joint portion does not break even when used repeatedly. Therefore, it is important that the intermediate layer 203 contains both the constituent elements of the thermoelectric conversion materials 201 and 202 and the constituent elements of the electrode materials 204 and 205 that are in direct contact with each other. The constituent elements of the intermediate layer may include elements other than the constituent elements of the thermoelectric conversion material and the electrode material, but it is necessary to include constituent elements of both the thermoelectric conversion material and the electrode material.

この時、中間層203の熱膨張率は、熱電変換材料201、202と電極材料204、205の熱膨張率の間の値にすることが好ましい。   At this time, the thermal expansion coefficient of the intermediate layer 203 is preferably set to a value between the thermal expansion coefficients of the thermoelectric conversion materials 201 and 202 and the electrode materials 204 and 205.

ここで、中間層203の組成は、前記熱電変換材料の構成元素が前記電極側よりも前記熱電変換体側の方で多く、前記電極材料の構成元素が前記熱電変換体側よりも前記電極側の方で多くなるような組成とすることが好ましい。特に、前記中間層の組成は、前記熱電変換体側から前記電極側になるにつれて、徐々に前記熱電変換材料の構成元素が多い組成から前記電極材料の構成元素が多い組成へと組成変化する構成にすると、熱電変換材料201、202との界面、および電極材料204、205との界面が同じ組成とすることが可能となるため、熱膨張係数の差がなく、使用を繰り返しても接合部分の密着性が低下することがないため、繰り返し耐久性の大きい熱電変換装置を提供することができる。   Here, the composition of the intermediate layer 203 is such that the constituent elements of the thermoelectric conversion material are more on the thermoelectric converter side than the electrode side, and the constituent elements of the electrode material are on the electrode side rather than the thermoelectric converter side. It is preferable to make the composition so as to increase. In particular, the composition of the intermediate layer gradually changes from a composition with many constituent elements of the thermoelectric conversion material to a composition with many constituent elements of the electrode material as it goes from the thermoelectric converter side to the electrode side. Then, the interface with the thermoelectric conversion materials 201 and 202 and the interface with the electrode materials 204 and 205 can have the same composition. Therefore, a thermoelectric conversion device having high durability can be provided.

このような中間層の形成方法としては、熱電変換材料の構成元素と電極材料の構成元素との組成割合を変化させた層を順に熱電変換体側あるいは電極側から積層し、次いで加圧成型及び一体焼結することによって、組成が変化した中間層を作製することができる。   As a method for forming such an intermediate layer, layers in which the composition ratios of the constituent elements of the thermoelectric conversion material and the constituent elements of the electrode material are changed are sequentially laminated from the thermoelectric converter side or the electrode side, and then pressed and integrated. By sintering, an intermediate layer having a changed composition can be produced.

なお熱電変換材料201、202と中間層203との間、および中間層203と電極材料204、205との間に、新たに接合層を設けても問題ない。   Note that there is no problem even if a new bonding layer is provided between the thermoelectric conversion materials 201 and 202 and the intermediate layer 203 and between the intermediate layer 203 and the electrode materials 204 and 205.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

実施例1
p型の熱電変換材料としてCa3Co4O9を用い、n型の熱電変換材料としてCaMnO3を用いて切削加工により、各材料を5mm×5mm×7mmの角柱状に加工した。
Example 1
Each material was processed into a prismatic shape of 5 mm × 5 mm × 7 mm by cutting using Ca 3 Co 4 O 9 as a p-type thermoelectric conversion material and CaMnO 3 as an n-type thermoelectric conversion material.

