WO2006043402A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2006043402A1
WO2006043402A1 PCT/JP2005/017849 JP2005017849W WO2006043402A1 WO 2006043402 A1 WO2006043402 A1 WO 2006043402A1 JP 2005017849 W JP2005017849 W JP 2005017849W WO 2006043402 A1 WO2006043402 A1 WO 2006043402A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion module
heat
thermoelectric
type
Prior art date
Application number
PCT/JP2005/017849
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikatsu Miki
Takuya Murata
Original Assignee
Yamaguchi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University filed Critical Yamaguchi University
Publication of WO2006043402A1 publication Critical patent/WO2006043402A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion module. Specifically, the present invention relates to a thermoelectric conversion module with improved thermoelectric conversion efficiency.
  • thermoelectric modules that convert thermal energy and electrical energy to each other are composed of a combination of one or more P-type and N-type thermoelectric semiconductors that use the thermoelectric effect known as the Seebeck effect, Peltier effect, and Thomson effect. Has become mainstream.
  • Thermoelectric conversion modules are expected to be used in a wide range because they are simple in structure, easy to handle, and can maintain their characteristics easily and stably. In particular, in local cooling using the Peltier effect, precise temperature control is possible, so research and development are widely promoted to realize temperature control of optoelectronic devices, semiconductor lasers, etc., and compact refrigerators. It has been.
  • thermoelectric power generation using the Seebeck effect is that an electromotive force is generated due to a temperature difference between a junction of a dissimilar conductor having one end connected to the other end.
  • An N-type semiconductor element and a P-type semiconductor It is known that a large electromotive force can be obtained by using an element.
  • thermoelectric conversion modules since the temperature difference between the two ends greatly affects the electromotive force, a heat absorption part is provided on one side, a heat dissipation part is provided on the other side, and a thermoelectric conversion part is provided in the middle. It is common to have a structure that exists. In these structures, thermal and Z or electrical connections are formed between each member. The loss due to electrical and Z or thermal contact resistance at these connections is surprisingly large. Especially for thermoelectric conversion at medium and high temperatures exceeding 400 ° C, it cannot be ignored at all.
  • thermoelectric conversion module that exhibits high thermoelectric conversion performance (electric power output and energy conversion efficiency) in the middle to high temperature range of 400 ° C or higher is required.
  • thermoelectric conversion modules it is necessary to develop a connection means between members that can alleviate thermal stress and prevent element diffusion.
  • thermoelectric conversion element having a high thermoelectric conversion efficiency in a medium to high temperature range of 400 ° C or higher, generally 400 ° C to 600 ° C
  • a skutterudite such as a conoleto-antimony (Co-Sb) based semiconductor
  • Thermoelectric conversion elements such as skutterudite compounds and skutterudite compounds filled with ytterbium (Yb) have been developed.
  • silicon-germanium (Si-Ge) systems and the like as thermoelectric conversion elements having excellent conversion characteristics at high temperatures.
  • thermoelectric conversion module used at medium and high temperatures
  • thermoelectric conversion module when a P-type element and an N-type element are connected by an electrode, the thermoelectric element and the electrode are joined via a soldering material such as solder or a silver candy.
  • thermoelectric conversion element in which a thermoelectric conversion element body and an electrode are integrated by performing plasma bonding by energization with a large current in a state where a material constituted by a thermoelectric semiconductor material and an electrode material are in pressure contact with each other (Patent Document 1), by performing spark plasma sintering (SPS) in a state where the thermoelectric semiconductor material and the electrode material are in pressure contact with each other, A method of manufacturing a thermoelectric conversion element in which a thermoelectric element body and an electrode are integrated is also known (Patent Document 2).
  • thermoelectric elements or the thermoelectric element and the metal electrode are connected in direct contact with each other.
  • the element diffuses to the other party.
  • the element of the electrode member diffuses into the thermoelectric element, which causes a decrease in the thermoelectric performance over time.
  • Patent Document 3 discloses that a diffusion prevention layer is formed on the thermoelectric conversion element by nickel plating having a thickness of 7 m or more. However, even nickel, which is considered to be relatively difficult to diffuse, may diffuse in the middle and high temperature range.
  • Patent Document 4 uses an alloy containing Ti, Zr, Cu, and Ni between a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor, or between these thermoelectric semiconductors and an electrode.
  • a bonding layer made of an alloy newly formed by diffusion of the brazing material and both members to be bonded is formed. In this case as well, diffusion is suppressed to some extent due to the presence of Zr.
  • the diffusion of copper, nickel, etc. to the thermoelectric element cannot be denied, and the deterioration of the performance of the thermoelectric conversion element is avoided. Absent.
  • thermoelectric semiconductor element spraying material titanium Ti, layer thickness of 10 ⁇ m or more) 100 ⁇ m or less
  • thermoelectric element that directly bonds to a metal electrode to realize a diffusion prevention layer and thermal stress relaxation layer and a method for manufacturing the same
  • thermoelectric conversion efficiency since these pores also serve as a place for the formation of the sprayed metal layer and the heat-diffused brazing metal oxide layer, it also increases the electrical resistance of the device, resulting in a decrease in thermoelectric conversion efficiency. It will be.
  • the thermal spray material usually used for such a thermal spray layer is not necessary if the layer with a lot of refractory metal is thin. Porosity is likely to cause element diffusion and become a place, and cracks and the like due to thermal stress are likely to occur. Also, if the layer is too thick, both thermal resistance and electrical resistance increase, which is disadvantageous for thermoelectric conversion performance.
  • Patent Document 5 discloses a technique in which a thermoelectric member is directly bonded to a metal electrode through a Ti metal foil, which is a refractory metal, by the SPS method.
  • the thermoelectric conversion module structure is limited to the production of thermoelectric elements in which metal electrodes are bonded to thermoelectric members, and is indispensable for improving the conversion performance of thermoelectric conversion modules. It does not take into account the heat conduction of the heat transfer section.
  • thermoelectric conversion element and the heat absorbing portion and Z or the heat radiating portion (hereinafter also referred to as heat transfer portion) must be electrically insulated.
  • a temperature difference such as a temperature drop that occurs in an electrical insulation member inserted to ensure electrical insulation between the thermoelectric conversion part and the heat transfer part and a slight gap between them is a thermoelectric of the thermoelectric conversion module.
  • the conversion performance is greatly affected.
  • Patent Document 6 discloses a method for improving heat recovery characteristics by fixing the heat transfer section and the thermoelectric element and integrating the thermoelectric conversion element and the heat exchanger (heat transfer section). It is disclosed.
  • the low temperature side heat exchange member is made of aluminum (A1), and this is anodized to form an electrical insulating layer, which is soldered or brazed to the thermoelectric conversion element.
  • the high-temperature side heat exchanger member is made of stainless steel, and the contact surface with the module electrode is electrically insulated to form an electrical insulation layer in order to provide electrical insulation. It has a structure that can be slid by pressing and contacting without joining.
  • V has not been solved yet, and it has come to realize the good heat conduction characteristics to improve the thermoelectric conversion performance.
  • the present inventors have proposed a hot-pump in a non-acidic atmosphere such as a vacuum or an N gas atmosphere.
  • thermoelectric semiconductors and metal electrodes By inserting a metal foil piece containing hydrogen between many metals including thermoelectric semiconductors and metal electrodes, etc., and between a highly heat conductive ceramic and metal, A method of forming a strong bonding layer between the two members without melting the metal once the hydrogen occluded in the metal foil is released and the metal foil is activated by dehydrogenation.
  • examples include skutterudite-based thermoelectric semiconductors, filled skutterudite-based thermoelectric semiconductors, and bismuth-tellurium-based thermoelectric semiconductors and metal electrodes such as copper. The joint with the member is presented.
  • the present invention solves the problem of connection between members in a thermoelectric conversion module that is used under medium and high temperatures by utilizing a powerful technique.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-74986
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-102645
  • Patent Document 3 Japanese Patent Laid-Open No. 10-65222
  • Patent Document 4 Japanese Patent Laid-Open No. 10-84140
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-309294
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-325470
  • thermoelectric conversion module that is particularly efficient at medium and high temperatures, such as 400 ° C. or higher, and that the force is extremely unlikely to deteriorate over time or degrade performance. With the goal.
  • thermoelectric conversion module comprising a thermoelectric conversion part, a heat absorption part, and a heat dissipation part, wherein the thermoelectric conversion part and the heat absorption part are bonded and integrated together via a stress relaxation layer. It is a featured thermoelectric conversion module.
  • the present invention further relates to a thermoelectric conversion module in which a thermoelectric conversion portion, a heat absorption portion, and a heat dissipation portion are fixed and integrated.
  • the member constituting at least one of the heat absorbing portion and the heat radiating portion is a ceramic, and the member made of the ceramic is fixed and integrated with the thermoelectric conversion portion.
  • the present invention is further characterized in that at least one of the heat absorbing portion and the heat radiating portion is made of a metal member, and the surface of the member with respect to the thermoelectric conversion portion is made non-conductive.
  • thermoelectric conversion portion includes an N-type thermoelectric conversion element, a P-type thermoelectric conversion element, and an electrode connecting them. It is modular.
  • thermoelectric conversion module characterized in that it contains at least one of tellurium (Bi-Te) alloys.
  • the present invention further includes an N-type thermoelectric conversion element, a P-type thermoelectric conversion element, an electrode that connects the N-type thermoelectric conversion element and the P-type thermoelectric conversion element, a heat absorption part, and a heat dissipation part. At least one of the connecting portions is connected with the metal foil having the hydrogen occluded between the connecting portions, and then subjected to heat treatment to be connected via the metal foil!
  • the thermoelectric conversion module according to (5) or (6), wherein
  • the present invention is the thermoelectric conversion module according to (1), wherein the stress relaxation layer is titanium or a titanium alloy.
  • thermoelectric conversion module including a thermoelectric conversion part, a heat absorption part, and a heat dissipation part
  • at least the thermoelectric conversion part and the heat absorption part are fixedly integrated through a stress relaxation layer. Therefore, thermoelectric conversion efficiency is improved by significantly reducing heat loss due to contact resistance in the hot area.
  • the present invention provides a metal by interposing a hydrogen-occluded metal, particularly titanium or a titanium alloy, on the joint surface, and simply releasing hydrogen without melting titanium by heating.
  • a hydrogen-occluded metal particularly titanium or a titanium alloy
  • the electrode metal and the member of the heat absorption part for example, a good heat transfer ceramic such as aluminum nitride
  • the former is connected between the members. Very effectively suppress the diffusion of elements
  • the thermal stress is relieved, and the latter makes it possible to relieve the thermal stress and to effectively use the nonconductivity of ceramics.
  • FIG. 1 is a schematic cross-sectional view of a thermoelectric conversion module in which a heat absorption part and a thermoelectric conversion part are joined together by bonding.
  • FIG. 2-A is a cross-sectional view of the components of the thermoelectric conversion part.
  • Fig. 2-B is a cross-sectional view of each member centered on the thermoelectric conversion part (the thermoelectric conversion part is a segment type).
  • FIG. 3 is an assembled cross-sectional view of a thermoelectric conversion module in which a heat absorption part and a thermoelectric conversion part are joined together by joining.
  • Bonding material metal foil or alloy foil with hydrogen absorption
  • thermoelectric conversion module there are mainly the following five locations as member joints for transmitting heat and electricity.
  • thermoelectric conversion element thermoelectric semiconductor
  • thermoelectric semiconductors (3) In some cases, between thermoelectric semiconductors.
  • thermoelectric element Between the thermoelectric element and the heat radiation side electrode. (5) Between the heat sink side electrode and the heat sink.
  • the material constituting the electrode in addition to obtaining good electrical conduction, the material constituting the electrode, generally, metal elements such as copper and aluminum are prevented from diffusing into the thermoelectric conversion element. It is necessary to relieve the thermal stress caused by the difference in linear expansion coefficient between the two members.
  • thermoelectric semiconductors At the junction (3), it is important to maintain good electrical conductivity and to reversibly prevent element diffusion between thermoelectric semiconductors.
  • thermoelectric conversion module In the manufacture of the thermoelectric conversion module, the present inventors consider the various conditions required for each of the joints, and adopt an optimum joining method corresponding to each joint part to thereby obtain a thermoelectric conversion.
  • the present invention has been completed by paying attention to the fact that the efficiency of the module can be further improved, particularly that the heat transfer between the heat absorption part and the thermoelectric conversion element is greatly affected.
  • thermoelectric conversion portion and the heat absorption portion are fixed and integrated with each other via the stress relaxation layer.
  • thermoelectric conversion module of the present invention is divided into a heat radiating section 1, a thermoelectric conversion section 2 and a heat absorbing section 3 (in Fig. 1, it is divided into a heat transfer section 3a and a heat collecting fin 3b.
  • the endothermic part 3 is in contact with the waste heat source to be recovered directly or through a pipe, a container or a heat exchanger wall.
  • the fins are present in waste heat such as high-temperature gas, and heat is recovered by utilizing the large surface area of the heat collecting fins 3b.
  • thermoelectric conversion part and the heat transfer part 3a of the heat absorption part 3 are integrated with each other through a thermal stress relaxation layer.
  • the heat transfer part is made of non-conductive ceramics with good thermal conductivity, such as aluminum nitride or alumina, it is necessary to consider the electrical insulation between the thermoelectric conversion part and the heat absorption part.
  • a conductor such as nickel, mild steel, or stainless steel
  • a known passivation treatment such as formation of an oxide film with an oxidizing agent may be performed.
  • a stress relaxation layer is interposed between the thermoelectric conversion part and the heat absorption part.
  • a metal member having a linear expansion coefficient between the members (generally electrode members) that are in contact with the heat absorption part of the thermoelectric conversion part and the members of the heat absorption part is used.
  • titanium and titanium alloys are preferred.
  • the means for fixing and fixing the thermoelectric conversion portion and the heat absorption portion is not particularly limited, and the force that can be brazed by the SPS method according to the characteristics of each member In order to avoid the problem of thermal stress between them, it is desirable to relax the thermal stress with a stress relaxation layer interposed between the two members.
  • thermoelectric conversion element it has been conventionally difficult to sufficiently prevent the mutual diffusion of elements between the thermoelectric conversion element and the electrode metal, and there is also a problem due to heating.
  • a brazing method is generally used as a method for fixing the thermoelectric element member and the electrode metal, so that high heat is required, the thermoelectric element is destroyed or deformed, or the element diffuses during melting. This is not a reason that cannot be used, but it is not a particularly preferable means.
  • thermoelectric conversion portion when joining between the heat absorbing portion and the electrode portion of the thermoelectric conversion portion, and between the members such as the metal electrode portion and the thermoelectric semiconductor element, between the two members to be joined, A method of releasing the stored hydrogen by heating the metal foil having the surface layer occluded with hydrogen so that the hydrogen storage surface forms an interface between the two members.
  • This is a method for causing both members to function as a bonding material.
  • this method has a feature that it can be carried out without using a special joining material, such as a sprayed layer or a flux, that is, an inclusion used only for the purpose of joining, in addition to the members to be joined.
  • the metal foil is used for bonding between the members, element diffusion through the pores that inevitably remain slightly does not occur as in the case where a metal sprayed layer is used as an intermediate layer.
  • the foil type, Z, and area and thickness can be easily adjusted. In the present invention, in order to prevent diffusion, it is sufficient that the metal foil is about 20 ⁇ m.
  • means for storing hydrogen in the member having hydrogen storage properties is not limited at all, but, for example, cathodic electrolysis, treatment at room temperature to 100 ° C under a hydrogen pressure of 0.01 to 50 MPa.
  • Conventional techniques such as high-pressure hydrogenation method or hydrogen plasma irradiation method can be used.
  • the cathodic electrolysis method can usually be suitably employed. This method is a method of electrolyzing water by applying a voltage appropriately selected above the electrolysis voltage of water in an aqueous electrolyte solution using a well-known member to be occluded as a cathode and is generated during electrolysis.
