JPH09293909A - Thermoelectric module and method for manufacturing it - Google Patents

Thermoelectric module and method for manufacturing it

Info

Publication number
JPH09293909A
JPH09293909A JP8284879A JP28487996A JPH09293909A JP H09293909 A JPH09293909 A JP H09293909A JP 8284879 A JP8284879 A JP 8284879A JP 28487996 A JP28487996 A JP 28487996A JP H09293909 A JPH09293909 A JP H09293909A
Authority
JP
Japan
Prior art keywords
thermoelectric element
electrode
thermoelectric
manufacturing
module according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284879A
Other languages
Japanese (ja)
Other versions
JP3528471B2 (en
Inventor
Zenichi Shikada
善一 鹿田
Katsumoto Kamei
克基 亀井
Sakuo Kamata
策雄 鎌田
Yoshimitsu Nakamura
良光 中村
Takehiko Sato
岳彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP28487996A priority Critical patent/JP3528471B2/en
Publication of JPH09293909A publication Critical patent/JPH09293909A/en
Application granted granted Critical
Publication of JP3528471B2 publication Critical patent/JP3528471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To ensure a uniform passing of heat between a module and a heat exchange substrate, to increase fracture resistance and to improve jointing strength between thermoelectric elements and electrodes. SOLUTION: P-type and N-type thermoelectric elements 6a and 6b in the shape of a prism are tied in a bundle in the direction of their length and are fixed with a fixing agent 5 made of a synthetic resin. Then the bundle is cut in the direction perpendicular to the length of the thermoelectric elements 6 to form a flat plate thermoelectric chip A. In the thermoelectric chip A. P-type and N-type thermoelectric elements 1a and 1b are arranged alternately to form a matrix and fixed with the fixing agent 5. These thermoelectric elements 1 are connected in series by electrodes 2 formed on the cut surface and by lead electrodes 4. Since the number of cut surfaces of the thermoelectric elements 6 is reduced, the number of fractions of the thermoelectric elements 1 is also reduced and the thickness of the thermoelectric chip A becomes uniform. Additionally, since the electrodes 2 are formed on the cut surfaces, the jointing strength between the thermoelectric elements 1 and the electrodes 2 is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多数の熱電素子を配
列させた熱電モジュール及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module in which a large number of thermoelectric elements are arranged and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の熱電モジュールは、ゾーンメルト
法等で溶融育成したインゴット状の熱電材料を切断して
角柱状の熱電素子を作り、所定の導通パターンになるよ
う、熱電素子と導電性材料から成る電極とを半田付け等
で接合して作製されていた。このようにして作られた熱
電モジュールは、完成品の構造が整然とし、熱電素子の
熱及び電気伝導度が一定であるという利点を有してい
る。また、外側表面は何れも同一平面内にあるため、各
々反対側に熱電素子接合部を有するパネル状の装置を製
造するのに適している(特公昭38−25925号公報
参照)。
2. Description of the Related Art A conventional thermoelectric module is manufactured by cutting an ingot-shaped thermoelectric material melted and grown by a zone melting method or the like to form a prismatic thermoelectric element, and a thermoelectric element and a conductive material are formed so as to have a predetermined conduction pattern. It was manufactured by joining the electrode made of (1) with soldering or the like. The thermoelectric module produced in this way has the advantages that the structure of the finished product is orderly and the thermoelectric element has a constant heat and electrical conductivity. Further, since the outer surfaces are all in the same plane, they are suitable for manufacturing a panel-shaped device having thermoelectric element joints on opposite sides (see Japanese Patent Publication No. 38-25925).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報に記載された従来の熱電モジュールや熱電モジュール
の製造方法においては、熱電素子が脆弱な材料であるた
めに熱電材料インゴットの切断工程や棒状の熱電素子を
組み立てた組立体に切目を入れる工程で割れが生じやす
く、熱電モジュール製造工程での歩留まりを著しく低下
させるという問題や、電極と熱電素子の接合強度不足に
よって生じる導通不良や電極間の短絡のために製品不良
が生じ易いという問題、あるいは電極として金属板を用
いているため、熱電素子チップ厚みが均一でないことか
ら熱電素子と電極の接合強度にばらつきが生じ、熱電素
子と熱交換基板との間における熱の授受が不均一になる
という問題があった。
However, in the conventional thermoelectric module and the method for manufacturing the thermoelectric module described in the above publication, since the thermoelectric element is a fragile material, the step of cutting the thermoelectric material ingot or the rod-shaped thermoelectric module is performed. There is a problem that cracks are likely to occur in the process of making a notch in the assembly in which the elements are assembled, and the yield in the thermoelectric module manufacturing process is significantly reduced, and there is also a problem of poor conduction and short circuit between electrodes caused by insufficient bonding strength between the electrode and the thermoelectric element. For this reason, product defects are likely to occur, or because a metal plate is used as an electrode, the thermoelectric element chip thickness is not uniform, which causes variations in the bonding strength between the thermoelectric element and the electrode. There was a problem that heat transfer between the two becomes uneven.

【0004】本発明は上記問題に鑑みて為されたもので
あり、その目的とするところは熱交換基板との間の熱の
授受が均一となるとともに割れなどが生じにくく且つ熱
電素子と電極との接合強度を向上させた熱電モジュール
及びその製造方法を提供するにある。
The present invention has been made in view of the above problems, and an object of the present invention is that heat is uniformly transferred to and from a heat exchange substrate, cracks and the like are less likely to occur, and thermoelectric elements and electrodes are provided. The present invention provides a thermoelectric module having improved bonding strength and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、P型の熱電素子並びにN型の熱
電素子を互いに隣り合わせて配設するとともにこれら熱
電素子の表裏両側の面を導電性の電極により接続し且つ
両電極面上に熱交換基板を固定して成る熱電モジュール
であって、略棒状に形成され束ねられた複数の熱電素子
部材を長手方向に対して横断するように切断するととも
にこの切断面に電極を形成したことを特徴とし、熱電素
子部材の切断面の数が従来よりも少なくなるために切断
による熱電素子の割れの発生を減少させることができ
る。また、多数の熱電素子部材を束ねて一括して切断す
るため、熱電モジュールの厚みを均一にすることがで
き、熱交換基板との熱の授受を均一にすることができ
る。
In order to achieve the above-mentioned object, a P-type thermoelectric element and an N-type thermoelectric element are arranged next to each other, and both sides of the thermoelectric element are arranged. A thermoelectric module in which surfaces are connected by electrically conductive electrodes and a heat exchange substrate is fixed on both electrode surfaces, which traverses a plurality of bundled thermoelectric element members formed in a substantially rod shape in the longitudinal direction. The present invention is characterized in that the cutting is performed and an electrode is formed on this cutting surface. Since the number of cutting surfaces of the thermoelectric element member is smaller than in the conventional case, the occurrence of cracking of the thermoelectric element due to cutting can be reduced. Further, since a large number of thermoelectric element members are bundled and cut together, the thickness of the thermoelectric module can be made uniform, and the heat exchange with the heat exchange substrate can be made uniform.

【0006】請求項2の発明は、上記目的を達成するた
めに、P型の熱電素子並びにN型の熱電素子を互いに隣
り合わせて配設するとともにこれら熱電素子の表裏両側
の面を導電性の電極により接続し且つ両電極面上に熱交
換基板を固定して成る熱電モジュールの製造方法であっ
て、略棒状に形成した複数の熱電素子部材を束ねる工程
と、束ねた熱電素子部材を長手方向に対して横断するよ
うに切断する工程と、この切断面に電極を形成する工程
とを有することを特徴とし、熱電素子部材の切断面の数
が従来よりも少なくなるために切断による熱電素子の割
れの発生を減少させることができる。また、多数の熱電
素子部材を束ねて一括して切断するため、熱電モジュー
ルの厚みを均一にすることができ、熱交換基板との熱の
授受を均一にすることができる。しかも、熱電素子の切
断面に電極を形成するため、熱電素子と電極との接合強
度が均一になり、歩留まり良く且つ低い加工費で熱電モ
ジュールを製造することができる。
In order to achieve the above object, a second aspect of the present invention is to arrange a P-type thermoelectric element and an N-type thermoelectric element adjacent to each other, and to have conductive electrodes on both front and back surfaces of these thermoelectric elements. A method of manufacturing a thermoelectric module which is connected by and fixing a heat exchange substrate on both electrode surfaces, a step of bundling a plurality of substantially thermoelectric element members formed in a rod shape, and the bundling thermoelectric element members in the longitudinal direction. It is characterized by having a step of cutting so as to traverse it, and a step of forming an electrode on this cut surface, and because the number of cut surfaces of the thermoelectric element member becomes smaller than in the past, cracking of the thermoelectric element due to cutting Can be reduced. Further, since a large number of thermoelectric element members are bundled and cut together, the thickness of the thermoelectric module can be made uniform, and the heat exchange with the heat exchange substrate can be made uniform. Moreover, since the electrode is formed on the cut surface of the thermoelectric element, the bonding strength between the thermoelectric element and the electrode becomes uniform, and the thermoelectric module can be manufactured with good yield and low processing cost.

【0007】請求項3の発明は、請求項2の発明におい
て、上記熱電素子部材を束ねた後、熱電素子部材同士を
絶縁性を有する固着材にて固着することを特徴とし、熱
電素子部材を固着した後で切断することにより、熱電素
子部材の機械的強度不足が固着材によって補強され、切
断時における熱電素子の割れ等の損傷を減少させること
ができる。
According to a third aspect of the present invention, in the second aspect of the invention, the thermoelectric element members are bundled together, and then the thermoelectric element members are fixed to each other with a fixing material having an insulating property. By cutting after fixing, the insufficient mechanical strength of the thermoelectric element member is reinforced by the fixing material, and damage such as cracking of the thermoelectric element during cutting can be reduced.

【0008】請求項4の発明は、請求項2又は3の発明
において、上記熱電素子部材を互いの長手方向を略一致
させて束ねることを特徴とし、均一な厚みに切断するこ
とができるとともに切断面を平面として電極の形成が容
易になる。請求項5の発明は、請求項2乃至4の発明に
おいて、スパッタリングもしくは導電ペースト塗布もし
くは半田付けにより電極を一括して形成することを特徴
とし、切断面に電極を一括して容易に形成することがで
きる。
The invention of claim 4 is characterized in that, in the invention of claim 2 or 3, the thermoelectric element members are bundled so that their longitudinal directions substantially coincide with each other, and the thermoelectric element members can be cut to a uniform thickness and cut. It becomes easy to form the electrode by making the surface flat. The invention of claim 5 is characterized in that, in the inventions of claims 2 to 4, the electrodes are collectively formed by sputtering, conductive paste coating, or soldering, and the electrodes are easily collectively formed on the cut surface. You can

【0009】請求項6の発明は、請求項2乃至5の発明
において、上記熱電素子部材を絶縁材でコーティングし
た後で束ねることを特徴とし、熱電素子間の電気的な短
絡を防止することができる。請求項7の発明は、請求項
4の発明において、上記P型及びN型の熱電素子部材の
うちの一方を絶縁材を挟んで一列に並べるとともに、並
べた熱電素子部材の上に絶縁材を配設し、この絶縁材の
上に他方の熱電素子部材を絶縁材を挟んで一列に並べる
ことにより複数の熱電素子部材を束ねることを特徴と
し、熱電素子部材を束ねた際に熱電素子部材間の絶縁距
離を均一にすることができるとともに、その後の電極形
成の工程におけるパターニングを容易にすることができ
る。
A sixth aspect of the present invention is characterized in that, in the second to fifth aspects, the thermoelectric element members are coated with an insulating material and then bundled together to prevent an electrical short circuit between the thermoelectric elements. it can. According to the invention of claim 7, in the invention of claim 4, one of the P-type and N-type thermoelectric element members is arranged in a line with an insulating material sandwiched therebetween, and the insulating material is provided on the arranged thermoelectric element members. A plurality of thermoelectric element members are bundled by arranging and arranging the other thermoelectric element member on the insulating material in a line with the insulating material sandwiched therebetween. The insulating distance can be made uniform, and patterning in the subsequent electrode forming step can be facilitated.

【0010】請求項8の発明は、請求項4の発明におい
て、上記熱電素子部材の端部を挿入し保持する保持部が
マトリクス状に配設された固定用治具により、上記熱電
素子部材の両端部を固定して束ねることを特徴とし、熱
電素子部材を束ねた際に熱電素子部材間の絶縁距離を均
一にすることができるとともに、その後の電極形成の工
程におけるパターニングを容易にすることができる。
According to an eighth aspect of the present invention, in the invention of the fourth aspect, the holding member for inserting and holding the end portion of the thermoelectric element member is fixed to the thermoelectric element member by a fixing jig. Both ends are fixed and bundled, and when the thermoelectric element members are bundled, the insulating distance between the thermoelectric element members can be made uniform, and patterning in the subsequent electrode formation process can be facilitated. it can.

【0011】請求項9の発明は、請求項4の発明におい
て、上記熱電素子部材の端部を載置する凹部が多数列設
された絶縁性を有する波板状の固着用部材により、上記
熱電素子部材の両端部を固定して束ねることを特徴と
し、熱電素子部材を束ねた際に熱電素子部材間の絶縁距
離を均一にすることができるとともに、その後の電極形
成の工程におけるパターニングを容易にすることができ
る。
According to a ninth aspect of the present invention, in the fourth aspect of the invention, the thermoelectric element member is fixed to the thermoelectric element member by a corrugated plate-like fixing member having a plurality of recesses for mounting the ends thereof. Both ends of the element member are fixed and bundled, and when the thermoelectric element members are bundled, the insulation distance between the thermoelectric element members can be made uniform, and patterning in the subsequent electrode formation process is facilitated. can do.

【0012】請求項10の発明は、請求項2又は3の発
明において、外部との接続用のリード電極を形成するた
めの棒状の金属部材を熱電素子部材とともに束ねること
を特徴とし、リード線の半田付けをリード電極のうちの
金属部材上に形成された部分に行えば、熱電素子と電極
の密着力に影響を与えることがなく、リード電極と熱電
素子間の剥離による導通不良を生じさせないようにする
ことができる。
The invention of claim 10 is characterized in that, in the invention of claim 2 or 3, a rod-shaped metal member for forming a lead electrode for external connection is bundled together with a thermoelectric element member. If soldering is performed on the part of the lead electrode formed on the metal member, it does not affect the adhesion between the thermoelectric element and the electrode, and does not cause conduction failure due to peeling between the lead electrode and thermoelectric element. Can be

【0013】請求項11の発明は、請求項10の発明に
おいて、切断後の上記金属部材の部分に熱短絡防止用の
凹部を形成することを特徴とし、熱電素子間の熱短絡が
防止できるとともにリード線を固定する半田が切断面よ
りも突出することがなく、熱電モジュールの外表面を平
坦にすることができる。請求項12の発明は、請求項5
の発明において、上記切断面にスパッタリングもしくは
導電ペースト塗布により金属層を形成するとともに該金
属層のパターニングを行ない、形成された金属パターン
上にメッキもしくは導電ペースト塗布もしくは半田付け
を施して電極を形成することを特徴とし、切断面に一括
して電極を形成することができる。
The invention of claim 11 is characterized in that, in the invention of claim 10, a concave portion for preventing a thermal short circuit is formed in the portion of the metal member after cutting, and a thermal short circuit between thermoelectric elements can be prevented. The solder for fixing the lead wires does not protrude beyond the cut surface, and the outer surface of the thermoelectric module can be made flat. The invention of claim 12 is the invention of claim 5.
In the invention of (1), a metal layer is formed on the cut surface by sputtering or conductive paste coating, and the metal layer is patterned, and plating or conductive paste coating or soldering is performed on the formed metal pattern to form an electrode. This is characterized in that the electrodes can be collectively formed on the cut surface.

【0014】請求項13の発明は、請求項5の発明にお
いて、上記束ねた熱電素子部材の切断時に生じる切断面
表層の脆弱層を除去し、該切断面を清浄化した後で電極
の形成を行うことを特徴とし、熱電素子と電極との密着
力を向上させることができる。請求項14の発明は、請
求項5の発明において、上記束ねた熱電素子部材の切断
面を表面粗化させた後で電極の形成を行うことを特徴と
し、熱電素子と電極との密着力を向上させることができ
る。
According to a thirteenth aspect of the present invention, in the fifth aspect of the invention, the brittle layer on the surface of the cut surface, which is generated when the bundled thermoelectric element members are cut, is removed, and the cut surface is cleaned to form the electrodes. As a characteristic feature, the adhesion between the thermoelectric element and the electrode can be improved. According to a fourteenth aspect of the present invention, in the fifth aspect of the invention, the electrodes are formed after the cut surfaces of the bundled thermoelectric element members are roughened, and the adhesive force between the thermoelectric elements and the electrodes is increased. Can be improved.

