JP5669103B2 - Thermoelectric thin film device - Google Patents

Thermoelectric thin film device Download PDF

Info

Publication number
JP5669103B2
JP5669103B2 JP2011138856A JP2011138856A JP5669103B2 JP 5669103 B2 JP5669103 B2 JP 5669103B2 JP 2011138856 A JP2011138856 A JP 2011138856A JP 2011138856 A JP2011138856 A JP 2011138856A JP 5669103 B2 JP5669103 B2 JP 5669103B2
Authority
JP
Japan
Prior art keywords
thin film
thermoelectric
buffer layer
thermoelectric thin
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011138856A
Other languages
Japanese (ja)
Other versions
JP2012212838A (en
Inventor
瑞枝 溝尻
瑞枝 溝尻
祐史 三上
祐史 三上
尾崎 公洋
公洋 尾崎
小林 慶三
慶三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011138856A priority Critical patent/JP5669103B2/en
Publication of JP2012212838A publication Critical patent/JP2012212838A/en
Application granted granted Critical
Publication of JP5669103B2 publication Critical patent/JP5669103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、太陽光エネルギー、自動車廃熱などの熱エネルギーを電気エネルギーに変換する熱電薄膜デバイスの構造に関する。   The present invention relates to a structure of a thermoelectric thin film device that converts thermal energy such as solar energy and automobile waste heat into electrical energy.

従来、熱電効果を利用した熱電デバイスとしては、非特許文献1の論文や特許文献1に示されるように、ガラス基板やシリコン基板、セラミックス基板等からなる一対の絶縁性基板間に複数のp型半導体素子とn型半導体素子を交互に並設した構造のものが主流となっている。この様な構造の熱電デバイスは、p型半導体素子とn型半導体素子のそれぞれの一端を接合して電極を介して一方の絶縁性基板上に取り付け、他端を接合して電極を介して他方の絶縁性基板上に取り付けた構造となっている。ところが、このような構造の熱電デバイスは、熱電素子を電極を設けた一対の基板で挟み込む構造のため製造工程が煩雑になるという問題点があった。また、厚み方向に熱電素子が設けられるため、デバイスの厚みが厚くなり、小型化を図ることができない。そこで、熱電素子として薄膜状のものを用いることも考えられるが、基板表裏では温度差があまりつかないため、十分な起電力を外部に取り出すことができない。   Conventionally, as a thermoelectric device using the thermoelectric effect, as shown in a paper of Non-Patent Document 1 and Patent Document 1, a plurality of p-types are interposed between a pair of insulating substrates made of a glass substrate, a silicon substrate, a ceramic substrate, or the like. The mainstream is a structure in which semiconductor elements and n-type semiconductor elements are alternately arranged. In the thermoelectric device having such a structure, one end of each of the p-type semiconductor element and the n-type semiconductor element is joined and attached to one insulating substrate through an electrode, and the other end is joined to the other through the electrode. The structure is mounted on an insulating substrate. However, the thermoelectric device having such a structure has a problem that the manufacturing process is complicated because the thermoelectric element is sandwiched between a pair of substrates provided with electrodes. In addition, since the thermoelectric element is provided in the thickness direction, the thickness of the device is increased and the miniaturization cannot be achieved. Therefore, it is conceivable to use a thin film thermoelectric element. However, since there is not much temperature difference between the front and back of the substrate, a sufficient electromotive force cannot be extracted outside.

これに対して、特許文献2に示されるように、絶縁性基板の一方の面にp型薄膜パターンとn型薄膜パターンを対としこの対を直列に複数組設け、これらの両端に電極パッドを設けて熱電薄膜素子とした構造の熱電薄膜デバイスも提案されている。この場合、絶縁性基板の二次元平面上に温度差を形成して起電力を外部に取り出すこととなる。これにより、製造工程が簡易となり、十分な起電力を外部に取り出すことが可能となる。   On the other hand, as shown in Patent Document 2, a plurality of pairs of p-type thin film patterns and n-type thin film patterns are provided in series on one surface of an insulating substrate, and electrode pads are provided at both ends thereof. A thermoelectric thin film device having a structure provided as a thermoelectric thin film element has also been proposed. In this case, a temperature difference is formed on the two-dimensional plane of the insulating substrate to extract the electromotive force to the outside. Thereby, a manufacturing process becomes simple and it becomes possible to take out sufficient electromotive force outside.

特開2004-087913号JP2004-087913 特開平09-092892号JP 09-092892 A

G. Jeffry Snyder, James R. Lim, Chen-Kuo Huang, and Jean-Pierre Fleurial, Nature Materials Vol. 2 (2003) 528-531.G. Jeffry Snyder, James R. Lim, Chen-Kuo Huang, and Jean-Pierre Fleurial, Nature Materials Vol. 2 (2003) 528-531.