  • Hydrogen is adsorbed on the cathode surface in a very short time, and then gradually diffuses and spreads inside the cathode. Therefore, the amount of hydrogen stored in the cathode can be controlled by the electrolysis time, and is preferably used in the present invention. It is a method.
  • the voltage application is higher than the electrolysis voltage of water, for example, generally about several tens of volts in consideration of the equilibrium potential and overvoltage of hydrogen, and is appropriately selected according to the pH and concentration of the electrolyte solution. Apply voltage.
  • the current density is too large, the generation of hydrogen gas is promoted and the absorption of hydrogen to the cathode is suppressed, which is not only wasteful in energy, but generally several milliamperes to 1 ampere per square centimeter. Desirably, it is desired to be about tens of milliamperes to hundreds of milliamperes.
  • the time for the electrolytic treatment is such that the hydrogen-occlusion conductor member is made of hydrogen, such as metals such as Cu, Fe, Ni, Ag, Ti, Zr, Al, Nb, and Mo, and alloys containing these as main components.
  • metals such as Cu, Fe, Ni, Ag, Ti, Zr, Al, Nb, and Mo
  • alloys containing these as main components In the case of metals that are easy to occlude, the purpose can generally be achieved in minutes to hours.
  • a thin member having high hydrogen diffusibility such as a metal foil or alloy foil, it should be treated for a short time in order to occlude hydrogen within the minimum necessary range.
  • the cathode electrolytic hydrogen occlusion treatment generally at 10 one 4-10_ 2 Faraday / cm 2 extent of processing as electric quantity can be adjusted bonding member serve sufficiently purposes.
  • the hydrogen-occlusion member force The heating temperature for releasing hydrogen can be confirmed in advance by differential heat absorption measurement and other techniques for the member to be used.
  • the thermoelectric element is used. The temperature is selected to be lower than the melting point of the hydrogen and above the hydrogen-absorbing member releases hydrogen.
  • Hydrogen is released from the hydrogen-absorbing member by heating while pressing forcefully, and promotes the generation of active elements in the hydrogen-absorbing member, or at least the surface of the bonding surface or a layer near it. In addition, it acts as active hydrogen during the nascent stage on the joint surface of the mating member, and reduces the surface of the joint surface and its immediate vicinity layer to reduce the chemical reaction between the two.
  • bonds or at least forming interatomic interactions such as hydrogen bonds, various members may be used, possibly in the process of lattice relaxation in the respective surface layers of the hydrogen storage member that has released hydrogen and the bonding partner member.
  • the strong fixing means for fixing can be used not only for joining the thermoelectric conversion part and the heat absorption part, but also for joining all members of the thermoelectric conversion module of the present invention.
  • the heat absorption part 3 is fixedly integrated with the metal electrode member 7 of the thermoelectric conversion part through the bonding material 8 which is a stress relaxation layer.
  • a desired number of thermoelectric elements 5 composed of P-type thermoelectric semiconductors and N-type thermoelectric semiconductors are provided side by side, and metal electrodes 7, for example, via a low electrical resistance metal member such as Cu, are connected in series.
  • An example of joining is shown.
  • the joining means between the thermoelectric semiconductor element 5 and the metal electrode 7 is not particularly limited, but is preferably joined by the metal foil occluded with hydrogen.
  • the force is a case where a type in which the electrodes are insulated by the electrically insulating material 9 is used.
  • the present invention is not limited to this. That is, the force depending on the size of the thermoelectric conversion element Since the element density per module can be controlled with the spacing between the exchange elements, the gap between the elements can be reduced to increase the mechanical strength of the entire module. Therefore, an insulating material may not be interposed between the thermoelectric conversion elements! /, And the structure may be a so-called skeleton type.
  • FIG. 2-B shows a case where the thermoelectric conversion part has a so-called segment structure in which different thermoelectric semiconductors are combined.
  • the P-type represented by Pl and P2 and the N-type heterogeneous thermoelectric semiconductors represented by Nl and N2 are also bonded to the thermoelectric semiconductors using the metal foil 6 with hydrogen storage as described above. It can be joined by interposing it in contact with the surface to be heated and heating while pressing.
  • thermoelectric semiconductors that are easily thermally deformed.
  • thermoelectric conversion part 2 the heat dissipation part 1
  • the joining between the thermoelectric conversion part 2 and the heat dissipation part 1 is not particularly limited.
  • an electrical insulating member that maintains adhesiveness and has excellent thermal conductivity for example, a gel sheet for radiating a semiconductor substrate is interposed, and is fixed by press-contacting from the low temperature member.
  • joining with the hydrogen-occlusion metal foil is desirable because it does not require a jig for press-fitting.
  • the heat radiating portion 1 is not shown in the figure, but as in the case of the heat absorbing portion, the inside is formed in a comb shape, and a low temperature medium passage is formed between the combs.
  • the low temperature member 1 is cooled by circulating a low temperature medium such as cooling water.
  • the material of the outer low temperature member 1 is aluminum or an aluminum alloy, and an alumite treatment is performed on the surface to be fixed to the thermoelectric conversion portion 2 so as to have an electric insulation, thereby forming an electric insulating layer.
  • the metal electrode 7 and the bonding material 8 of the thermoelectric conversion part 2 are in close contact, and the low temperature side member 1 is mutually connected via the bonding material 8 and the metal oxide layer which is an electrical insulating part. It will be in close contact.
  • the heat dissipating part is made of ceramics having good thermal conductivity such as aluminum nitride or alumina, the electric insulating part is not necessary.
  • the cooling medium flows through the low temperature medium passage of the low temperature side member 1, and the low temperature side surface of the thermoelectric conversion unit 2 is cooled.
  • the high A temperature difference is generated between the warm side and the cold side, a voltage is generated in the thermoelectric element 5 (Seebeck effect), and a thermoelectromotive force is generated to generate power.
  • the high temperature side member 3 and the low temperature side member 1 are fixedly integrated with the thermoelectric converter 2 over the entire area, so that the heat conduction efficiency is increased, and the power generation efficiency is increased. Become high.
  • the heat absorption part a member having electrical insulation and good heat conductivity is desirable.
  • the member having the above characteristics include ceramics such as aluminum nitride and alumina.
  • the ceramic member has excellent heat resistance, and it does not have any mechanical problems such as cracks in the environment where the thermoelectric conversion module is used at medium and high temperatures above 400 ° C.
  • Thermal stress is generated at the joint with the metal electrode part such as Cu, which is commonly used, due to the difference in linear expansion coefficient.
  • the thermal stress caused by the difference in linear expansion coefficient can be reduced by selecting a metal foil or alloy foil as a joining material having a high melting point.
  • vacuum, argon (Ar) gas or nitrogen (N) gas is used.
  • Active metals such as Ti, Zr, and Hf that realize good bonding in moderate non-oxidizing atmospheres and the metal-based alloys, or metals such as Mo, W, Ni, Cr, Fe, and Al are used. Can be used.
  • the bonding material is preferably Ti or a Ti-based alloy.
  • thermoelectric conversion part 2 Through the bonding as described above, the electrode 7 and the bonding material 8 of the thermoelectric conversion part 2 are in close contact with each other, the bonding material 8 is in close contact with the high temperature side heat transfer member 3, and the thermoelectric conversion part 2 and the high temperature member 3 are Since they are in close contact with each other via the bonding material 8, the heat conduction efficiency between the thermoelectric conversion part 2 and the high temperature side member 3 is increased.
  • the high temperature side member is made of metal or alloy, and the metal or alloy is subjected to electrical insulation treatment or thermal spray treatment.
  • An electrical insulating layer may be formed by This electrical insulation layer is included in the high temperature side material.
  • thermoelectric semiconductor material a compound having a skutterudite crystal structure and a compound having a filled skutterudite structure, silicon-germanium (Si —Ge) -based thermoelectric semiconductors, and Bi—Te-based thermoelectric semiconductors
  • the thermoelectric semiconductor member is not limited to this.
  • thermoelectric semiconductor elements are arranged so that the P-type and N-type are alternately and in series electrically connected with the metal electrode interposed therebetween, and the electrode Z is a metal foil occluded with hydrogen or Hydrogen-occluded alloy foil Z thermoelectric semiconductor Z hydrogenated metal foil or hydrogen-occluded alloy foil Z electrode is also preferably installed.
  • the structure is hot-pressed in a non-acidic atmosphere such as vacuum, nitrogen gas, or argon gas to obtain a joined body.
  • the bonding material used not only functions as an element diffusion prevention layer on the bonding surface under the medium temperature range, but also relaxes the thermal stress generated between the thermoelectric conversion element portion and the electrode metal.
  • a refractory metal foil such as a Ti-based alloy is desirable, but it is a metal foil or alloy foil having a smaller linear expansion coefficient than that of a metal electrode member, and is a foil that occludes hydrogen according to the above method! If you can use it.
  • Fe, Ni, W, Mo, stainless steel, etc. may be used.
  • the thickness of the metal foil or alloy foil can be selected between several microns to several hundred microns.
  • the electrode 7 and the bonding material 6 of the thermoelectric conversion part 2 are in close contact, the bonding material 6 is in close contact with the thermoelectric conversion element member 5, and the electrode 7 and the thermoelectric conversion element 5 are bonded to each other. 6 are in close contact with each other.
  • thermoelectric conversion part the heat absorption part, and the heat transfer part may be manufactured together under the above-described joining conditions according to the combination between the members. Join two metal electrodes, cut them out to the same size using a fine cutter, etc., then join the electrodes together using a Cu plate etc. with hydrogen storage by the above method, and thermoelectric conversion of the desired size After making the part, it can be joined to a heat exchange high temperature side heat transfer member having a good heat conductive ceramic such as aluminum nitride or a metal oxide layer.
  • the metal foil or alloy foil used as the bonding material was occluded by hydrogen, inserted as an intermediate layer between the members to be bonded, and pressed and heated in nitrogen gas or in a vacuum atmosphere.
  • the strong bonding to be realized is, for example, a diamond cutter or It refers to the strength that prevents the bonding layer from peeling off when cut with a cutting machine such as a fine cutter.
  • thermoelectric conversion part metal electrode and an electrically insulating heat transfer member
  • Electrode electrolysis between an lmm thick Cu metal plate (5mm x 5mm) as the electrode member of the thermoelectric converter and an lmm thick A1N plate (5mm x 5mm) as the heat transfer member (high temperature side heat exchanger member) of the heat absorption part After sandwiching a 20 ⁇ m or 40 ⁇ m Ti metal foil or Al foil occluded with hydrogen, pressurizing at 20 MPa or more, heating to 560 ° C in N gas, and then naturally cooling
  • lmm-thick Cu metal plate (5mm x 10mm) as the thermoelectric part electrode member and lmm-thick A1 metal plate (5mm x 10mm) subjected to anodizing treatment as the heat transfer member (hot-side heat exchange member) 10mm) or Al-based alloy (duralumin), 20m or 40m Ti metal foil that has been subjected to cathodic electrolysis and occluded hydrogen is sandwiched, pressurized to over lOMPa, and then up to 560 ° C in N gas
  • thermoelectric conversion part metal electrode and the thermoelectric semiconductor
  • thermoelectric conversion part Assuming basic structure of thermoelectric conversion part with metal electrodes joined to both end faces of thermoelectric semiconductor, Cu foil is stored in Ti foil ZCo— Sb thermoelectric material (P type and N type) Z hydrogen is stored in Ti foil ZCu And pressurizing at about 30MPa, and 600 ° C in vacuum or N gas
  • thermoelectric material By heating with, a strong joined body was realized.
  • thermoelectric material was replaced with N-type Yb-based CoSb with a filled skutterudite structure, strong bonding was achieved at 550 ° C.
  • a combination of P-type Yb-based CoSb-based materials can be firmly bonded at 560 ° C to form a thermoelectric element.
  • thermoelectric material is a Bi-Te material having excellent thermoelectric conversion characteristics at low temperature
  • stainless steel SUS302 force SUS304, thickness ⁇ 20 ⁇ m to 100 ⁇ m
  • the melting point of Bi-Te-based materials is about 600 ° C, and if a bonding temperature exceeding 500 ° C is selected, the surface of the thermoelectric material is oxidized. Since the oxidation does not extend to the inside, the surface oxide layer should be polished * removed, but the thermoelectric material was not damaged. For this reason, the bonding temperature should be low.
  • Ni-absorbed Ni foil When Ni-absorbed Ni foil is used as the bonding material, good bonding is achieved at 450 ° C to 500 ° C. Especially, N-type Bi-Te-based material Z Hydrogen-absorbed Ni foil Z Cu bonded body There was no difference in the shear strength at the joint interface before and after the thermal test at 300 ° C, and no difference in the element distribution by EPMA.
  • thermoelectric semiconductors in which no cracks or the like are generated on each member interface (particularly on the thermoelectric semiconductor side) of the joined body, 0) -31) type)) and Yb-based Co-Sb (N Type, P type) did not change the EPMA elemental analysis results before and after being kept at 400 ° C for 1 day in the atmosphere.
  • Co—Sb-based (P-type) thermoelectric elements which are well known to oxidize and pulverize in the atmosphere at 350 ° C. or higher in the atmosphere, the bonding with the metal electrode part itself is in the reducing atmosphere. Since this has been realized, this can be avoided by subjecting the surface of the joined body to an oxidation resistance treatment using an acid-resistant coating agent or the like.
  • thermoelectric converter and the heat transfer member having electrical insulation
  • thermoelectric material By heating at 600 ° C at 2 ° C, a strong bonded body was realized.
  • thermoelectric material was changed to Yb-based CoSb with a filled skutterudite structure, strong bonding was realized at 550 ° C.
  • the thermoelectric material is a Bi-Te material, the endothermic part is bonded as Ti foil ZCu with A1NZ hydrogen storage, and then the Ni foil ZBi-Te material (N type) with CuZ hydrogen storage in the thermoelectric conversion part. ) Ni hydrogen occluded Ni foil ZCu is placed and pressurized, N
  • a strong joined body was obtained by heating at 450 ° C to 500 ° C in a gas.
  • thermoelectric conversion part metal electrode in order to evaluate the heat conduction characteristics between the heat transfer part and the thermoelectric conversion part metal electrode, which is most important for the present invention, a thermal constant measuring device (ULVAC TC-7000) was used.
  • Table 1 shows the results of thermal diffusivity measurements using the laser flash method CFIS-R1611).
  • a comparative example was used (A1N / Cu) in which A1N and Cu were in close contact and the periphery was fixed with an instantaneous adhesive (product name: Aron Alpha).
  • AlNZTiZCu and AlNZAlZCu were presented as examples of joining between the thermoelectric conversion part metal electrode and the heat transfer member having electrical insulation in the above-mentioned embodiment.
  • thermal diffusivity is the standard value because the thermal conductivity is obtained by the product of thermal diffusivity and specific heat and density, and the exact specific heat and density of the joined body are not known. Since the size, weight, and configuration (combination of A1N and Cu) are aligned, it was judged sufficient for relative evaluation of thermal conductivity.
  • thermoelectric conversion part metal electrode is improved by about 10 to 20% by joining the metal electrodes. This is to increase the temperature difference between the heat absorption side terminal and the heat radiation side terminal of the thermoelectric conversion element by adopting the joined body in which the heat transfer part and the thermoelectric conversion part metal electrode are fixed and integrated by joining. This means that it will lead to an improvement in power generation efficiency.
  • the joined body according to the present invention firmly joins the thermoelectric conversion part and the heat absorption part using the metal foil that has occluded hydrogen, and at the same time, includes the element diffusion prevention layer and the thermal stress relaxation layer.
  • the heat-absorbing part that is simply introduced between the metal electrode and the thermoelectric semiconductor element in the thermoelectric conversion part can be used by using a heat-conducting member having electrical insulation, such as A1N ceramics, or equivalent heat-conducting characteristics.