【0015】請求項15の発明は、請求項2乃至5の発
明において、上記切断面に電極形成用のスパッタ層を形
成する前に少なくとも熱電素子表面にバリア層を形成す
ることを特徴とし、スパッタ層を形成する際に熱電素子
へスパッタ材が拡散するのをバリア層によって阻止する
ことができ、熱電素子の熱電気的特性の劣化を防止する
ことができる。
A fifteenth aspect of the present invention is characterized in that, in the second to fifth aspects, a barrier layer is formed on at least a surface of the thermoelectric element before forming a sputtering layer for forming an electrode on the cut surface. The barrier layer can prevent the sputtered material from diffusing into the thermoelectric element when forming the layer, and can prevent the thermoelectric characteristics of the thermoelectric element from deteriorating.

【0016】請求項16の発明は、請求項15の発明に
おいて、上記切断面の表面清浄化及び表面粗化を行った
後に上記バリア層を形成することを特徴とし、熱電素子
の特性劣化の防止と同時に熱電素子と電極との密着力の
向上が図れる。請求項17の発明は、請求項5の発明に
おいて、上記切断面に形成される電極と、上記固着材と
を固定手段により固定することを特徴とし、熱電素子と
電極との密着力を向上させることができる。
According to a sixteenth aspect of the invention, in the fifteenth aspect of the invention, the barrier layer is formed after the surface of the cut surface is cleaned and the surface is roughened, and the characteristic deterioration of the thermoelectric element is prevented. At the same time, the adhesion between the thermoelectric element and the electrode can be improved. The invention of claim 17 is characterized in that, in the invention of claim 5, the electrode formed on the cut surface and the fixing material are fixed by a fixing means, and the adhesion between the thermoelectric element and the electrode is improved. be able to.

【0017】請求項18の発明は、請求項5の発明にお
いて、上記切断面における熱電素子部材と固着材とに段
差を設けることを特徴とし、熱電素子と電極との剥離を
防止することができる。請求項19の発明は、請求項5
の発明において、上記電極の端面全てが熱電素子と上記
固着材の境界よりも固着材側に張り出すように電極を形
成することを特徴とし、電極が固着材にも接することで
熱電素子部材と電極との剥離を防止することができる。
The invention of claim 18 is characterized in that, in the invention of claim 5, a step is provided between the thermoelectric element member and the fixing material on the cut surface, and peeling between the thermoelectric element and the electrode can be prevented. . The invention of claim 19 relates to claim 5
The invention is characterized in that the electrode is formed so that all the end faces of the electrode project toward the fixing material side with respect to the boundary between the thermoelectric element and the fixing material. It is possible to prevent peeling from the electrode.

【0018】請求項20の発明は、請求項5の発明にお
いて、上記切断面に接着剤のような合成樹脂を塗布する
ことを特徴とし、合成樹脂が補強材となって熱電素子と
電極との剥離を防止することができる。請求項21の発
明は、請求項5の発明において、上記切断面に絶縁性を
有するシート状の樹脂部材を接着することを特徴とし、
熱電素子と電極との剥離を防止することができるととも
に、電極の上に熱交換基板を設ける場合に両者間の電気
絶縁性を向上させることができ、さらに両端切断面から
の熱リークを減少させることができる。
The invention of claim 20 is characterized in that, in the invention of claim 5, a synthetic resin such as an adhesive is applied to the cut surface, and the synthetic resin serves as a reinforcing material for the thermoelectric element and the electrode. Peeling can be prevented. The invention of claim 21 is characterized in that, in the invention of claim 5, a sheet-like resin member having an insulating property is adhered to the cut surface,
It is possible to prevent peeling between the thermoelectric element and the electrode, improve the electrical insulation between the thermoelectric element and the electrode when a heat exchange substrate is provided on the electrode, and further reduce heat leakage from the cut surfaces at both ends. be able to.

【0019】請求項22の発明は、請求項5の発明にお
いて、上記電極形成前に熱電素子と固着材との接着部分
近傍の熱電素子に溝を設けることを特徴とし、溝によっ
て熱電素子が電極に接する面積が増えるために熱電素子
と電極との剥離を防止することができる。請求項23の
発明は、請求項5の発明において、上記電極の熱膨張率
が熱電素子の熱膨張率と略等しくなるように電極の表面
に合成樹脂又は金属を接着することを特徴とし、両者の
熱膨張率を略等しくすることで熱電素子と電極との剥離
を防止することができる。
The invention of claim 22 is characterized in that, in the invention of claim 5, a groove is provided in the thermoelectric element in the vicinity of the bonding portion between the thermoelectric element and the fixing material before the electrode is formed. Since the area in contact with the electrode increases, it is possible to prevent the thermoelectric element and the electrode from peeling off. The invention of claim 23 is characterized in that, in the invention of claim 5, a synthetic resin or a metal is adhered to the surface of the electrode so that the coefficient of thermal expansion of the electrode is substantially equal to the coefficient of thermal expansion of the thermoelectric element. By making the thermal expansion coefficients of the two substantially equal to each other, peeling between the thermoelectric element and the electrode can be prevented.

【0020】請求項24の発明は、請求項5の発明にお
いて、上記電極と熱電素子との間に、電極を構成する材
料と熱電素子を構成する材料を所定の割合で含む中間層
を設けることを特徴とし、熱電素子から電極に至るまで
の材料組成が中間層によって徐々に変化することにな
り、電極と熱電素子との界面での応力集中を緩和するこ
とができる。
According to a twenty-fourth aspect of the present invention, in the fifth aspect of the present invention, an intermediate layer containing a material forming the electrode and a material forming the thermoelectric element in a predetermined ratio is provided between the electrode and the thermoelectric element. The material composition from the thermoelectric element to the electrode gradually changes due to the intermediate layer, and stress concentration at the interface between the electrode and the thermoelectric element can be relaxed.

【0021】請求項25の発明は、請求項5の発明にお
いて、上記電極を磁性体により形成するとともに電極の
表面に磁性流体を塗布することを特徴とし、磁性流体の
上に熱交換基板を設ける場合に両者間の電気絶縁性を向
上させることができるとともに、磁性流体によって熱交
換基板と熱電モジュールとの間の摩擦力を小さくでき、
その結果、電極と熱電素子間の界面にはたらくせん断応
力を低減することができる。
A twenty-fifth aspect of the present invention is characterized in that, in the fifth aspect of the invention, the electrode is formed of a magnetic material and a magnetic fluid is applied to the surface of the electrode, and a heat exchange substrate is provided on the magnetic fluid. In this case, the electrical insulation between the two can be improved, and the magnetic fluid can reduce the frictional force between the heat exchange substrate and the thermoelectric module.
As a result, the shear stress acting on the interface between the electrode and the thermoelectric element can be reduced.

【0022】請求項26の発明は、請求項15の発明に
おいて、溶射により上記切断面の表面粗化とバリア層の
形成とを同時に行なうことを特徴とし、熱電素子の熱電
気的性能の劣化を防止することができるとともに、熱電
素子と電極との密着力を向上させることができ、しかも
製造時間の短縮も図れる。請求項27の発明は、請求項
3の発明において、内部に気泡を有する部材を上記固着
材に用いることを特徴とし、固着材の部分からの切断面
間の熱のリークを減少させることができるとともに、固
着材の熱膨張率が低下することで電極との界面にはたら
くせん断応力を低減でき、さらに固着材の弾性率が低下
することで熱電モジュールにはたらく応力を固着材にて
吸収することができる。
According to a twenty-sixth aspect of the present invention, in the fifteenth aspect of the present invention, the surface roughening of the cut surface and the formation of the barrier layer are simultaneously performed by thermal spraying, and the thermoelectric performance of the thermoelectric element is deteriorated. In addition to being able to prevent it, the adhesion between the thermoelectric element and the electrode can be improved, and the manufacturing time can be shortened. The invention of claim 27 is characterized in that, in the invention of claim 3, a member having bubbles inside is used as the above-mentioned fixing material, and it is possible to reduce heat leakage between the cut surfaces from the portion of the fixing material. At the same time, the thermal expansion coefficient of the fixing material decreases, so that the shear stress acting on the interface with the electrode can be reduced, and further, the elastic modulus of the fixing material decreases, so that the stress acting on the thermoelectric module can be absorbed by the fixing material. it can.

【0023】[0023]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。 (実施形態1)図1(a)〜(c)はそれぞれ本実施形
態における熱交換基板11を取着する前の熱電モジュー
ル(以降、これを熱電素子チップAという)を示すもの
であり、電気的及び熱的に絶縁性を有する固着材5によ
ってP型及びN型の熱電素子1a,1bが交互にマトリ
クス状に配列されて固着され(同図(a)参照)、全て
のP型熱電素子1a並びにN型熱電素子1bが交互に直
列に接続されるようにその表裏両面に多数の電極2が形
成されている(同図(b)及び(c)参照)。直列に接
続された多数の熱電素子1のうちで両端にあたる一対の
熱電素子1には、通電用のリード線3が半田付けされる
リード電極4が形成されている(同図(b)参照)。こ
こで、多数の熱電素子1を固着して全体を板状に形成し
ている固着材5には、例えば半導体の封止材に用いられ
る合成樹脂などを用いればよい。なお、以降の説明で
は、熱電素子1と表記する場合にはP型とN型の両方を
示し、P型とN型とを区別する場合には熱電素子1a,
1bと表記するものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. (Embodiment 1) FIGS. 1A to 1C show a thermoelectric module (hereinafter referred to as a thermoelectric element chip A) before attaching the heat exchange substrate 11 according to the present embodiment. P-type and N-type thermoelectric elements 1a and 1b are alternately arranged and fixed in a matrix by a fixing material 5 having thermal and thermal insulation properties (see FIG. 11A), and all P-type thermoelectric elements are fixed. A large number of electrodes 2 are formed on both front and back surfaces of the 1a and the N-type thermoelectric element 1b so as to be alternately connected in series (see (b) and (c) of the same figure). A lead electrode 4 to which a lead wire 3 for energization is soldered is formed on a pair of thermoelectric elements 1 at both ends of a large number of thermoelectric elements 1 connected in series (see FIG. 2B). . Here, as the fixing material 5 which is formed by fixing a large number of thermoelectric elements 1 into a plate-like shape, for example, a synthetic resin used as a semiconductor sealing material may be used. In the following description, both the P-type and the N-type are indicated when the thermoelectric element 1 is referred to, and the thermoelectric elements 1a,
It shall be written as 1b.

【0024】次に、本実施形態における熱電モジュール
の製造方法について図2〜図4を参照して説明する。先
ず、熱電素子インゴットの切り出し、熱電素子材料粉末
の焼結若しくは押し出し加工等により、P型及びN型の
角柱状の熱電素子部材6a,6bを作製する(図2
(a)参照)。ここで、熱電素子を形成する材料として
は、P型のものにはSb2 Te3 、N型のものにはBi
2 Te3 等を用いればよい。なお、以降の説明では、熱
電素子部材6と表記する場合にはP型及びN型のものを
総称し、P型及びN型を区別する場合には熱電素子部材
6a,6bと表記するものとする。
Next, a method of manufacturing the thermoelectric module according to this embodiment will be described with reference to FIGS. First, P-type and N-type prismatic thermoelectric element members 6a and 6b are produced by cutting out a thermoelectric element ingot, sintering or extruding a thermoelectric element material powder (FIG. 2).
(A)). Here, as a material for forming the thermoelectric element, Sb 2 Te 3 is used for the P type and Bi is used for the N type.
2 Te 3 or the like may be used. In the following description, the P-type and the N-type are collectively referred to when the thermoelectric element member 6 is referred to, and the thermoelectric element members 6a and 6b are referred to when the P-type and the N-type are distinguished. To do.

【0025】そして、後述する固着用治具7を用いるな
どの方法により、多数の熱電素子部材6をその長手方向
を一致させ且つP型の熱電素子部材6aとN型の熱電素
子部材6bとが互いに交互に隣合うように束ねるととも
に、その束ねた状態で絶縁性を有する固着材5によって
固着する(同図(b)参照)。この際、各熱電素子部材
6の表面を予めポリイミドやパリレン等の絶縁材でコー
ティングした後に束ねるようにすれば、多数の熱電素子
部材6を束ねたときの熱電素子部材6同士の間隔を小さ
くすることができ、熱電モジュールの小型化が図れると
いう利点がある。
Then, a plurality of thermoelectric element members 6 are aligned in the longitudinal direction and a P-type thermoelectric element member 6a and an N-type thermoelectric element member 6b are formed by a method such as using a fixing jig 7 described later. They are bundled so as to be adjacent to each other alternately, and in the bundled state, they are fixed to each other by a fixing material 5 having an insulating property (see (b) of the same figure). At this time, if the surfaces of the respective thermoelectric element members 6 are coated with an insulating material such as polyimide or parylene in advance and then bundled, the distance between the thermoelectric element members 6 when bundled together is small. Therefore, there is an advantage that the thermoelectric module can be downsized.

【0026】ここで、多数の熱電素子部材6を束ねて固
着する方法についてさらに詳細に説明する。図3(a)
は固着用治具7を示し、矩形函型に形成された治具本体
7aの長手方向に対向する両側面に、熱電素子部材6の
端部が挿入されて保持される矩形状の保持孔7bがマト
リクス状に配設されて形成されている。なお、固着用治
具7は、半導体封止材料に用いられるエポキシ系樹脂等
で形成することが望ましい。そして、図3(b)に示す
ように、この固着用治具7の保持孔7bにP型及びN型
の熱電素子部材6a,6bを交互に挿入して保持させる
ことにより、多数の熱電素子部材6をその長手方向を一
致させ且つ各熱電素子部材6の間の間隔が均等になるよ
うに容易に束ねることができる。ついで、図3(c)に
示すように、絶縁性を有する熱硬化性樹脂のような固着
材5を開口部より治具本体7aの内部に流し込み、束ね
られた熱電素子部材6間の隙間に固着材5を充填し固化
させることで、多数の熱電素子部材6を固着することが
できる。ここで、固着材5にはその熱膨張率が熱電素子
部材6のそれに近く、且つ熱電素子部材6及び後述する
スバッタ膜8との接着強度が良好なエポキシ樹脂などを
選定する。
Here, a method of bundling and fixing a large number of thermoelectric element members 6 will be described in more detail. FIG. 3 (a)
Indicates a fixing jig 7, and a rectangular holding hole 7b in which the end portion of the thermoelectric element member 6 is inserted and held on both side surfaces of the jig body 7a formed in a rectangular box shape and facing each other in the longitudinal direction. Are arranged and formed in a matrix. The fixing jig 7 is preferably formed of epoxy resin or the like used as a semiconductor sealing material. Then, as shown in FIG. 3B, a large number of thermoelectric elements are obtained by alternately inserting and holding the P-type and N-type thermoelectric element members 6a and 6b in the holding holes 7b of the fixing jig 7. The members 6 can be easily bundled so that their longitudinal directions coincide with each other and the intervals between the thermoelectric element members 6 are uniform. Then, as shown in FIG. 3 (c), a fixing material 5 such as a thermosetting resin having an insulating property is poured into the jig body 7a through the opening, and is inserted into the gap between the bundled thermoelectric element members 6. A large number of thermoelectric element members 6 can be fixed by filling and fixing the fixing material 5. Here, for the fixing material 5, an epoxy resin or the like having a coefficient of thermal expansion close to that of the thermoelectric element member 6 and having good adhesive strength with the thermoelectric element member 6 and a scatter film 8 described later is selected.

【0027】次に、固着後の熱電素子部材6を長手方向
に対して直交(横断)する方向に切断し、図2(c)に
示すように厚みが1.5〜2.0mm程度の薄板状の熱
電素子チップAを作成する。この熱電素子チップAの切
断面では、多数のP型及びN型の熱電素子1a,1b
(熱電素子部材6a,6bが切断されたもの)がマトリ
クス状に配列されることになる。そこで、この表裏両側
の切断面を電極形成面とし、これらの電極形成面の全面
に、スパッタリング処理によりCuやNiあるいは半田
等を付着させて電極形成面のメタライズを行う(同図
(d)参照)。その際、スパッタ膜8の膜厚は、次工程
で行う電極2のパターニングを円滑に行い得るようにす
るため、すなわち、レーザ照射によるパターニング時に
スパッタ膜8が除去しやすいように0.1〜5μm程度
の薄膜にする。ついで、レーザカッティングによりスパ
ッタ膜8の一部を除去して、P型熱電素子1a及びN型
熱電素子1bが電極2を通じて交互に直列に通電できる
ようなパターン8aを形成する(同図(e)参照)。
Next, the fixed thermoelectric element member 6 is cut in a direction orthogonal (transverse) to the longitudinal direction, and a thin plate having a thickness of about 1.5 to 2.0 mm as shown in FIG. 2 (c). A thermoelectric element chip A is formed. On the cut surface of the thermoelectric element chip A, a large number of P-type and N-type thermoelectric elements 1a and 1b are provided.
(The thermoelectric element members 6a and 6b are cut) are arranged in a matrix. Therefore, the cut surfaces on both the front and back sides are used as electrode forming surfaces, and Cu, Ni, solder, or the like is attached to the entire surfaces of these electrode forming surfaces by sputtering to metallize the electrode forming surfaces (see FIG. 3D). ). At that time, the thickness of the sputtered film 8 is set to 0.1 to 5 μm so that the patterning of the electrode 2 performed in the next step can be performed smoothly, that is, the sputtered film 8 can be easily removed during patterning by laser irradiation. Make a thin film. Then, a part of the sputtered film 8 is removed by laser cutting, and a pattern 8a is formed so that the P-type thermoelectric element 1a and the N-type thermoelectric element 1b can be alternately energized in series through the electrode 2 ((e) in the same figure). reference).