しかしながら、上記のような熱電薄膜デバイスの構造では、熱電薄膜が平面方向に広がるため、基板との接触面積が増え、熱電薄膜と基板が主に熱膨張差によって剥離しやすいという問題点があった。   However, in the structure of the thermoelectric thin film device as described above, since the thermoelectric thin film spreads in the plane direction, there is a problem that the contact area with the substrate increases, and the thermoelectric thin film and the substrate are easily peeled off mainly due to a difference in thermal expansion. .

従来、薄膜構造を有する多くの工業部品の場合、薄膜と基板の間にバッファ層を設けることによって、密着性を高めてきた。バッファ層としては、通常の薄膜の場合は金属層を使用することが一般的である。しかし、上記のような熱電薄膜デバイスの場合、基板と熱電薄膜素子との密着性向上のために金属バッファ層を導入すると、薄膜熱電対(熱電薄膜)が金属バッファ層により電気回路的に短絡し、外部への起電力の取り出しができなくなるために、金属バッファ層を使用できないことが常識とされてきた。特許文献2の場合も、バッファ層を薄膜熱電対には設けず、電極パッドの部分のみバッファ層を設け、その部分の剥離を防止するものであった。   Conventionally, in the case of many industrial parts having a thin film structure, adhesion has been improved by providing a buffer layer between the thin film and the substrate. As a buffer layer, in the case of a normal thin film, a metal layer is generally used. However, in the case of a thermoelectric thin film device as described above, if a metal buffer layer is introduced to improve the adhesion between the substrate and the thermoelectric thin film element, the thin film thermocouple (thermoelectric thin film) is short-circuited electrically by the metal buffer layer. It has become common sense that the metal buffer layer cannot be used because the electromotive force cannot be taken out to the outside. In the case of Patent Document 2, the buffer layer is not provided in the thin film thermocouple, and the buffer layer is provided only in the electrode pad portion to prevent peeling of the portion.

本発明は、このような従来技術の実情に鑑みてなされたもので、基板と熱電薄膜の密着性を向上させ、熱電薄膜の剥離を効果的に防止でき、効率よく起電力を得ることができ、しかも薄型化、小型化を図ることができる熱電薄膜デバイスを提供することを課題とする。   The present invention has been made in view of such a state of the art, and can improve adhesion between the substrate and the thermoelectric thin film, effectively prevent peeling of the thermoelectric thin film, and can efficiently obtain an electromotive force. Furthermore, it is an object to provide a thermoelectric thin film device that can be reduced in thickness and size.

本発明者らは、上記の剥離の問題を解決すべく、熱電薄膜の基板上への密着性を向上させるため、鋭意検討を重ねた結果、熱電薄膜と基板との界面に配置するバッファ層として、従来の常識では意味がないと思われてきた金属薄膜を選択し、熱電薄膜の電気抵抗とバッファ層の電気抵抗の比が一定の範囲となるように制御すると、短絡を起こすことなく、熱電薄膜の基板上への密着性を向上させ、外部に起電力を効率的に取り出すことが可能であることを見出し、本発明を完成するに至った。   In order to solve the above-described problem of peeling, the present inventors have made extensive studies to improve the adhesion of the thermoelectric thin film to the substrate, and as a buffer layer disposed at the interface between the thermoelectric thin film and the substrate. By selecting a metal thin film that has been considered meaningless by conventional common sense and controlling the ratio of the electric resistance of the thermoelectric thin film and the electric resistance of the buffer layer to be within a certain range, the thermoelectric power can be generated without causing a short circuit. It has been found that the adhesion of the thin film onto the substrate can be improved and the electromotive force can be efficiently extracted outside, and the present invention has been completed.

すなわち、本発明よれば、上記課題を解決するため、第1に、絶縁性基板上に、複数のp型薄膜パターンとn型薄膜パターンが交互に配設され、隣同士の異種の薄膜パターンが接合され、二次元平面上に温度差を形成して発電する熱電薄膜素子を設けてなる熱電薄膜デバイスであって、前記絶縁性基板と前記熱電薄膜素子の界面にバッファ層を、前記熱電薄膜素子の電気抵抗と前記バッファ層の電気抵抗の比が10−5〜0.4となるように規定して配置し、かつ前記バッファ層の厚さを0.1nm〜1nmとしたことを特徴とする熱電薄膜デバイスを提供する。 That is, according to the present invention, in order to solve the above-mentioned problem, first, a plurality of p-type thin film patterns and n-type thin film patterns are alternately arranged on an insulating substrate, and different types of thin film patterns adjacent to each other are formed. A thermoelectric thin film device comprising a thermoelectric thin film element that is bonded and generates a temperature difference on a two-dimensional plane, wherein a buffer layer is provided at an interface between the insulating substrate and the thermoelectric thin film element, and the thermoelectric thin film element The ratio between the electrical resistance of the buffer layer and the electrical resistance of the buffer layer is defined to be 10 −5 to 0.4 , and the thickness of the buffer layer is 0.1 nm to 1 nm. A thermoelectric thin film device is provided.