p型の熱電変換材料;Ca3Co4O9の両端面には、中間層としてAgペースト中にCa3Co4O9粉末とNi粉末を混合したものを塗布し、n型の熱電変換材料;CaMnO3の両端面には中間層としてAgペーストにCaMnO3粉末とNi粉末を混合したものを塗布した。この中間層の概念図を図3に示した。図3中、301はAgペースト、302はn型(又はp型)熱電変換材料、303は電極材料のNi粉末である。 p-type thermoelectric conversion material; on both end faces of Ca 3 Co 4 O 9, by applying a mixture of Ca 3 Co 4 O 9 powder and Ni powder in the Ag paste as an intermediate layer, n-type thermoelectric conversion material ; on both end faces of CaMnO 3 was applied a mixture of CaMnO 3 powder and Ni powder Ag paste as an intermediate layer. A conceptual diagram of this intermediate layer is shown in FIG. In FIG. 3, 301 is an Ag paste, 302 is an n-type (or p-type) thermoelectric conversion material, and 303 is an Ni powder as an electrode material.

この両端に中間層を塗布したp型熱電変換材料とn型熱電変換材料を18対並べ、上下に電極材料としてNiを、p型熱電変換材料とn型熱電変換材料が直列に接続されるように貼付けした。さらに、電極材料上にアルミナ基板をセラミックスボンドで貼付けして乾燥し、熱電変換装置を作製した。   18 pairs of p-type thermoelectric conversion material and n-type thermoelectric conversion material coated with an intermediate layer on both ends are arranged, Ni is used as an electrode material above and below, and p-type thermoelectric conversion material and n-type thermoelectric conversion material are connected in series. Pasted on. Furthermore, an alumina substrate was attached to the electrode material with a ceramic bond and dried to produce a thermoelectric conversion device.

高温側にブロックヒーターを使用し、低温側には水冷ブロックを使用し、ヒートサイクル試験を実施した。ヒートサイクル試験は高温側の温度を200℃から600℃の間を毎分20℃の速度で昇降温し、600℃で1時間保持するように制御して実施した。   A heat cycle test was performed using a block heater on the high temperature side and a water cooling block on the low temperature side. The heat cycle test was carried out by controlling the temperature on the high temperature side so as to rise and fall between 200 ° C. and 600 ° C. at a rate of 20 ° C. per minute and hold at 600 ° C. for 1 hour.

ヒートサイクルを100サイクルまで実施したが、サイクル毎に測定した熱電変換装置の内部抵抗は増加せず、熱サイクルの繰り返し特性が良好である熱電変換装置が作製できた。   Although the heat cycle was performed up to 100 cycles, the internal resistance of the thermoelectric conversion device measured for each cycle did not increase, and a thermoelectric conversion device having good heat cycle repeatability could be produced.

実施例2
p型の熱電変換材料としてMnSi1.73を用い、n型の熱電変換材料としてMg2Si0.4Sn0.6を用いて切削加工により、各材料を5mm×5mm×7mmの角柱状に加工した。
Example 2
Each material was processed into a prismatic shape of 5 mm × 5 mm × 7 mm by cutting using MnSi 1.73 as a p-type thermoelectric conversion material and using Mg 2 Si 0.4 Sn 0.6 as an n-type thermoelectric conversion material.

p型の熱電変換材料;MnSi1.73の両端面には、中間層としてAgペースト中にMnSi1.73粉末とNi粉末を混合したものを塗布し、n型の熱電変換材料;Mg2Si0.4Sn0.6の両端面には中間層としてAgペーストにMg2Si0.4Sn0.6粉末とNi粉末を混合したものを塗布した。 On both end faces of MnSi 1.73, it was coated a mixture of MnSi 1.73 powder and Ni powder in the Ag paste as an intermediate layer, n-type thermoelectric conversion material; thermoelectric conversion material of a p-type Mg 2 Si 0.4 Sn 0.6 A mixture of Ag paste and Mg 2 Si 0.4 Sn 0.6 powder and Ni powder was applied to both end faces as an intermediate layer.