【0028】上述のパターニング方法の代わりに、スク
リーン印刷等により予め所定のパターンが形成されたマ
スクを電極形成面上に置き、銀やニッケル等の導電ペー
ストをマスク上から電極形成面に塗布して、パターニン
グを行う方法を用いてもよい。すなわち、熱電素子チッ
プAの切断面に所定の電極パターン9aが形成されたス
クリーン印刷用のマスク9を重ね合わせ(図4(a)及
び(b)参照)、このマスク9の上から導電ペースト1
0を塗布し(同図(c)参照)、その後マスク9を除去
して、さらに約150℃の加熱硬化を行って電極2を形
成する(同図(d)参照)。
Instead of the above-described patterning method, a mask having a predetermined pattern formed by screen printing or the like is placed on the electrode formation surface, and a conductive paste such as silver or nickel is applied onto the electrode formation surface from above the mask. Alternatively, a method of patterning may be used. That is, a mask 9 for screen printing having a predetermined electrode pattern 9a formed on the cut surface of the thermoelectric element chip A is superposed (see FIGS. 4A and 4B), and the conductive paste 1 is placed on the mask 9.
0 (see (c) in the same figure), the mask 9 is removed thereafter, and the electrode 2 is formed by further heating and curing at about 150 ° C. (see (d) in the same figure).

【0029】ついで、電気めっきによりスパッタ膜8の
上にCuめっき膜或いはNiめつき膜を積層して厚膜に
し、図2(f)に示すような電極2及びリード電極4を
形成する。ここで、電気めっきによるめっき膜の膜厚は
20〜200μmとする。なお、電極2及びリード電極
4が形成される部分以外のスパッタ膜8は適宜の方法に
より除去することはいうまでもない。このような方法に
より電極2及びリード電極4を形成することで、回路の
一括形成が可能となる。
Then, a Cu plating film or a Ni plating film is laminated on the sputtered film 8 by electroplating to form a thick film, thereby forming an electrode 2 and a lead electrode 4 as shown in FIG. 2 (f). Here, the thickness of the plating film formed by electroplating is set to 20 to 200 μm. Needless to say, the sputtered film 8 other than the portions where the electrodes 2 and the lead electrodes 4 are formed is removed by an appropriate method. By forming the electrodes 2 and the lead electrodes 4 by such a method, it is possible to collectively form a circuit.

【0030】そして、リード電極4にリード線3を半田
付け等で取着した後、最後に熱電素子チップAの表裏両
側の電極形成面に銅やアルミニウム等から形成された熱
交換基板11を接合することにより、図2(g)に示す
ような熱電モジュールが完成する。なお、熱交換基板1
1と熱電素子チップAとの接合は両者を電気的に絶縁し
て行う必要があり、そのために熱伝導度が高く絶縁性を
有するグリースを両者の接合面に塗布するなどの方法を
用いる。
After the lead wire 3 is attached to the lead electrode 4 by soldering or the like, the heat exchange substrates 11 made of copper, aluminum or the like are finally joined to the electrode formation surfaces on both the front and back sides of the thermoelectric element chip A. By doing so, a thermoelectric module as shown in FIG. 2 (g) is completed. The heat exchange substrate 1
1 and the thermoelectric element chip A must be electrically insulated from each other, and therefore, a method of applying grease having a high thermal conductivity and an insulating property to the joint surface of the two is used.

【0031】上述のように、本実施形態によれば、熱電
モジュールの製造過程において熱電素子部材6を切断す
るのは熱電素子チップAを作成する過程のみであり、熱
電素子部材6の切断面の数が従来よりも少なくなるた
め、切断による熱電素子1の割れの発生を少なくするこ
とができる。また、多数の熱電素子部材6を束ねて一括
して切断するため、熱電素子チップA(熱電モジュー
ル)の厚みを均一にすることができ、熱交換基板11と
の熱の授受を均一にすることができる。さらに、熱電素
子部材6を固着材5で固着した後に切断することによ
り、熱電素子部材6の機械的強度不足が固着材5によっ
て補強され、切断時における熱電素子1の割れ等の損傷
を減少させることができる。しかも、熱電素子チップA
の切断面上に電極2(リード電極4を含む)を形成する
ため、熱電素子1と電極2との接合強度が均一になり、
歩留まり良く且つ低い加工費で熱電モジュールを製造す
ることができる。
As described above, according to the present embodiment, in the process of manufacturing the thermoelectric module, the thermoelectric element member 6 is cut only in the process of forming the thermoelectric element chip A, and the cut surface of the thermoelectric element member 6 is cut. Since the number is smaller than in the conventional case, the occurrence of cracks in the thermoelectric element 1 due to cutting can be reduced. In addition, since a large number of thermoelectric element members 6 are bundled and cut together, the thickness of the thermoelectric element chip A (thermoelectric module) can be made uniform, and the heat exchange with the heat exchange substrate 11 can be made uniform. You can Furthermore, by cutting the thermoelectric element member 6 after fixing it with the fixing material 5, the insufficient mechanical strength of the thermoelectric element member 6 is reinforced by the fixing material 5, and damage such as cracking of the thermoelectric element 1 at the time of cutting is reduced. be able to. Moreover, the thermoelectric element chip A
Since the electrode 2 (including the lead electrode 4) is formed on the cut surface of, the bonding strength between the thermoelectric element 1 and the electrode 2 becomes uniform,
The thermoelectric module can be manufactured with high yield and low processing cost.

【0032】なお、本実施形態においては熱電素子部材
6を四角柱状に形成しているが、熱電素子部材6の形状
はこれに限定されるものではなく、例えば、六角柱状や
円柱状に形成してもよい。また、電極2及びリード電極
4の形状も本実施形態のような矩形状に限らず、熱電素
子1と電極2及びリード電極4との接合すべき箇所がそ
れぞれバランスのとれた形状であり且つP型熱電素子1
aとN型熱電素子1bとの間の導通がとれていれば、任
意の形状でよい。
In the present embodiment, the thermoelectric element member 6 is formed in a quadrangular prism shape, but the shape of the thermoelectric element member 6 is not limited to this. For example, the thermoelectric element member 6 is formed in a hexagonal column shape or a column shape. May be. Further, the shapes of the electrode 2 and the lead electrode 4 are not limited to the rectangular shape as in the present embodiment, and the portions where the thermoelectric element 1 and the electrode 2 and the lead electrode 4 are to be joined have a well-balanced shape and P Type thermoelectric element 1
Any shape may be used as long as the a and the N-type thermoelectric element 1b are electrically connected.

【0033】(実施形態2)本実施形態は、多数の熱電
素子部材6を束ねる方法に特徴を有し、それ以外の製造
方法等については実施形態1と同様であるから説明は省
略する。まず、略円柱状に形成したP型及びN型の熱電
素子部材6a,6bのうちの一方の熱電素子部材(例え
ば、P型の熱電素子部材6a)を、絶縁性を有する部材
を矩形板状として成る絶縁材ブロック12aを間に挟ん
で一列に並べる(図5(a)参照)。そして、これら一
列に並べたP型の熱電素子部材6aの上に板状の絶縁材
ブロック12bを載置し(同図(b)参照)、さらにこ
の絶縁材ブロック12bの上に他方(N型)の熱電素子
部材6bを間に絶縁材ブロック12aを挟んで一列に並
べる(同図(c))とともに、その上に板状の絶縁材ブ
ロック12bを載置し(同図(d)参照)、以下同様に
してP型及びN型の熱電素子部材6a,6bを絶縁材ブ
ロック12bを挟んで交互に積み重ねることにより、熱
電素子部材6同士の絶縁を保った状態で、多数の熱電素
子部材6をその長手方向を一致させて束ねることができ
る。なお、絶縁材ブロック12a,12bは例えばエポ
キシ樹脂等の熱硬化性樹脂により形成すればよい。
(Embodiment 2) This embodiment is characterized by a method of bundling a large number of thermoelectric element members 6, and the other manufacturing method and the like are the same as those of Embodiment 1, and therefore description thereof is omitted. First, one of the P-type and N-type thermoelectric element members 6a and 6b formed in a substantially columnar shape (for example, the P-type thermoelectric element member 6a) is an insulating member having a rectangular plate shape. Are arranged in a line with the insulating material blocks 12a formed in between (see FIG. 5A). Then, a plate-shaped insulating material block 12b is placed on the P-type thermoelectric element members 6a arranged in a line (see FIG. 7B), and the other (N-type) is placed on the insulating material block 12b. ) The thermoelectric element members 6b are arranged in a row with the insulating material block 12a sandwiched between them ((c) in the same figure), and the plate-shaped insulating material block 12b is placed thereon (see (d) in the same figure). In the same manner, the P-type and N-type thermoelectric element members 6a and 6b are alternately stacked with the insulating material block 12b sandwiched therebetween, so that a large number of thermoelectric element members 6 can be maintained in a state where insulation between the thermoelectric element members 6 is maintained. Can be bundled with their longitudinal directions aligned. The insulating material blocks 12a and 12b may be formed of a thermosetting resin such as an epoxy resin.

【0034】上述のように、多数の熱電素子部材6を絶
縁材ブロック12a,12bを間に挟んで束ねるように
したため、熱電素子部材6を束ねた際に熱電素子部材6
間の絶縁距離を均一にすることができるとともに、その
後の電極形成の工程におけるパターニングを容易にする
ことができる。 (実施形態3)本実施形態は、実施形態2と同様に多数
の熱電素子部材6を長手方向を一致させて束ねる方法に
特徴を有し、それ以外の製造方法等については実施形態
1と同様であるから説明は省略する。
As described above, since a large number of thermoelectric element members 6 are bundled with the insulating material blocks 12a and 12b sandwiched therebetween, the thermoelectric element members 6 are bundled when the thermoelectric element members 6 are bundled.
The insulating distance between them can be made uniform, and the patterning in the subsequent electrode formation step can be facilitated. (Embodiment 3) This embodiment has a feature in a method of bundling a large number of thermoelectric element members 6 in the same manner as in Embodiment 2 in the longitudinal direction, and other manufacturing methods are the same as those in Embodiment 1. Therefore, the description is omitted.

【0035】まず、図6(a)に示すように波板状に形
成された絶縁性を有する固着用部材13の複数枚を等間
隔で重ね合わせた後、これらの固着用部材13の各凹部
13aに円柱状に形成されたP型及びN型の熱電素子部
材6a,6bを交互に挿入して保持させる(同図(b)
参照)。このように、波板状の固着用部材13を用いて
熱電素子部材6を束ねることにより、熱電素子部材6の
長手方向を一致させ且つ各熱電素子部材6間の絶縁距離
を均一にすることができる。
First, as shown in FIG. 6A, a plurality of insulating fixing members 13 formed in a corrugated plate shape are superposed at equal intervals, and then the respective concave portions of these fixing members 13 are stacked. Cylindrical P-type and N-type thermoelectric element members 6a and 6b are alternately inserted into and held by 13a (FIG. 2 (b)).
reference). In this way, by bundling the thermoelectric element members 6 using the corrugated plate-shaped fixing member 13, the longitudinal directions of the thermoelectric element members 6 can be aligned and the insulation distances between the thermoelectric element members 6 can be made uniform. it can.

【0036】次に、同図(c)に示すように固着用部材
13によって多数の熱電素子部材6を束ねたものを函形
の固着用容器14の中に収納し、この固着用容器14の
中に絶縁性を有する熱硬化性樹脂のような固着材5を流
し込み(同図(d)参照)、固化させる。なお、波板状
の固着用部材13を形成する素材は、熱的及び電気的に
絶縁性が高いものを用い、次工程で用いる固着材5と同
一の材質であることが望ましい。
Next, as shown in FIG. 3C, a plurality of thermoelectric element members 6 bundled by the fixing member 13 are housed in a box-shaped fixing container 14, and the fixing container 14 is A fixing material 5 such as a thermosetting resin having an insulating property is poured into the inside (see (d) of the same figure) to be solidified. In addition, it is preferable that the material forming the corrugated plate-shaped fixing member 13 has a high thermal and electrical insulating property and is the same as the fixing material 5 used in the next step.

【0037】上述のように、多数の熱電素子部材6を波
板状の固着用部材13を用いて束ねるようにしたため、
熱電素子部材6を束ねた際に熱電素子部材6間の絶縁距
離を均一にすることができるとともに、その後の電極形
成の工程におけるパターニングを容易にすることができ
る。 (実施形態4)上記実施形態1〜3では、めっき等によ
り熱電素子チップAの切断面に電極2を形成している
が、電極2と熱電素子1との密着力が充分でない場合に
は、リード電極4にリード線3を半田付けする工程で発
生する熱により、電極2と熱電素子1の密着力が低下
し、電極2が電極形成面(切断面)から剥離しやすくな
るために導電不良になる危険性があり、熱電モジュール
の信頼性を低下させる要因となる。
As described above, since a large number of thermoelectric element members 6 are bundled by using the corrugated plate-shaped fixing member 13,
When the thermoelectric element members 6 are bundled, the insulation distance between the thermoelectric element members 6 can be made uniform, and patterning in the subsequent electrode forming step can be facilitated. (Embodiment 4) In Embodiments 1 to 3 above, the electrode 2 is formed on the cut surface of the thermoelectric element chip A by plating or the like, but when the adhesion between the electrode 2 and the thermoelectric element 1 is not sufficient, Due to the heat generated in the process of soldering the lead wire 3 to the lead electrode 4, the adhesion between the electrode 2 and the thermoelectric element 1 is reduced, and the electrode 2 is easily separated from the electrode forming surface (cut surface), resulting in poor conductivity. There is a risk that it will become a factor that reduces the reliability of the thermoelectric module.

【0038】そこで、本実施形態では、図7(a)に示
すように多数の熱電素子部材6を束ねて固着する際に、
角柱状に形成された一対の金属部材15を熱電素子部材
6と一緒に束ねて固着するようにしている。そして、固
着後に切断して熱電素子チップAを形成し(同図(b)
参照)、この熱電素子チップAの切断面をメタライズす
るとともにパターニングを行って電極2及びリード電極
4を形成している(同図(c)参照)。このとき、リー
ド線3の半田付けはリード電極4のうちの金属部材15
上に形成された部分に行われるため(同図(d)参
照)、熱電素子1と電極2の密着力に影響を与えること
がなく、電極2と熱電素子1間の剥離による導通不良を
生じさせないようにすることができる。なお、金属部材
15の形状は特に限定されず、例えば円柱状などの任意
の形状のものが適用できる。
Therefore, in this embodiment, when a large number of thermoelectric element members 6 are bundled and fixed as shown in FIG.
A pair of prismatic metal members 15 are bundled and fixed together with the thermoelectric element member 6. Then, after fixing, cutting is performed to form a thermoelectric element chip A (see FIG.
Then, the cut surface of the thermoelectric element chip A is metallized and patterned to form the electrode 2 and the lead electrode 4 (see FIG. 7C). At this time, the lead wire 3 is soldered by the metal member 15 of the lead electrode 4.
Since it is performed on the portion formed above (see (d) of the same figure), it does not affect the adhesion force between the thermoelectric element 1 and the electrode 2 and causes conduction failure due to peeling between the electrode 2 and the thermoelectric element 1. You can prevent it. The shape of the metal member 15 is not particularly limited, and any shape such as a cylindrical shape can be applied.

【0039】また、図8に示すように、リード線3とリ
ード電極4の半田付け工程時に発生する熱短絡防止のた
めに、熱電素子チップAの金属部材15の部分Bを片面
側より厚み方向に矩形状に切取り、熱短絡防止のための
凹部16を形成してもよい。そして、この凹部16の底
面にある金属部材15にリード線3を半田付けするので
ある。なお、凹部16の深さ寸法は、予め予想される半
田の肉盛りの厚さより大きく且つ熱電モジュールの構造
が損なわれない程度の大きさにするのが望ましい。
Further, as shown in FIG. 8, in order to prevent a thermal short circuit occurring during the soldering process of the lead wire 3 and the lead electrode 4, the portion B of the metal member 15 of the thermoelectric element chip A is arranged in the thickness direction from one side. It may be cut in a rectangular shape to form the concave portion 16 for preventing a thermal short circuit. Then, the lead wire 3 is soldered to the metal member 15 on the bottom surface of the recess 16. In addition, it is desirable that the depth dimension of the recess 16 is larger than the thickness of the build-up of the solder that is expected in advance and that the structure of the thermoelectric module is not damaged.