第2には、上記第1の発明において、前記バッファ層は、Cr、Ni、Cu又はTiを50at%以上含むことを特徴とする熱電薄膜デバイスを提供する。 Second, the thermoelectric thin film device according to the first invention is characterized in that the buffer layer contains 50 at% or more of Cr, Ni, Cu or Ti .

第3には、上記第1又は第2の発明において、前記バッファ層、前記p型薄膜パターン及び前記n型薄膜パターンが、成膜後200〜400℃の真空雰囲気中又は不活性ガス中で30〜120分間、加熱処理を施されたものであることを特徴とする熱電薄膜デバイスを提供する。 Thirdly, in the first or second invention, the buffer layer, the p-type thin film pattern, and the n-type thin film pattern are 30 in a vacuum atmosphere at 200 to 400 ° C. or in an inert gas after film formation. Provided is a thermoelectric thin film device which is heat-treated for ˜120 minutes .

第4には、上記第1から第3のいずれかの発明において、前記p型薄膜パターンがBi 0.5 −Sb 1.5 −Te からなり、前記n型薄膜パターンがBi −Sb 2.7 −Te 0.3 からなることを特徴とする熱電薄膜デバイスを提供する。 The fourth, the third one of the invention from the first, the p-type thin film pattern is made of Bi 0.5 -Sb 1.5 -Te 3, the n-type thin film pattern is Bi 2 -Sb 2 The thermoelectric thin film device is characterized by comprising .7- Te 0.3 .

第5には、上記第1から第4のいずれかの発明において二次元平面上における温度差の形成に、集光した太陽光を用いることを特徴とする熱電薄膜デバイスを提供する。 Fifth, in any one of the first to fourth inventions, there is provided a thermoelectric thin film device characterized in that condensed sunlight is used to form a temperature difference on a two-dimensional plane.

本発明によれば、基板と熱電薄膜パターンの界面に、熱電薄膜の電気抵抗とバッファ層の電気抵抗の比が一定の範囲となるように制御してバッファ層を設けることにより、薄膜技術とリソグラフィ技術により作製された熱電薄膜パターンと基板との密着性を向上させるとともに、外部に起電力を効率的に取り出すことができ、なおかつ、薄型化、小型化を図ることができる熱電薄膜デバイスの提供が可能となる。
また、バッファ層の膜厚を一定の範囲に規定することにより、電気抵抗比をより簡易に調整することができる。
また、導電性が高いにもかかわらず、熱電薄膜素子を短絡させることなく、密着性の高い金属を含む材料を使用することにより、基板との密着性をより確実なものとすることができる。
また、二次元平面上における温度差の形成に、集光した太陽光を用いることにより、より安価に、かつ、より効率的に起電力を外部に取り出すことができる。
According to the present invention , the buffer layer is provided at the interface between the substrate and the thermoelectric thin film pattern so that the ratio of the electric resistance of the thermoelectric thin film and the electric resistance of the buffer layer is within a certain range, thereby enabling thin film technology and lithography. Providing a thermoelectric thin film device that can improve the adhesion between the thermoelectric thin film pattern produced by the technology and the substrate, can efficiently extract the electromotive force to the outside, and can be reduced in thickness and size. It becomes possible.
Moreover, the electrical resistance ratio can be more easily adjusted by defining the thickness of the buffer layer within a certain range.
In addition, despite the high conductivity, the adhesion to the substrate can be made more reliable by using a material containing a metal with high adhesion without short-circuiting the thermoelectric thin film element.
Further, by using the concentrated sunlight for forming the temperature difference on the two-dimensional plane, the electromotive force can be taken out to the outside at a lower cost and more efficiently.

本発明による熱電薄膜デバイスの直線的な熱電薄膜パターンの一例を示す平面図である。It is a top view which shows an example of the linear thermoelectric thin film pattern of the thermoelectric thin film device by this invention. 図1のX−Y線断面図である。It is the XY sectional view taken on the line of FIG. 別の放射状の熱電薄膜パターンの一例を示す平面図である。It is a top view which shows an example of another radial thermoelectric thin film pattern. 本発明による複数の熱スポットを熱源とする熱電薄膜デバイスの複合パターンの一例を示す平面図である。It is a top view which shows an example of the composite pattern of the thermoelectric thin film device which uses the some heat spot by this invention as a heat source.