この両端に中間層を塗布したp型熱電変換材料とn型熱電変換材料を18対並べ、上下に電極材料としてNiを、p型熱電変換材料とn型熱電変換材料が直列に接続されるように貼付けした。さらに、電極材料上にアルミナ基板をセラミックスボンドで貼付けして乾燥し、熱電変換装置を作製した。   18 pairs of p-type thermoelectric conversion material and n-type thermoelectric conversion material coated with an intermediate layer on both ends are arranged, Ni is used as an electrode material above and below, and p-type thermoelectric conversion material and n-type thermoelectric conversion material are connected in series. Pasted on. Furthermore, an alumina substrate was attached to the electrode material with a ceramic bond and dried to produce a thermoelectric conversion device.

高温側にブロックヒーターを使用し、低温側には水冷ブロックを使用し、ヒートサイクル試験を実施した。ヒートサイクル試験は高温側の温度を200℃から600℃の間を毎分20℃の速度で昇降温し、600℃で1時間保持するように制御して実施した。   A heat cycle test was performed using a block heater on the high temperature side and a water cooling block on the low temperature side. The heat cycle test was carried out by controlling the temperature on the high temperature side so as to rise and fall between 200 ° C. and 600 ° C. at a rate of 20 ° C. per minute and hold at 600 ° C. for 1 hour.

ヒートサイクルを100サイクルまで実施したが、サイクル毎に測定した熱電変換装置の内部抵抗は増加せず、熱サイクルの繰り返し特性が良好である熱電変換装置が作製できた。   Although the heat cycle was performed up to 100 cycles, the internal resistance of the thermoelectric conversion device measured for each cycle did not increase, and a thermoelectric conversion device having good heat cycle repeatability could be produced.

実施例3
p型の熱電変換材料としてCa3Co4O9を用い、Ca3Co4O9上にNiの含有量を20%、40%、60%、80%(重量基準)と変化させたCa3Co4O9/Ni混合粉末を積層し、加圧成型した。これを一体焼結することにより、Ca3Co4O9からNiまで徐々に組成が変化する電極一体型p型熱電変換材料を作製した。この電極一体型p型熱電変換材料の概念図を図4に示した。図4中、401はp型の熱電変換材料であるCa3Co4O9からなる層、402はCa3Co4O9/20%Niからなる層、403はCa3Co4O9/40%Niからなる層、404はCa3Co4O9/60%Niからなる層、405はCa3Co4O9/80%Niからなる層、406はNi電極である。
Example 3
using Ca 3 Co 4 O 9 as the p-type thermoelectric conversion material, Ca 3 Co 4 on O 9 content of Ni 20%, 40%, 60 %, Ca 3 was changed to 80% (by weight) Co 4 O 9 / Ni mixed powder was laminated and pressure molded. By integrally sintering this, an electrode-integrated p-type thermoelectric conversion material whose composition gradually changed from Ca 3 Co 4 O 9 to Ni was produced. A conceptual diagram of this electrode-integrated p-type thermoelectric conversion material is shown in FIG. In Figure 4, a layer made of Ca 3 Co 4 O 9 is a thermoelectric conversion material of a p-type 401, 402 consists of Ca 3 Co 4 O 9/20 % Ni layers 403 Ca 3 Co 4 O 9/40 A layer made of% Ni, 404 is a layer made of Ca 3 Co 4 O 9 /60% Ni, 405 is a layer made of Ca 3 Co 4 O 9 /80% Ni, and 406 is a Ni electrode.

同様にn型の熱電変換材料としてCaMnO3を用い、CaMnO3上にNiの含有量を20%、40%、60%、80%(重量基準)と変化させたCaMnO3/Ni混合粉末を積層し、加圧成型した。これを一体焼結することにより、CaMnO3からNiまで徐々に組成が変化する電極一体型n型熱電変換材料を作製した。 Similarly the CaMnO 3 used as n-type thermoelectric conversion material, laminating a Ni content on the CaMnO 3 20%, 40%, a 60%, 80% CaMnO 3 / Ni mixed powder was changed (by weight) And then pressure-molded. By integrally sintering this, an electrode-integrated n-type thermoelectric conversion material whose composition gradually changed from CaMnO 3 to Ni was produced.