【0040】すなわち、リード電極4にリード線3を半
田付けする際、あるいはリード電極4に大電流が流れた
場合のリード電極4の温度上昇により、熱電素子1の間
に介在する合成樹脂から成る固着材5の断熱効果が低下
し、隣接する熱電素子1間の熱短絡が生じやすいのであ
るが、上記のようにリード電極4の部分に凹部16を形
成することにより、リード電極4の温度上昇の影響が熱
電素子1間に介在する固着材5に及び難くなり、熱短絡
を防止することができる。これと同時に、リード線3を
リード電極4に半田付けする時の半田の肉盛りがあって
も、半田の肉盛り部分が凹部16内に収まるために切断
面から突出することがなく、熱電素子チップAの外表面
(電極形成面)を平坦に保つことができ、熱電素子チッ
プAの電極形成面への熱交換基板11の取着が容易にな
るものである。
That is, when the lead wire 3 is soldered to the lead electrode 4 or when the temperature of the lead electrode 4 rises when a large current flows through the lead electrode 4, it is made of a synthetic resin interposed between the thermoelectric elements 1. Although the heat insulating effect of the fixing material 5 is deteriorated and a thermal short circuit between adjacent thermoelectric elements 1 is likely to occur, the temperature rise of the lead electrode 4 is caused by forming the recess 16 in the portion of the lead electrode 4 as described above. Is less likely to affect the fixing material 5 interposed between the thermoelectric elements 1 and a thermal short circuit can be prevented. At the same time, even if there is build-up of solder when soldering the lead wire 3 to the lead electrode 4, the build-up portion of solder does not protrude from the cut surface because it fits inside the recess 16, and the thermoelectric element The outer surface (electrode formation surface) of the chip A can be kept flat, and the heat exchange substrate 11 can be easily attached to the electrode formation surface of the thermoelectric element chip A.

【0041】(実施形態5)本実施形態は、熱電素子1
と電極2との密着力を高めるための方法に特徴を有し、
電極形成工程の前処理として熱電素子チップAの電極形
成面に対して表面清浄化処理と表面粗化処理を行い、ス
パッタ層8若しくは導電ペースト10と熱電素子1との
密着力の向上を図っている。なお、それ以外の製造方法
等については実施形態1と共通であるから説明は省略す
る。
(Embodiment 5) This embodiment is a thermoelectric element 1
Characterized by a method for increasing the adhesion between the electrode 2 and the electrode 2,
As a pretreatment of the electrode forming step, a surface cleaning treatment and a surface roughening treatment are performed on the electrode forming surface of the thermoelectric element chip A to improve the adhesion between the sputter layer 8 or the conductive paste 10 and the thermoelectric element 1. There is. Note that the other manufacturing methods and the like are the same as those in the first embodiment, and therefore description thereof will be omitted.

【0042】すなわち、図9(a)に示すように熱電素
子チップAの切断面(電極形成面)の熱電素子1部分に
は、切断時の熱の影響による脆弱な変質層17が生じる
場合があり、次工程でスパッタリング、めっき等により
変質層17の上に電極2を形成すると、熱電素子1と電
極2との密着力が不足してしまう。そこで、本実施形態
では、図9(b)に示すように、薬液処理やボンバード
照射あるいはサンドブラスト処理等の方法で熱電素子チ
ップAの切断面に生じた変質層17を除去し、切断面の
表面を清浄化した後で電極2の形成を行うようにしてい
る。この場合、上記処理によって変質層17が除去され
るのみならず、残った熱電素子チップAの電極形成面が
表面粗化されることになり、これによっても熱電素子1
と電極2との密着力を高めることができる。
That is, as shown in FIG. 9A, a fragile altered layer 17 may be formed in the thermoelectric element 1 portion of the cut surface (electrode forming surface) of the thermoelectric element chip A due to the influence of heat during cutting. Therefore, if the electrode 2 is formed on the altered layer 17 by sputtering or plating in the next step, the adhesion between the thermoelectric element 1 and the electrode 2 becomes insufficient. Therefore, in the present embodiment, as shown in FIG. 9B, the deteriorated layer 17 generated on the cut surface of the thermoelectric element chip A is removed by a method such as chemical treatment, bombard irradiation, or sandblasting, and the surface of the cut surface is removed. The electrode 2 is formed after cleaning the electrode. In this case, not only the deteriorated layer 17 is removed by the above-mentioned treatment, but also the electrode forming surface of the remaining thermoelectric element chip A is roughened, which also causes the thermoelectric element 1 to be roughened.
It is possible to enhance the adhesion between the electrode 2 and the electrode 2.

【0043】上述のように、熱電素子チップAの切断面
(電極形成面)に薬液処理やボンバード照射あるいはサ
ンドブラスト処理を行うことによって、切断によって生
じた脆弱な変質層17を除去して表面清浄化ができると
同時に、表面粗化を行うことができ、熱電素子1と電極
2との密着力を高めることが可能となる。 (実施形態6)本実施形態は、熱電素子チップAの切断
面(電極形成面)の表面粗化の方法に特徴を有するもの
であり、図10(a)に示すように、熱電素子チップA
の電極形成面にイオンビーム照射やレーザ照射あるいは
プラズマエッチング等の処理を施し、切断時に生じた熱
電素子チップAの切断面の変質層17の除去と電極形成
面の表面粗化とを同時に行うものである。なお、プラズ
マエッチングの処理については、例えばアルゴンや窒素
等の雰囲気中で行う。
As described above, the cut surface (electrode forming surface) of the thermoelectric element chip A is subjected to chemical treatment, bombard irradiation or sand blast treatment to remove the fragile alteration layer 17 caused by the cutting to clean the surface. At the same time, the surface can be roughened, and the adhesion between the thermoelectric element 1 and the electrode 2 can be increased. (Embodiment 6) This embodiment is characterized by a method of roughening the surface of the cut surface (electrode forming surface) of the thermoelectric element chip A, and as shown in FIG.
The electrode formation surface is subjected to a treatment such as ion beam irradiation, laser irradiation, or plasma etching to simultaneously remove the altered layer 17 on the cut surface of the thermoelectric element chip A and roughen the electrode formation surface at the time of cutting. Is. The plasma etching process is performed in an atmosphere of, for example, argon or nitrogen.

【0044】同図(b)に示すように、表面粗化させた
熱電素子チップAの電極形成面にスパッタリングや導電
ペースト塗布等の方法で電極形成を行うことにより、表
面粗化によるアンカー効果によってスパッタ層8あるい
は導電ペースト層11と熱電素子1との密着力を向上さ
せることができる。なお、他の製造方法等については実
施形態1と同様であるから説明は省略する。
As shown in FIG. 3B, by forming electrodes on the electrode-formed surface of the thermoelectric element chip A whose surface has been roughened by a method such as sputtering or coating with a conductive paste, the anchor effect due to the surface roughening is obtained. The adhesion between the sputter layer 8 or the conductive paste layer 11 and the thermoelectric element 1 can be improved. Note that other manufacturing methods and the like are the same as those in the first embodiment, and therefore description thereof will be omitted.

【0045】(実施形態7)上記実施形態6のように熱
電素子チップAの電極形成面にイオンビームやレーザを
照射して表面清浄化と表面粗化とを同時に行う場合に、
イオンビームやレーザのエネルギーによって固着材5に
クラック等の材料損傷が発生することがある。
(Embodiment 7) As in Embodiment 6, when the electrode forming surface of the thermoelectric element chip A is irradiated with an ion beam or a laser to carry out surface cleaning and surface roughening at the same time,
Material damage such as cracks may occur in the fixing material 5 due to the energy of the ion beam or the laser.

【0046】そこで、本実施形態においては、イオンビ
ームやレーザ照射による固着材5の損傷を防止するた
め、図11(b)に示すように、熱電素子チップAの電
極形成面にスパッタリングや導電ペースト塗布によって
保護膜18を形成し、さらに同図(c)に示すように電
極2を形成する箇所の保護膜18のみを除去した後、同
図(d)及び(e)に示すように表面粗化あるいは表面
清浄化を行う。すなわち、電極2が形成されない固着材
5の表面は残った保護膜18によって保護されるため、
イオンビームやレーザ照射による固着材5の材料損傷の
発生が防止できる。
Therefore, in the present embodiment, in order to prevent the fixing material 5 from being damaged by ion beam or laser irradiation, as shown in FIG. 11B, sputtering or conductive paste is applied to the electrode forming surface of the thermoelectric element chip A. After forming the protective film 18 by coating, and further removing only the protective film 18 at the portion where the electrode 2 is formed as shown in FIG. 7C, the surface roughness is obtained as shown in FIGS. Or surface cleaning. That is, since the surface of the fixing material 5 on which the electrode 2 is not formed is protected by the remaining protective film 18,
It is possible to prevent the material of the fixing material 5 from being damaged by the irradiation of the ion beam or the laser.

【0047】上述のように、本実施形態によれば、表面
粗化あるいは表面清浄化の際に固着材5を保護膜18に
よって保護するようにしたため、固着材5の損傷を防止
しながら熱電素子1と電極2の密着力を向上させること
ができる。 (実施形態8)ところで、熱電素子チップAの電極形成
面をメタライズする際に使用する金属材料(例えば、C
u等)の材質によっては、熱電素子中への拡散速度が速
いために熱電素子中への電極材料の拡散が進行し、熱電
素子自体の熱的及び電気的性能が劣化すると同時に熱電
素子と電極の密着力が低下して、熱電モジュールの信頼
性が低下してしまう危険性がある。
As described above, according to this embodiment, the fixing material 5 is protected by the protective film 18 at the time of surface roughening or surface cleaning. Therefore, the fixing material 5 is prevented from being damaged and the thermoelectric element is protected. The adhesion between the electrode 1 and the electrode 2 can be improved. (Embodiment 8) By the way, a metal material (for example, C) used when metallizing the electrode formation surface of the thermoelectric element chip A is used.
Depending on the material (such as u), the diffusion rate of the electrode material into the thermoelectric element progresses because the diffusion speed into the thermoelectric element is high, and the thermal and electrical performance of the thermoelectric element itself deteriorates, and at the same time the thermoelectric element and the electrode There is a risk that the adhesion of the thermoelectric module will be reduced and the reliability of the thermoelectric module will be reduced.

【0048】そこで、本実施形態では、かかる熱電モジ
ュールの熱的及び電気的性能の劣化と熱電素子と電極の
密着力の劣化とを同時に防止するため、図12に示すよ
うに、電極形成面にスパッタリングによるメタライズを
行う前に、例えばNiやAlのような熱電素子中にほと
んど拡散しない材質をスパッタ材として用いてスパッタ
リングを行い、切断面の表面に0.1〜0.5μm程度
の膜厚を有するバリア層19を形成している(同図
(b)参照)。そして、このバリア層19の上からCu
等の金属材料をスパッタリングしてメタライズし(同図
(c)参照)、さらに上述の電極形成工程と同様のパタ
ーニング(同図(d)参照)、めっき等(同図(e)参
照)の処理を施して電極2を形成するものである。
Therefore, in the present embodiment, in order to prevent the deterioration of the thermal and electrical performance of such a thermoelectric module and the deterioration of the adhesive force between the thermoelectric element and the electrode at the same time, as shown in FIG. Before performing metallization by sputtering, sputtering is performed using a material such as Ni or Al that hardly diffuses in the thermoelectric element as a sputtering material, and a film thickness of about 0.1 to 0.5 μm is formed on the cut surface. The barrier layer 19 which it has is formed (refer to the figure (b)). Then, from above the barrier layer 19, Cu
And metallizing by sputtering metal materials (see FIG. 2C), and patterning (see FIG. 2D) and plating (see FIG. 2E) similar to the above-described electrode forming step. To form the electrode 2.

【0049】上述のように、本実施形態によれば、熱電
素子チップAの電極形成面に形成したバリア層19によ
って、電極形成用のスパッタ層8が熱電素子中に拡散す
るのを防いで、電極形成工程における熱電素子1の熱的
及び電気的性能の劣化が防止できる。さらに、予め切断
面の表面清浄化並びに表面粗化を行った後で上記バリア
層19を形成することにより、熱電素子1の熱的及び電
気的性能劣化の防止と同時に、熱電素子1と電極2との
密着力の向上を図ることができる。
As described above, according to this embodiment, the barrier layer 19 formed on the electrode forming surface of the thermoelectric element chip A prevents the sputtering layer 8 for electrode formation from diffusing into the thermoelectric element, It is possible to prevent the thermal and electrical performances of the thermoelectric element 1 from deteriorating in the electrode forming step. Further, the barrier layer 19 is formed after the surface of the cut surface is cleaned and roughened in advance, so that the thermal and electrical performance of the thermoelectric element 1 is prevented from being deteriorated, and at the same time, the thermoelectric element 1 and the electrode 2 are prevented. It is possible to improve the adhesiveness with.

【0050】(実施形態9)本実施形態は、電極と熱電
素子の密着力を向上させるための方法に特徴を有するも
のであって、それ以外の製造方法等については実施形態
1と共通であるから説明は省略する。図13及び図14
に示すように、熱電素子チップAの表裏両面に形成され
た電極2の両端部であって固着材5と接している箇所
に、固着材5にまで達する挿通孔21を穿孔し、この挿
通孔21に固定ピン20を挿通している。なお、固定ピ
ン20は熱短絡を防止するために合成樹脂により形成し
てある。
(Embodiment 9) This embodiment is characterized by a method for improving the adhesion between the electrode and the thermoelectric element, and other manufacturing methods and the like are the same as those of the first embodiment. The description is omitted. 13 and 14
As shown in FIG. 3, at both end portions of the electrodes 2 formed on both front and back surfaces of the thermoelectric element chip A, the insertion holes 21 reaching the fixing material 5 are punched at the positions in contact with the fixing material 5. The fixing pin 20 is inserted through 21. The fixing pin 20 is made of synthetic resin to prevent a thermal short circuit.

【0051】本実施形態では、電極2を固定ピン20に
よって固着材5に固定しているため、そのピン止め効果
によって電極2と熱電素子1との密着力を補強すること
ができ、電極2が電極形成面から剥離し難い構造を得る
ことができる。 (実施形態10)本実施形態は実施形態9と同様に、電
極2と熱電素子1の密着力を向上させるための方法に特
徴を有するものであって、それ以外の製造方法等につい
ては実施形態1と共通であるから説明は省略する。
In the present embodiment, since the electrode 2 is fixed to the fixing material 5 by the fixing pin 20, the pinning effect can reinforce the adhesion between the electrode 2 and the thermoelectric element 1, and the electrode 2 It is possible to obtain a structure that is difficult to peel off from the electrode formation surface. (Embodiment 10) This embodiment is similar to Embodiment 9 in that it is characterized by a method for improving the adhesive force between the electrode 2 and the thermoelectric element 1. The description is omitted because it is the same as 1.

【0052】図15に示すように、本実施形態では熱電
素子チップAの電極形成面における固着材5の部分を機
械的な手段(例えば、鋸刃など)Cによって切削するこ
とにより、電極形成面における熱電素子1と固着材5と
の間に段差22を形成している。このように、熱電素子
1と固着材5との間に段差22を設けることにより(同
図(b)及び(c)参照)、熱電素子チップAの表裏両
側の電極形成面において熱電素子1の部分の方が固着材
5より突出し、電極2の端部を電極形成面から浮かせな
いようにして電極2が電極形成面から剥離し難い構造を
得ることができる。そして、上記実施形態1と同様な方
法で切断面(電極形成面)のメタライズ処理及びパター
ニングを行って電極2を形成するものである(同図
(d)及び(e)参照)。
As shown in FIG. 15, in the present embodiment, the portion of the fixing material 5 on the electrode forming surface of the thermoelectric element chip A is cut by a mechanical means (for example, a saw blade) C to form an electrode forming surface. A step 22 is formed between the thermoelectric element 1 and the fixing material 5 in FIG. In this way, by providing the step 22 between the thermoelectric element 1 and the fixing material 5 (see (b) and (c) of the same figure), the thermoelectric element 1 can be formed on both sides of the thermoelectric element chip A. It is possible to obtain a structure in which the electrode 2 does not easily peel off from the electrode forming surface by preventing the end portion of the electrode 2 from floating above the electrode forming surface because the portion protrudes from the fixing material 5. Then, the cut surface (electrode formation surface) is metallized and patterned in the same manner as in Embodiment 1 to form the electrode 2 (see (d) and (e) of the same figure).

【0053】(実施形態11)本実施形態は、電極2と
熱電素子1の剥離を防止するための方法に特徴を有する
ものであって、それ以外の製造方法等については実施形
態1と共通であるから説明は省略する。図16に示すよ
うに、本実施形態では熱電素子チップAの表裏両側に形
成する電極2の端面全てが、熱電素子1a,1bと固着
材5の境界よりも固着材5側に張り出すように電極2を
形成する。このように電極2の端面を固着材5に接触さ
せることによって熱電素子1と電極2との接着力を補強
し、電極2が電極形成面から剥離し難い構造を得ること
ができる。
(Embodiment 11) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from peeling off, and other manufacturing methods and the like are the same as those in the first embodiment. Therefore, the description is omitted. As shown in FIG. 16, in the present embodiment, all the end faces of the electrodes 2 formed on both front and back sides of the thermoelectric element chip A are projected to the fixing material 5 side beyond the boundary between the thermoelectric elements 1a and 1b and the fixing material 5. The electrode 2 is formed. By thus bringing the end surface of the electrode 2 into contact with the fixing material 5, it is possible to reinforce the adhesive force between the thermoelectric element 1 and the electrode 2, and to obtain a structure in which the electrode 2 is difficult to peel off from the electrode formation surface.