以下、本発明の実施形態について詳述する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、絶縁性基板上に、複数のp型薄膜パターンとn型薄膜パターンが交互に配設され、隣同士の異種の薄膜パターンが接合され、二次元平面上に温度差を形成して発電する熱電薄膜素子を設けてなる熱電薄膜デバイスであって、前記絶縁性基板と前記熱電薄膜素子の界面にバッファ層を、前記熱電薄膜素子の電気抵抗と前記バッファ層の電気抵抗の比が10−5〜0.4となるように規定して配置し、かつ前記バッファ層の厚さを0.1nm〜1nmとしたことを特徴とするものである。 In the present invention, a plurality of p-type thin film patterns and n-type thin film patterns are alternately arranged on an insulating substrate, adjacent different thin film patterns are joined, and a temperature difference is formed on a two-dimensional plane. A thermoelectric thin film device provided with a thermoelectric thin film element for generating power, wherein a buffer layer is provided at an interface between the insulating substrate and the thermoelectric thin film element, and a ratio of an electric resistance of the thermoelectric thin film element to an electric resistance of the buffer layer is 10 It is characterized by being arranged so as to be −5 to 0.4 , and the thickness of the buffer layer is 0.1 nm to 1 nm .

図1に、本発明の一実施形態に係る熱電薄膜デバイス1を平面図で示し、図2に、図1のX−Y線断面図を示す。   FIG. 1 is a plan view showing a thermoelectric thin film device 1 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line XY of FIG.

この熱電デバイス1は、熱電効果を利用して発電を行うものであり、絶縁性基板2上に熱電薄膜素子3を設けた構造を有している。熱電薄膜素子3は、図1に示すように、一定幅を有する直線状のp型薄膜パターン4とn型薄膜パターン5が交互に配設され、図において一番右側のp型薄膜パターン4の一端4aとn型薄膜パターン5の一端5aが接合され、一対の熱電薄膜パターンを形成し、その接合点が温接点6となっている。また、n型パターン5の他端5bとその左隣のp型パターン4の他端4bが接合され、一対の熱電薄膜パターンを形成し、その接合点が冷接点7となっている。このような熱電薄膜パターンが繰り返し配置され、一番右側のp型薄膜パターン4の他端4bに電極パッド部8が接続され、一番左側のn型薄膜パターン5の一端5aに電極パッド部9が接続されている。   The thermoelectric device 1 generates power using the thermoelectric effect and has a structure in which a thermoelectric thin film element 3 is provided on an insulating substrate 2. As shown in FIG. 1, the thermoelectric thin film element 3 includes linear p-type thin film patterns 4 and n-type thin film patterns 5 having a constant width, and the rightmost p-type thin film pattern 4 in the figure. One end 4 a and one end 5 a of the n-type thin film pattern 5 are joined to form a pair of thermoelectric thin film patterns, and the junction point is a hot junction 6. Further, the other end 5b of the n-type pattern 5 and the other end 4b of the p-type pattern 4 adjacent to the left are joined to form a pair of thermoelectric thin film patterns, and the junction point is a cold junction 7. Such a thermoelectric thin film pattern is repeatedly arranged, the electrode pad portion 8 is connected to the other end 4b of the rightmost p-type thin film pattern 4, and the electrode pad portion 9 is connected to one end 5a of the leftmost n-type thin film pattern 5. Is connected.

本実施形態の熱電薄膜デバイス1では、p型薄膜パターン4と絶縁性基板2との間、及びn型薄膜パターン5と絶縁性基板2との間にそれぞれバッファ層10が配設されている。このバッファ層10の電気抵抗は、熱電薄膜パターン(p型薄膜パターン4とn型薄膜パターン5)の電気抵抗に対する比、すなわち(熱電薄膜パターンの電気抵抗)/(バッファ層の電気抵抗)が10−5〜0.4となるように規定される。前記比が10−5未満であると絶縁性基板2との密着性が十分でなくなり、0.4より大きくなると導電性が大きくなるため起電力の外部への効率的な取り出しに影響を与える。 In the thermoelectric thin film device 1 of the present embodiment, the buffer layer 10 is disposed between the p-type thin film pattern 4 and the insulating substrate 2 and between the n-type thin film pattern 5 and the insulating substrate 2. The electric resistance of the buffer layer 10 is the ratio of the thermoelectric thin film pattern (p-type thin film pattern 4 and n-type thin film pattern 5) to the electric resistance, that is, (electric resistance of the thermoelectric thin film pattern) / (electric resistance of the buffer layer) is 10. It is specified to be −5 to 0.4. When the ratio is less than 10 −5 , the adhesiveness with the insulating substrate 2 is not sufficient, and when it is greater than 0.4, the conductivity increases, which affects the efficient extraction of the electromotive force to the outside.