  • the metallic heat transfer member including the metal oxide layer it is possible to improve thermoelectric conversion characteristics based on highly efficient heat transfer.
  • thermoelectric conversion element constituting the thermoelectric conversion module can include skutterudite-based Co—Sb and filled skutterudite-based Yb—Co—Sb, and in a medium temperature range of 400 ° C. or higher. Good thermoelectric conversion performance can be realized.
  • Bi-Te-based materials can be included in the thermoelectric conversion part, and Bi-Te-based thermoelectric semiconductor elements that are optimally designed as Peltier elements that can achieve good power generation performance at about 200 ° C. High thermal durability can be added to the child.
  • the present invention recovers waste gas at 400 ° C or higher in automobiles, factories, etc. and heat generated by an incinerator in a high temperature state and enables recycling as electric energy.

Abstract

A thermoelectric conversion module for electronic devices and small refrigerators capable of increasing a thermoelectric conversion efficiency by converting the heat of medium and hot exhaust gases from automobiles and plants or the heat of incinerators into electric energy or converting the electric energy into the heat for local heating and cooling. The thermoelectric conversion module comprises a heat absorbing part, a thermoelectric conversion part, and a heat radiating part. Since at least the heat absorbing part and the thermoelectric conversion part are fixedly formed integrally with each other, the thermoelectric conversion module can be suitably used particularly under medium and high temperatures of 400°C or higher.

Description

明 細 書  Specification
熱電変換モジュール  Thermoelectric conversion module
技術分野  Technical field
[0001] 本発明は、熱電変換モジュールに関する。詳しくは、熱電変換効率が改良された 熱電変換モジュールに関する。  [0001] The present invention relates to a thermoelectric conversion module. Specifically, the present invention relates to a thermoelectric conversion module with improved thermoelectric conversion efficiency.
背景技術  Background art
[0002] 近年、自動車や工場や焼却炉等から排出される廃熱エネルギーを電気工ネルギー に直接変換して利用しょうとする試みがなされており、環境問題やエネルギー問題解 決の 1手段として期待されている。熱エネルギーと電気エネルギーを相互に変換する 熱電変換モジュールは、ゼーベック効果、ペルチェ効果、トムソン効果として知られる 熱電効果を利用した 1対以上の P型及び N型の熱電半導体を組み合わせて構成さ れるものが主流となって 、る。  [0002] In recent years, attempts have been made to directly convert waste heat energy discharged from automobiles, factories, incinerators, etc. into electric energy and use it, and it is expected as a means of solving environmental and energy problems. Has been. Thermoelectric modules that convert thermal energy and electrical energy to each other are composed of a combination of one or more P-type and N-type thermoelectric semiconductors that use the thermoelectric effect known as the Seebeck effect, Peltier effect, and Thomson effect. Has become mainstream.
[0003] 熱電変換モジュールは、構造が簡単、取り扱 、が安易かつ安定に特性を維持でき ることから、広範囲にわたる利用が期待されている。特に、ペルチェ効果を利用した 局所冷却においては、精緻な温度制御が可能であることから、オプトエレクトロニクス 用デバイスや、半導体レーザ等の温度制御、小型冷蔵庫等の実現に向けて広く研 究開発が進められている。  [0003] Thermoelectric conversion modules are expected to be used in a wide range because they are simple in structure, easy to handle, and can maintain their characteristics easily and stably. In particular, in local cooling using the Peltier effect, precise temperature control is possible, so research and development are widely promoted to realize temperature control of optoelectronic devices, semiconductor lasers, etc., and compact refrigerators. It has been.
[0004] 一方、ゼーベック効果を利用した熱電発電の原理は、一端を接続した異種導電体 の接合部と他端との温度差により起電力を生ずるものであり、 N型半導体素子と P型 半導体素子とを用いることによって大きな起電力を得ることが知られている。  [0004] On the other hand, the principle of thermoelectric power generation using the Seebeck effect is that an electromotive force is generated due to a temperature difference between a junction of a dissimilar conductor having one end connected to the other end. An N-type semiconductor element and a P-type semiconductor It is known that a large electromotive force can be obtained by using an element.
[0005] これらの熱電変換モジュールにお 、ては、前記両端の温度差が起電力に大きく影 響を及ぼすため、一方に吸熱部を、他方に放熱部を設け、中間に熱電変換部を存 在させる構造をとるのが一般的である。これらの構造においては各部材間に熱的、及 び Z又は電気的接続部分が形成される。それらの接続部分における電気的及び Z 又は熱的接触抵抗による損失は意外と大きいものである。特に 400°Cを超える中高 温下における熱電変換にあっては、全く無視することはできない。  In these thermoelectric conversion modules, since the temperature difference between the two ends greatly affects the electromotive force, a heat absorption part is provided on one side, a heat dissipation part is provided on the other side, and a thermoelectric conversion part is provided in the middle. It is common to have a structure that exists. In these structures, thermal and Z or electrical connections are formed between each member. The loss due to electrical and Z or thermal contact resistance at these connections is surprisingly large. Especially for thermoelectric conversion at medium and high temperatures exceeding 400 ° C, it cannot be ignored at all.
[0006] 接触抵抗を小さくするには、両部材を強圧接し、間隙を小さくすることがまず考えら れるが、部材間の完全接触 (密着)は不可能であり、接触抵抗を極小化することは困 難である。そこで電気及び Z又は熱の良導体により固着一体化する方法が考えられ る。 [0006] In order to reduce the contact resistance, first of all, it is considered to strongly press both members and reduce the gap. However, complete contact (adhesion) between members is impossible, and it is difficult to minimize contact resistance. Therefore, a method of fixing and integrating with a good conductor of electricity and Z or heat can be considered.
[0007] し力しながら、 400°Cを超える温度条件下では、部材間の線膨張係数の違いにより 、部材接合部に生ずる熱応力が大きぐ繰り返される熱履歴のため接続不良を生じる という問題があり、更に高温になるほど接続部分での両部材を構成する元素の拡散 が大きくなり、熱電素子の経時的性能低下をきたすという部材間の接続の問題があつ た。  [0007] However, under a temperature condition exceeding 400 ° C, a problem of connection failure occurs due to repeated thermal history in which the thermal stress generated at the joint of the member is large due to the difference in coefficient of linear expansion between the members. There is a problem of connection between members that the diffusion of the elements constituting both members at the connection portion increases as the temperature rises and the performance of the thermoelectric element deteriorates over time.
[0008] 他方、自動車や工場等の廃熱或いは、焼却炉の熱の多くは、 400°C以上、場合に よっては 800°C〜 1200°Cであり、それらの熱エネルギーを効率よく利用するために は、 400°C以上の中高温域にぉ ヽて高 、熱電変換性能 (電気出力とエネルギー変 換効率)を示す熱電変換モジュールが必要となる。また、そうした熱電変換モジユー ルの熱耐久性を確保するために、熱応力緩和と元素拡散防止を可能とする部材間 の接続手段の開発が必要である。  [0008] On the other hand, most of waste heat from automobiles and factories or incinerators is 400 ° C or higher, and in some cases 800 ° C to 1200 ° C. For this purpose, a thermoelectric conversion module that exhibits high thermoelectric conversion performance (electric power output and energy conversion efficiency) in the middle to high temperature range of 400 ° C or higher is required. In addition, in order to secure the thermal durability of such thermoelectric conversion modules, it is necessary to develop a connection means between members that can alleviate thermal stress and prevent element diffusion.
[0009] 近年、 400°C以上、一般に 400°C〜600°Cの中高温域で熱電変換効率の高い熱 電変換素子として、コノ レト -アンチモン (Co - Sb)系半導体等のスクッテルダイト系 化合物や、充填型スクッテルダイト系化合物、例えばイッテルビウム (Yb)を充填した スクッテルダイト系化合物等の熱電変換素子が開発されている。更に、高温領域で変 換特性の優れる熱電変換素子としてシリコン-ゲルマニウム(Si— Ge)系等がある。  [0009] In recent years, as a thermoelectric conversion element having a high thermoelectric conversion efficiency in a medium to high temperature range of 400 ° C or higher, generally 400 ° C to 600 ° C, a skutterudite such as a conoleto-antimony (Co-Sb) based semiconductor Thermoelectric conversion elements such as skutterudite compounds and skutterudite compounds filled with ytterbium (Yb) have been developed. Furthermore, there are silicon-germanium (Si-Ge) systems and the like as thermoelectric conversion elements having excellent conversion characteristics at high temperatures.
[0010] しかしながら、中高温下で用いられる熱電変換モジュールにおける部材間の接続 の問題は、いまだ解決されず、その開発が望まれていた。  [0010] However, the problem of connection between members in a thermoelectric conversion module used at medium and high temperatures has not been solved yet, and its development has been desired.
[0011] 一般に熱電変換モジュールの製造工程において、 P型素子と N型素子とを電極に よって接続する際に、熱電素子と電極の接合は半田や銀蝌等の蝌材を介して行わ れる。  [0011] In general, in the manufacturing process of a thermoelectric conversion module, when a P-type element and an N-type element are connected by an electrode, the thermoelectric element and the electrode are joined via a soldering material such as solder or a silver candy.
[0012] 同様に、熱電半導体材料によって構成された材料と電極材料を圧接させた状態で 、大電流通電によるプラズマ接合を行って、熱電変換素子本体と電極とが一体化さ れた熱電変換素子を得る方法 (特許文献 1)、熱電半導体材料と電極材料とを圧接さ せた状態で、放電プラズマ焼結(spark plasma sintering : SPS)を行うことにより、 熱電素子本体と電極とが一体化された熱電変換素子の製造方法も知られて ヽる (特 許文献 2)。 [0012] Similarly, a thermoelectric conversion element in which a thermoelectric conversion element body and an electrode are integrated by performing plasma bonding by energization with a large current in a state where a material constituted by a thermoelectric semiconductor material and an electrode material are in pressure contact with each other (Patent Document 1), by performing spark plasma sintering (SPS) in a state where the thermoelectric semiconductor material and the electrode material are in pressure contact with each other, A method of manufacturing a thermoelectric conversion element in which a thermoelectric element body and an electrode are integrated is also known (Patent Document 2).
[0013] し力しながら、このような接続方法によると熱電素子相互、或 、は熱電素子と金属の 電極とが直接接した状態で接続されているため、該接合面で双方の部材を構成する 元素が相手方に拡散する。特に電極部材の元素が熱電素子中に拡散することによ つて熱電性能の経時的低下を招く。  However, according to such a connection method, the thermoelectric elements or the thermoelectric element and the metal electrode are connected in direct contact with each other. The element diffuses to the other party. In particular, the element of the electrode member diffuses into the thermoelectric element, which causes a decrease in the thermoelectric performance over time.
[0014] 更に両部材の熱膨張率の違 、も無視できず、接合部の破損のおそれもある。また 最も致命的なことは、接続工程で生ずる熱に耐えられない熱電素子に対しては適用 し得ないことである。 [0014] Further, the difference in thermal expansion coefficient between the two members cannot be ignored, and there is a risk of damage to the joint. The most critical thing is that it cannot be applied to thermoelectric elements that cannot withstand the heat generated in the connection process.
[0015] そこで、特許文献 3には、厚さ 7 m以上のニッケル鍍金によって熱電変換素子に 拡散防止層を形成することが開示されている。しかしながら、比較的拡散し難いと考 えられるニッケルであっても中高温域では、ニッケル自体が拡散してしまうおそれがあ る。  [0015] Therefore, Patent Document 3 discloses that a diffusion prevention layer is formed on the thermoelectric conversion element by nickel plating having a thickness of 7 m or more. However, even nickel, which is considered to be relatively difficult to diffuse, may diffuse in the middle and high temperature range.
[0016] 更に、特許文献 4には、 P型熱電半導体と N型熱電半導体との間、或いはこれらの 熱電半導体と電極との間に、 Ti、 Zr、 Cu、 Niを含む合金を用いて蝌付けすることに よって、該蝌材と被接合両部材との拡散により新たに形成される合金よりなる接合層 を形成させることが開示されている。この場合も、 Zrの存在により、ある程度は拡散は 抑えられるが、やはり蠟材を溶融させることにより、熱電素子への銅、ニッケル等の拡 散は否めず、熱電変換素子の性能の減退は免れない。  Furthermore, Patent Document 4 uses an alloy containing Ti, Zr, Cu, and Ni between a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor, or between these thermoelectric semiconductors and an electrode. Thus, it is disclosed that a bonding layer made of an alloy newly formed by diffusion of the brazing material and both members to be bonded is formed. In this case as well, diffusion is suppressed to some extent due to the presence of Zr. However, by melting the brazing material, the diffusion of copper, nickel, etc. to the thermoelectric element cannot be denied, and the deterioration of the performance of the thermoelectric conversion element is avoided. Absent.
[0017] また、特許文献 5では、熱電素子において必須とされる元素拡散防止層と熱応力 緩和層を熱電半導体素子に組み込むための最適な溶射条件 (溶射材チタン Ti、層 厚 10 μ m以上 100 μ m以下)を提示し、且つ金属電極に直接接合して拡散防止層 兼熱応力緩和層を実現する熱電素子とその製造方法を開示している。し力しながら、 溶射法では気孔率をゼロにすることは実質的に不可能であり、この気孔を通じて熱 電部材、電極部材の構成元素が熱拡散する可能性は高い。更に、こうした気孔は溶 射金属層及び熱拡散した蠟材金属の酸ィ匕層形成の場所ともなるため、やはり素子の 電気抵抗 '熱抵抗を増カロしてしまい、結果として熱電変換効率を下げることとなる。ま た、通常こうした溶射層に使用される溶射材は高融点金属が多ぐ層が薄ければ気 孔率が上がって元素拡散の生じやす 、場所となるとともに、熱応力に起因するクラッ ク等が生じやすくなる。また、層が厚すぎれば熱抵抗 ·電気抵抗ともに増加するため、 熱電変換性能にとって不利となる。 [0017] Further, in Patent Document 5, the optimum thermal spraying conditions for incorporating an element diffusion prevention layer and a thermal stress relaxation layer, which are essential for thermoelectric elements, into a thermoelectric semiconductor element (spraying material titanium Ti, layer thickness of 10 μm or more) 100 μm or less) and a thermoelectric element that directly bonds to a metal electrode to realize a diffusion prevention layer and thermal stress relaxation layer and a method for manufacturing the same are disclosed. However, it is virtually impossible to make the porosity zero by the thermal spraying method, and it is highly possible that the constituent elements of the thermoelectric member and the electrode member are thermally diffused through the pores. Furthermore, since these pores also serve as a place for the formation of the sprayed metal layer and the heat-diffused brazing metal oxide layer, it also increases the electrical resistance of the device, resulting in a decrease in thermoelectric conversion efficiency. It will be. In addition, the thermal spray material usually used for such a thermal spray layer is not necessary if the layer with a lot of refractory metal is thin. Porosity is likely to cause element diffusion and become a place, and cracks and the like due to thermal stress are likely to occur. Also, if the layer is too thick, both thermal resistance and electrical resistance increase, which is disadvantageous for thermoelectric conversion performance.
[0018] 更に、特許文献 5には SPS法により高融点金属である Ti金属箔を介して熱電部材 を直接金属電極に接合する技術も開示されている。しカゝしながら、当該文献中では、 熱電変換モジュール構造は熱電部材に金属電極を接合した熱電素子の作製にとど まっており、更には、熱電変換モジュールの変換性能を向上するために必須な伝熱 部の熱伝導までを考慮したものではな 、。  [0018] Further, Patent Document 5 discloses a technique in which a thermoelectric member is directly bonded to a metal electrode through a Ti metal foil, which is a refractory metal, by the SPS method. However, in this document, the thermoelectric conversion module structure is limited to the production of thermoelectric elements in which metal electrodes are bonded to thermoelectric members, and is indispensable for improving the conversion performance of thermoelectric conversion modules. It does not take into account the heat conduction of the heat transfer section.