【0054】(実施形態12)本実施形態は、実施形態
11と同様に電極2と熱電素子1の剥離を防止するため
の方法に特徴を有するものであって、それ以外の製造方
法等については実施形態1と共通であるから説明は省略
する。図17及び図18に示すように本実施形態は、熱
電素子チップAの電極形成面に電極2を形成した後(図
17(a)(b)及び図18(b)参照)、電極2の上
から熱電素子チップAの電極形成面(切断面)の全面に
エポキシ・ポリイミド等の合成樹脂を塗布し(図17
(c)参照)、熱を加えることで上記合成樹脂を硬化さ
せて補強層23を形成する(図17(d)及び図18
(c)参照)。さらに補強層23の上に熱交換基板11
を接合して熱電モジュールが完成する(図17(e)参
照)。
(Embodiment 12) This embodiment has a feature in a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other, as in Embodiment 11. The description is omitted because it is common to the first embodiment. As shown in FIGS. 17 and 18, in the present embodiment, after the electrode 2 is formed on the electrode formation surface of the thermoelectric element chip A (see FIGS. 17 (a) (b) and 18 (b)), the electrode 2 A synthetic resin such as epoxy or polyimide is applied to the entire surface of the electrode formation surface (cut surface) of the thermoelectric element chip A from above (see FIG. 17).
(C)), the synthetic resin is cured by applying heat to form the reinforcing layer 23 (FIGS. 17D and 18).
(C)). Further, on the reinforcing layer 23, the heat exchange substrate 11
Are joined together to complete the thermoelectric module (see FIG. 17E).

【0055】本実施形態によれば、電極2の上から熱電
素子チップAの電極形成面に合成樹脂を塗布して補強層
23を形成することにより、補強層23が熱電素子1と
電極2とを接着する接着剤の役割を担うことで熱電素子
1と電極2の密着力を補強することができ、その結果、
熱電素子1と電極2の剥離を防止することができるので
ある。
According to the present embodiment, the reinforcing layer 23 is formed on the electrode forming surface of the thermoelectric element chip A from above the electrode 2 to form the reinforcing layer 23. Adhesion between the thermoelectric element 1 and the electrode 2 can be reinforced by playing the role of an adhesive for bonding the
The peeling of the thermoelectric element 1 and the electrode 2 can be prevented.

【0056】(実施形態13)本実施形態は、実施形態
11及び12と同様に電極2と熱電素子1の剥離を防止
するための方法に特徴を有するものであって、それ以外
の製造方法等については実施形態1と共通であるから説
明は省略する。図19に示すように、熱電素子チップA
の電極形成面に電極2を形成した後(同図(a)参
照)、電極2の上から熱電素子チップAの電極形成面
(切断面)の全面に絶縁性を有するシート状の樹脂部材
24を接着する(同図(b)参照)。そして、圧延ロー
ラ25を用いて樹脂部材24を電極2並びに固着材5に
圧着し(同図(c)参照)、その後に熱を加えることで
樹脂部材24を硬化させる(同図(d)参照)。このと
き、固着材5の部分には後述する断熱部26となる空間
が形成される。さらに樹脂部材24の上に熱交換基板1
1を接合して熱電モジュールが完成する(同図(e)参
照)。そして、熱交換基板11と樹脂部材24の固着材
5の部分に形成された空間に空気が充満されて断熱部2
6が形成され、この断熱部26によって両端切断面から
の熱リークを減少させることができる。なお、本実施形
態における樹脂部材24にはエポキシ・ポリイミド・ポ
リカーボネイト等を用いればよい。
(Embodiment 13) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other, as in Embodiments 11 and 12, and other manufacturing methods and the like. Since those are common to the first embodiment, description thereof will be omitted. As shown in FIG. 19, the thermoelectric element chip A
After forming the electrode 2 on the electrode forming surface (see FIG. 10A), a sheet-shaped resin member 24 having an insulating property is formed on the entire surface of the electrode forming surface (cut surface) of the thermoelectric element chip A from above the electrode 2. Are adhered (see (b) of the same figure). Then, the resin member 24 is pressure-bonded to the electrode 2 and the fixing material 5 by using the rolling roller 25 (see FIG. 6 (c)), and then the resin member 24 is cured by applying heat (see FIG. 4 (d)). ). At this time, a space serving as a heat insulating portion 26 described later is formed in the fixing material 5. Further, the heat exchange substrate 1 is placed on the resin member 24.
1 is joined to complete the thermoelectric module (see (e) in the same figure). Then, the space formed between the heat exchange substrate 11 and the fixing member 5 of the resin member 24 is filled with air, so that the heat insulating portion 2
6 is formed, and this heat insulating portion 26 can reduce heat leakage from the cut surfaces at both ends. The resin member 24 in this embodiment may be made of epoxy, polyimide, polycarbonate or the like.

【0057】本実施形態によれば、電極2の上から熱電
素子チップAの電極形成面にシート状の樹脂部材24を
接着することにより、樹脂部材24が熱電素子1と電極
2とを接着する接着剤の役割を担うことで熱電素子1と
電極2の密着力を補強することができ、その結果、熱電
素子1と電極2の剥離を防止することができるのであ
る。また、絶縁性を有する樹脂部材24によって熱電素
子チップAと熱交換基板11の間の電気絶縁性を向上さ
せることができるという利点もある。
According to this embodiment, the sheet-shaped resin member 24 is adhered to the electrode forming surface of the thermoelectric element chip A from above the electrode 2, so that the resin member 24 adheres the thermoelectric element 1 and the electrode 2. Adhesion between the thermoelectric element 1 and the electrode 2 can be reinforced by playing the role of an adhesive, and as a result, peeling of the thermoelectric element 1 and the electrode 2 can be prevented. There is also an advantage that the insulating resin member 24 can improve the electrical insulation between the thermoelectric element chip A and the heat exchange substrate 11.

【0058】(実施形態14)本実施形態は、実施形態
11〜13と同様に電極2と熱電素子1の剥離を防止す
るための方法に特徴を有するものであって、それ以外の
製造方法等については実施形態1と共通であるから説明
は省略する。本実施形態では、図20に示すように熱電
素子チップAの電極形成面に電極2を形成する前に、熱
電素子1と固着材5との接着部分近傍の固着材5にダイ
シング加工によって溝27を設け(同図(a)(b)参
照)、その後、熱電素子チップAの電極形成面に電極2
を形成するようにしている(同図(c)参照)。すなわ
ち、溝27によって電極形成面の面積が大きくなるから
電極2と固着材5との接触面積が増大し、熱電素子1と
電極2の密着力を補強することができ、その結果、熱電
素子1と電極2の剥離を防止することができるのであ
る。
(Fourteenth Embodiment) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other as in the case of the eleventh to thirteenth embodiments, and other manufacturing methods and the like. Since those are common to the first embodiment, description thereof will be omitted. In the present embodiment, as shown in FIG. 20, before forming the electrode 2 on the electrode formation surface of the thermoelectric element chip A, the groove 27 is formed in the fixing material 5 near the bonding portion between the thermoelectric element 1 and the fixing material 5 by dicing. (See (a) and (b) of the same figure), and then the electrode 2 is formed on the electrode formation surface of the thermoelectric element chip A.
Are formed (see (c) in the figure). That is, since the area of the electrode forming surface is increased by the groove 27, the contact area between the electrode 2 and the fixing material 5 is increased, and the adhesive force between the thermoelectric element 1 and the electrode 2 can be reinforced, and as a result, the thermoelectric element 1 Therefore, peeling of the electrode 2 can be prevented.

【0059】(実施形態15)本実施形態は、実施形態
11〜14と同様に電極2と熱電素子1の剥離を防止す
るための方法に特徴を有するものであって、それ以外の
製造方法等については実施形態1と共通であるから説明
は省略する。本実施形態では、図21に示すように熱電
素子チップAの電極形成面に電極2を形成する前に、熱
電素子1と固着材5との接着部分近傍の熱電素子1a,
1bに図22に示すようなダイシング加工によって溝2
8を設け(図21(a)(b)参照)、その後、熱電素
子チップAの電極形成面に電極2を形成するようにして
いる(同図(c)参照)。すなわち、溝28によって電
極形成面の面積が大きくなるから電極2と固着材5との
接触面積が増大し、熱電素子1と電極2の密着力を補強
することができ、その結果、熱電素子1と電極2の剥離
を防止することができるのである。
(Embodiment 15) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other, as in Embodiments 11 to 14, and other manufacturing methods and the like. Since those are common to the first embodiment, description thereof will be omitted. In the present embodiment, as shown in FIG. 21, before forming the electrode 2 on the electrode formation surface of the thermoelectric element chip A, the thermoelectric element 1a near the bonding portion between the thermoelectric element 1 and the fixing material 5,
Groove 1b is formed by dicing as shown in FIG.
8 are provided (see FIGS. 21A and 21B), and then the electrode 2 is formed on the electrode formation surface of the thermoelectric element chip A (see FIG. 21C). That is, since the area of the electrode forming surface is increased by the groove 28, the contact area between the electrode 2 and the fixing material 5 is increased, and the adhesive force between the thermoelectric element 1 and the electrode 2 can be reinforced, and as a result, the thermoelectric element 1 Therefore, peeling of the electrode 2 can be prevented.

【0060】(実施形態16)本実施形態は、実施形態
11〜15と同様に電極2と熱電素子1の剥離を防止す
るための方法に特徴を有するものであって、それ以外の
製造方法等については実施形態1と共通であるから説明
は省略する。図23に示すように、熱電素子チップAの
電極形成面に電極2を形成した後(同図(a)参照)、
固着材5の部分にマスク層29を形成し、電極2の上か
ら熱電素子チップAの電極形成面(切断面)の全面にエ
ポキシ・フェノール・ポリイミド等の合成樹脂30を塗
布する(同図(b)参照)。そして、マスク層29を除
去した後、熱を加えることで合成樹脂30を硬化させる
(同図(c)参照)。このとき、固着材5の部分には断
熱部26となる空間が形成される。さらに合成樹脂30
の上に熱交換基板11を接合して熱電モジュールが完成
する(同図(d)参照)。ここで、合成樹脂30の材料
は電極2の熱膨張率を熱電素子1と同程度に近づけるこ
とができるようなものを選択する。なお、電極2の熱膨
張率を熱電素子1と同程度に近づけることができるもの
であれば、合成樹脂30に限らず金属等であってもよ
く、また、電極2に接着する方法もスパッタや融着等の
方法が採用可能である。
(Embodiment 16) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other, as in Embodiments 11 to 15, and other manufacturing methods and the like. Since those are common to the first embodiment, description thereof will be omitted. As shown in FIG. 23, after forming the electrode 2 on the electrode formation surface of the thermoelectric element chip A (see FIG. 23A),
A mask layer 29 is formed on the portion of the fixing material 5, and a synthetic resin 30 such as epoxy, phenol, or polyimide is applied from above the electrode 2 to the entire electrode formation surface (cut surface) of the thermoelectric element chip A (see the same figure ( See b)). Then, after removing the mask layer 29, heat is applied to cure the synthetic resin 30 (see FIG. 7C). At this time, a space serving as the heat insulating portion 26 is formed in the fixing material 5. Further synthetic resin 30
The heat exchange substrate 11 is bonded onto the above to complete the thermoelectric module (see FIG. 3D). Here, the material of the synthetic resin 30 is selected so that the coefficient of thermal expansion of the electrode 2 can be made close to that of the thermoelectric element 1. The electrode 2 is not limited to the synthetic resin 30 and may be metal or the like as long as the coefficient of thermal expansion of the electrode 2 can be approximated to the same level as that of the thermoelectric element 1. Further, the method of adhering to the electrode 2 may be sputtering or sputtering. A method such as fusion bonding can be adopted.

【0061】本実施形態によれば、電極2の上に合成樹
脂30を接着することで電極2の熱膨張率を大きくして
熱電素子1又は固着材5との熱膨張の差を小さくするこ
とができ、その結果、熱電素子1と電極2の剥離を防止
することができるのである。 (実施形態17)本実施形態は、実施形態11〜16と
同様に電極2と熱電素子1の剥離を防止するための方法
に特徴を有するものであって、それ以外の製造方法等に
ついては実施形態1と共通であるから説明は省略する。
すなわち、本実施形態は、熱電素子1と電極2の間に、
熱電素子1a,1bを構成する材料と電極2を構成する
材料(電極材)とを所定の割合で含む1又は複数の中間
層31を設ける点に特徴がある。
According to the present embodiment, the coefficient of thermal expansion of the electrode 2 is increased by adhering the synthetic resin 30 onto the electrode 2 to reduce the difference in thermal expansion from the thermoelectric element 1 or the fixing material 5. As a result, peeling of the thermoelectric element 1 and the electrode 2 can be prevented. (Embodiment 17) This embodiment is characterized by a method for preventing peeling of the electrode 2 and the thermoelectric element 1 as in Embodiments 11 to 16, and other manufacturing methods and the like are carried out. The description is omitted because it is the same as the first embodiment.
That is, in the present embodiment, between the thermoelectric element 1 and the electrode 2,
It is characterized in that one or a plurality of intermediate layers 31 containing the material forming the thermoelectric elements 1a and 1b and the material forming the electrode 2 (electrode material) at a predetermined ratio are provided.

【0062】図24に示すように、熱電素子チップAの
電極形成面に電極2を形成する前に(同図(a)参
照)、例えばN型の熱電素子1b並びにそれと隣接する
固着材5をマスクするマスク層32を形成し、P型の熱
電素子部材と電極材とを所定の割合(例えば、1:1)
で含む材料を熱電素子チップAの電極形成面にスパッタ
リングして中間層31aを形成する(同図(b)参
照)。そして、マスク層32を除去した後、今度はP型
の熱電素子1a並びにそれと隣接する固着材5をマスク
するマスク層33を形成し、N型の熱電素子部材と電極
材とを所定の割合(例えば、1:1)で含む材料を熱電
素子チップAの電極形成面にスパッタリングして中間層
31bを形成する(同図(c)参照)。最後にマスク層
33を除去した後に中間層31a,31bの上に電極2
を形成する(同図(d)参照)。
As shown in FIG. 24, before forming the electrode 2 on the electrode forming surface of the thermoelectric element chip A (see FIG. 24A), for example, the N-type thermoelectric element 1b and the fixing material 5 adjacent thereto are attached. A mask layer 32 for masking is formed, and a P-type thermoelectric element member and an electrode material are provided in a predetermined ratio (for example, 1: 1).
The material containing (1) is sputtered on the electrode formation surface of the thermoelectric element chip A to form the intermediate layer 31a (see FIG. 3B). Then, after removing the mask layer 32, a mask layer 33 for masking the P-type thermoelectric element 1a and the adhering material 5 adjacent thereto is formed next time, and the N-type thermoelectric element member and the electrode material are provided at a predetermined ratio ( For example, the material containing 1: 1) is sputtered on the electrode formation surface of the thermoelectric element chip A to form the intermediate layer 31b (see FIG. 11C). Finally, after removing the mask layer 33, the electrode 2 is formed on the intermediate layers 31a and 31b.
Are formed (see FIG. 3D).

【0063】本実施形態によれば、熱電素子1a,1b
と電極2との間に、熱電素子1a,1bを構成する材料
と電極2を構成する材料(電極材)とを所定の割合で含
む中間層31を設けることによって、熱電素子1a,1
bから電極2までの材料組成が中間層31a,31bに
よって徐々に変化することになり、その結果、電極2と
熱電素子1a,1bの間の界面での応力集中を緩和させ
ることができる。なお、熱電素子1a,1bを構成する
材料と電極材との割合は本実施形態に限定されるもので
なく、また、中間層31も多層に形成するようにしても
よい。
According to this embodiment, the thermoelectric elements 1a and 1b are provided.
By providing the intermediate layer 31 containing the material forming the thermoelectric elements 1a and 1b and the material forming the electrode 2 (electrode material) at a predetermined ratio between the electrode and the electrode 2, the thermoelectric elements 1a and 1b
The material composition from b to the electrode 2 is gradually changed by the intermediate layers 31a and 31b, and as a result, stress concentration at the interface between the electrode 2 and the thermoelectric elements 1a and 1b can be relaxed. The ratio of the material forming the thermoelectric elements 1a and 1b to the electrode material is not limited to this embodiment, and the intermediate layer 31 may be formed in multiple layers.

【0064】(実施形態18)本実施形態は、実施形態
11〜17と同様に電極2と熱電素子1の剥離を防止す
るための方法に特徴を有するものであって、それ以外の
製造方法等については実施形態1と共通であるから説明
は省略する。図25に示すように、熱電素子チップAの
電極形成面に磁性体から成る電極2’を形成した後(同
図(a)参照)、電極2’の上に磁性流体34を塗布す
る(同図(b)参照)。そして、磁性流体34が塗布さ
れた熱電素子チップAの電極形成面に、磁性体から成る
熱交換基板11’を接着して熱電モジュールが完成する
(同図(c)(d)参照)。
(Embodiment 18) This embodiment is characterized by a method for preventing the electrode 2 and the thermoelectric element 1 from being separated from each other, as in Embodiments 11 to 17, and other manufacturing methods and the like. Since those are common to the first embodiment, description thereof will be omitted. As shown in FIG. 25, after forming the electrode 2 ′ made of a magnetic material on the electrode formation surface of the thermoelectric element chip A (see FIG. 25A), the magnetic fluid 34 is applied onto the electrode 2 ′ (the same). See FIG. (B)). Then, the heat exchange substrate 11 'made of a magnetic material is adhered to the electrode forming surface of the thermoelectric element chip A coated with the magnetic fluid 34 to complete the thermoelectric module (see (c) and (d) of the same figure).