バッファ層10としては絶縁性基板2や熱電薄膜パターンとの接合力の強いCr、Ni、Cu、Ti等の金属、あるいはこれらの金属を50%以上含む合金や化合物を用いることができる。その場合、(熱電薄膜パターンの電気抵抗)/(バッファ層の電気抵抗)が上記範囲内となるように考慮する。バッファ層10の膜厚は、材料の種類によっても異なるが、0.1nm〜100nmであることが好ましい。バッファ層10の膜厚がこのような範囲であると、絶縁性基板2との密着性の向上、起電力の外部への効率的な取り出しが行える。   As the buffer layer 10, a metal such as Cr, Ni, Cu, Ti or the like having strong bonding strength with the insulating substrate 2 or the thermoelectric thin film pattern, or an alloy or compound containing 50% or more of these metals can be used. In that case, it is considered that (electric resistance of thermoelectric thin film pattern) / (electric resistance of buffer layer) is within the above range. The thickness of the buffer layer 10 is preferably 0.1 nm to 100 nm, although it varies depending on the type of material. When the film thickness of the buffer layer 10 is in such a range, the adhesion with the insulating substrate 2 can be improved and the electromotive force can be efficiently taken out to the outside.

バッファ層10の成膜には、スパッタリング等、従来公知の各種方法を用いることができる。   For the film formation of the buffer layer 10, various conventionally known methods such as sputtering can be used.

本実施形態の熱電薄膜デバイス1において絶縁性基板2の熱伝導率は、温接点6と冷接点7との間、すなわちpn接合間の温度差を大きくする観点から小さいこと望ましく、例えば10W/(m・K)以下とすることが好ましい。絶縁性基板2の材料としては、上記のような小さな熱伝導率を有するものであれば特に限定されないが、例えばSiO系ガラス基板や表面がSiO系ガラスよりなるものを使用することができる。 In the thermoelectric thin film device 1 of the present embodiment, the thermal conductivity of the insulating substrate 2 is desirably small from the viewpoint of increasing the temperature difference between the hot junction 6 and the cold junction 7, that is, between the pn junctions, for example, 10 W / ( m · K) or less. The material of the insulating substrate 2 is not particularly limited as long as it has a small thermal conductivity as described above. For example, a SiO 2 glass substrate or a material whose surface is made of SiO 2 glass can be used. .

p型薄膜パターン4とn型薄膜パターン5の材料としては、熱電効果を発揮するものであれば従来公知の各種の材料の組み合わせとすることができるが、好ましい一例を挙げれば、p型薄膜パターン4としては、Bi−Sb−Teを用い、n型薄膜パターン5としてBi−Te−Seを用いたものが例示できる。p型薄膜パターン4、n型薄膜パターン5の膜厚は、成膜時間の制約、剥離、電気抵抗の観点から0.1〜10μmであることが好ましい。これらの薄膜パターンの成膜には、スパッタリング等、従来公知の各種方法を用いることができる。   As a material of the p-type thin film pattern 4 and the n-type thin film pattern 5, any combination of various conventionally known materials can be used as long as it exhibits a thermoelectric effect. For example, Bi-Sb-Te is used as 4 and Bi-Te-Se is used as the n-type thin film pattern 5. The film thicknesses of the p-type thin film pattern 4 and the n-type thin film pattern 5 are preferably 0.1 to 10 μm from the viewpoint of film formation time restriction, peeling, and electrical resistance. For forming these thin film patterns, various conventionally known methods such as sputtering can be used.

本実施形態の熱電薄膜デバイス1は、応力の緩和等のためバッファ層6、p型薄膜パターン4、n型薄膜パターン5の成膜後に200〜400℃の真空雰囲気中や不活性ガス中で30〜120分間程度、加熱処理を施すことが好ましい。このようにすると、絶縁性基板2との密着性をより向上させることができる。   The thermoelectric thin film device 1 of the present embodiment is 30 in a vacuum atmosphere of 200 to 400 ° C. or in an inert gas after forming the buffer layer 6, the p-type thin film pattern 4, and the n-type thin film pattern 5 for stress relaxation. It is preferable to perform heat treatment for about 120 minutes. If it does in this way, adhesiveness with the insulating board | substrate 2 can be improved more.