これらの電極一体型のp型熱電変換材料とn型熱電変換材料を切削加工により、各々を5mm×5mm×7mmの角柱状に加工した。   These electrode-integrated p-type thermoelectric conversion material and n-type thermoelectric conversion material were each cut into a prismatic shape of 5 mm × 5 mm × 7 mm by cutting.

この電極一体型のp型熱電変換材料とn型熱電変換材料を18対並べ、これをさらにNiで、p型熱電変換材料とn型熱電変換材料が直列になるように接続した。さらに、電極材料上にアルミナ基板をセラミックスボンドで貼付けして乾燥し、熱電変換装置を作製した。   18 pairs of this electrode-integrated p-type thermoelectric conversion material and n-type thermoelectric conversion material were arranged, and this was further connected with Ni so that the p-type thermoelectric conversion material and the n-type thermoelectric conversion material were in series. Furthermore, an alumina substrate was attached to the electrode material with a ceramic bond and dried to produce a thermoelectric conversion device.

高温側にブロックヒーターを使用し、低温側には水冷ブロックを使用し、ヒートサイクル試験を実施した。ヒートサイクル試験は高温側の温度を200℃から600℃の間を毎分20℃の速度で昇降温し、600℃で1時間保持するように制御して実施した。   A heat cycle test was performed using a block heater on the high temperature side and a water cooling block on the low temperature side. The heat cycle test was carried out by controlling the temperature on the high temperature side so as to rise and fall between 200 ° C. and 600 ° C. at a rate of 20 ° C. per minute and hold at 600 ° C. for 1 hour.

ヒートサイクルを100サイクルまで実施したが、サイクル毎に測定した熱電変換装置の内部抵抗は増加せず、熱サイクルの繰り返し特性が良好である熱電変換装置が作製できた。   Although the heat cycle was performed up to 100 cycles, the internal resistance of the thermoelectric conversion device measured for each cycle did not increase, and a thermoelectric conversion device having good heat cycle repeatability could be produced.

実施例4
p型の熱電変換材料としてMnSi1.73を用い、MnSi1.73上にNiの含有量を20%、40%、60%、80%(重量基準)と変化させたMnSi1.73/Ni混合粉末を積層し、加圧成型した。これを一体焼結することにより、MnSi1.73からNiまで徐々に組成が変化する電極一体型p型熱電変換材料を作製した。この電極一体型p型熱電変換材料の電極とp型熱電変換材料を除いた部分の平均の熱膨張率は、NiとMnSi1.73の間に設定することができた。
Example 4
used MnSi 1.73 as p-type thermoelectric conversion material, by stacking a Ni content on the MnSi 1.73 20%, 40%, a 60%, 80% MnSi 1.73 / Ni mixed powder was changed (by weight), Press molded. By integrally sintering this, an electrode-integrated p-type thermoelectric conversion material whose composition gradually changed from MnSi 1.73 to Ni was produced. The average coefficient of thermal expansion of the electrode-integrated p-type thermoelectric conversion material excluding the electrode and the p-type thermoelectric conversion material could be set between Ni and MnSi 1.73 .

同様にn型の熱電変換材料としてMg2Si0.4Sn0.6を用い、Mg2Si0.4Sn0.6上にNiの含有量を20%、40%、60%、80%(重量基準)と変化させたMg2Si0.4Sn0.6/Ni混合粉末を積層し、加圧成型した。これを一体焼結することにより、Mg2Si0.4Sn0.63からNiまで徐々に組成が変化する電極一体型n型熱電変換材料を作製した。この電極一体型n型熱電変換材料の電極とn型熱電変換材料を除いた部分の平均の熱膨張率は、NiとMg2Si0.4Sn0.63の間に設定することができた。 Similarly, Mg 2 Si 0.4 Sn 0.6 was used as the n-type thermoelectric conversion material, and the Ni content was changed to 20%, 40%, 60%, and 80% (by weight) on Mg 2 Si 0.4 Sn 0.6 . Mg 2 Si 0.4 Sn 0.6 / Ni mixed powder was laminated and pressure molded. By integrally sintering this, an electrode-integrated n-type thermoelectric conversion material whose composition gradually changed from Mg 2 Si 0.4 Sn 0.63 to Ni was produced. The average coefficient of thermal expansion of the electrode-integrated n-type thermoelectric conversion material excluding the electrode and the n-type thermoelectric conversion material could be set between Ni and Mg 2 Si 0.4 Sn 0.63 .

これらの電極一体型のp型熱電材料とn型熱電材料を切削加工により、各々を5mm×5mm×7mmの角柱状に加工した。   These electrode-integrated p-type thermoelectric material and n-type thermoelectric material were each cut into a prismatic shape of 5 mm × 5 mm × 7 mm by cutting.

この電極一体型のp型熱電材料とn型熱電材料を18対並べ、これをさらにNiで、p型熱電材料とn型熱電材料が直列になるように接続した。さらに、電極材料上にアルミナ基板をセラミックスボンドで貼付けして乾燥し、熱電変換装置を作製した。   Eighteen pairs of this electrode-integrated p-type thermoelectric material and n-type thermoelectric material were arranged, and these were further connected with Ni so that the p-type thermoelectric material and the n-type thermoelectric material were in series. Furthermore, an alumina substrate was attached to the electrode material with a ceramic bond and dried to produce a thermoelectric conversion device.

高温側にブロックヒーターを使用し、低温側には水冷ブロックを使用し、ヒートサイクル試験を実施した。ヒートサイクル試験は高温側の温度を200℃から600℃の間を毎分20℃の速度で昇降温し、600℃で1時間保持するように制御して実施した。   A heat cycle test was performed using a block heater on the high temperature side and a water cooling block on the low temperature side. The heat cycle test was carried out by controlling the temperature on the high temperature side so as to rise and fall between 200 ° C. and 600 ° C. at a rate of 20 ° C. per minute and hold at 600 ° C. for 1 hour.

ヒートサイクルを100サイクルまで実施したが、サイクル毎に測定した熱電変換装置の内部抵抗は増加せず、熱サイクルの繰り返し特性が良好である熱電変換装置が作製できた。   Although the heat cycle was performed up to 100 cycles, the internal resistance of the thermoelectric conversion device measured for each cycle did not increase, and a thermoelectric conversion device having good heat cycle repeatability could be produced.

なお、実施例3,4においては、中間層におけるNiの含有量を20%、40%、60%、80%と変化させたが、0%、20%、40%、60%、80%、100%と変化させれば、各熱電変換体との界面、および電極との界面が同じ組成となる。また、Niの含有量をさらに細かく変化させた層構成とすることにより、焼結後の組成変化をほぼ連続的にすることができる。その結果、熱膨張係数の差がなく、使用を繰り返しても接合部分の密着性が低下することがない熱電変換装置が得られる。   In Examples 3 and 4, the content of Ni in the intermediate layer was changed to 20%, 40%, 60%, and 80%, but 0%, 20%, 40%, 60%, 80%, If it is changed to 100%, the interface with each thermoelectric converter and the interface with the electrode have the same composition. Further, by adopting a layer structure in which the Ni content is further finely changed, the composition change after sintering can be made almost continuous. As a result, it is possible to obtain a thermoelectric conversion device that has no difference in thermal expansion coefficient and does not deteriorate the adhesiveness of the joined portion even after repeated use.

以上、実施例で示したように、本発明により、熱電変換材料と電極材料との間に中間層が具備され、前記中間層が、少なくとも前記熱電変換材料の構成元素と前記電極材料の構成元素を含有することにより、熱電変換材料と電極材料の熱膨張係数の違いから生じる応力を有効に吸収することにより、熱サイクルの繰り返し特性が良好な熱電変換装置を提供することが可能になった。   As described above, as shown in the examples, according to the present invention, an intermediate layer is provided between the thermoelectric conversion material and the electrode material, and the intermediate layer includes at least a constituent element of the thermoelectric conversion material and a constituent element of the electrode material. As a result, it is possible to provide a thermoelectric conversion device with good thermal cycle repeatability by effectively absorbing stress resulting from the difference in thermal expansion coefficient between the thermoelectric conversion material and the electrode material.