[0019] 熱電変換を実現するためには熱電変換素子の金属電極部材と吸熱部及び Z又は 放熱部(以下伝熱部ともいう)との間が電気絶縁されていなければならない。通常、熱 電変換部と伝熱部との間の電気絶縁性を確保するために挿入される電気絶縁部材 及びその間の僅かな空隙において生じる温度低下などの温度差が、熱電変換モジ ユールの熱電変換性能に大きな影響を与える。この課題に対して、特許文献 6では 伝熱部と熱電素子を固着させて熱電変換素子と熱交換器 (伝熱部)とを一体化する ことにより、熱回収特性を向上する方法にっ 、て開示して 、る。  [0019] In order to realize thermoelectric conversion, the metal electrode member of the thermoelectric conversion element and the heat absorbing portion and Z or the heat radiating portion (hereinafter also referred to as heat transfer portion) must be electrically insulated. Usually, a temperature difference such as a temperature drop that occurs in an electrical insulation member inserted to ensure electrical insulation between the thermoelectric conversion part and the heat transfer part and a slight gap between them is a thermoelectric of the thermoelectric conversion module. The conversion performance is greatly affected. In response to this problem, Patent Document 6 discloses a method for improving heat recovery characteristics by fixing the heat transfer section and the thermoelectric element and integrating the thermoelectric conversion element and the heat exchanger (heat transfer section). It is disclosed.
[0020] 該ー体型ユニットにお 、ては、低温側熱交^^部材はアルミニウム (A1)とし、これ をアルマイト処理して電気絶縁層とし、熱電変換素子と半田付け、或いは蝌付けする 方法を提案している。一方、高温側熱交換器部材はステンレスとし、モジュール電極 との接触面は電気絶縁性をもたせるために電気絶縁処理を施して電気絶縁層を形 成するとあるが、熱応力緩和のために両者を接合せず、押し付けて接触させスライド 可能な構造としている。従って、放熱部の熱伝導性を良くし、且つ電気絶縁層を介在 させて熱電変換効率を向上する構造としては新規な発想であるが、特に部材の線膨 張率の違いによる熱応力ゃ部材間の元素拡散が問題となる高温側の固着方法につ [0020] For the body-type unit, the low temperature side heat exchange member is made of aluminum (A1), and this is anodized to form an electrical insulating layer, which is soldered or brazed to the thermoelectric conversion element. Has proposed. On the other hand, the high-temperature side heat exchanger member is made of stainless steel, and the contact surface with the module electrode is electrically insulated to form an electrical insulation layer in order to provide electrical insulation. It has a structure that can be slid by pressing and contacting without joining. Therefore, it is a new idea for a structure that improves the thermal conductivity of the heat radiating section and improves the thermoelectric conversion efficiency by interposing an electrical insulating layer, but in particular, the thermal stress due to the difference in the linear expansion rate of the member The high temperature side fixing method where element diffusion between the
V、ては未だ解決されておらず、熱電変換性能を向上するための良熱伝導特性を一 括して実現するには至って 、な 、。 V has not been solved yet, and it has come to realize the good heat conduction characteristics to improve the thermoelectric conversion performance.
[0021] 一方、本発明者らは、真空や Nガス雰囲気等の非酸ィ匕性雰囲気におけるホットプ  [0021] On the other hand, the present inventors have proposed a hot-pump in a non-acidic atmosphere such as a vacuum or an N gas atmosphere.
2  2
レスにより、熱電半導体や金属電極等を含む多くの金属間、並びに良熱伝導性セラ ミックスと金属間に水素を吸蔵した金属箔片を挿入して圧接し、加熱することにより、 一旦金属箔に吸蔵させた水素を離脱させ、脱水素化によって金属箔が活性ィヒするこ とを利用して、該金属を溶融することなぐ両部材間に強固な接合層を形成させる方 法を提案し、その実施例として、良熱伝導性窒化アルミニウムセラミックス同士の接合 だけでなぐスクッテルダイト系熱電半導体、充填型スクッテルダイト系熱電半導体、 ビスマス一テルル系熱電半導体と銅等の金属電極部材との接合を提示している。 By inserting a metal foil piece containing hydrogen between many metals including thermoelectric semiconductors and metal electrodes, etc., and between a highly heat conductive ceramic and metal, A method of forming a strong bonding layer between the two members without melting the metal once the hydrogen occluded in the metal foil is released and the metal foil is activated by dehydrogenation. Examples include skutterudite-based thermoelectric semiconductors, filled skutterudite-based thermoelectric semiconductors, and bismuth-tellurium-based thermoelectric semiconductors and metal electrodes such as copper. The joint with the member is presented.
[0022] 本発明は、力かる技術を利用することにより、中高温下で用いられる熱電変換モジ ユールにおける部材間の接続の問題を解決するものである。  [0022] The present invention solves the problem of connection between members in a thermoelectric conversion module that is used under medium and high temperatures by utilizing a powerful technique.
特許文献 1:特開平 10— 74986号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-74986
特許文献 2:特開 2001— 102645号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-102645
特許文献 3:特開平 10— 65222号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-65222
特許文献 4:特開平 10— 84140号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-84140
特許文献 5:特開 2003 - 309294号公報  Patent Document 5: Japanese Patent Laid-Open No. 2003-309294
特許文献 6:特開 2002— 325470号公報  Patent Document 6: Japanese Patent Laid-Open No. 2002-325470
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0023] すなわち本発明は、上記の如き状況に鑑み、特に 400°C以上の如き中高温におけ る効率の良い、し力も経時的劣化や性能低下の極めて生じにくい熱電変換モジユー ルを得ることを目的とする。 That is, in view of the above situation, the present invention provides a thermoelectric conversion module that is particularly efficient at medium and high temperatures, such as 400 ° C. or higher, and that the force is extremely unlikely to deteriorate over time or degrade performance. With the goal.
課題を解決するための手段  Means for solving the problem
[0024] 本発明者らは上記課題を解決するため、次の各発明を提案する。すなわち、 In order to solve the above problems, the present inventors propose the following inventions. That is,
(1)本発明は、熱電変換部と吸熱部及び放熱部とよりなる熱電変換モジュールにお いて該熱電変換部と吸熱部とが応力緩和層を介して、固着一体ィ匕してなることを特 徴とする熱電変換モジュールである。  (1) The present invention relates to a thermoelectric conversion module comprising a thermoelectric conversion part, a heat absorption part, and a heat dissipation part, wherein the thermoelectric conversion part and the heat absorption part are bonded and integrated together via a stress relaxation layer. It is a featured thermoelectric conversion module.
(2)本発明は更に、熱電変換部と吸熱部及び放熱部の三者が固着一体ィ匕してなる 熱電変換モジュールである。  (2) The present invention further relates to a thermoelectric conversion module in which a thermoelectric conversion portion, a heat absorption portion, and a heat dissipation portion are fixed and integrated.
(3)本発明はまた、吸熱部及び放熱部の少なくとも一方を構成する部材がセラミック スであり、該セラミックスで構成された部材が熱電変換部に固着一体ィ匕してなる前記 ( 1)又は(2)記載の熱電変換モジュールである。 (4)本発明は更に、吸熱部及び放熱部の少なくとも一方が金属部材で構成され、該 部材の熱電変換部に対する面が不導体化されて ヽることを特徴とする前記(1)乃至( 3)に記載の熱電変換モジュールである。 (3) In the present invention, the member constituting at least one of the heat absorbing portion and the heat radiating portion is a ceramic, and the member made of the ceramic is fixed and integrated with the thermoelectric conversion portion. (2) The thermoelectric conversion module described. (4) The present invention is further characterized in that at least one of the heat absorbing portion and the heat radiating portion is made of a metal member, and the surface of the member with respect to the thermoelectric conversion portion is made non-conductive. The thermoelectric conversion module according to 3).
(5)本発明は更にまた、熱電変換部が N型熱電変換素子と P型熱電変換素子及び それらを連結する電極とよりなる前記(1)乃至(3)の 、ずれかに記載の熱電変換モジ ユールである。  (5) The present invention further provides the thermoelectric conversion according to any one of (1) to (3), wherein the thermoelectric conversion portion includes an N-type thermoelectric conversion element, a P-type thermoelectric conversion element, and an electrode connecting them. It is modular.
(6)本発明は、 N型熱電素子及び P型熱電素子のうち、少なくとも一方の熱電素子が スクッテルダイト系、充填型スクッテルダイト系化合物、シリコン-ゲルマニウム(Si— G e)及びビスマス一テルル (Bi— Te)系合金のうち、少なくとも一種を含むことを特徴と する前記(5)に記載の熱電変換モジュールである。  (6) In the present invention, at least one of the N-type thermoelectric element and the P-type thermoelectric element is a skutterudite-based, filled skutterudite-based compound, silicon-germanium (Si—Ge), and bismuth The thermoelectric conversion module according to (5), characterized in that it contains at least one of tellurium (Bi-Te) alloys.
(7)本発明は更に、 N型熱電変換素子、 P型熱電変換素子、該 N型熱電変換素子と 該 P型熱電変換素子とを連結する電極、吸熱部及び放熱部の各構成部材が有する 接続部分のうち少なくとも一つの接続個所において、該接続部の間に水素を吸蔵し た金属箔を密着して挟み込んだ後、加熱処理を施すことにより、該金属箔を介して接 続されて!、ることを特徴とする前記(5)又は(6)に記載の熱電変換モジュールである  (7) The present invention further includes an N-type thermoelectric conversion element, a P-type thermoelectric conversion element, an electrode that connects the N-type thermoelectric conversion element and the P-type thermoelectric conversion element, a heat absorption part, and a heat dissipation part. At least one of the connecting portions is connected with the metal foil having the hydrogen occluded between the connecting portions, and then subjected to heat treatment to be connected via the metal foil! The thermoelectric conversion module according to (5) or (6), wherein
(8)本発明は、応力緩和層がチタン又はチタン合金である前記(1)に記載の熱電変 換モジユーノレである。 (8) The present invention is the thermoelectric conversion module according to (1), wherein the stress relaxation layer is titanium or a titanium alloy.
発明の効果  The invention's effect
[0025] 本発明は、熱電変換部と吸熱部及び放熱部よりなる熱電変換モジュールにおいて 、少なくとも該熱電変換部と吸熱部とが、応力緩和層を介して、固着一体化されたこ とを特徴としており、高熱部分での接触抵抗による熱損失を著しく減少させることによ り、熱電変換効率を高めるものである。  [0025] The present invention is characterized in that, in a thermoelectric conversion module including a thermoelectric conversion part, a heat absorption part, and a heat dissipation part, at least the thermoelectric conversion part and the heat absorption part are fixedly integrated through a stress relaxation layer. Therefore, thermoelectric conversion efficiency is improved by significantly reducing heat loss due to contact resistance in the hot area.
[0026] また、本発明は詳細に後述するように、接合面に水素を吸蔵した金属、特にチタン 又はチタン合金を介在させ、加熱によりチタンを溶融することなぐ単に水素を放出さ せることにより強固に該部材間、具体的には熱電部の熱電半導体と電極金属、なら びに電極金属と吸熱部の部材、例えば窒化アルミニウムの如き良伝熱性セラミックス 等とを接合することによって、前者は部材間の元素の拡散を極めて効果的に抑制し て、熱応力を緩和し、後者は熱応力を緩和すること及びセラミックスの不導体性を有 効に用いることも可能にするものである。 [0026] Further, as will be described in detail later, the present invention provides a metal by interposing a hydrogen-occluded metal, particularly titanium or a titanium alloy, on the joint surface, and simply releasing hydrogen without melting titanium by heating. In addition, by joining the thermoelectric semiconductor and the electrode metal of the thermoelectric part, specifically, the electrode metal and the member of the heat absorption part, for example, a good heat transfer ceramic such as aluminum nitride, the former is connected between the members. Very effectively suppress the diffusion of elements Thus, the thermal stress is relieved, and the latter makes it possible to relieve the thermal stress and to effectively use the nonconductivity of ceramics.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は吸熱部と熱電変換部を接合により一体ィ匕した熱電変換モジュールの概観 断面図である。  FIG. 1 is a schematic cross-sectional view of a thermoelectric conversion module in which a heat absorption part and a thermoelectric conversion part are joined together by bonding.
[図 2-A]図 2— Aは熱電変換部を中心とした各部材の構成断面図である。  [FIG. 2-A] FIG. 2-A is a cross-sectional view of the components of the thermoelectric conversion part.
[図 2-B]図 2— Bは熱電変換部を中心とした各部材の構成断面図 (熱電変換部はセグ メント型)である。  [Fig. 2-B] Fig. 2-B is a cross-sectional view of each member centered on the thermoelectric conversion part (the thermoelectric conversion part is a segment type).
[図 3]図 3は吸熱部、熱電変換部を接合により一体ィ匕した熱電変換モジュールの組み 付け断面図である。  FIG. 3 is an assembled cross-sectional view of a thermoelectric conversion module in which a heat absorption part and a thermoelectric conversion part are joined together by joining.
符号の説明  Explanation of symbols
[0028] 1、放熱部 [0028] 1, Heat radiation part
2、熱電変換部  2.Thermoelectric converter
3 (a)、吸熱部の伝熱部  3 (a), Heat transfer part of heat absorption part
3 (b)、吸熱部の集熱フィン  3 (b), heat collecting fins of the heat absorbing part
4、一体型ユニット全体  4, whole unit
5、熱電半導体素子  5, thermoelectric semiconductor element
6、接合材 (水素吸蔵した金属箔又は合金箔)  6. Bonding material (metal foil or alloy foil with hydrogen absorption)
7、熱電変換部金属電極部材  7, Thermoelectric conversion part metal electrode member
8、応力緩和層(接合材)  8. Stress relaxation layer (joining material)
9、電気絶縁部材  9, electrical insulation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 熱電変換モジュールにおいて、熱及び電気を伝達するための部材接合部としては 、主として次の 5箇所が存在する。 [0029] In the thermoelectric conversion module, there are mainly the following five locations as member joints for transmitting heat and electricity.
(1)吸熱部、特に吸熱部の伝熱部と熱電変換部の電極との間。  (1) Between the heat absorption part, in particular between the heat transfer part of the heat absorption part and the electrode of the thermoelectric conversion part.
(2)熱電変換部における吸熱部側電極と熱電変換素子 (熱電半導体)との間。  (2) Between the heat absorption part side electrode and the thermoelectric conversion element (thermoelectric semiconductor) in the thermoelectric conversion part.
(3)場合によっては、熱電半導体相互間。  (3) In some cases, between thermoelectric semiconductors.
(4)熱電素子と放熱部側電極間。 (5)放熱部側電極と放熱部間。 (4) Between the thermoelectric element and the heat radiation side electrode. (5) Between the heat sink side electrode and the heat sink.
[0030] これらの接合部において、上記(1)の接続部にあっては、良好な熱伝導を可能に する他、高温に曝された場合に生じる熱応力を如何に緩和し、熱ショックによる接合 部の破壊を防ぎ、更に伝熱部が導体材料である場合には、絶縁層をも形成させなけ ればならない。 [0030] In these joints, in the connection part of (1) above, in addition to enabling good heat conduction, the thermal stress generated when exposed to high temperatures is alleviated, and thermal shock is caused. Insulation layers must also be formed when the joints are protected from damage and the heat transfer is made of a conductive material.
[0031] 上記(2)の接合部にあっては、良好な電気伝導を得る他、電極を構成する物質、 一般に銅やアルミニウム等、金属の元素が熱電変換素子中へ拡散することを防止す る必要があるとともに、両部材の線膨張係数の違いにより生じる熱応力を緩和する必 要がある。  [0031] In the joint part (2), in addition to obtaining good electrical conduction, the material constituting the electrode, generally, metal elements such as copper and aluminum are prevented from diffusing into the thermoelectric conversion element. It is necessary to relieve the thermal stress caused by the difference in linear expansion coefficient between the two members.
[0032] 上記(3)の接合部においては、電気伝導性を良好に保つと共に、やはり熱電半導 体相互の元素拡散を可逆的に防止することが重要となる。  [0032] At the junction (3), it is important to maintain good electrical conductivity and to reversibly prevent element diffusion between thermoelectric semiconductors.
[0033] 更に上記 (4)の接合部では、電気伝導性を良好に保持すると共に、電極金属の熱 電変換素子への拡散を防止し、線膨張係数の違いにより生じる熱応力を緩和する必 要がある。 [0033] Further, in the joint part (4), it is necessary to maintain good electrical conductivity, prevent diffusion of the electrode metal into the thermoelectric conversion element, and relieve the thermal stress caused by the difference in the linear expansion coefficient. There is a point.
[0034] また更に(5)の接合部では、熱伝導を良好に保つ他、電気絶縁性が重視される。  [0034] Further, in the joint portion (5), in addition to maintaining good heat conduction, electrical insulation is emphasized.
[0035] 本発明者らは、熱電変換モジュールの製造においては、上記各接合部に要求され る諸条件をそれぞれ考慮し、各接合部分に対応した最適の接合方法を採用すること により、熱電変換モジュールの効率を一段と向上させ得ること、特に吸熱部と熱電変 換素子との間の熱伝達が大きく影響することに着目し、本発明を完成するに至った。  [0035] In the manufacture of the thermoelectric conversion module, the present inventors consider the various conditions required for each of the joints, and adopt an optimum joining method corresponding to each joint part to thereby obtain a thermoelectric conversion. The present invention has been completed by paying attention to the fact that the efficiency of the module can be further improved, particularly that the heat transfer between the heat absorption part and the thermoelectric conversion element is greatly affected.
[0036] すなわち、本発明の最大の特徴は、熱電変換部と吸熱部とが応力緩和層を介して 固着一体ィ匕している点にある。  [0036] That is, the greatest feature of the present invention is that the thermoelectric conversion portion and the heat absorption portion are fixed and integrated with each other via the stress relaxation layer.
[0037] 本発明の熱電変換モジュールは、図 1に示すように、放熱部 1、熱電変換部 2及び 吸熱部 3 (図 1にあっては伝熱部 3aと集熱フィン 3bとに分けて示している力 これらを 併せて吸熱部 3という)よりなる。そして、吸熱部 3は回収すべき廃熱源と直接又は配 管や容器又は熱交換器壁を介して接触して!/、る。図の如く集熱フィン 3bを有する形 態にあっては、該フィンを高温ガス等の廃熱中に存在させ、集熱フィン 3bによる大表 面積を利用して熱を回収する。回収された熱は、伝熱部 3aに集まり、熱電変換部に 伝えられる。 [0038] 該熱電変換部と吸熱部 3の伝熱部 3aとの間は熱応力緩和層を介して一体化されて いる。伝熱部が窒化アルミニウム、アルミナなど、不導体で熱伝導性の良いセラミック スで構成されている場合には、特に熱電変換部と該吸熱部との間の電気絶縁性を考 慮する必要はないが、例えばニッケルや軟鋼、或いはステンレス鋼等導体の場合に は、該吸熱部の熱電変換部との接触面を不導体ィ匕しておく必要があり、一般には電 解酸化や硝酸等の酸化剤により酸化被膜を形成させるなど、公知の不動態化処理を 施して用いればよい。 [0037] As shown in Fig. 1, the thermoelectric conversion module of the present invention is divided into a heat radiating section 1, a thermoelectric conversion section 2 and a heat absorbing section 3 (in Fig. 1, it is divided into a heat transfer section 3a and a heat collecting fin 3b. These forces are collectively called the endothermic part 3). The endothermic part 3 is in contact with the waste heat source to be recovered directly or through a pipe, a container or a heat exchanger wall. As shown in the figure, in the form having the heat collecting fins 3b, the fins are present in waste heat such as high-temperature gas, and heat is recovered by utilizing the large surface area of the heat collecting fins 3b. The recovered heat gathers in the heat transfer section 3a and is transferred to the thermoelectric conversion section. [0038] The thermoelectric conversion part and the heat transfer part 3a of the heat absorption part 3 are integrated with each other through a thermal stress relaxation layer. When the heat transfer part is made of non-conductive ceramics with good thermal conductivity, such as aluminum nitride or alumina, it is necessary to consider the electrical insulation between the thermoelectric conversion part and the heat absorption part. However, for example, in the case of a conductor such as nickel, mild steel, or stainless steel, it is necessary to make the contact surface of the heat absorption part with the thermoelectric conversion part non-conductive, and in general, electrolytic oxidation, nitric acid, etc. A known passivation treatment such as formation of an oxide film with an oxidizing agent may be performed.
[0039] 本発明にあっては、熱電変換部と吸熱部との間に応力緩和層を介在させる。該応 力緩和層は熱電変換部の吸熱部と接する部材 (一般には電極部材である)と吸熱部 の部材の各線膨張係数の間の線膨張係数を有する金属部材が用いられる。なかで もチタンやチタン合金が好適である。  In the present invention, a stress relaxation layer is interposed between the thermoelectric conversion part and the heat absorption part. As the stress relaxation layer, a metal member having a linear expansion coefficient between the members (generally electrode members) that are in contact with the heat absorption part of the thermoelectric conversion part and the members of the heat absorption part is used. Of these, titanium and titanium alloys are preferred.
[0040] 本発明にお 、て、熱電変換部と吸熱部との固着一体ィ匕の手段は特に限定されず、 各部材の特性に応じて、 SPS法ゃ蠟付けも可能ではある力 各部材間の熱応力の 問題を回避するためには、両部材間に介在させる応力緩和層によって、熱応力を緩 和することが望ましい。  In the present invention, the means for fixing and fixing the thermoelectric conversion portion and the heat absorption portion is not particularly limited, and the force that can be brazed by the SPS method according to the characteristics of each member In order to avoid the problem of thermal stress between them, it is desirable to relax the thermal stress with a stress relaxation layer interposed between the two members.
[0041] 他方、熱電変換素子と電極金属間における元素の相互拡散を十分に防ぐことは従 来困難であり、また加熱による問題もあった。その理由は該熱電素子部材と電極金 属とを固着させる方法として、一般的に蠟付法が用いられるため、高熱を必要とし、 熱電素子の破壊や変形を生じたり、或いは溶融時に元素の拡散を増大するなどの問 題があり、利用し得ない理ではないが、特に好ましい手段ではないのである。  [0041] On the other hand, it has been conventionally difficult to sufficiently prevent the mutual diffusion of elements between the thermoelectric conversion element and the electrode metal, and there is also a problem due to heating. The reason is that a brazing method is generally used as a method for fixing the thermoelectric element member and the electrode metal, so that high heat is required, the thermoelectric element is destroyed or deformed, or the element diffuses during melting. This is not a reason that cannot be used, but it is not a particularly preferable means.
[0042] そこで、特に好適な接合方法としては、吸熱部と熱電変換部の電極部、更には該 金属電極部と熱電半導体素子といった各部材間の接合に際し、接合しょうとする両 部材間に、表層部が水素を吸蔵した金属箔を、その水素吸蔵面が両部材の界面を 構成するように圧接しながら加熱することによってその吸蔵水素を放出せしめる方法 であって、この水素吸蔵性金属箔を両部材の接合材として機能せしめる方法である。 この方法は、特には接合しょうとする部材のほかに、特殊な接合材ゃ溶射層又はフラ ックス等、即ち、接合の目的のみで用いる介在物を用いることなく実施できるという特 徴を有する。 [0043] 更には、各部材間の接合に金属箔を使用するために、中間層として金属溶射層を 利用する場合のように、必然的に僅かに残存する気孔を通じた元素拡散もおこらな い。また、線膨張率や焼結密度といった接合されるべき部材の機械的特性に応じて 箔の種類、或いは Zまた、面積や厚さの調整が簡便にできる。本発明において、拡 散を防止するためには該金属箔は 20 μ m程度あれば十分である。 [0042] Therefore, as a particularly preferable joining method, when joining between the heat absorbing portion and the electrode portion of the thermoelectric conversion portion, and between the members such as the metal electrode portion and the thermoelectric semiconductor element, between the two members to be joined, A method of releasing the stored hydrogen by heating the metal foil having the surface layer occluded with hydrogen so that the hydrogen storage surface forms an interface between the two members. This is a method for causing both members to function as a bonding material. In particular, this method has a feature that it can be carried out without using a special joining material, such as a sprayed layer or a flux, that is, an inclusion used only for the purpose of joining, in addition to the members to be joined. [0043] Furthermore, since a metal foil is used for bonding between the members, element diffusion through the pores that inevitably remain slightly does not occur as in the case where a metal sprayed layer is used as an intermediate layer. . Also, depending on the mechanical properties of the members to be joined, such as linear expansion coefficient and sintered density, the foil type, Z, and area and thickness can be easily adjusted. In the present invention, in order to prevent diffusion, it is sufficient that the metal foil is about 20 μm.
[0044] ここで、水素吸蔵性を有する部材に水素を吸蔵させる手段は、何ら限定されるもの ではないが、例えば、陰極電解法、 0. 01〜50MPaの水素圧下に室温乃至 100°C 処理する高圧水素化法、或いは、水素プラズマ照射法など従来技術がいずれも使 用できる。特に、部材が導体である場合には、通常、陰極電解法が好適に採用しうる 。この方法は、周知の如ぐ水素吸蔵すべき部材を陰極として用い、電解質水溶液中 において水の電解電圧以上に適宜選択される電圧を印加して水を電解する方法で あって、電解時に発生する水素は極めて短時間で陰極表面に吸着し、その後徐々 に拡散して陰極内部に広がっていくので、電解時間により陰極への水素の吸蔵量を 制御することができ、本発明に好適に使用しうる方法である。  [0044] Here, means for storing hydrogen in the member having hydrogen storage properties is not limited at all, but, for example, cathodic electrolysis, treatment at room temperature to 100 ° C under a hydrogen pressure of 0.01 to 50 MPa. Conventional techniques such as high-pressure hydrogenation method or hydrogen plasma irradiation method can be used. In particular, when the member is a conductor, the cathodic electrolysis method can usually be suitably employed. This method is a method of electrolyzing water by applying a voltage appropriately selected above the electrolysis voltage of water in an aqueous electrolyte solution using a well-known member to be occluded as a cathode and is generated during electrolysis. Hydrogen is adsorbed on the cathode surface in a very short time, and then gradually diffuses and spreads inside the cathode. Therefore, the amount of hydrogen stored in the cathode can be controlled by the electrolysis time, and is preferably used in the present invention. It is a method.
[0045] 具体的には、電圧印加は水の電解電圧以上、例えば、水素の平衡電位と過電圧を 考慮して、一般に数十ボルト程度で、電解質溶液の pHや濃度に応じて適宜選択さ れる電圧を印加する。このとき、電流密度はあまり大きくすると、水素ガスの発生が促 進され、エネルギー的に無駄になるだけでなぐ陰極への水素の吸収が抑制される ので、一般には、平方センチメートル当たり数ミリアンペア乃至 1アンペア程度、特に は、数十ミリアンペア乃至数百ミリアンペア程度とするのが望まし 、。  [0045] Specifically, the voltage application is higher than the electrolysis voltage of water, for example, generally about several tens of volts in consideration of the equilibrium potential and overvoltage of hydrogen, and is appropriately selected according to the pH and concentration of the electrolyte solution. Apply voltage. At this time, if the current density is too large, the generation of hydrogen gas is promoted and the absorption of hydrogen to the cathode is suppressed, which is not only wasteful in energy, but generally several milliamperes to 1 ampere per square centimeter. Desirably, it is desired to be about tens of milliamperes to hundreds of milliamperes.
[0046] 電解処理する時間は、水素吸蔵性導体部材が、 Cu、 Fe、 Ni、 Ag、 Ti、 Zr、 Al、 N b、 Mo等の金属、及びこれらを主成分とする合金等、水素を吸蔵しやすい金属類の 場合には、一般に数分乃至数時間で目的を達成することができる。特に、水素拡散 性の高い肉厚の薄い部材、例えば金属箔ゃ合金箔を用いる場合には、必要最小限 の範囲に限って水素を吸蔵させるために、短時間処理すべきである。なお、陰極電 解水素吸蔵処理にあっては、一般に電気量として 10一4〜 10_2ファラデー/ cm2程 度の処理で十分目的にかなう接合部材を調整することができる。 [0046] The time for the electrolytic treatment is such that the hydrogen-occlusion conductor member is made of hydrogen, such as metals such as Cu, Fe, Ni, Ag, Ti, Zr, Al, Nb, and Mo, and alloys containing these as main components. In the case of metals that are easy to occlude, the purpose can generally be achieved in minutes to hours. In particular, when a thin member having high hydrogen diffusibility, such as a metal foil or alloy foil, is used, it should be treated for a short time in order to occlude hydrogen within the minimum necessary range. Incidentally, in the cathode electrolytic hydrogen occlusion treatment, generally at 10 one 4-10_ 2 Faraday / cm 2 extent of processing as electric quantity can be adjusted bonding member serve sufficiently purposes.
[0047] 次に、圧接しながら加熱するプロセス条件について説明する。本発明における部材 の接合にあっては、接合しょうとするそれぞれの部材間に前記の如く水素吸蔵した水 素吸蔵性部材を挟み込み、その水素吸蔵面が両部材の界面を構成するように圧接 し、圧接しながら、水素吸蔵性部材力 水素が放出される温度以上の温度に加熱す る。この場合の圧接圧力は、接合しょうとする両部材が密着しうる圧力であればよぐ 熱電半導体の如く脆 、部材を Ti等の延性の低 ヽ水素吸蔵性素材を用いて Cu等の 展性の高!、素材に接合する場合には、 10〜: LOOMPa程度でょ 、。 [0047] Next, process conditions for heating while pressing will be described. Member in the present invention In this joining, the hydrogen-occlusion member that has occluded hydrogen as described above is sandwiched between the members to be joined, and the hydrogen-occlusion surface forms a boundary between the two members while pressing. Hydrogen absorbing member force Heats to a temperature higher than the temperature at which hydrogen is released. In this case, the pressure is sufficient if both members to be joined can be brought into close contact with each other. The material is brittle like a thermoelectric semiconductor, and the material is made of ductile, low hydrogen storage material such as Ti and malleable such as Cu. High! When joining to material, 10 ~: About LOOMPa.
[0048] 水素吸蔵性部材力 水素を放出させるための加熱温度は、使用する部材について 示差熱吸収測定その他の手法で予め確認することができるが、本発明で使用する接 合法においては、熱電素子の融点より下回り、かつ水素吸蔵性部材が水素を放出す る以上の温度に選定される。  [0048] The hydrogen-occlusion member force The heating temperature for releasing hydrogen can be confirmed in advance by differential heat absorption measurement and other techniques for the member to be used. In the bonding method used in the present invention, the thermoelectric element is used. The temperature is selected to be lower than the melting point of the hydrogen and above the hydrogen-absorbing member releases hydrogen.
[0049] 力べして圧接しながら加熱することによって、水素を水素吸蔵性部材から放出せし め、水素吸蔵性部材に活性元素の発生を促すか、又は少なくともその接合面の表面 又はその近傍層を活性ィ匕するとともに、接合相手部材の接合面に対して、発生期の 活性な水素として作用せしめ、その接合面の表面及びその極近傍層を還元活性ィ匕 することにより、両者間に化学結合を結成させるか、少なくとも水素結合等の原子間 インタラクションを形成させることにより、おそらくは水素を放出した水素吸蔵性部材と 接合相手部材の夫々の表面層における格子緩和過程にぉ 、て、種々の部材の組み 合わせにぉ 、てそれらを接合することができる。  [0049] Hydrogen is released from the hydrogen-absorbing member by heating while pressing forcefully, and promotes the generation of active elements in the hydrogen-absorbing member, or at least the surface of the bonding surface or a layer near it. In addition, it acts as active hydrogen during the nascent stage on the joint surface of the mating member, and reduces the surface of the joint surface and its immediate vicinity layer to reduce the chemical reaction between the two. By forming bonds or at least forming interatomic interactions such as hydrogen bonds, various members may be used, possibly in the process of lattice relaxation in the respective surface layers of the hydrogen storage member that has released hydrogen and the bonding partner member. These combinations can be joined together.