【0065】本実施形態によれば、電極2’と熱交換基
板11’とを磁性体により形成するとともに、両者の間
に磁性流体34の層を介在させているので、熱電素子チ
ップAと熱交換基板11’との間の摩擦力を小さくする
ことができ、その結果、電極2’と熱電素子1との間の
界面にはたらくせん断応力を低減することができるとい
う利点がある。また、磁性流体34の層によって熱交換
基板11’との間の電気絶縁性を向上させることもでき
る。
According to the present embodiment, since the electrode 2'and the heat exchange substrate 11 'are formed of a magnetic material and the layer of the magnetic fluid 34 is interposed between them, the thermoelectric element chip A and the There is an advantage that the frictional force with the exchange substrate 11 ′ can be reduced, and as a result, the shear stress acting on the interface between the electrode 2 ′ and the thermoelectric element 1 can be reduced. In addition, the layer of the magnetic fluid 34 can also improve the electrical insulation between the heat exchange substrate 11 '.

【0066】(実施形態19)本実施形態は、熱電素子
チップAの電極形成面の表面粗化とバリア層の形成とを
同時に行なう点に特徴を有するものである。図26に示
すように、タンタル(Ta)やモリブデン(Mo)等の
研磨材35と、アルミニウム(Al)やニッケル(N
i)等の溶融バリア層材36とを熱電素子チップAの電
極形成面に溶射する(同図(a)(b)参照)。このと
き、溶射温度はバリア層材36の融点よりも高く且つ研
磨材35の融点よりも低い温度とする。さらに、溶射の
初期にはバリア層材36の溶射割合を比較的に低くして
おき、溶射の時間経過とともにバリア層材36の溶射割
合を徐々に増加させる(同図(c)参照)。これによ
り、溶射の初期段階では研磨材35によって熱電素子チ
ップAの電極形成面の表面粗化が主に行なわれ、溶射の
中期から後期段階ではバリア層材36によるバリア層3
7の形成が主に行なわれる。そして、バリア層37の上
に電極2を形成して熱電素子チップAが完成する(同図
(d)参照)。
(Embodiment 19) The present embodiment is characterized in that the surface roughening of the electrode forming surface of the thermoelectric element chip A and the formation of the barrier layer are performed simultaneously. As shown in FIG. 26, an abrasive 35 such as tantalum (Ta) or molybdenum (Mo) and aluminum (Al) or nickel (N) are used.
The molten barrier layer material 36 such as i) is sprayed on the electrode formation surface of the thermoelectric element chip A (see FIGS. 11A and 11B). At this time, the thermal spraying temperature is set to a temperature higher than the melting point of the barrier layer material 36 and lower than the melting point of the polishing material 35. Further, in the initial stage of thermal spraying, the thermal spraying ratio of the barrier layer material 36 is kept relatively low, and the thermal spraying ratio of the barrier layer material 36 is gradually increased with the lapse of the thermal spraying time (see FIG. 7C). As a result, the surface of the electrode forming surface of the thermoelectric element chip A is mainly roughened by the abrasive material 35 in the initial stage of thermal spraying, and the barrier layer 3 is formed by the barrier layer material 36 in the middle to late stages of thermal spraying.
The formation of 7 is mainly performed. Then, the electrode 2 is formed on the barrier layer 37 to complete the thermoelectric element chip A (see FIG. 3D).

【0067】上述のように、本実施形態によれば、電極
形成面を表面粗化することで熱電素子1と電極2との密
着力の向上が図れるとともに、電極形成面に形成したバ
リア層37によって電極形成用のスパッタ層が熱電素子
中に拡散するのを防いで、電極形成工程における熱電素
子1の熱的及び電気的性能の劣化が防止でき、しかも、
溶射によって表面粗化とバリア層37の形成とを同時に
行なうことで製造時間の短縮が可能となる。
As described above, according to the present embodiment, by roughening the surface on which the electrode is formed, the adhesion between the thermoelectric element 1 and the electrode 2 can be improved, and the barrier layer 37 formed on the surface on which the electrode is formed. This prevents the sputter layer for electrode formation from diffusing into the thermoelectric element, and can prevent deterioration of the thermal and electrical performance of the thermoelectric element 1 in the electrode forming step.
By simultaneously performing surface roughening and forming the barrier layer 37 by thermal spraying, the manufacturing time can be shortened.

【0068】(実施形態20)本実施形態は、固着材と
して内部に気泡を有する部材、例えば発泡性樹脂(発泡
ウレタン)や多孔質樹脂・セラミック等を用いた点に特
徴を有するものである。図27に示すように、発泡ウレ
タンのように内部に気泡38を有する部材を固着材5’
として用いて熱電素子チップAを形成する。このよう
に、固着材5’の内部に気泡38が存在すると、固着材
5’の部分からの切断面への熱の漏れを減少させること
ができる。また、固着材5’自体の熱膨張率が小さくな
るため、固着材5’と熱電素子1との界面にはたらくせ
ん断応力を低減することができる。さらに、気泡38を
有することで固着材5’の弾性率も低減でき、熱電モジ
ュールにはたらく応力を固着材5’で吸収することがで
きる。
(Embodiment 20) This embodiment is characterized in that a member having air bubbles inside, such as a foamable resin (foam urethane), a porous resin, or a ceramic is used as a fixing material. As shown in FIG. 27, a member having a bubble 38 inside such as urethane foam is fixed to the fixing material 5 '.
To be used as the thermoelectric element chip A. In this way, when the air bubbles 38 are present inside the fixing material 5 ′, it is possible to reduce heat leakage from the portion of the fixing material 5 ′ to the cut surface. Further, since the coefficient of thermal expansion of the fixing material 5 ′ itself becomes small, it is possible to reduce the shear stress acting on the interface between the fixing material 5 ′ and the thermoelectric element 1. Further, by having the bubbles 38, the elastic modulus of the fixing material 5'can be reduced, and the stress acting on the thermoelectric module can be absorbed by the fixing material 5 '.

【0069】[0069]

【発明の効果】請求項1の発明は、P型の熱電素子並び
にN型の熱電素子を互いに隣り合わせて配設するととも
にこれら熱電素子の表裏両側の面を導電性の電極により
接続し且つ両電極面上に熱交換基板を固定して成る熱電
モジュールであって、略棒状に形成され束ねられた複数
の熱電素子部材を長手方向に対して横断するように切断
するとともにこの切断面に電極を形成したので、熱電素
子部材の切断面の数が従来よりも少なくなるために切断
による熱電素子の割れの発生を減少させることができ、
また、多数の熱電素子部材を束ねて一括して切断するた
め、熱電モジュールの厚みを均一にすることができ、熱
交換基板との熱の授受を均一にすることができるという
効果がある。
According to the first aspect of the present invention, the P-type thermoelectric element and the N-type thermoelectric element are arranged adjacent to each other, and the front and back surfaces of these thermoelectric elements are connected by conductive electrodes and both electrodes are connected. A thermoelectric module in which a heat exchange substrate is fixed on a surface, and a plurality of substantially rod-shaped and bundled thermoelectric element members are cut so as to traverse the longitudinal direction, and electrodes are formed on the cut surface. Therefore, since the number of cut surfaces of the thermoelectric element member is smaller than the conventional one, it is possible to reduce the occurrence of cracking of the thermoelectric element due to cutting,
Further, since a large number of thermoelectric element members are bundled and cut together, there is an effect that the thickness of the thermoelectric module can be made uniform and the heat exchange with the heat exchange substrate can be made uniform.

【0070】請求項2の発明は、P型の熱電素子並びに
N型の熱電素子を互いに隣り合わせて配設するとともに
これら熱電素子の表裏両側の面を導電性の電極により接
続し且つ両電極面上に熱交換基板を固定して成る熱電モ
ジュールの製造方法であって、略棒状に形成した複数の
熱電素子部材を束ねる工程と、束ねた熱電素子部材を長
手方向に対して横断するように切断する工程と、この切
断面に電極を形成する工程とを有するので、熱電素子部
材の切断面の数が従来よりも少なくなるために切断によ
る熱電素子の割れの発生を減少させることができ、ま
た、多数の熱電素子部材を束ねて一括して切断するた
め、熱電モジュールの厚みを均一にすることができ、熱
交換基板との熱の授受を均一にすることができ、しか
も、熱電素子の切断面に電極を形成するため、熱電素子
と電極との接合強度が均一になり、歩留まり良く且つ低
い加工費で熱電モジュールを製造することができるとい
う効果がある。
According to a second aspect of the present invention, a P-type thermoelectric element and an N-type thermoelectric element are arranged adjacent to each other, and the front and back surfaces of these thermoelectric elements are connected by conductive electrodes and on both electrode surfaces. A method of manufacturing a thermoelectric module comprising fixing a heat exchange substrate to a step of bundling a plurality of rod-shaped thermoelectric element members, and cutting the bundled thermoelectric element members so as to traverse the longitudinal direction. Since it has a step and a step of forming an electrode on this cut surface, it is possible to reduce the occurrence of cracking of the thermoelectric element due to cutting because the number of cut surfaces of the thermoelectric element member is smaller than in the conventional case, and Since a large number of thermoelectric element members are bundled and cut in a lump, the thickness of the thermoelectric module can be made uniform, the heat exchange with the heat exchange substrate can be made uniform, and the cut surface of the thermoelectric element can be made uniform. To To form the electrode, the bonding strength between the thermoelectric elements and the electrodes becomes uniform, there is an effect that it is possible to manufacture a thermoelectric module in high yield and low processing costs.

【0071】請求項3の発明は、上記熱電素子部材を束
ねた後、熱電素子部材同士を絶縁性を有する固着材にて
固着するので、熱電素子部材を固着した後で切断するこ
とにより、熱電素子部材の機械的強度不足が固着材によ
って補強され、切断時における熱電素子の割れ等の損傷
を減少させることができるという効果がある。請求項4
の発明は、上記熱電素子部材を互いの長手方向を略一致
させて束ねるので、均一な厚みに切断することができる
とともに切断面を平面として電極の形成が容易になると
いう効果がある。
According to the third aspect of the present invention, since the thermoelectric element members are bundled and then the thermoelectric element members are fixed to each other with a fixing material having an insulating property, the thermoelectric element members are cut after fixing the thermoelectric element members. Insufficient mechanical strength of the element member is reinforced by the fixing material, and there is an effect that damage such as cracking of the thermoelectric element at the time of cutting can be reduced. Claim 4
According to the invention of (1), since the thermoelectric element members are bundled so that their longitudinal directions are substantially aligned with each other, the thermoelectric element members can be cut to have a uniform thickness, and the cut surface is a flat surface to facilitate the formation of electrodes.

【0072】請求項5の発明は、スパッタリングもしく
は導電ペースト塗布もしくは半田付けにより電極を一括
して形成するので、切断面に電極を一括して容易に形成
することができるという効果がある。請求項6の発明
は、上記熱電素子部材を絶縁材でコーティングした後で
束ねるので、熱電素子間の電気的な短絡を防止すること
ができるという効果がある。
According to the fifth aspect of the invention, since the electrodes are collectively formed by sputtering, application of a conductive paste, or soldering, there is an effect that the electrodes can be easily collectively formed on the cut surface. According to the invention of claim 6, since the thermoelectric element members are coated with an insulating material and then bundled, there is an effect that an electrical short circuit between the thermoelectric elements can be prevented.

【0073】請求項7の発明は、P型及びN型の熱電素
子部材のうちの一方を絶縁材を挟んで一列に並べるとと
もに、並べた熱電素子部材の上に絶縁材を配設し、この
絶縁材の上に他方の熱電素子部材を絶縁材を挟んで一列
に並べることにより上記熱電素子部材を束ねるので、熱
電素子部材を束ねた際に熱電素子部材間の絶縁距離を均
一にすることができるとともに、その後の電極形成の工
程におけるパターニングを容易にすることができるとい
う効果がある。
According to a seventh aspect of the present invention, one of the P-type and N-type thermoelectric element members is arranged in a line with an insulating material sandwiched therebetween, and the insulating material is disposed on the arranged thermoelectric element members. Since the thermoelectric element members are bundled by arranging the other thermoelectric element member on the insulating material in a line with the insulating material sandwiched therebetween, it is possible to make the insulation distance between the thermoelectric element members uniform when the thermoelectric element members are bundled. In addition to being able to do so, there is an effect that patterning in the subsequent electrode forming step can be facilitated.

【0074】請求項8の発明は、熱電素子部材の端部を
挿入し保持する保持部がマトリクス状に配設された固定
用治具により、上記熱電素子部材の両端部を固定して束
ねるので、熱電素子部材を束ねた際に熱電素子部材間の
絶縁距離を均一にすることができるとともに、その後の
電極形成の工程におけるパターニングを容易にすること
ができるという効果がある。
According to the eighth aspect of the invention, since both ends of the thermoelectric element member are fixed and bundled by the fixing jig in which the holding portions for inserting and holding the ends of the thermoelectric element member are arranged in a matrix. There is an effect that the insulating distance between the thermoelectric element members can be made uniform when the thermoelectric element members are bundled, and the patterning in the subsequent electrode forming step can be facilitated.

【0075】請求項9の発明は、熱電素子部材の端部を
載置する凹部が多数列設された絶縁性を有する波板状の
固着用部材により、上記熱電素子部材の両端部を固定し
て束ねるので、熱電素子部材を束ねた際に熱電素子部材
間の絶縁距離を均一にすることができるとともに、その
後の電極形成の工程におけるパターニングを容易にする
ことができるという効果がある。
According to a ninth aspect of the present invention, both ends of the thermoelectric element member are fixed by corrugated plate-like fixing members having an insulating property in which a large number of concave portions for mounting the ends of the thermoelectric element member are provided. Since the thermoelectric element members are bundled together, the insulating distance between the thermoelectric element members can be made uniform, and the patterning in the subsequent electrode forming process can be facilitated.

【0076】請求項10の発明は、外部との接続用のリ
ード電極を形成するための棒状の金属部材を熱電素子部
材とともに束ねるので、リード線の半田付けをリード電
極のうちの金属部材上に形成された部分に行えば、熱電
素子と電極の密着力に影響を与えることがなく、リード
電極と熱電素子間の剥離による導通不良を生じさせない
ようにすることができるという効果がある。
According to the tenth aspect of the present invention, since the rod-shaped metal member for forming the lead electrode for external connection is bundled together with the thermoelectric element member, the lead wire is soldered on the metal member of the lead electrode. The formed portion has an effect that it does not affect the adhesion between the thermoelectric element and the electrode, and it is possible to prevent conduction failure due to peeling between the lead electrode and the thermoelectric element.

【0077】請求項11の発明は、切断後の上記金属部
材の部分に熱短絡防止用の凹部を形成するので、熱電素
子間の熱短絡が防止できるとともにリード線を固定する
半田が切断面よりも突出することがなく、熱電モジュー
ルの外表面を平坦にすることができるという効果があ
る。請求項12の発明は、上記切断面にスパッタリング
もしくは導電ペースト塗布により金属層を形成するとと
もに該金属層のパターニングを行ない、形成された金属
パターン上にメッキもしくは導電ペースト塗布もしくは
半田付けを施して電極を形成するので、切断面に一括し
て電極を形成することができるという効果がある。
In the eleventh aspect of the present invention, since the concave portion for preventing a thermal short circuit is formed in the portion of the metal member after cutting, the thermal short circuit between the thermoelectric elements can be prevented and the solder for fixing the lead wire is cut from the cut surface. There is also an effect that the outer surface of the thermoelectric module can be made flat without protruding. According to a twelfth aspect of the present invention, an electrode is formed by forming a metal layer on the cut surface by sputtering or applying a conductive paste, patterning the metal layer, and plating or applying a conductive paste or soldering on the formed metal pattern. Since the electrodes are formed, there is an effect that the electrodes can be collectively formed on the cut surface.

【0078】請求項13の発明は、上記束ねた熱電素子
部材の切断時に生じる切断面表層の脆弱層を除去し、該
切断面を清浄化した後で電極の形成を行うので、熱電素
子と電極との密着力を向上させることができるという効
果がある。請求項14の発明は、上記束ねた熱電素子部
材の切断面を表面粗化させた後で電極の形成を行うの
で、熱電素子と電極との密着力を向上させることができ
るという効果がある。
According to the thirteenth aspect of the present invention, the fragile layer on the surface of the cut surface, which is generated when the bundled thermoelectric element members are cut, is removed, and the cut surface is cleaned to form the electrodes. There is an effect that the adhesion with the can be improved. In the fourteenth aspect of the invention, since the electrodes are formed after the cut surfaces of the bundled thermoelectric element members are roughened, the adhesion between the thermoelectric elements and the electrodes can be improved.