温接点6と冷接点7との間に温度差を形成するためには、高温部となる温接点6を各種方法で高温状態とする。温接点6を高温状態にするには温接点6の配置形態を考慮して加熱手法を選択する。本実施形態では、直線状に加熱するため、例えばホットプレートを用いたり、太陽光をシリンドリカルレンズで集光する方法等を用いることができる。太陽光を利用する場合、太陽光の吸収効率を向上させるため、温接点6の上に細幅で直線状のカーボン薄膜等を設けるようにしてもよい。高温部と低温部の温度差は10〜200℃が好ましい。   In order to form a temperature difference between the hot junction 6 and the cold junction 7, the hot junction 6 serving as the high temperature portion is brought into a high temperature state by various methods. In order to bring the hot junction 6 into a high temperature state, a heating method is selected in consideration of the arrangement form of the hot junction 6. In this embodiment, in order to heat linearly, the method of condensing sunlight with a cylindrical lens etc. can be used, for example. When using sunlight, in order to improve the absorption efficiency of sunlight, you may make it provide a thin and linear carbon thin film etc. on the hot junction 6. FIG. The temperature difference between the high temperature part and the low temperature part is preferably 10 to 200 ° C.

以上、本発明を一実施形態に基づき説明してきたが、本発明による熱電薄膜パターンは図3や図4のような形態としてもよい。図3のパターンは、基板上のある点から放射状に温度差がつく場合に有効であり、図4のパターンは基板上に複数の熱スポットが存在する場合に有効である。また、直線状と放射状を組み合わせたようなパターンとしてもよい。   Although the present invention has been described based on one embodiment, the thermoelectric thin film pattern according to the present invention may be configured as shown in FIGS. The pattern of FIG. 3 is effective when a temperature difference is generated radially from a certain point on the substrate, and the pattern of FIG. 4 is effective when a plurality of heat spots are present on the substrate. Moreover, it is good also as a pattern which combined linear form and radial form.

以下、本発明を実施例及び比較例によりさらに具体的に述べる。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1〜2、参考例1〜2、比較例]
SiO系ガラス基板(厚さ1mm、縦20mm、横26mm)上に熱電薄膜のパターニングを行うため、リソグラフィプロセスで作製したレジストパターン(厚さ15μm)をマスクとして、スパッタリング法でp型熱電薄膜Bi0.5−Sb1.5−Teを1μmの厚さに成膜したところ、レジスト剥離時に熱電薄膜もともに剥離してしまった。n型熱電薄膜Bi−Te2.7−Se0.3を1μmの厚さに成膜しても同じように剥離した。そこで、リソグラフィプロセスを用いてマスク用の上記と同じ材料よりなるレジストパターンを設けた後、バッファ層としてCr薄膜をそれぞれ0.1nm、1nm、18nm、100nm、1μmの厚さに成膜させ、その上にp型熱電薄膜(Bi0.5−Sb1.5−Te)、n型熱電薄膜(Bi−Te2.7−Se0.3)を順次スパッタリング法により1μmの厚さに成膜したところ、剥離することなく成膜することができた。300℃の真空雰囲気中で60分間アニールしても、熱電薄膜が剥離することはなく、密着性の高い熱電薄膜を形成できることが分かった。また、直列に接続された熱電薄膜パターンの両端の電極パッド部自体も、p型、若しくはn型の薄膜であり、熱電パターンと同時に作製した。これらの熱電薄膜デバイスの起電力を測定したところ、表1に示す値が得られた。また、熱電薄膜の電気抵抗とバッファ層の電気抵抗との比と、特性との関係を表1に併せて示す。温度差はホットプレートで40℃とした。
[ Examples 1-2 , Reference Examples 1-2 , Comparative Example]
In order to pattern a thermoelectric thin film on a SiO 2 glass substrate (thickness 1 mm, length 20 mm, width 26 mm), a p-type thermoelectric thin film Bi is formed by sputtering using a resist pattern (thickness 15 μm) produced by a lithography process as a mask. When 0.5- Sb 1.5 -Te 3 was formed to a thickness of 1 μm, the thermoelectric thin film was also peeled off when the resist was peeled off. Even if the n-type thermoelectric thin film Bi 2 -Te 2.7 -Se 0.3 was formed to a thickness of 1 μm, it was peeled off in the same manner. Therefore, after providing a resist pattern made of the same material as described above for the mask using a lithography process, a Cr thin film is formed as a buffer layer to a thickness of 0.1 nm, 1 nm, 18 nm, 100 nm, and 1 μm, respectively. A p-type thermoelectric thin film (Bi 0.5 -Sb 1.5 -Te 3 ) and an n-type thermoelectric thin film (Bi 2 -Te 2.7 -Se 0.3 ) are sequentially formed to a thickness of 1 μm by sputtering. As a result, the film could be formed without peeling. It was found that even if annealing was performed in a vacuum atmosphere at 300 ° C. for 60 minutes, the thermoelectric thin film did not peel off and a thermoelectric thin film with high adhesion could be formed. The electrode pad portions themselves at both ends of the thermoelectric thin film patterns connected in series were also p-type or n-type thin films, and were produced at the same time as the thermoelectric patterns. When the electromotive force of these thermoelectric thin film devices was measured, the values shown in Table 1 were obtained. Table 1 also shows the relationship between the ratio between the electric resistance of the thermoelectric thin film and the electric resistance of the buffer layer and the characteristics. The temperature difference was 40 ° C. with a hot plate.