[0050] 力かる固着一体ィ匕手段は、熱電変換部と吸熱部の接合のみならず、本発明の熱電 変換モジュールのあらゆる部材の接合に用いることができる。  [0050] The strong fixing means for fixing can be used not only for joining the thermoelectric conversion part and the heat absorption part, but also for joining all members of the thermoelectric conversion module of the present invention.
[0051] 例えば、図 2— Aにおいては、吸熱部 3が応力緩和層である接合材 8を介して、熱 電変換部の金属電極部材 7に固着一体化されている。ここでは、 P型熱電半導体及 び N型熱電半導体からなる熱電素子 5を所望数併設するとともに、電気的に直列に 接続するように金属電極 7、例えば Cuなどの低電気抵抗性金属部材を介して接合し た例を示している。ここで、熱電半導体素子 5と金属電極 7の間の接合手段も特に限 定はされないが、前記の水素吸蔵した金属箔により接合されるのが好ましい。  For example, in FIG. 2A, the heat absorption part 3 is fixedly integrated with the metal electrode member 7 of the thermoelectric conversion part through the bonding material 8 which is a stress relaxation layer. Here, a desired number of thermoelectric elements 5 composed of P-type thermoelectric semiconductors and N-type thermoelectric semiconductors are provided side by side, and metal electrodes 7, for example, via a low electrical resistance metal member such as Cu, are connected in series. An example of joining is shown. Here, the joining means between the thermoelectric semiconductor element 5 and the metal electrode 7 is not particularly limited, but is preferably joined by the metal foil occluded with hydrogen.
[0052] なお、電極間は電気絶縁素材 9で絶縁して構成されるタイプを使用した場合である 力 これに限定されるものではない。即ち、熱電変換素子サイズにもよる力 熱電変 換素子間の間隔を挟めて 1モジュール辺りの素子密度を制御できるため、素子間の 空隙は小さくとってモジュール全体の機械強度を上げることが可能である。従って、 熱電変換素子間に絶縁材料を介在させな!/、構造、所謂スケルトンタイプであってもよ い。 [0052] It should be noted that the force is a case where a type in which the electrodes are insulated by the electrically insulating material 9 is used. The present invention is not limited to this. That is, the force depending on the size of the thermoelectric conversion element Since the element density per module can be controlled with the spacing between the exchange elements, the gap between the elements can be reduced to increase the mechanical strength of the entire module. Therefore, an insulating material may not be interposed between the thermoelectric conversion elements! /, And the structure may be a so-called skeleton type.
[0053] また、図 2— Bに熱電変換部が異種の熱電半導体の組み合わせから成る、所謂セ グメント構造とした場合を示す。この場合は、 Pl、 P2で表される P型、 Nl、 N2で表さ れる N型の各異種熱電半導体同士の接合も、前記の如ぐ水素吸蔵した金属箔 6を 熱電半導体の各接合しょうとする面に接するように介在させ、圧接しながら加熱する ことで接合させることができる。  [0053] FIG. 2-B shows a case where the thermoelectric conversion part has a so-called segment structure in which different thermoelectric semiconductors are combined. In this case, the P-type represented by Pl and P2, and the N-type heterogeneous thermoelectric semiconductors represented by Nl and N2 are also bonded to the thermoelectric semiconductors using the metal foil 6 with hydrogen storage as described above. It can be joined by interposing it in contact with the surface to be heated and heating while pressing.
[0054] 特に熱変形しやすい熱電半導体同士の接合においては、この方法が有利に採用 される。  [0054] This method is advantageously employed particularly in the joining of thermoelectric semiconductors that are easily thermally deformed.
[0055] 次に、熱電変換部 2と放熱部 1との間の接合も特に限定されない。例えば、密着性 を保ち、かつ熱伝導性の優れる電気絶縁性部材、例えば半導体基盤放熱用のジェ ルシートを介在させて、該低温部材上から加圧密着させることで固着される方法等が ある。しかし、前記水素吸蔵金属箔により接合すれば、加圧密着させるための冶具を 必要としなくなるため望ましい。  Next, the joining between the thermoelectric conversion part 2 and the heat dissipation part 1 is not particularly limited. For example, there is a method in which an electrical insulating member that maintains adhesiveness and has excellent thermal conductivity, for example, a gel sheet for radiating a semiconductor substrate is interposed, and is fixed by press-contacting from the low temperature member. However, joining with the hydrogen-occlusion metal foil is desirable because it does not require a jig for press-fitting.
[0056] 図 3において、放熱部 1は、図には示さないが、吸熱部の場合と同様、内は櫛状に 形成されて、この櫛間に低温媒体通路が形成され、該低温媒体通路に冷却水等の 低温媒体を流通させることにより、低温部材 1が冷却されるようになっている。外低温 部材 1の材質はアルミニウム又はアルミニウム合金等とし、熱電変換部 2との固着面 側に、電気絶縁性をもたせるためにアルマイト処理を施して、電気絶縁層が形成され ている。  In FIG. 3, the heat radiating portion 1 is not shown in the figure, but as in the case of the heat absorbing portion, the inside is formed in a comb shape, and a low temperature medium passage is formed between the combs. The low temperature member 1 is cooled by circulating a low temperature medium such as cooling water. The material of the outer low temperature member 1 is aluminum or an aluminum alloy, and an alumite treatment is performed on the surface to be fixed to the thermoelectric conversion portion 2 so as to have an electric insulation, thereby forming an electric insulating layer.
[0057] このような接合又は密着により、熱電変換部 2の金属電極 7と接合材 8が密着し、該 接合材 8と電気絶縁部である金属酸化層を介して低温側部材 1が相互に密着された 状態になる。勿論、放熱部を窒化アルミニウムやアルミナ等熱伝導性のよいセラミック スで構成すれば、電気絶縁部は不要である。  [0057] By such bonding or close contact, the metal electrode 7 and the bonding material 8 of the thermoelectric conversion part 2 are in close contact, and the low temperature side member 1 is mutually connected via the bonding material 8 and the metal oxide layer which is an electrical insulating part. It will be in close contact. Of course, if the heat dissipating part is made of ceramics having good thermal conductivity such as aluminum nitride or alumina, the electric insulating part is not necessary.
[0058] 以上のように、一体型ユニット 4において、低温側部材 1の低温媒体通路には冷却 媒体が流れ、熱電変換部 2の低温側面が冷却される。これにより、熱電変換部 2の高 温側面と低温側面との間に温度差が生じて、熱電素子 5に電圧が生じ (ゼーベック効 果)、熱起電力が発生して発電される。 As described above, in the integrated unit 4, the cooling medium flows through the low temperature medium passage of the low temperature side member 1, and the low temperature side surface of the thermoelectric conversion unit 2 is cooled. As a result, the high A temperature difference is generated between the warm side and the cold side, a voltage is generated in the thermoelectric element 5 (Seebeck effect), and a thermoelectromotive force is generated to generate power.
[0059] このとき、前記のように高温側部材 3と低温側部材 1が熱電変換部 2に対して全域に わたって固着一体化されていることにより、熱伝導効率が高くなり、発電効率が高くな る。 [0059] At this time, as described above, the high temperature side member 3 and the low temperature side member 1 are fixedly integrated with the thermoelectric converter 2 over the entire area, so that the heat conduction efficiency is increased, and the power generation efficiency is increased. Become high.
[0060] ここで、吸熱部としては電気絶縁性を有し、かつ良伝熱性を有する部材が望ましい 。前記のような特性を併せ持つ部材として窒化アルミニウム、アルミナ等のセラミックス がある。該セラミックス部材は耐熱性に優れ、 400°C以上の中高温域における熱電変 換モジュールの使用環境下において、クラックの発生等、何ら機械的な問題を有する ものではないが、熱電変換モジュールに一般的に使用される Cu等の金属電極部と の接合部には線膨張係数の違いから熱応力が発生する。上述の接合方法において 、接合材となる金属箔もしくは合金箔を高融点のものに選定することにより、線膨張率 の違いに起因する熱応力を緩和することができる。また、セラミックス部材と金属部材 間に好適な接合を実現するためには、真空、アルゴン (Ar)ガス又は窒素 (N )ガス  [0060] Here, as the heat absorption part, a member having electrical insulation and good heat conductivity is desirable. Examples of the member having the above characteristics include ceramics such as aluminum nitride and alumina. The ceramic member has excellent heat resistance, and it does not have any mechanical problems such as cracks in the environment where the thermoelectric conversion module is used at medium and high temperatures above 400 ° C. Thermal stress is generated at the joint with the metal electrode part such as Cu, which is commonly used, due to the difference in linear expansion coefficient. In the above-described joining method, the thermal stress caused by the difference in linear expansion coefficient can be reduced by selecting a metal foil or alloy foil as a joining material having a high melting point. Moreover, in order to realize a suitable bonding between the ceramic member and the metal member, vacuum, argon (Ar) gas or nitrogen (N) gas is used.
2 中等の非酸化性雰囲気下で良好な接合を実現する Ti、 Zr、 Hfといった活性金属や 該金属基合金、もしくは Mo、 W、 Ni、 Cr、 Fe、 Alといった金属ゃ該金属基合金が使 用できる。このうち、接合材としては、 Ti或いは Ti基合金等が望ましい。  2 Active metals such as Ti, Zr, and Hf that realize good bonding in moderate non-oxidizing atmospheres and the metal-based alloys, or metals such as Mo, W, Ni, Cr, Fe, and Al are used. Can be used. Of these, the bonding material is preferably Ti or a Ti-based alloy.
[0061] 前記のような接合により、熱電変換部 2の電極 7と接合材 8が密着し、該接合材 8が 高温側伝熱部材 3と密着して、熱電変換部 2と高温部材 3が接合材 8を介して相互に 密着された状態になるため、熱電変換部 2と高温側部材 3の相互間で熱伝導効率が 高くなる。 [0061] Through the bonding as described above, the electrode 7 and the bonding material 8 of the thermoelectric conversion part 2 are in close contact with each other, the bonding material 8 is in close contact with the high temperature side heat transfer member 3, and the thermoelectric conversion part 2 and the high temperature member 3 are Since they are in close contact with each other via the bonding material 8, the heat conduction efficiency between the thermoelectric conversion part 2 and the high temperature side member 3 is increased.
[0062] また、前記の高温側部材と熱電変換部の電極間に電気絶縁性を持たせるために、 高温側部材を金属あるいは合金として、該金属または合金に電気絶縁処理や溶射 処理を施すことによって電気絶縁層を形成しても良い。この電気絶縁層は高温側部 材に含まれる。  [0062] Further, in order to provide electrical insulation between the high temperature side member and the electrode of the thermoelectric conversion section, the high temperature side member is made of metal or alloy, and the metal or alloy is subjected to electrical insulation treatment or thermal spray treatment. An electrical insulating layer may be formed by This electrical insulation layer is included in the high temperature side material.
[0063] 本発明の実施形態にお!ヽては、 P型、 N型熱電半導体材料として、スクッテルダイト 型結晶構造を有する化合物と充填型スクッテルダイト構造を有する化合物、シリコン- ゲルマニウム(Si— Ge)系熱電半導体、更には、 Bi— Te系熱電半導体を用いるが、 熱電半導体部材をこれに限定するものではな 、。 For the embodiments of the present invention, as P-type and N-type thermoelectric semiconductor materials, a compound having a skutterudite crystal structure and a compound having a filled skutterudite structure, silicon-germanium (Si —Ge) -based thermoelectric semiconductors, and Bi—Te-based thermoelectric semiconductors, The thermoelectric semiconductor member is not limited to this.
[0064] また、図 2に示すように、金属電極を挟んで熱電半導体素子を P型、 N型が交互に 且つ直列に電気接続されるように配置し、該電極 Z水素吸蔵した金属箔もしくは水 素吸蔵した合金箔 Z熱電半導体 Z水素化した金属箔もしくは水素吸蔵した合金箔 Z電極、なる構成に設置することも好ましい。該構成体を真空又は窒素ガス、又はァ ルゴンガス等の非酸ィ匕性雰囲気にてホットプレスし、接合体を得る。  Further, as shown in FIG. 2, the thermoelectric semiconductor elements are arranged so that the P-type and N-type are alternately and in series electrically connected with the metal electrode interposed therebetween, and the electrode Z is a metal foil occluded with hydrogen or Hydrogen-occluded alloy foil Z thermoelectric semiconductor Z hydrogenated metal foil or hydrogen-occluded alloy foil Z electrode is also preferably installed. The structure is hot-pressed in a non-acidic atmosphere such as vacuum, nitrogen gas, or argon gas to obtain a joined body.
[0065] この場合、使用される接合材は中温域使用下において接合面における元素拡散 防止層として機能するのみならず、熱電変換素子部と電極金属間に生じる熱応力を 緩和するため、 Ti又は Ti基合金等の高融点金属箔が望ましいが、金属電極部材より も線膨張率の小なる金属箔又は合金箔であって、前記手法の!/、ずれかによつて水素 を吸蔵する箔であれば使用できる。例えば、 Fe、 Ni、 W、 Mo、ステンレス等としてもよ い。また、金属箔又は合金箔の厚さは数ミクロン〜数百ミクロンの間で選択することが できる。  [0065] In this case, the bonding material used not only functions as an element diffusion prevention layer on the bonding surface under the medium temperature range, but also relaxes the thermal stress generated between the thermoelectric conversion element portion and the electrode metal. A refractory metal foil such as a Ti-based alloy is desirable, but it is a metal foil or alloy foil having a smaller linear expansion coefficient than that of a metal electrode member, and is a foil that occludes hydrogen according to the above method! If you can use it. For example, Fe, Ni, W, Mo, stainless steel, etc. may be used. The thickness of the metal foil or alloy foil can be selected between several microns to several hundred microns.
[0066] 前記のような接合により、熱電変換部 2の電極 7と接合材 6が密着し、該接合材 6が 熱電変換素子部材 5と密着して、電極 7と熱電変換素子 5が接合材 6を介して相互に 密着された状態になる。  [0066] By the bonding as described above, the electrode 7 and the bonding material 6 of the thermoelectric conversion part 2 are in close contact, the bonding material 6 is in close contact with the thermoelectric conversion element member 5, and the electrode 7 and the thermoelectric conversion element 5 are bonded to each other. 6 are in close contact with each other.
[0067] ここで上記一体ィ匕ユニットの製造工程について説明する。予め各部材を配置し、各 部材間の組み合わせに応じた上記接合条件にて、熱電変換部と吸熱、伝熱部を一 括して作製しても良いし、大型サイズの熱電変換素子と上下 2枚の金属電極を接合 し、ファインカッターなどを用いてこれを同サイズに切り出した上で、電極同士を水素 吸蔵した Cu板等を用いて前記手法により接合して、所望のサイズの熱電変換部を作 製した上で、良熱伝導性セラミックス、例えば窒化アルミニウム、又は金属酸化層を 持つ熱交 高温側伝熱部材と接合しても良 ヽ。  [0067] Here, the manufacturing process of the integrated housing unit will be described. Each member may be arranged in advance, and the thermoelectric conversion part, the heat absorption part, and the heat transfer part may be manufactured together under the above-described joining conditions according to the combination between the members. Join two metal electrodes, cut them out to the same size using a fine cutter, etc., then join the electrodes together using a Cu plate etc. with hydrogen storage by the above method, and thermoelectric conversion of the desired size After making the part, it can be joined to a heat exchange high temperature side heat transfer member having a good heat conductive ceramic such as aluminum nitride or a metal oxide layer.
実施例  Example
[0068] 以下、本発明を更に具体的に説明するため、各部材間接合の実施例について、項 目別に説明する。全て、接合材となる金属箔或いは合金箔を水素吸蔵して中間層と して接合すべき部材間に挿入し、圧接して窒素ガス中或いは真空雰囲気で加熱する ことにより接合した。なお、実現する強固な接合とは、例えばダイヤモンドカッターや ファインカッターといったカッティングマシンを用いて切断したときに接合層が剥がれ ない程度の強度を指す。 [0068] Hereinafter, in order to describe the present invention more specifically, examples of joining between members will be described by item. In all cases, the metal foil or alloy foil used as the bonding material was occluded by hydrogen, inserted as an intermediate layer between the members to be bonded, and pressed and heated in nitrogen gas or in a vacuum atmosphere. In addition, the strong bonding to be realized is, for example, a diamond cutter or It refers to the strength that prevents the bonding layer from peeling off when cut with a cutting machine such as a fine cutter.
[0069] (1)熱電変換部金属電極と電気絶縁性を有する伝熱部材間  [0069] (1) Between the thermoelectric conversion part metal electrode and an electrically insulating heat transfer member
熱電変換部の電極部材として lmm厚の Cu金属板(5mm X 5mm)と吸熱部の伝 熱部材 (高温側熱交換器部材)として lmm厚の A1N板(5mm X 5mm)の間に、陰極 電解して水素吸蔵させた 20 μ m或いは 40 μ mの Ti金属箔或いは Al箔を挟み込み 、 20MPa以上で加圧した後、 Nガス中にて 560°Cまで加熱した後に自然冷却して  Electrode electrolysis between an lmm thick Cu metal plate (5mm x 5mm) as the electrode member of the thermoelectric converter and an lmm thick A1N plate (5mm x 5mm) as the heat transfer member (high temperature side heat exchanger member) of the heat absorption part After sandwiching a 20 μm or 40 μm Ti metal foil or Al foil occluded with hydrogen, pressurizing at 20 MPa or more, heating to 560 ° C in N gas, and then naturally cooling
2  2
強固な接合を得た。水素吸蔵 Ti箔を用いた場合、大気中において室温から 300°Cま での昇降温を 10数回繰り返す熱履歴試験を行ったところ、試験後も接合を維持した  A strong bond was obtained. When hydrogen occlusion Ti foil was used, a thermal history test was repeated 10 times in the air, raising and lowering the temperature from room temperature to 300 ° C, and bonding was maintained after the test.
[0070] 熱電部電極部材として lmm厚の Cu金属板(5mm X 10mm)と伝熱部材(高温側 熱交^^部材)として陽極酸ィ匕処理を施した lmm厚の A1金属板(5mm X 10mm) 又は Al基合金(ジュラルミン)の間に陰極電解して水素吸蔵させた 20 m或いは 40 mの Ti金属箔を挟み込み、 lOMPa以上で加圧した後、 Nガス中にて 560°Cまで [0070] lmm-thick Cu metal plate (5mm x 10mm) as the thermoelectric part electrode member and lmm-thick A1 metal plate (5mm x 10mm) subjected to anodizing treatment as the heat transfer member (hot-side heat exchange member) 10mm) or Al-based alloy (duralumin), 20m or 40m Ti metal foil that has been subjected to cathodic electrolysis and occluded hydrogen is sandwiched, pressurized to over lOMPa, and then up to 560 ° C in N gas
2  2
加熱した後に自然冷却、或いは急冷して強固な接合を得た。  After heating, it was naturally cooled or rapidly cooled to obtain a strong joint.
[0071] (2)熱電変換部金属電極と熱電半導体間 [0071] (2) Between the thermoelectric conversion part metal electrode and the thermoelectric semiconductor
熱電半導体の両端面に金属電極を接合した熱電変換部の基本構成を想定し、 Cu Z水素吸蔵した Ti箔 ZCo— Sb系熱電材料 (P型と N型) Z水素吸蔵した Ti箔 ZCu となるように配置して 30MPa程度で加圧し、真空中或いは Nガス中において 600°C  Assuming basic structure of thermoelectric conversion part with metal electrodes joined to both end faces of thermoelectric semiconductor, Cu foil is stored in Ti foil ZCo— Sb thermoelectric material (P type and N type) Z hydrogen is stored in Ti foil ZCu And pressurizing at about 30MPa, and 600 ° C in vacuum or N gas
2  2
で加熱することにより、強固な接合体を実現した。なお、熱電材料を充填型スクッテル ダイト構造を持つ N型 Yb系 CoSbに替えた場合は、 550°Cで強固な接合を実現した 。さらに、 P型 Yb系 CoSb系材料の組み合わせにおいても 560°Cで強固に接合し、 熱電素子を構成することができる。  By heating with, a strong joined body was realized. When the thermoelectric material was replaced with N-type Yb-based CoSb with a filled skutterudite structure, strong bonding was achieved at 550 ° C. In addition, a combination of P-type Yb-based CoSb-based materials can be firmly bonded at 560 ° C to form a thermoelectric element.
[0072] 上記のうち、熱電材料を低温で熱電変換特性の優れる Bi—Te系材料とした場合は 、 Ti gの他にステンレス (SUS302力 SUS304、厚み ίま 20 μ m〜100 μ m)を用 いても強固に接合した。なお、 Bi— Te系材料の融点は 600°C程度であり、 500°Cを 超える接合温度を選択すると熱電素材の表面が酸化される。酸化は内部にまでは及 ばないため、該表面酸ィ匕層を研磨 *除去してやればよいが、熱電素材を傷めないた めにも、接合温度は低いほうがよい。水素吸蔵した Ni箔を接合材とした場合は 450 °C〜500°Cで良好な接合を実現し、特に N型 Bi— Te系材料 Z水素吸蔵した Ni箔 Z Cuの接合体は、大気中、 300°Cでの熱試験を施す前後で接合界面のせん断強度 に違いは見られず、 EPMAによる元素分布にも違 、が見られなかった。 [0072] Among the above, when the thermoelectric material is a Bi-Te material having excellent thermoelectric conversion characteristics at low temperature, in addition to Ti g, stainless steel (SUS302 force SUS304, thickness ί 20 μm to 100 μm) is used. Even if it was used, it joined firmly. The melting point of Bi-Te-based materials is about 600 ° C, and if a bonding temperature exceeding 500 ° C is selected, the surface of the thermoelectric material is oxidized. Since the oxidation does not extend to the inside, the surface oxide layer should be polished * removed, but the thermoelectric material was not damaged. For this reason, the bonding temperature should be low. When Ni-absorbed Ni foil is used as the bonding material, good bonding is achieved at 450 ° C to 500 ° C. Especially, N-type Bi-Te-based material Z Hydrogen-absorbed Ni foil Z Cu bonded body There was no difference in the shear strength at the joint interface before and after the thermal test at 300 ° C, and no difference in the element distribution by EPMA.
[0073] 前記接合体の各部材境界面 (特に熱電半導体側)にクラック等の発生はなぐ上記 熱電半導体を含む接合体のうち、 0)— 31)系 型)と Yb系 Co— Sb (N型、 P型)を 用いた熱電素子は、大気中 400°Cで 1昼夜保持した前後での EPMA元素分析結果 に変化はな力つた。し力しながら、大気中、 350°C以上で半導体自体が酸化し粉砕 することが周知である Co— Sb系(P型)熱電素子については、金属電極部との接合 そのものが該還元雰囲気で実現しているため、接合体表面部に耐酸ィ匕コート剤など を用いた耐酸化処理を施せば、これを回避できる。  [0073] Of the joined bodies containing the above-mentioned thermoelectric semiconductors in which no cracks or the like are generated on each member interface (particularly on the thermoelectric semiconductor side) of the joined body, 0) -31) type)) and Yb-based Co-Sb (N Type, P type) did not change the EPMA elemental analysis results before and after being kept at 400 ° C for 1 day in the atmosphere. However, for Co—Sb-based (P-type) thermoelectric elements, which are well known to oxidize and pulverize in the atmosphere at 350 ° C. or higher in the atmosphere, the bonding with the metal electrode part itself is in the reducing atmosphere. Since this has been realized, this can be avoided by subjecting the surface of the joined body to an oxidation resistance treatment using an acid-resistant coating agent or the like.
[0074] (3)熱電変換部と電気絶縁性を有する伝熱部材間  [0074] (3) Between the thermoelectric converter and the heat transfer member having electrical insulation
熱電半導体の両端面に金属電極を配した熱電変換部の両端面に、吸熱部の伝熱 部材 (高温側熱交換器部材)として、 A1NZ水素吸蔵した Ti箔 ZCuZ水素吸蔵した Ti箔 ZCo— Sb系熱電材料 (P型と N型) Z水素吸蔵した Ti箔 ZCuZ水素吸蔵した Ti箔 ZAIN、となるように配置して 30MPa程度で加圧し、真空中或いは Nガス中に  A1NZ hydrogen occluded Ti foil ZCuZ hydrogen occluded Ti foil ZCo— Sb as a heat transfer member (high temperature side heat exchanger member) of the endothermic portion on both end faces of the thermoelectric conversion part with metal electrodes on both end faces of the thermoelectric semiconductor Thermoelectric materials (P-type and N-type) Z hydrogen occluded Ti foil ZCuZ hydrogen occluded Ti foil ZAIN, and pressurize at about 30MPa in vacuum or N gas
2 おいて 600°Cで加熱することにより、強固な接合体を実現した。なお、熱電材料を、 充填型スクッテルダイト構造を持つ Yb系 CoSbに変えた場合は、 550°Cで強固な接 合を実現した。また、熱電材料を Bi— Te系材料とした場合は、吸熱部を A1NZ水素 吸蔵した Ti箔 ZCuとして先に接合した後に、熱電変換部を CuZ水素吸蔵した Ni箔 ZBi—Te系材料 (N型) Z水素吸蔵した Ni箔 ZCuとなるように配置して加圧し、 N  By heating at 600 ° C at 2 ° C, a strong bonded body was realized. When the thermoelectric material was changed to Yb-based CoSb with a filled skutterudite structure, strong bonding was realized at 550 ° C. If the thermoelectric material is a Bi-Te material, the endothermic part is bonded as Ti foil ZCu with A1NZ hydrogen storage, and then the Ni foil ZBi-Te material (N type) with CuZ hydrogen storage in the thermoelectric conversion part. ) Ni hydrogen occluded Ni foil ZCu is placed and pressurized, N
2 ガス中にお 、て 450°C〜500°Cで加熱することにより、強固な接合体を得た。  2 A strong joined body was obtained by heating at 450 ° C to 500 ° C in a gas.
[0075] 以上の接合例のうち、本発明にとって最も肝要な、伝熱部と熱電変換部金属電極 間の熱伝導特性を評価するため、熱定数測定装置 (ULVAC製 TC— 7000)を用い 、レーザフラッシュ法 CFIS-R1611)にて熱拡散率を測定した結果を表 1に示す。な お、 A1Nと Cuを密着して周囲を瞬間接着剤(商品名ァロンアルファ)で固定したもの( A1N/Cu)を比較例とした。 AlNZTiZCuと AlNZAlZCuは夫々前記実施例中 で熱電変換部金属電極と電気絶縁性を有する伝熱部材間の接合例として提示した 条件にて接合した接合体である。また、熱拡散率を規格値としているのは、熱伝導率 が熱拡散率、比熱と密度の積で求められ、接合体の正確な比熱と密度が既知でない ことによるが、いずれの試験体のサイズ、重量、構成 (A1Nと Cuの組合せであること) を揃えて 、るので、熱伝導度の相対的な評価には十分であるものと判断した。 [0075] Among the above-mentioned joining examples, in order to evaluate the heat conduction characteristics between the heat transfer part and the thermoelectric conversion part metal electrode, which is most important for the present invention, a thermal constant measuring device (ULVAC TC-7000) was used. Table 1 shows the results of thermal diffusivity measurements using the laser flash method CFIS-R1611). A comparative example was used (A1N / Cu) in which A1N and Cu were in close contact and the periphery was fixed with an instantaneous adhesive (product name: Aron Alpha). AlNZTiZCu and AlNZAlZCu were presented as examples of joining between the thermoelectric conversion part metal electrode and the heat transfer member having electrical insulation in the above-mentioned embodiment. It is a joined body joined under conditions. The thermal diffusivity is the standard value because the thermal conductivity is obtained by the product of thermal diffusivity and specific heat and density, and the exact specific heat and density of the joined body are not known. Since the size, weight, and configuration (combination of A1N and Cu) are aligned, it was judged sufficient for relative evaluation of thermal conductivity.
[0076] [表 1] [0076] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0077] 表 1より伝熱部と熱電変換部金属電極間を接合することにより、該部材間の熱伝導 率は 10〜20%程度向上していることが分かる。これは、伝熱部と熱電変換部金属電 極間を接合により固着一体化する該接合体の採用により、熱電変換素子の吸熱側端 子と放熱側端子との間の温度差を増大させることを意味し、延いては発電効率の向 上につながることを示して 、る。 [0077] From Table 1, it can be seen that the thermal conductivity between the heat transfer part and the thermoelectric conversion part metal electrode is improved by about 10 to 20% by joining the metal electrodes. This is to increase the temperature difference between the heat absorption side terminal and the heat radiation side terminal of the thermoelectric conversion element by adopting the joined body in which the heat transfer part and the thermoelectric conversion part metal electrode are fixed and integrated by joining. This means that it will lead to an improvement in power generation efficiency.
[0078] 以上のように、本発明による接合体は、熱電変換部と吸熱部とを、水素吸蔵した金 属箔を用いて強固に接合すると同時に、元素拡散防止層と熱応力緩和層を該熱電 変換部における金属電極と熱電半導体素子間に導入するだけでなぐ吸熱部に電 気絶縁性を有する良伝熱性部材、例えば A1Nセラミックス等、を用いることによってか 、或いは同等の良熱伝導特性を有する金属酸化層を含む金属性伝熱部材を用いる ことによって、高効率な伝熱性に基づく熱電変換特性の向上を実現することが可能 である。  As described above, the joined body according to the present invention firmly joins the thermoelectric conversion part and the heat absorption part using the metal foil that has occluded hydrogen, and at the same time, includes the element diffusion prevention layer and the thermal stress relaxation layer. The heat-absorbing part that is simply introduced between the metal electrode and the thermoelectric semiconductor element in the thermoelectric conversion part can be used by using a heat-conducting member having electrical insulation, such as A1N ceramics, or equivalent heat-conducting characteristics. By using the metallic heat transfer member including the metal oxide layer, it is possible to improve thermoelectric conversion characteristics based on highly efficient heat transfer.
[0079] また、該熱電変換モジュールを構成する熱電変換素子は、スクッテルダイト系 Co— Sb、充填型スクッテルダイト系 Yb— Co— Sbを含めることができ、 400°C以上の中温 域において良好な熱電変換性能を実現することができる。更には、熱電変換部に Bi —Te系部材を含めることができ、 200°C程度において良好な発電性能を実現するこ とができるだけでなぐペルチェ素子として最適設計された Bi— Te系熱電半導体素 子に高い熱耐久性を加味することができる。 産業上の利用可能性 [0079] Further, the thermoelectric conversion element constituting the thermoelectric conversion module can include skutterudite-based Co—Sb and filled skutterudite-based Yb—Co—Sb, and in a medium temperature range of 400 ° C. or higher. Good thermoelectric conversion performance can be realized. In addition, Bi-Te-based materials can be included in the thermoelectric conversion part, and Bi-Te-based thermoelectric semiconductor elements that are optimally designed as Peltier elements that can achieve good power generation performance at about 200 ° C. High thermal durability can be added to the child. Industrial applicability
本発明は、自動車、工場等における 400°C以上の廃ガスや焼却炉により発生する 熱を高温の状態のまま回収し、電気エネルギーとしてリサイクルを可能とする。  The present invention recovers waste gas at 400 ° C or higher in automobiles, factories, etc. and heat generated by an incinerator in a high temperature state and enables recycling as electric energy.

Claims

請求の範囲 The scope of the claims
[1] 熱電変換部と吸熱部及び放熱部とよりなる熱電変換モジュールにおいて該熱電変 換部と吸熱部とが応力緩和層を介して、固着一体化してなることを特徴とする熱電変 換モジュール。  [1] A thermoelectric conversion module comprising a thermoelectric conversion part, a heat absorption part, and a heat dissipation part, wherein the thermoelectric conversion part and the heat absorption part are fixedly integrated through a stress relaxation layer. .
[2] 請求項 1記載の熱電変換モジュールにおいて、吸熱部及び放熱部の少なくとも一 方を構成する部材がセラミックスであり、該セラミックスで構成された部材が熱電変換 部に固着一体ィ匕してなることを特徴とする熱電変換モジュール。  [2] The thermoelectric conversion module according to claim 1, wherein the member constituting at least one of the heat absorbing portion and the heat radiating portion is ceramic, and the member constituted by the ceramic is fixed and integrated with the thermoelectric conversion portion. A thermoelectric conversion module characterized by that.
[3] 請求項 1または請求項 2記載の熱電変換モジュールにお 、て、吸熱部及び放熱部 の少なくとも一方が金属部材で構成され、該部材の熱電変換部に対する面が不導体 化されて!/ヽることを特徴とする熱電変換モジュール。  [3] In the thermoelectric conversion module according to claim 1 or claim 2, at least one of the heat absorption part and the heat dissipation part is made of a metal member, and the surface of the member with respect to the thermoelectric conversion part is made non-conductive! / Thermoelectric conversion module characterized by squeezing.
[4] 請求項 1記載の熱電変換モジュールにおいて、熱電変換部が N型熱電素子と P型 熱電素子及びそれらを連結する電極とよりなることを特徴とする熱電変換モジュール  [4] The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion part includes an N-type thermoelectric element, a P-type thermoelectric element, and an electrode connecting them.
[5] 請求項 4記載の熱電変換モジュールにおいて、 N型熱電素子及び P型熱電素子の うち、一方の熱電素子がスクッテルダイト系、充填型スクッテルダイト系化合物、シリコ ン-ゲルマニウム(Si— Ge)及びビスマス テルル(Bi—Te)系合金のうち、少なくとも 一種を含むことを特徴とする熱電変換モジュール。 [5] The thermoelectric conversion module according to claim 4, wherein one of the N-type thermoelectric element and the P-type thermoelectric element is a skutterudite-based, filled skutterudite-based compound, silicon-germanium (Si— A thermoelectric conversion module comprising at least one of Ge) and bismuth tellurium (Bi-Te) alloys.
[6] 請求項 4記載の熱電変換モジュールにお 、て、 N型熱電素子、 P型熱電素子、該 N型熱電素子と該 P型熱電素子とを連結する電極、吸熱部及び放熱部の各構成部 材が有する接続部分のうち少なくとも一つの接続個所において、該接続部の間に水 素を吸蔵した金属箔を挟持させた後、加熱処理を施すことにより、該金属箔を介して 接続されて ヽることを特徴とする熱電変換モジュール。  [6] The thermoelectric conversion module according to claim 4, wherein each of the N-type thermoelectric element, the P-type thermoelectric element, the electrode connecting the N-type thermoelectric element and the P-type thermoelectric element, the heat absorption part, and the heat dissipation part In at least one of the connection parts of the component parts, a metal foil occluded with hydrogen is sandwiched between the connection parts, and then the heat treatment is performed to connect the metal foil through the metal foil. A thermoelectric conversion module characterized by
[7] 請求項 5記載の熱電変換モジュールにお 、て、 N型熱電素子、 P型熱電素子、該 N型熱電素子と該 P型熱電素子とを連結する電極、吸熱部及び放熱部の各構成部 材が有する接続部分のうち少なくとも一つの接続個所において、該接続部の間に水 素を吸蔵した金属箔を挟持させた後、加熱処理を施すことにより、該金属箔を介して 接続されて ヽることを特徴とする熱電変換モジュール。  [7] The thermoelectric conversion module according to claim 5, wherein each of the N-type thermoelectric element, the P-type thermoelectric element, the electrode connecting the N-type thermoelectric element and the P-type thermoelectric element, the heat absorption part, and the heat dissipation part In at least one of the connection parts of the component parts, a metal foil occluded with hydrogen is sandwiched between the connection parts, and then the heat treatment is performed to connect the metal foil through the metal foil. A thermoelectric conversion module characterized by
[8] 請求項 4乃至 7のいずれかに記載の熱電変換モジュールにおいて、吸熱部及び放 熱部の少なくとも一方を構成する部材がセラミックスであり、該セラミックスで構成され た部材が熱電変換部に固着一体ィ匕してなることを特徴とする熱電変換モジュール。 [8] The thermoelectric conversion module according to any one of claims 4 to 7, wherein the heat absorption part and the heat release part are released. A member constituting at least one of the heat parts is ceramics, and the member made of the ceramics is fixed to and integrated with the thermoelectric conversion part.
[9] 請求項 1記載の熱電変換モジュールにおいて、応力緩和層がチタン又はチタン合 金であることを特徴とする熱電変換モジュール。  9. The thermoelectric conversion module according to claim 1, wherein the stress relaxation layer is titanium or titanium alloy.
[10] 熱電変換部と吸熱部及び放熱部の三者が固着一体ィ匕してなる熱電変換モジユー ル。 [10] A thermoelectric conversion module in which a thermoelectric conversion part, a heat absorption part, and a heat dissipation part are bonded together.
[11] 請求項 10記載の熱電変換モジュールにおいて、  [11] The thermoelectric conversion module according to claim 10,
吸熱部及び放熱部の少なくとも一方を構成する部材がセラミックスであり、該セラミ ッタスで構成された部材が熱電変換部に固着一体ィ匕してなることを特徴とする熱電 変換モジュール。  A thermoelectric conversion module, wherein a member constituting at least one of the heat absorbing portion and the heat radiating portion is ceramics, and the member made of the ceramic is fixed and integrally attached to the thermoelectric conversion portion.
[12] 請求項 10または請求項 11記載の熱電変換モジュールにお 、て、  [12] In the thermoelectric conversion module according to claim 10 or claim 11,
吸熱部及び放熱部の少なくとも一方が金属部材で構成され、該部材の熱電変換部 に対する面が不導体化されていることを特徴とする熱電変換モジュール。  A thermoelectric conversion module, wherein at least one of the heat absorption part and the heat dissipation part is made of a metal member, and the surface of the member with respect to the thermoelectric conversion part is made non-conductive.
[13] 請求項 10記載の熱電変換モジュールにおいて、熱電変換部が N型熱電素子と P 型熱電素子及びそれらを連結する電極とよりなることを特徴とする熱電変換モジユー ル。 13. The thermoelectric conversion module according to claim 10, wherein the thermoelectric conversion part is composed of an N-type thermoelectric element, a P-type thermoelectric element, and an electrode connecting them.
[14] 請求項 13記載の熱電変換モジュールにおいて、 N型熱電素子及び P型熱電素子 のうち、一方の熱電素子がスクッテルダイト系、充填型スクッテルダイト系化合物、シリ コン-ゲルマニウム(Si— Ge)及びビスマス テルル(Bi—Te)系合金のうち、少なくと も一種を含むことを特徴とする熱電変換モジュール。  [14] The thermoelectric conversion module according to claim 13, wherein one of the N-type thermoelectric element and the P-type thermoelectric element is a skutterudite-based, filled skutterudite-based compound, silicon-germanium (Si— A thermoelectric conversion module comprising at least one of Ge) and bismuth tellurium (Bi-Te) alloys.
[15] 請求項 13記載の熱電変換モジュール N型熱電素子、 P型熱電素子、該 N型熱電 素子と該 P型熱電素子とを連結する電極、吸熱部及び放熱部の各構成部材が有す る接続部分のうち少なくとも一つの接続個所において、該接続部の間に水素を吸蔵 した金属箔を挟持させた後、加熱処理を施すことにより、該金属箔を介して接続され て 、ることを特徴とする熱電変換モジュール。  [15] The thermoelectric conversion module according to claim 13, comprising an N-type thermoelectric element, a P-type thermoelectric element, an electrode for connecting the N-type thermoelectric element and the P-type thermoelectric element, a heat absorbing portion, and a heat radiating portion. At least one of the connecting portions to be connected is sandwiched between the connecting portions with a metal foil that occludes hydrogen and then subjected to heat treatment to be connected through the metal foil. A featured thermoelectric conversion module.
[16] 請求項 14記載の熱電変換モジュール N型熱電素子、 P型熱電素子、該 N型熱電素 子と該 P型熱電素子とを連結する電極、吸熱部及び放熱部の各構成部材が有する 接続部分のうち少なくとも一つの接続個所において、該接続部の間に水素を吸蔵し た金属箔を挟持させた後、加熱処理を施すことにより、該金属箔を介して接続されて V、ることを特徴とする熱電変換モジュール。 [16] The thermoelectric conversion module according to claim 14, comprising an N-type thermoelectric element, a P-type thermoelectric element, an electrode for connecting the N-type thermoelectric element and the P-type thermoelectric element, a heat absorbing portion, and a heat radiating portion. Hydrogen is occluded between the connection parts at at least one of the connection parts. A thermoelectric conversion module characterized in that, after sandwiching the metal foil, the metal foil is connected via the metal foil by heat treatment.
請求項 13乃至 16のいずれかに記載の熱電変換モジュールにおいて、吸熱部及び 放熱部の少なくとも一方を構成する部材がセラミックスであり、該セラミックスで構成さ れた部材が熱電変換部に固着一体化してなることを特徴とする熱電変換モジュール  17. The thermoelectric conversion module according to claim 13, wherein the member constituting at least one of the heat absorbing portion and the heat radiating portion is ceramic, and the member constituted by the ceramic is fixed and integrated with the thermoelectric conversion portion. Thermoelectric conversion module characterized in that
PCT/JP2005/017849 2004-10-18 2005-09-28 Thermoelectric conversion module WO2006043402A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-302614 2004-10-18
JP2004302614 2004-10-18
JP2004306500A JP4810652B2 (en) 2004-10-18 2004-10-21 Thermoelectric conversion module
JP2004-306500 2004-10-21

Publications (1)

Publication Number Publication Date
WO2006043402A1 true WO2006043402A1 (en) 2006-04-27

Family

ID=36202822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017849 WO2006043402A1 (en) 2004-10-18 2005-09-28 Thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JP4810652B2 (en)
WO (1) WO2006043402A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932909A (en) * 2016-06-29 2016-09-07 中国石油大学(华东) External cold source type hot dry rock thermoelectric power generation system and method
JP2018064399A (en) * 2016-10-14 2018-04-19 日立造船株式会社 Thermoelectric generator
CN108550688A (en) * 2018-05-24 2018-09-18 中国科学院上海硅酸盐研究所 A kind of thermo-electric device with adaptive connection layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086623A (en) * 2012-10-25 2014-05-12 Furukawa Co Ltd Thermoelectric conversion module
JP6078438B2 (en) 2013-08-30 2017-02-08 株式会社Kelk Thermoelectric generator module
KR102125051B1 (en) 2017-03-30 2020-06-19 주식회사 엘지화학 Thermoelectric module
KR102340798B1 (en) 2017-11-01 2021-12-16 주식회사 엘지화학 Thermoelectric element and module thermoelectric module comprising the same
JP2020034198A (en) * 2018-08-28 2020-03-05 日本碍子株式会社 Heat pump, heating system and cooling system
CN211743190U (en) * 2020-03-12 2020-10-23 邓炜鸿 Thick film cold and hot integrated circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186295A (en) * 1994-12-29 1996-07-16 Central Res Inst Of Electric Power Ind Thermal-stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH09307219A (en) * 1996-05-14 1997-11-28 Tamura Seisakusho Co Ltd Soldering treatment
JPH10243670A (en) * 1997-02-24 1998-09-11 Central Res Inst Of Electric Power Ind Thermoelectric transducing system
JPH10261866A (en) * 1997-03-21 1998-09-29 Tokyo Univ Separable joined structure and separating method thereof
JP2003110156A (en) * 2001-09-28 2003-04-11 Hitachi Powdered Metals Co Ltd Thermoelectric conversion module, and bonding agent used therefor
JP2003305565A (en) * 2002-04-12 2003-10-28 Samco International Inc Method for manufacturing copper electrode for solder connecting and copper electrode
JP2003309294A (en) * 2002-02-12 2003-10-31 Komatsu Ltd Thermoelectric module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331607B2 (en) * 1992-02-17 2002-10-07 いすゞ自動車株式会社 Hydrogen storage and release method for hydrogen storage alloy with composite thermoelectric element
JP2001352106A (en) * 2000-06-02 2001-12-21 Hitachi Ltd Peltier element
JP2002164585A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Thermoelectric conversion module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186295A (en) * 1994-12-29 1996-07-16 Central Res Inst Of Electric Power Ind Thermal-stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH09307219A (en) * 1996-05-14 1997-11-28 Tamura Seisakusho Co Ltd Soldering treatment
JPH10243670A (en) * 1997-02-24 1998-09-11 Central Res Inst Of Electric Power Ind Thermoelectric transducing system
JPH10261866A (en) * 1997-03-21 1998-09-29 Tokyo Univ Separable joined structure and separating method thereof
JP2003110156A (en) * 2001-09-28 2003-04-11 Hitachi Powdered Metals Co Ltd Thermoelectric conversion module, and bonding agent used therefor
JP2003309294A (en) * 2002-02-12 2003-10-31 Komatsu Ltd Thermoelectric module
JP2003305565A (en) * 2002-04-12 2003-10-28 Samco International Inc Method for manufacturing copper electrode for solder connecting and copper electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932909A (en) * 2016-06-29 2016-09-07 中国石油大学(华东) External cold source type hot dry rock thermoelectric power generation system and method
CN105932909B (en) * 2016-06-29 2017-11-21 中国石油大学(华东) Additional low-temperature receiver type hot dry rock thermoelectric heat generation system and method
JP2018064399A (en) * 2016-10-14 2018-04-19 日立造船株式会社 Thermoelectric generator
CN108550688A (en) * 2018-05-24 2018-09-18 中国科学院上海硅酸盐研究所 A kind of thermo-electric device with adaptive connection layer

Also Published As

Publication number Publication date
JP4810652B2 (en) 2011-11-09
JP2006147600A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2006043402A1 (en) Thermoelectric conversion module
US6563039B2 (en) Thermoelectric unicouple used for power generation
US20170250334A1 (en) Thermo-compression bonding of thermoelectric materials
JP5427462B2 (en) Thermoelectric conversion module
JP4896742B2 (en) Thermoelectric conversion module and heat exchanger and thermoelectric generator using the same
US6673996B2 (en) Thermoelectric unicouple used for power generation
KR101782440B1 (en) Thermoelectric power generation module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
US20140102500A1 (en) Thermoelectric Device Assembly, Thermoelectric Module and its Manufacturing Method
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
JP2010212579A (en) Method for producing thermoelectric conversion element
US10224472B2 (en) Thermoelectric power module
JPH0697512A (en) Thermoelectric conversion element
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
JP2003092435A (en) Thermoelectric module and its manufacturing method
JP2011198778A (en) Method for manufacturing thermoelectric device
EP2660888A1 (en) Thermoelectric conversion member
JP2017143111A (en) Thermoelectric conversion module and method for manufacturing the same
JP2006086402A (en) Tubular thermoelectric module and thermoelectric converting device
JP2004311819A (en) Thermoelectric conversion module
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05788413

Country of ref document: EP

Kind code of ref document: A1