【0079】請求項15の発明は、上記切断面に電極形
成用のスパッタ層を形成する前に少なくとも熱電素子表
面にバリア層を形成するので、スパッタ層を形成する際
に熱電素子へスパッタ材が拡散するのをバリア層によっ
て阻止することができ、熱電素子の熱電気的特性の劣化
を防止することができるという効果がある。請求項16
の発明は、上記切断面の表面清浄化及び表面粗化を行っ
た後に上記バリア層を形成するので、熱電素子の特性劣
化の防止と同時に熱電素子と電極との密着力の向上が図
れるという効果がある。
In the fifteenth aspect of the present invention, since the barrier layer is formed on at least the surface of the thermoelectric element before forming the sputter layer for forming the electrode on the cut surface, the sputter material is applied to the thermoelectric element when the sputter layer is formed. The diffusion can be prevented by the barrier layer, and the thermoelectric characteristics of the thermoelectric element can be prevented from deteriorating. Claim 16
In the invention, since the barrier layer is formed after performing surface cleaning and surface roughening of the cut surface, it is possible to prevent the deterioration of the characteristics of the thermoelectric element and at the same time improve the adhesion between the thermoelectric element and the electrode. There is.

【0080】請求項17の発明は、上記切断面に形成さ
れる電極と、上記固着材とを固定手段により固定するの
で、熱電素子と電極との密着力を向上させることができ
るという効果がある。請求項18の発明は、上記切断面
における熱電素子部材と固着材とに段差を設けるので、
熱電素子と電極との剥離を防止することができるという
効果がある。
According to the seventeenth aspect of the present invention, since the electrode formed on the cut surface and the fixing material are fixed by the fixing means, there is an effect that the adhesive force between the thermoelectric element and the electrode can be improved. . According to the eighteenth aspect of the present invention, since a step is provided between the thermoelectric element member and the fixing material on the cut surface,
There is an effect that peeling between the thermoelectric element and the electrode can be prevented.

【0081】請求項19の発明は、上記電極の端面全て
が熱電素子と上記固着材の境界よりも固着材側に張り出
すように電極を形成するので、電極が固着材にも接する
ことで熱電素子部材と電極との剥離を防止することがで
きるという効果がある。請求項20の発明は、上記切断
面に接着剤のような合成樹脂を塗布するので、合成樹脂
が補強材となって熱電素子と電極との剥離を防止するこ
とができるという効果がある。
According to the nineteenth aspect of the invention, since the electrode is formed so that all the end faces of the electrode project toward the fixing material side beyond the boundary between the thermoelectric element and the fixing material, the thermoelectric element can be formed by contacting the fixing material. There is an effect that peeling between the element member and the electrode can be prevented. In the invention of claim 20, since a synthetic resin such as an adhesive is applied to the cut surface, the synthetic resin serves as a reinforcing material and can prevent peeling between the thermoelectric element and the electrode.

【0082】請求項21の発明は、上記切断面に絶縁性
を有するシート状の樹脂部材を接着するので、熱電素子
と電極との剥離を防止することができるとともに、電極
の上に熱交換基板を設ける場合に両者間の電気絶縁性を
向上させることができ、さらに両端切断面からの熱リー
クを減少させることができるという効果がある。請求項
22の発明は、上記電極形成前に熱電素子と固着材との
接着部分近傍の固着材に溝を設けるので、溝によって固
着材が電極に接する面積が増えるために熱電素子と電極
との剥離を防止することができるという効果がある。
According to the twenty-first aspect of the present invention, since the sheet-shaped resin member having an insulating property is adhered to the cut surface, the thermoelectric element and the electrode can be prevented from being separated from each other, and the heat exchange substrate is provided on the electrode. In the case of providing, there is an effect that the electric insulation between them can be improved, and further the heat leak from the cut surfaces at both ends can be reduced. In the invention of claim 22, since the groove is provided in the fixing material near the bonding portion between the thermoelectric element and the fixing material before the electrode is formed, the area in which the fixing material contacts the electrode is increased by the groove, so that the thermoelectric element and the electrode are There is an effect that peeling can be prevented.

【0083】請求項23の発明は、上記電極の熱膨張率
が熱電素子の熱膨張率と略等しくなるように電極の表面
に合成樹脂又は金属を接着するので、両者の熱膨張率を
略等しくすることで熱電素子と電極との剥離を防止する
ことができるという効果がある。請求項24の発明は、
上記電極と熱電素子との間に、電極を構成する材料と熱
電素子を構成する材料を所定の割合で含む中間層を設け
るので、熱電素子から電極に至るまでの材料組成が中間
層によって徐々に変化することになり、電極と熱電素子
との界面での応力集中を緩和することができるという効
果がある。
According to the twenty-third aspect of the present invention, since the synthetic resin or metal is adhered to the surface of the electrode so that the coefficient of thermal expansion of the electrode becomes substantially equal to the coefficient of thermal expansion of the thermoelectric element, the coefficients of thermal expansion of both are substantially equal. By doing so, there is an effect that it is possible to prevent peeling between the thermoelectric element and the electrode. The invention of claim 24 is
Between the electrode and the thermoelectric element, since the intermediate layer containing the material forming the electrode and the material forming the thermoelectric element in a predetermined ratio is provided, the material composition from the thermoelectric element to the electrode is gradually changed by the intermediate layer. As a result, the stress concentration at the interface between the electrode and the thermoelectric element can be alleviated.

【0084】請求項25の発明は、上記電極を磁性体に
より形成するとともに電極の表面に磁性流体を塗布する
ので、磁性流体の上に熱交換基板を設ける場合に両者間
の電気絶縁性を向上させることができるとともに、磁性
流体によって熱交換基板と熱電モジュールとの間の摩擦
力を小さくでき、その結果、電極と熱電素子間の界面に
はたらくせん断応力を低減することができるという効果
がある。
In the twenty-fifth aspect of the present invention, since the electrodes are formed of a magnetic material and the surface of the electrodes is coated with a magnetic fluid, when a heat exchange substrate is provided on the magnetic fluid, electrical insulation between them is improved. The magnetic fluid can reduce the frictional force between the heat exchange substrate and the thermoelectric module, and as a result, the shear stress acting on the interface between the electrode and the thermoelectric element can be reduced.

【0085】請求項26の発明は、溶射により上記切断
面の表面粗化とバリア層の形成とを同時に行なうので、
熱電素子の熱電気的性能の劣化を防止することができる
とともに、熱電素子と電極との密着力を向上させること
ができ、しかも製造時間の短縮も図れる。請求項27の
発明は、内部に気泡を有する部材を上記固着材に用いる
ので、固着材の部分からの切断面間の熱のリークを減少
させることができるとともに、固着材の熱膨張率が低下
することで電極との界面にはたらくせん断応力を低減で
き、さらに固着材の弾性率が低下することで熱電モジュ
ールにはたらく応力を固着材にて吸収することができる
という効果がある。
In the twenty-sixth aspect of the present invention, since the surface roughening of the cut surface and the formation of the barrier layer are simultaneously performed by thermal spraying,
The thermoelectric performance of the thermoelectric element can be prevented from deteriorating, the adhesion between the thermoelectric element and the electrode can be improved, and the manufacturing time can be shortened. According to the invention of claim 27, since the member having air bubbles inside is used as the fixing material, it is possible to reduce the heat leakage between the cut surfaces from the fixing material portion, and the thermal expansion coefficient of the fixing material is lowered. By doing so, the shear stress acting on the interface with the electrode can be reduced, and further, the elastic modulus of the fixing material decreases, so that the stress acting on the thermoelectric module can be absorbed by the fixing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態1を示し、(a)は電極形成前の熱電
素子チップの斜視図、(b)は電極形成後の熱電素子チ
ップの表側の斜視図、(c)は電極形成後の熱電素子チ
ップの裏側の斜視図である。
1 shows the first embodiment, (a) is a perspective view of a thermoelectric element chip before electrode formation, (b) is a front perspective view of the thermoelectric element chip after electrode formation, and (c) is after electrode formation. It is a perspective view of the back side of a thermoelectric element chip.

【図2】(a)〜(g)は同上の製造方法を説明するた
めの説明図である。
2A to 2G are explanatory views for explaining the manufacturing method of the above.

【図3】(a)〜(c)は同上における熱電素子部材を
固着する方法を説明するための説明図である。
3 (a) to 3 (c) are explanatory views for explaining a method for fixing the thermoelectric element member in the above.

【図4】(a)〜(d)は同上における電極の形成方法
を説明するための説明図である。
4 (a) to (d) are explanatory views for explaining a method of forming an electrode in the above.

【図5】(a)〜(d)は実施形態2における熱電素子
部材を固着する方法を説明するための説明図である。
5A to 5D are explanatory views for explaining a method of fixing a thermoelectric element member according to the second embodiment.

【図6】(a)〜(d)は実施形態3における熱電素子
部材を固着する方法を説明するための説明図である。
6A to 6D are explanatory views for explaining a method of fixing a thermoelectric element member according to the third embodiment.

【図7】(a)〜(d)は実施形態4における電極の形
成方法を説明するための説明図である。
7A to 7D are explanatory views for explaining a method of forming an electrode according to the fourth embodiment.

【図8】(a)〜(e)は同上における電極形成の他の
方法を説明するための説明図である。
FIGS. 8A to 8E are explanatory views for explaining another method of forming electrodes in the above.

【図9】(a)及び(b)は実施形態5における電極の
形成方法を説明するための説明図である。
9A and 9B are explanatory views for explaining a method of forming an electrode according to the fifth embodiment.

【図10】(a)及び(b)は実施形態6における電極
の形成方法を説明するための説明図である。
10A and 10B are explanatory views for explaining a method of forming an electrode in the sixth embodiment.

【図11】(a)〜(e)は実施形態7における電極の
形成方法を説明するための説明図である。
11A to 11E are explanatory views for explaining a method of forming an electrode in the seventh embodiment.

【図12】(a)〜(e)は実施形態8における電極の
形成方法を説明するための説明図である。
12A to 12E are explanatory views for explaining a method of forming an electrode according to the eighth embodiment.

【図13】実施形態9を示す要部斜視図である。FIG. 13 is a perspective view of a main part showing the ninth embodiment.

【図14】同上の側面断面図である。FIG. 14 is a side sectional view of the above.

【図15】(a)〜(e)は実施形態10における電極
の形成方法を説明するための説明図である。
15A to 15E are explanatory views for explaining a method of forming an electrode according to the tenth embodiment.

【図16】実施形態11を示し、(a)は要部の斜視
図、(b)は同図(a)のX−X線断面図である。
16 shows an eleventh embodiment, (a) is a perspective view of a main part, and (b) is a sectional view taken along line XX of FIG. 16 (a).

【図17】(a)〜(e)は実施形態12における製造
方法を説明するための説明図である。
17A to 17E are explanatory views for explaining the manufacturing method in the twelfth embodiment.

【図18】(a)〜(c)は同上の製造方法を説明する
ための説明図である。
18A to 18C are explanatory views for explaining the manufacturing method of the above.

【図19】(a)〜(e)は実施形態13における製造
方法を説明するための説明図である。
19A to 19E are explanatory views for explaining the manufacturing method in the thirteenth embodiment.

【図20】(a)〜(c)は実施形態14における製造
方法を説明するための説明図である。
20A to 20C are explanatory views for explaining the manufacturing method in the fourteenth embodiment.

【図21】(a)〜(c)は実施形態15における製造
方法を説明するための説明図である。
21A to 21C are explanatory diagrams for explaining the manufacturing method in the fifteenth embodiment.

【図22】同上の製造方法を説明するための説明図であ
る。
FIG. 22 is an explanatory diagram for explaining the manufacturing method for the above.

【図23】(a)〜(d)は実施形態16における製造
方法を説明するための説明図である。
23A to 23D are explanatory views for explaining the manufacturing method in the sixteenth embodiment.

【図24】(a)〜(d)は実施形態17における製造
方法を説明するための説明図である。
24 (a) to 24 (d) are explanatory views for explaining the manufacturing method in the seventeenth embodiment.

【図25】(a)〜(d)は実施形態18における製造
方法を説明するための説明図である。
25A to 25D are explanatory views for explaining the manufacturing method in the eighteenth embodiment.

【図26】(a)〜(d)は実施形態19における製造
方法を説明するための説明図である。
26A to 26D are explanatory views for explaining the manufacturing method in the nineteenth embodiment.

【図27】実施形態20における熱電素子チップの側面
断面図である。
FIG. 27 is a side sectional view of a thermoelectric element chip according to the twentieth embodiment.

【符号の説明】[Explanation of symbols]

A 熱電素子チップ 1a P型の熱電素子 1b N型の熱電素子 2 電極 3 リード線 4 リード電極 5 固着材 6a P型の熱電素子部材 6b N型の熱電素子部材 A thermoelectric element chip 1a P-type thermoelectric element 1b N-type thermoelectric element 2 Electrode 3 Lead wire 4 Lead electrode 5 Fixing material 6a P-type thermoelectric element member 6b N-type thermoelectric element member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 良光 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 佐藤 岳彦 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshimitsu Nakamura 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Takehiko Sato, 1048, Kadoma, Kadoma City, Osaka Matsushita Electric Works Co., Ltd.