Figure 0005669103
Figure 0005669103

[実施例
上述した例においては、バッファ層としてCrを用いる例について示したが、バッファ層にNi、Cu、Tiを用いた場合についても検討した。バッファ層の種類以外は、熱電薄膜デバイス、作製プロセスともに上記実施例と同様にした。いずれのバッファ層を用いた場合にも、熱電薄膜は剥離せず、密着性の高い熱電薄膜が得られた。これらの熱電薄膜デバイスの起電力を測定したところ、表2に示すような値が得られた。熱電薄膜の抵抗と、物性値から見積もったバッファ層の抵抗の比を抵抗比として表2に合わせて示す。温度差はホットプレートで高温側を加熱して約70℃の温度差を生成した。
[Examples 3 to 5 ]
In the example described above, an example in which Cr is used as the buffer layer has been shown, but the case where Ni, Cu, and Ti are used in the buffer layer was also examined. Except for the type of buffer layer, both the thermoelectric thin film device and the fabrication process were the same as in the above example. When any buffer layer was used, the thermoelectric thin film was not peeled off, and a thermoelectric thin film with high adhesion was obtained. When the electromotive force of these thermoelectric thin film devices was measured, the values shown in Table 2 were obtained. The ratio of the resistance of the thermoelectric thin film and the resistance of the buffer layer estimated from the physical properties is shown in Table 2 as the resistance ratio. A temperature difference of about 70 ° C. was generated by heating the high temperature side with a hot plate.

Figure 0005669103
Figure 0005669103

本発明は、太陽光エネルギーや自動車廃熱などの熱エネルギーを電気エネルギーに変換するための熱電素子であり、薄膜であることから、小型化、軽量化につながり、可搬性に優れた熱電薄膜デバイスを提供できる。さらには、モバイル機器などへの人体からの発熱を利用した電力の供給、温度センサーなどにも利用が可能である。   The present invention is a thermoelectric element for converting thermal energy such as solar energy and automobile waste heat into electric energy, and since it is a thin film, it leads to miniaturization and weight reduction, and has excellent portability. Can provide. Furthermore, it can also be used for power supply, temperature sensors, etc. using heat generated by the human body to mobile devices.

1 熱電薄膜デバイス
2 絶縁性基板
3 熱電薄膜素子
4 p型薄膜パターン
5 n型薄膜パターン
6 温接点
7 冷接点
8、9 電極パッド部
10 バッファ層
DESCRIPTION OF SYMBOLS 1 Thermoelectric thin film device 2 Insulating substrate 3 Thermoelectric thin film element 4 P type thin film pattern 5 N type thin film pattern 6 Hot junction 7 Cold junction 8, 9 Electrode pad part 10 Buffer layer

Claims (5)

絶縁性基板上に、複数のp型薄膜パターンとn型薄膜パターンが交互に配設され、隣同士の異種の薄膜パターンが接合され、二次元平面上に温度差を形成して発電する熱電薄膜素子を設けてなる熱電薄膜デバイスであって、前記絶縁性基板と前記熱電薄膜素子の界面にバッファ層を、前記熱電薄膜素子の電気抵抗と前記バッファ層の電気抵抗の比が10−5〜0.4となるように規定して配置し、かつ前記バッファ層の厚さを0.1nm〜1nmとしたことを特徴とする熱電薄膜デバイス。 A thermoelectric thin film in which a plurality of p-type thin film patterns and n-type thin film patterns are alternately arranged on an insulating substrate, adjacent different kinds of thin film patterns are joined, and a temperature difference is formed on a two-dimensional plane to generate power. A thermoelectric thin film device provided with an element, wherein a buffer layer is provided at an interface between the insulating substrate and the thermoelectric thin film element, and a ratio of an electric resistance of the thermoelectric thin film element to an electric resistance of the buffer layer is 10 −5 to 0 And a buffer layer having a thickness of 0.1 nm to 1 nm . 前記バッファ層は、Cr、Ni、Cu又はTiを50at%以上含むことを特徴とする請求項1に記載の熱電薄膜デバイス。 The thermoelectric thin film device according to claim 1, wherein the buffer layer contains 50 at% or more of Cr, Ni, Cu, or Ti . 前記バッファ層、前記p型薄膜パターン及び前記n型薄膜パターンが、成膜後200〜400℃の真空雰囲気中又は不活性ガス中で30〜120分間、加熱処理を施されたものであることを特徴とする請求項1又は2に記載の熱電薄膜デバイス。 The buffer layer, the p-type thin film pattern and the n-type thin film pattern are heat-treated for 30 to 120 minutes in a vacuum atmosphere at 200 to 400 ° C. or in an inert gas after film formation. The thermoelectric thin film device according to claim 1 or 2, characterized by the above. 前記p型薄膜パターンがBi 0.5 −Sb 1.5 −Te からなり、前記n型薄膜パターンがBi −Sb 2.7 −Te 0.3 からなることを特徴とする請求項1から3のいずれか一項に記載の熱電薄膜デバイス。 From claim 1, wherein the p-type thin film pattern is made of Bi 0.5 -Sb 1.5 -Te 3, the n-type thin film pattern is characterized in that it consists of Bi 2 -Sb 2.7 -Te 0.3 4. The thermoelectric thin film device according to any one of 3 above. 二次元平面上における温度差の形成に、集光した太陽光を用いることを特徴とする請求項1から4のいずれか一項に記載の熱電薄膜デバイス。The thermoelectric thin film device according to any one of claims 1 to 4, wherein condensed sunlight is used for forming a temperature difference on a two-dimensional plane.
JP2011138856A 2011-03-23 2011-06-22 Thermoelectric thin film device Expired - Fee Related JP5669103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138856A JP5669103B2 (en) 2011-03-23 2011-06-22 Thermoelectric thin film device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011063683 2011-03-23
JP2011063683 2011-03-23
JP2011138856A JP5669103B2 (en) 2011-03-23 2011-06-22 Thermoelectric thin film device