101 高温側基板
102 低温側基板
103、204 高温側電極
104、205 低温側電極
105、202 n型熱電変換体
106、201 p型熱電変換体
203 中間層
301 Agペースト
302 n型(又はp型)熱電変換材料
303 Ni粉末
401 Ca3Co4O9からなる層
402 Ca3Co4O9/20%Niからなる層
403 Ca3Co4O9/40%Niからなる層
404 Ca3Co4O9/60%Niからなる層
405 Ca3Co4O9/80%Niからなる層
406 Ni電極
101 High-temperature side substrate 102 Low-temperature side substrate 103, 204 High-temperature side electrode 104, 205 Low-temperature side electrode 105, 202 n-type thermoelectric converter 106, 201 p-type thermoelectric converter 203 Intermediate layer 301 Ag paste 302 n-type (or p-type) thermoelectric conversion material 303 Ni powder 401 Ca 3 Co 4 consisting O 9 layers 402 Ca 3 Co 4 O 9 / consisting 20% Ni layer 403 Ca 3 Co 4 O consists 9/40% Ni layer 404 Ca 3 Co 4 O 9 /60% Ni layer 405 Ca 3 Co 4 O 9 /80% Ni layer 406 Ni electrode

特開平10−209509号公報Japanese Patent Laid-Open No. 10-209509 特許第3920403号公報Japanese Patent No. 3920403 特許第5405993号公報Japanese Patent No. 5405993

Claims (4)

熱電変換材料と電極材料とを有する熱電変換装置において、
前記熱電変換材料からなる熱電変換体と前記電極材料からなる電極との間に中間層が具備され、
前記中間層が、少なくとも前記熱電変換材料の構成元素と前記電極材料の構成元素の両方を含有する組成であることを特徴とする熱電変換装置。
In a thermoelectric conversion device having a thermoelectric conversion material and an electrode material,
An intermediate layer is provided between the thermoelectric converter made of the thermoelectric conversion material and the electrode made of the electrode material,
The intermediate layer has a composition containing at least both a constituent element of the thermoelectric conversion material and a constituent element of the electrode material.
前記中間層の組成は、前記熱電変換材料の構成元素が前記電極側よりも前記熱電変換体側の方で多く、前記電極材料の構成元素が前記熱電変換体側よりも前記電極側の方で多くなるような組成であることを特徴とする請求項1に記載の熱電変換装置。   The composition of the intermediate layer has more constituent elements of the thermoelectric conversion material on the thermoelectric converter side than the electrode side, and more constituent elements of the electrode material on the electrode side than the thermoelectric converter side. The thermoelectric conversion device according to claim 1, which has a composition as described above. 前記中間層の組成は、前記熱電変換体側から前記電極側になるにつれて、徐々に前記熱電変換材料の構成元素が多い組成から前記電極材料の構成元素が多い組成へと組成変化することを特徴とする請求項2に記載の熱電変換装置。   The composition of the intermediate layer gradually changes from a composition with a large amount of constituent elements of the thermoelectric conversion material to a composition with a large amount of constituent elements of the electrode material as it goes from the thermoelectric converter side to the electrode side. The thermoelectric conversion device according to claim 2. 前記中間層の全体としての熱膨張率は、前記熱電変換体の熱膨張率と前記電極の熱膨張率との間の値を有することを特徴とする請求項1〜3のいずれかに記載の熱電変換装置。

The thermal expansion coefficient as a whole of the intermediate layer has a value between the thermal expansion coefficient of the thermoelectric converter and the thermal expansion coefficient of the electrode. Thermoelectric converter.

JP2015035364A 2015-02-25 2015-02-25 Thermoelectric conversion device Pending JP2016157843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035364A JP2016157843A (en) 2015-02-25 2015-02-25 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035364A JP2016157843A (en) 2015-02-25 2015-02-25 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2016157843A true JP2016157843A (en) 2016-09-01

Family

ID=56826327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035364A Pending JP2016157843A (en) 2015-02-25 2015-02-25 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2016157843A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053471A (en) * 2018-09-25 2020-04-02 昭和電線ケーブルシステム株式会社 Thermoelectric conversion module and manufacturing method thereof
WO2020100717A1 (en) 2018-11-16 2020-05-22 株式会社 安永 Stannide thermoelectric conversion element and stannide thermoelectric conversion module
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module
US11871666B2 (en) 2018-06-27 2024-01-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element and thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it
JP2006049796A (en) * 2004-07-07 2006-02-16 National Institute Of Advanced Industrial & Technology Thermoelectric transducer and thermoelectric transducing module
JP2009260173A (en) * 2008-04-21 2009-11-05 Tokyo Univ Of Science Thermoelectric conversion element, and thermoelectric module equipped with the same
JP2014157875A (en) * 2013-02-14 2014-08-28 Furukawa Electric Co Ltd:The Thermoelectric element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it
JP2006049796A (en) * 2004-07-07 2006-02-16 National Institute Of Advanced Industrial & Technology Thermoelectric transducer and thermoelectric transducing module
JP2009260173A (en) * 2008-04-21 2009-11-05 Tokyo Univ Of Science Thermoelectric conversion element, and thermoelectric module equipped with the same
JP2014157875A (en) * 2013-02-14 2014-08-28 Furukawa Electric Co Ltd:The Thermoelectric element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871666B2 (en) 2018-06-27 2024-01-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element and thermoelectric conversion module
JP7437805B2 (en) 2018-06-27 2024-02-26 パナソニックIpマネジメント株式会社 Method for manufacturing thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP2020053471A (en) * 2018-09-25 2020-04-02 昭和電線ケーブルシステム株式会社 Thermoelectric conversion module and manufacturing method thereof
WO2020100717A1 (en) 2018-11-16 2020-05-22 株式会社 安永 Stannide thermoelectric conversion element and stannide thermoelectric conversion module
KR20210089686A (en) 2018-11-16 2021-07-16 가부시기가이샤야스나가 Stanide-based thermoelectric conversion element and stanide-based thermoelectric conversion module
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module
US20230157174A1 (en) * 2020-01-31 2023-05-18 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5671258B2 (en) Thermoelectric conversion module
US9601679B2 (en) Thermoelectric module and method of manufacturing the same
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
WO2013076765A1 (en) Thermoelectric conversion module
JP2016157843A (en) Thermoelectric conversion device
JP6122736B2 (en) Thermoelectric generator module
JP2010212579A (en) Method for producing thermoelectric conversion element
JP2015511397A (en) Thermoelectric generator module, metal-ceramic substrate and method for producing such kind of metal-ceramic substrate
JP5780254B2 (en) Thermoelectric conversion element
WO2006043402A1 (en) Thermoelectric conversion module
JP6404983B2 (en) Thermoelectric module
JP5653455B2 (en) Thermoelectric conversion member
JP2009170438A (en) Manufacturing method of thermoelectric conversion unit
JP2006049736A (en) Thermoelectric module
JP5669103B2 (en) Thermoelectric thin film device
JP2008177356A (en) Thermoelectric power generation element
JP2003282972A (en) Thermoelectric element
JPH02106079A (en) Electricity heat conversion element
US10658561B2 (en) Thermoelectric element and thermoelectric converter including at least one such element
US10897001B2 (en) Thermoelectric conversion module
JP2017069443A (en) Thermoelectric conversion module
JP2017069520A (en) Thermoelectric converter
JPWO2010058526A1 (en) Thermoelectric power generation device and power generation method using the same
US20130319491A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326