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 P型の熱電素子並びにN型の熱電素子を
互いに隣り合わせて配設するとともにこれら熱電素子の
表裏両側の面を導電性の電極により接続し且つ両電極面
上に熱交換基板を固定して成る熱電モジュールであっ
て、略棒状に形成され束ねられた複数の熱電素子部材を
長手方向に対して横断するように切断するとともにこの
切断面に電極を形成して成ることを特徴とする熱電モジ
ュール。
1. A P-type thermoelectric element and an N-type thermoelectric element are arranged adjacent to each other, and the front and back surfaces of these thermoelectric elements are connected by conductive electrodes, and a heat exchange substrate is provided on both electrode surfaces. A thermoelectric module formed by fixing, wherein a plurality of substantially thermoelectric element members formed in a rod shape and bundled are cut so as to cross the longitudinal direction, and electrodes are formed on the cut surfaces. Thermoelectric module.
【請求項2】 P型の熱電素子並びにN型の熱電素子を
互いに隣り合わせて配設するとともにこれら熱電素子の
表裏両側の面を導電性の電極により接続し且つ両電極面
上に熱交換基板を固定して成る熱電モジュールの製造方
法であって、略棒状に形成した複数の熱電素子部材を束
ねる工程と、束ねた熱電素子部材を長手方向に対して横
断するように切断する工程と、この切断面に電極を形成
する工程とを有することを特徴とする熱電モジュールの
製造方法。
2. A P-type thermoelectric element and an N-type thermoelectric element are arranged next to each other, and the front and back surfaces of these thermoelectric elements are connected by conductive electrodes, and a heat exchange substrate is provided on both electrode surfaces. A method of manufacturing a thermoelectric module that is fixed, comprising a step of bundling a plurality of substantially thermoelectric element members formed into a rod shape, a step of cutting the bundled thermoelectric element members so as to cross the longitudinal direction, and the cutting. And a step of forming an electrode on the surface of the thermoelectric module.
【請求項3】 上記熱電素子部材を束ねた後、熱電素子
部材同士を絶縁性を有する固着材にて固着することを特
徴とする請求項2記載の熱電モジュールの製造方法。
3. The method of manufacturing a thermoelectric module according to claim 2, wherein the thermoelectric element members are bundled together and then the thermoelectric element members are fixed to each other with a fixing material having an insulating property.
【請求項4】 上記熱電素子部材を互いの長手方向を略
一致させて束ねることを特徴とする請求項2又は3記載
の熱電モジュールの製造方法。
4. The method for manufacturing a thermoelectric module according to claim 2, wherein the thermoelectric element members are bundled so that their longitudinal directions substantially coincide with each other.
【請求項5】 スパッタリングもしくは導電ペースト塗
布もしくは半田付けにより上記電極を一括して形成する
ことを特徴とする請求項2乃至4記載の熱電モジュール
の製造方法。
5. The method of manufacturing a thermoelectric module according to claim 2, wherein the electrodes are collectively formed by sputtering, application of a conductive paste, or soldering.
【請求項6】 上記熱電素子部材を絶縁材でコーティン
グした後で束ねることを特徴とする請求項2乃至5記載
の熱電モジュールの製造方法。
6. The method of manufacturing a thermoelectric module according to claim 2, wherein the thermoelectric element members are coated with an insulating material and then bundled.
【請求項7】 上記P型及びN型の熱電素子部材のうち
の一方を絶縁材を挟んで一列に並べるとともに、並べた
熱電素子部材の上に絶縁材を配設し、この絶縁材の上に
他方の熱電素子部材を絶縁材を挟んで一列に並べること
により上記熱電素子部材を束ねることを特徴とする請求
項4記載の熱電モジュールの製造方法。
7. One of the P-type and N-type thermoelectric element members is arranged in a line with an insulating material sandwiched between them, and an insulating material is disposed on the arranged thermoelectric element members. 5. The method for manufacturing a thermoelectric module according to claim 4, wherein the other thermoelectric element members are bundled by arranging the other thermoelectric element members in a line with an insulating material interposed therebetween.
【請求項8】 上記熱電素子部材の端部を挿入し保持す
る保持部がマトリクス状に配設された固定用治具によ
り、上記熱電素子部材の両端部を固定して束ねることを
特徴とする請求項4記載の熱電モジュールの製造方法。
8. The thermoelectric element member is fixed and bundled by a fixing jig in which a holding portion for inserting and holding the end portion of the thermoelectric element member is arranged in a matrix. The method for manufacturing a thermoelectric module according to claim 4.
【請求項9】 上記熱電素子部材の端部を載置する凹部
が多数列設された絶縁性を有する波板状の固着用部材に
より、上記熱電素子部材の両端部を固定して束ねること
を特徴とする請求項4記載の熱電モジュールの製造方
法。
9. The thermoelectric element member is fixedly bundled at both ends thereof with an insulating corrugated plate-like fixing member having a plurality of recesses for mounting the end portions of the thermoelectric element member. The method for manufacturing a thermoelectric module according to claim 4, wherein the thermoelectric module is manufactured.
【請求項10】 外部との接続用のリード電極を形成す
るための棒状の金属部材を上記熱電素子部材とともに束
ねることを特徴とする請求項2又は3記載の熱電モジュ
ールの製造方法。
10. The method of manufacturing a thermoelectric module according to claim 2, wherein a rod-shaped metal member for forming a lead electrode for external connection is bundled together with the thermoelectric element member.
【請求項11】 切断後の上記金属部材の部分に熱短絡
防止用の凹部を形成することを特徴とする請求項10記
載の熱電モジュールの製造方法。
11. The method of manufacturing a thermoelectric module according to claim 10, wherein a recess for preventing a thermal short circuit is formed in the portion of the metal member after cutting.
【請求項12】 上記切断面にスパッタリングもしくは
導電ペースト塗布により金属層を形成するとともに該金
属層のパターニングを行ない、形成された金属パターン
上にメッキもしくは導電ペースト塗布もしくは半田付け
を施して電極を形成することを特徴とする請求項5記載
の熱電モジュールの製造方法。
12. An electrode is formed by forming a metal layer on the cut surface by sputtering or applying a conductive paste, patterning the metal layer, and plating or applying a conductive paste or soldering on the formed metal pattern. The method for manufacturing a thermoelectric module according to claim 5, wherein
【請求項13】 上記束ねた熱電素子部材の切断時に生
じる切断面表層の脆弱層を除去し、該切断面を清浄化し
た後で電極の形成を行うことを特徴とする請求項5記載
の熱電モジュールの製造方法。
13. The thermoelectric element according to claim 5, wherein the brittle layer on the surface of the cut surface, which is generated when the bundled thermoelectric element members are cut, is removed and the cut surface is cleaned, and then the electrode is formed. Module manufacturing method.
【請求項14】 上記束ねた熱電素子部材の切断面を表
面粗化させた後で電極の形成を行うことを特徴とする請
求項5記載の熱電モジュールの製造方法。
14. The method of manufacturing a thermoelectric module according to claim 5, wherein the electrodes are formed after roughening the cut surfaces of the bundled thermoelectric element members.
【請求項15】 上記切断面に電極形成用のスパッタ層
を形成する前に少なくとも熱電素子表面にバリア層を形
成することを特徴とする請求項2乃至5記載の熱電モジ
ュールの製造方法。
15. The method of manufacturing a thermoelectric module according to claim 2, wherein a barrier layer is formed on at least the surface of the thermoelectric element before forming a sputtering layer for forming an electrode on the cut surface.
【請求項16】 上記切断面の表面清浄化及び表面粗化
を行った後に上記バリア層を形成することを特徴とする
請求項15記載の熱電モジュールの製造方法。
16. The method of manufacturing a thermoelectric module according to claim 15, wherein the barrier layer is formed after cleaning and roughening the surface of the cut surface.
【請求項17】 上記切断面に形成される電極と、上記
固着材とを固定手段により固定することを特徴とする請
求項5記載の熱電モジュールの製造方法。
17. The method of manufacturing a thermoelectric module according to claim 5, wherein the electrode formed on the cut surface and the fixing material are fixed by a fixing means.
【請求項18】 上記切断面における熱電素子部材と固
着材とに段差を設けることを特徴とする請求項5記載の
熱電モジュールの製造方法。
18. The method of manufacturing a thermoelectric module according to claim 5, wherein a step is provided between the thermoelectric element member and the fixing material on the cut surface.
【請求項19】 上記電極の端面全てが熱電素子と上記
固着材の境界よりも固着材側に張り出すように電極を形
成することを特徴とする請求項5記載の熱電モジュール
の製造方法。
19. The method of manufacturing a thermoelectric module according to claim 5, wherein the electrode is formed so that all the end faces of the electrode project beyond the boundary between the thermoelectric element and the fixing material toward the fixing material.
【請求項20】 上記切断面に接着剤のような合成樹脂
を塗布することを特徴とする請求項5記載の熱電モジュ
ールの製造方法。
20. The method of manufacturing a thermoelectric module according to claim 5, wherein a synthetic resin such as an adhesive is applied to the cut surface.
【請求項21】 上記切断面に絶縁性を有するシート状
の樹脂部材を接着することを特徴とする請求項5記載の
熱電モジュールの製造方法。
21. The method of manufacturing a thermoelectric module according to claim 5, wherein a sheet-shaped resin member having an insulating property is bonded to the cut surface.
【請求項22】 上記電極形成前に熱電素子と固着材と
の接着部分近傍の熱電素子に溝を設けることを特徴とす
る請求項5記載の熱電モジュールの製造方法。
22. The method of manufacturing a thermoelectric module according to claim 5, wherein a groove is provided in the thermoelectric element in the vicinity of the bonding portion between the thermoelectric element and the fixing material before forming the electrode.
【請求項23】 上記電極の熱膨張率が熱電素子の熱膨
張率と略等しくなるように電極の表面に合成樹脂又は金
属を接着することを特徴とする請求項5記載の熱電モジ
ュールの製造方法。
23. The method of manufacturing a thermoelectric module according to claim 5, wherein a synthetic resin or a metal is adhered to the surface of the electrode so that the coefficient of thermal expansion of the electrode is substantially equal to the coefficient of thermal expansion of the thermoelectric element. .
【請求項24】 上記電極と熱電素子との間に、電極を
構成する材料と熱電素子を構成する材料を所定の割合で
含む中間層を設けることを特徴とする請求項5記載の熱
電モジュールの製造方法。
24. The thermoelectric module according to claim 5, wherein an intermediate layer containing a material forming the electrode and a material forming the thermoelectric element in a predetermined ratio is provided between the electrode and the thermoelectric element. Production method.
【請求項25】 上記電極を磁性体により形成するとと
もに電極の表面に磁性流体を塗布することを特徴とする
請求項5記載の熱電モジュールの製造方法。
25. The method of manufacturing a thermoelectric module according to claim 5, wherein the electrode is formed of a magnetic material and a magnetic fluid is applied to the surface of the electrode.
【請求項26】 溶射により上記切断面の表面粗化とバ
リア層の形成とを同時に行なうことを特徴とする請求項
15記載の熱電モジュールの製造方法。
26. The method of manufacturing a thermoelectric module according to claim 15, wherein the surface roughening of the cut surface and the formation of the barrier layer are simultaneously performed by thermal spraying.
【請求項27】 内部に気泡を有する部材を上記固着材
に用いることを特徴とする請求項3記載の熱電モジュー
ルの製造方法。
27. The method of manufacturing a thermoelectric module according to claim 3, wherein a member having bubbles inside is used as the fixing material.
JP28487996A 1996-02-26 1996-10-28 Manufacturing method of thermoelectric module Expired - Lifetime JP3528471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28487996A JP3528471B2 (en) 1996-02-26 1996-10-28 Manufacturing method of thermoelectric module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-37996 1996-02-26
JP3799696 1996-02-26
JP28487996A JP3528471B2 (en) 1996-02-26 1996-10-28 Manufacturing method of thermoelectric module

Publications (2)

Publication Number Publication Date
JPH09293909A true JPH09293909A (en) 1997-11-11
JP3528471B2 JP3528471B2 (en) 2004-05-17

Family

ID=26377180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28487996A Expired - Lifetime JP3528471B2 (en) 1996-02-26 1996-10-28 Manufacturing method of thermoelectric module

Country Status (1)

Country Link
JP (1) JP3528471B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303472A (en) * 1997-04-25 1998-11-13 Aisin Seiki Co Ltd Thermoelectric conversion element and its manufacture
JP2001007411A (en) * 1999-06-25 2001-01-12 Matsushita Electric Works Ltd Thermoelectric element module
US6274803B1 (en) 1999-08-10 2001-08-14 Matsushita Electric Works, Ltd. Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
JP2004063656A (en) * 2002-07-26 2004-02-26 Toshiba Corp Thermoelectric converter
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
WO2008114653A1 (en) * 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
JP2009076603A (en) * 2007-09-19 2009-04-09 Toshiba Corp Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation
US7531739B1 (en) * 2004-10-15 2009-05-12 Marlow Industries, Inc. Build-in-place method of manufacturing thermoelectric modules
EP2280432A1 (en) * 2008-05-23 2011-02-02 Murata Manufacturing Co. Ltd. Thermoelectric conversion module and process for producing thermoelectric conversion module
EP2299505A1 (en) * 2008-07-02 2011-03-23 Murata Manufacturing Co. Ltd. Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2011199091A (en) * 2010-03-23 2011-10-06 Kyocera Corp Thermoelectric conversion module
JP2013161948A (en) * 2012-02-06 2013-08-19 Furukawa Electric Co Ltd:The Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP2016500201A (en) * 2013-10-18 2016-01-07 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Flexible thermoelectric element using mesh substrate and manufacturing method thereof
JP2016157843A (en) * 2015-02-25 2016-09-01 株式会社リコー Thermoelectric conversion device
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
JP2019513303A (en) * 2016-03-22 2019-05-23 ジェンサーム インコーポレイテッドGentherm Incorporated Distributed Thermoelectrics with Non-uniform Heat Transfer Characteristics
JP2019216175A (en) * 2018-06-12 2019-12-19 ヤマハ株式会社 Thermoelectric conversion module
KR20210043903A (en) * 2019-10-14 2021-04-22 가천대학교 산학협력단 A Thermoelectric Semiconductor element and Manufacturing Method of the same
KR20210143415A (en) * 2020-05-20 2021-11-29 차진환 Bulk thermoelectric element and manufacturing method thereof
WO2022092178A1 (en) * 2020-10-30 2022-05-05 リンテック株式会社 Method for manufacturing thermoelectric conversion module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170273A (en) * 1984-02-15 1985-09-03 Saamobonitsuku:Kk Thermoelectric transducer
JPS63127531A (en) * 1986-11-17 1988-05-31 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH01310538A (en) * 1988-06-09 1989-12-14 Matsushita Electric Ind Co Ltd Formation of electrode
JPH0230190A (en) * 1988-07-20 1990-01-31 Nippon Denso Co Ltd Manufacture of electronic refrigeration element
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH05335630A (en) * 1991-11-06 1993-12-17 Tokin Corp Thermoelectric conversion module and thermoelectric conversion device using it
JPH08228027A (en) * 1994-12-22 1996-09-03 Union Material Kk Thermoelectric semiconductor element and manufacturing method thereof
JPH09148636A (en) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd Manufacture of thermoelectric device
JPH09199766A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Manufacture of thermoelectric conversion module
JPH09199765A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Thermoelectric conversion module and manufacture thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170273A (en) * 1984-02-15 1985-09-03 Saamobonitsuku:Kk Thermoelectric transducer
JPS63127531A (en) * 1986-11-17 1988-05-31 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH01310538A (en) * 1988-06-09 1989-12-14 Matsushita Electric Ind Co Ltd Formation of electrode
JPH0230190A (en) * 1988-07-20 1990-01-31 Nippon Denso Co Ltd Manufacture of electronic refrigeration element
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH05335630A (en) * 1991-11-06 1993-12-17 Tokin Corp Thermoelectric conversion module and thermoelectric conversion device using it
JPH08228027A (en) * 1994-12-22 1996-09-03 Union Material Kk Thermoelectric semiconductor element and manufacturing method thereof
JPH09199766A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Manufacture of thermoelectric conversion module
JPH09199765A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Thermoelectric conversion module and manufacture thereof
JPH09148636A (en) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd Manufacture of thermoelectric device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303472A (en) * 1997-04-25 1998-11-13 Aisin Seiki Co Ltd Thermoelectric conversion element and its manufacture
JP2001007411A (en) * 1999-06-25 2001-01-12 Matsushita Electric Works Ltd Thermoelectric element module
US6274803B1 (en) 1999-08-10 2001-08-14 Matsushita Electric Works, Ltd. Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
DE10022726C2 (en) * 1999-08-10 2003-07-10 Matsushita Electric Works Ltd Thermoelectric module with improved heat transfer capacity and method of manufacturing the same
JP2004063656A (en) * 2002-07-26 2004-02-26 Toshiba Corp Thermoelectric converter
US7531739B1 (en) * 2004-10-15 2009-05-12 Marlow Industries, Inc. Build-in-place method of manufacturing thermoelectric modules
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
WO2008114653A1 (en) * 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
JP2008235712A (en) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd Method for manufacturing thermoelectric conversion module and the same
JP2009076603A (en) * 2007-09-19 2009-04-09 Toshiba Corp Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation
EP2280432A1 (en) * 2008-05-23 2011-02-02 Murata Manufacturing Co. Ltd. Thermoelectric conversion module and process for producing thermoelectric conversion module
EP2280432A4 (en) * 2008-05-23 2012-10-24 Murata Manufacturing Co Thermoelectric conversion module and process for producing thermoelectric conversion module
US8471139B2 (en) 2008-07-02 2013-06-25 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
EP2299505A1 (en) * 2008-07-02 2011-03-23 Murata Manufacturing Co. Ltd. Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
EP2299505A4 (en) * 2008-07-02 2012-10-24 Murata Manufacturing Co Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2011199091A (en) * 2010-03-23 2011-10-06 Kyocera Corp Thermoelectric conversion module
JP2013161948A (en) * 2012-02-06 2013-08-19 Furukawa Electric Co Ltd:The Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP2016500201A (en) * 2013-10-18 2016-01-07 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Flexible thermoelectric element using mesh substrate and manufacturing method thereof
JP2016157843A (en) * 2015-02-25 2016-09-01 株式会社リコー Thermoelectric conversion device
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
JP2019513303A (en) * 2016-03-22 2019-05-23 ジェンサーム インコーポレイテッドGentherm Incorporated Distributed Thermoelectrics with Non-uniform Heat Transfer Characteristics
JP2019216175A (en) * 2018-06-12 2019-12-19 ヤマハ株式会社 Thermoelectric conversion module
KR20210043903A (en) * 2019-10-14 2021-04-22 가천대학교 산학협력단 A Thermoelectric Semiconductor element and Manufacturing Method of the same
KR20210143415A (en) * 2020-05-20 2021-11-29 차진환 Bulk thermoelectric element and manufacturing method thereof
WO2022092178A1 (en) * 2020-10-30 2022-05-05 リンテック株式会社 Method for manufacturing thermoelectric conversion module

Also Published As

Publication number Publication date
JP3528471B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP3528471B2 (en) Manufacturing method of thermoelectric module
JP3989486B2 (en) Thermoelectric element module and manufacturing method thereof
JP4200256B2 (en) Thermoelectric conversion module
EP0887869A1 (en) Method of manufacturing thermionic element
JP2011097072A (en) Piezoelectric macro-fiber composite actuator and manufacturing method
JP2003282819A (en) Method of manufacturing semiconductor device
WO2021093559A1 (en) Ultrasonic probe, piezoelectric composite wafer and preparation method therefor
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
US10076031B2 (en) Electronic device and method of manufacturing electronic device
JP2001223240A (en) Semiconductor device
JP6566811B2 (en) Solder chip, method for manufacturing glass substrate with terminal using solder chip
JP2001326250A (en) Flip-chip semiconductor device and method of manufacture
JPH10242536A (en) Manufacture of thermoelectric module
JP2004172518A (en) Circuit protection element and manufacture thereof
WO2016047733A1 (en) Solder tip, method for manufacturing glass substrate with terminal in which solder tip is used
JPH10189306A (en) Chip resistor
JPH0387079A (en) Lamination type piezoelectric element
JPH1146061A (en) Manufacture of printed-wiring board
JP2003347603A (en) Thermoelectric element and its manufacturing method
JP2005108471A (en) Contact mechanism device and method for manufacturing it
JP3603675B2 (en) Thermoelectric module and manufacturing method thereof
JP2001358373A (en) Thermoelectric generation device and its manufacturing method
JP2001156344A (en) Method of manufacturing thermoelectric conversion module
JP2001237484A (en) Mounting structure of laser diode and manufacturing method thereof
JPH07283268A (en) Wiring substrate and its manufacture

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9