Publications (2)

Publication Number Publication Date
JP2012212838A JP2012212838A (en) 2012-11-01
JP5669103B2 true JP5669103B2 (en) 2015-02-12

Family

ID=47266558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138856A Expired - Fee Related JP5669103B2 (en) 2011-03-23 2011-06-22 Thermoelectric thin film device

Country Status (1)

Country Link
JP (1) JP5669103B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024642B2 (en) * 2013-10-25 2016-11-16 株式会社デンソー Thermoelectric conversion device and manufacturing method thereof
FR3048128B1 (en) * 2016-02-18 2018-05-18 Centre National De La Recherche Scientifique THERMOELECTRIC DEVICE
JP6600108B1 (en) * 2019-01-07 2019-10-30 有限会社Icea Thin film thermoelectric conversion element and thermoelectric power generation module
CN111106230A (en) * 2019-12-31 2020-05-05 中国电子科技集团公司第十八研究所 Micro-temperature difference power generation device with planar radiation structure
CN114242881B (en) * 2021-12-16 2023-04-07 中国工程物理研究院电子工程研究所 Cascade type plane thermoelectric thin film structure for cooling chip hot spots

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772776B2 (en) * 1995-09-22 1998-07-09 工業技術院長 Thermopile
JP2002198574A (en) * 1997-09-19 2002-07-12 Citizen Watch Co Ltd Thermopile infrared rays detecting element
JP3836229B2 (en) * 1997-10-09 2006-10-25 シチズン時計株式会社 Thermoelectric infrared detector
JP2001203399A (en) * 2000-01-21 2001-07-27 Alps Electric Co Ltd Infrared ray sensor
WO2008063474A2 (en) * 2006-11-13 2008-05-29 Massachusetts Institute Of Technology Solar thermoelectric conversion
JP2011018689A (en) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion

Also Published As

Publication number Publication date
JP2012212838A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5669103B2 (en) Thermoelectric thin film device
JP5449786B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP5493562B2 (en) Thermoelectric conversion module
JP2013508983A (en) Planar thermoelectric generator
JP2012523111A5 (en)
US10553773B2 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US10566515B2 (en) Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP6976631B2 (en) Thermoelectric module and thermoelectric generator
CN103545440B (en) Thermoelectric conversion structure and heat dissipation structure using same
JP5653455B2 (en) Thermoelectric conversion member
JP2017204550A (en) Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
JP2016157843A (en) Thermoelectric conversion device
JP6174246B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP2010098035A (en) Thermoelectric conversion element
JP6505585B2 (en) Thermoelectric conversion element
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US10367131B2 (en) Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP2010225608A (en) Thermoelectric conversion element
US20200176661A1 (en) Series-parallel cluster configuration of a thin-film based thermoelectric module
US11024789B2 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
CN111048618B (en) Schottky barrier diode temperature sensor integrated by interdigital structure and manufacturing method thereof
US20190103540A1 (en) Double-sided metal clad laminate based flexible thermoelectric device and module
US20190198744A1 (en) Hybrid solar and solar thermal device with embedded flexible thin-film based thermoelectric module
JP5176602B2 (en) Thermoelectric device element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5669103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees