JP2012144419A - Method for producing graphene material, and the graphene material - Google Patents

Method for producing graphene material, and the graphene material Download PDF

Info

Publication number
JP2012144419A
JP2012144419A JP2011131743A JP2011131743A JP2012144419A JP 2012144419 A JP2012144419 A JP 2012144419A JP 2011131743 A JP2011131743 A JP 2011131743A JP 2011131743 A JP2011131743 A JP 2011131743A JP 2012144419 A JP2012144419 A JP 2012144419A
Authority
JP
Japan
Prior art keywords
graphene
metal layer
layer
graphene material
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131743A
Other languages
Japanese (ja)
Other versions
JP5783526B2 (en
Inventor
Shigeya Narizuka
重弥 成塚
Takahiro Maruyama
隆浩 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meijo University
Original Assignee
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meijo University filed Critical Meijo University
Priority to JP2011131743A priority Critical patent/JP5783526B2/en
Priority to PCT/JP2012/065131 priority patent/WO2012173145A1/en
Publication of JP2012144419A publication Critical patent/JP2012144419A/en
Application granted granted Critical
Publication of JP5783526B2 publication Critical patent/JP5783526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene

Abstract

PROBLEM TO BE SOLVED: To easily prepare a graphene material having a desired shape with hardly-exfoliating electrode terminals.SOLUTION: First of all, a substrate body 12 is prepared, and an Ni crystal layer 14 is deposited on the whole surface of the substrate body 12. Successively, the crystal layer 14 is patterned into a zigzag shape by a lithography method to form a catalytic metal layer 16. Then, C atoms are supplied to the catalytic metal layer 16 by mixed gas of acetylene and argon. Thereby, the graphene is formed on the catalytic metal layer 16, to thereby form the same shape as the catalytic metal layer 16, namely, a zigzag shape. Then, electrode terminals 18, 20 are mounted on both terminals of the zigzag graphene. The electrode terminals 18, 20 have respectively a structure in which a ground Ti layer and a protection layer using a metal selected from a group comprising Mo, Ni Ta and W as a main component are laminated in this order. Thereafter, the catalytic metal layer 16 is dissolved by an acidic solution, and the graphene is taken out as a graphene material 10.

Description

本発明は、グラフェン素材の製造方法及びグラフェン素材に関する。   The present invention relates to a method for producing a graphene material and a graphene material.

グラフェンは、炭素原子の六員環が単層で連なって平面状になった二次元材料である。このグラフェンは、電子移動度がシリコンの100倍以上と言われている。近年、グラフェンをチャネル材料として利用したトランジスタが提案されている(特許文献1参照)。特許文献1では、絶縁基板上に、絶縁分離膜で分離された触媒膜パターンを形成し、その触媒膜パターン上にグラフェンシートを成長させたあと、そのグラフェンシートの両側にドレイン電極及びソース電極を形成すると共に、グラフェンシート上にゲート絶縁膜を解してゲート電極を形成している。ここで、触媒膜パターンは絶縁膜で分離されているが、グラフェンシートは触媒膜パターンの端では横方向に延びることから、絶縁分離膜の両側の触媒膜パターンからグラフェンシートが延びて絶縁分離膜上でつながった構造が得られると説明されている。   Graphene is a two-dimensional material in which six-membered rings of carbon atoms are connected in a single layer to form a plane. This graphene is said to have an electron mobility of 100 times or more that of silicon. In recent years, a transistor using graphene as a channel material has been proposed (see Patent Document 1). In Patent Document 1, a catalyst film pattern separated by an insulating separation film is formed on an insulating substrate, a graphene sheet is grown on the catalyst film pattern, and then a drain electrode and a source electrode are formed on both sides of the graphene sheet. At the same time, a gate electrode is formed on the graphene sheet by breaking the gate insulating film. Here, the catalyst film pattern is separated by the insulating film, but the graphene sheet extends in the lateral direction at the end of the catalyst film pattern, so that the graphene sheet extends from the catalyst film pattern on both sides of the insulating separation film. It is explained that the above connected structure is obtained.

特開2009−164432号公報JP 2009-164432 A

ところで、グラフェン素材を単離する方法については、これまであまり多く報告されていない。一例としては、グラファイトに粘着テープを付着させたあとそのテープを剥がすことにより、粘着テープの粘着面にグラファイトから分離したグラフェンシートを付着させるという方法が知られている。   By the way, there have not been many reports on the method of isolating the graphene material. As an example, there is known a method of attaching a graphene sheet separated from graphite to the adhesive surface of an adhesive tape by attaching the adhesive tape to graphite and then peeling the tape.

しかしながら、こうした方法では、グラファイトからきれいにグラフェンシートが分離しないことがあるため、所望形状のグラフェンシートを得ることが困難であった。また、グラフェンシートの両端に電極端子を設ける場合、電極端子がグラフェンシートから剥離してしまうおそれもあった。   However, in such a method, since the graphene sheet may not be separated cleanly from graphite, it is difficult to obtain a graphene sheet having a desired shape. Moreover, when providing an electrode terminal in the both ends of a graphene sheet, there also existed a possibility that an electrode terminal might peel from a graphene sheet.

本発明はこのような課題を解決するためになされたものであり、剥離しにくい電極端子を有する所望形状のグラフェン素材を容易に作製することを主目的とする。   The present invention has been made to solve such problems, and a main object of the present invention is to easily produce a graphene material having a desired shape having electrode terminals that are difficult to peel off.

本発明のグラフェン素材の製造方法は、
(a)グラフェン化を促進する機能を有する所定形状の触媒金属層を基板本体上に形成する工程と、
(b)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
(c)前記触媒金属層から前記グラフェンをグラフェン素材として取り出す工程と、
を含み、
前記工程(c)で前記グラフェンをグラフェン素材として取り出す前又は後に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を形成するものである。
The method for producing the graphene material of the present invention is as follows:
(A) forming a catalyst metal layer having a predetermined shape on the substrate body having a function of promoting grapheneization;
(B) supplying a carbon source to the surface of the catalytic metal layer to grow graphene;
(C) extracting the graphene as a graphene material from the catalyst metal layer;
Including
Before or after taking out the graphene as a graphene material in the step (c), a Ti layer as a base and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W in this order. An electrode terminal having a laminated structure is formed.

このグラフェン素材の製造方法によれば、グラフェン素材の形状は触媒金属層の形状をそのまま受け継ぐことになるため、触媒金属層を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材を得ることができる。また、電極端子は、グラフェンと接する層として炭素との反応性のよいTiを使用しているため、優れたオーミック電極となる。更に、Ti層の直上に形成される保護層にTiと反応しにくいMo,Ni,Ta又はWを使用しているため、Tiが保護層に拡散してグラフェンから剥離するという現象が起こりにくい。なお、保護層は、上述した群より選ばれた金属からなるもの(但し、不可避的な不純物成分を含む)としてもよい。   According to this graphene material manufacturing method, since the shape of the graphene material inherits the shape of the catalyst metal layer as it is, if the catalyst metal layer is patterned into a desired shape, the graphene material of the desired shape can be obtained. Can do. In addition, since the electrode terminal uses Ti having good reactivity with carbon as a layer in contact with graphene, the electrode terminal is an excellent ohmic electrode. Furthermore, since Mo, Ni, Ta, or W, which does not easily react with Ti, is used for the protective layer formed immediately above the Ti layer, the phenomenon that Ti diffuses into the protective layer and peels from the graphene hardly occurs. The protective layer may be made of a metal selected from the group described above (however, it includes an inevitable impurity component).

ここで、グラフェン素材とは、炭素原子の六員環が単層で連なったグラフェンを1層又は複数層有する素材をいう。また、グラフェン化を促進する機能とは、炭素源と接触してその炭素源に含まれる炭素成分が互いに結合してグラフェンになるのを促進する機能をいう。また、Ti層の厚さは1nm−100nmとしてもよく、保護層の厚さは5nm−100nmとしてもよい。   Here, the graphene material refers to a material having one or more layers of graphene in which six-membered rings of carbon atoms are connected in a single layer. In addition, the function of promoting grapheneization refers to a function of promoting the formation of graphene by contacting with a carbon source and combining the carbon components contained in the carbon source with each other. Further, the thickness of the Ti layer may be 1 nm to 100 nm, and the thickness of the protective layer may be 5 nm to 100 nm.

本発明のグラフェン素材の製造方法において、前記工程(a)では、前記触媒金属層として一筆書きが可能な形状のものを形成してもよい。こうすれば、基板の面積が小さい場合であっても、得られるグラフェン素材の長さを長くすることができる。この場合、金属層と同形状のグラフェンが得られるが、その両端を把持して伸ばすことにより線状のグラフェン素材が得られる。こうした線状のグラフェン素材は、電気配線等に利用可能である。一筆書きが可能な形状は、例えば、ジグザグ状であってもよいし渦巻き状であってもよいし螺旋状であってもよい。具体的には、基板本体が平板状の場合には触媒金属層をジグザグ状又は渦巻き状に形成し、基板本体が円筒状の場合には触媒金属層を螺旋状に形成してもよい。   In the method for producing a graphene material of the present invention, in the step (a), the catalyst metal layer may have a shape that can be drawn with a single stroke. In this way, even when the area of the substrate is small, the length of the obtained graphene material can be increased. In this case, graphene having the same shape as that of the metal layer is obtained, but a linear graphene material is obtained by grasping and extending both ends thereof. Such a linear graphene material can be used for electrical wiring and the like. The shape that can be drawn with one stroke may be, for example, a zigzag shape, a spiral shape, or a spiral shape. Specifically, when the substrate body is flat, the catalyst metal layer may be formed in a zigzag shape or a spiral shape, and when the substrate body is cylindrical, the catalyst metal layer may be formed in a spiral shape.

工程(a)において、基板本体としては、特に限定するものではないが、例えばc面サファイア基板、a面サファイア基板、表面にSiO2層が形成されたSi基板、SiC基板、ZnO基板、GaN基板(テンプレート基板を含む)、W等の高融点金属基板、グラフェン化促進触媒能を有する金属の基板などが挙げられる。こうした基板本体は、単結晶基板の方が触媒金属層の結晶方位を揃えやすいため好ましい。但し、単結晶基板でなくても触媒金属層の方位は揃うことがあり得る。また、基板本体は、基本的には、グラフェンを成長させる工程(b)において劣化しないことが必要である。なお、基板本体として、表面にSiO2層が形成されたSi基板を用いる場合には、Siと触媒金属層との反応を抑制するために、基板と触媒金属層との間にTi,Pt,SiO2等の中間層を設けることが好ましい。中間層の厚さは、特に限定するものではないが、例えば1nm−10nm程度としてもよい。 In the step (a), the substrate body is not particularly limited. For example, a c-plane sapphire substrate, an a-plane sapphire substrate, a Si substrate having a SiO 2 layer formed on the surface, a SiC substrate, a ZnO substrate, and a GaN substrate. (Including a template substrate), a refractory metal substrate such as W, and a metal substrate having a grapheneization promoting catalytic ability. As such a substrate body, a single crystal substrate is preferable because the crystal orientation of the catalytic metal layer is easily aligned. However, the orientation of the catalytic metal layer may be aligned even if it is not a single crystal substrate. Further, the substrate main body basically needs to be not deteriorated in the step (b) of growing graphene. When a Si substrate having a SiO 2 layer formed on the surface is used as the substrate body, in order to suppress the reaction between Si and the catalytic metal layer, Ti, Pt, An intermediate layer such as SiO 2 is preferably provided. The thickness of the intermediate layer is not particularly limited, but may be about 1 nm to 10 nm, for example.

工程(a)において、触媒金属層の材質としては、Cu,Ni,Co,Ru,Fe,Pt,Au等が挙げられる。こうした金属のうち、表面に三角格子(三角形の頂点に金属原子が配置された構造)を持つものが好ましい。例えば、FCCの(111)面、BCCの(110)面、HCPの(0001)面が三角格子になる。触媒金属層の厚さは、特に限定するものではないが、例えば1−500nm程度としてもよい。但し、膜厚が薄すぎると、触媒金属が粒子化してしまうおそれがあるため、粒子化しない程度の厚さとするのが好ましい。   In the step (a), examples of the material for the catalyst metal layer include Cu, Ni, Co, Ru, Fe, Pt, and Au. Among these metals, those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable. For example, the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices. The thickness of the catalyst metal layer is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles.

工程(a)において、所定形状の触媒金属層を形成するには、例えば、周知のフォトリソグラフィ法によってパターニングしてもよい。その場合、まず基板の全面に触媒金属層を形成し、次に所定形状の触媒金属層が残るようにレジストパターンを形成したあとウェットエッチング又はドライエッチングを行ってもよい。ウェットエッチングは、触媒金属層の金属種に応じて適宜エッチング液を選定すればよい。ドライエッチングも、触媒金属層の金属種に応じて適宜使用するガスを選定すればよい。また、所定形状の触媒金属層を形成するには、所定形状以外の部分を被覆するシャドウマスクを用いて触媒金属を蒸着又はスパッタしてもよい。   In step (a), in order to form a catalyst metal layer having a predetermined shape, patterning may be performed by, for example, a well-known photolithography method. In that case, first, a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching. For wet etching, an etching solution may be appropriately selected according to the metal species of the catalyst metal layer. In dry etching, a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer. In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.

工程(b)において、炭素源としては、例えば、炭素数1〜6の炭化水素やアルコールなどが挙げられる。また、グラフェンを成長させる方法としては、例えば、アルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどが挙げられる。   In the step (b), examples of the carbon source include C1-C6 hydrocarbons and alcohols. Examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, and gas source MBE.

アルコールCVDは、例えば、成長温度を400−850℃とし、炭素源としてメタノールやエタノールなどのアルコールの飽和蒸気を供給する。アルコール飽和蒸気は、バブラにキャリアガスを流すことにより発生させてもよい。キャリアガスとしては、アルゴン、水素、窒素などを利用することができる。圧力は大気圧であってもよいし、減圧下であってもよい。   In the alcohol CVD, for example, the growth temperature is set to 400 to 850 ° C., and a saturated vapor of alcohol such as methanol or ethanol is supplied as a carbon source. The alcohol saturated vapor may be generated by flowing a carrier gas through a bubbler. Argon, hydrogen, nitrogen or the like can be used as the carrier gas. The pressure may be atmospheric pressure or under reduced pressure.

熱CVDは、例えば、成長温度を800−1000℃とし、炭素源としてメタン、エチレン、アセチレン、ベンゼンなどを供給する。炭素源はアルゴンや水素などをキャリアガスとして供給し、炭素源の分圧は例えば0.002−5Pa程度とする。成長時間は例えば1−20分、圧力は加圧下(例えば1kPa)であってもよいし減圧下であってもよい。炭素源を分解するためにホットフィラメントを使用することが多い。   In the thermal CVD, for example, the growth temperature is set to 800 to 1000 ° C., and methane, ethylene, acetylene, benzene or the like is supplied as a carbon source. The carbon source is supplied with argon or hydrogen as a carrier gas, and the partial pressure of the carbon source is, for example, about 0.002-5 Pa. The growth time may be 1 to 20 minutes, for example, and the pressure may be under pressure (for example, 1 kPa) or under reduced pressure. Hot filaments are often used to decompose the carbon source.

プラズマCVDは、例えば、成長温度を950℃、圧力を1−1.1Pa、炭素源をメタン、メタン流量を5sccm、キャリアガスを水素、水素流量を20sccmとし、プラズマパワーを100W程度とする。   In plasma CVD, for example, the growth temperature is 950 ° C., the pressure is 1-1.1 Pa, the carbon source is methane, the methane flow rate is 5 sccm, the carrier gas is hydrogen, the hydrogen flow rate is 20 sccm, and the plasma power is about 100 W.

ガスソースMBEは、例えば、炭素源としてエタノールを用い、エタノールで飽和した窒素ないしは水素ガスの流量を0.3−2sccmとし、真空中で炭素源分解のため2000℃に加熱したWフィラメントを使用する。基板温度は400−600℃程度である。   The gas source MBE uses, for example, ethanol as a carbon source, a nitrogen or hydrogen gas saturated with ethanol at a flow rate of 0.3-2 sccm, and a W filament heated to 2000 ° C. in order to decompose the carbon source in a vacuum. . The substrate temperature is about 400-600 ° C.

工程(c)において、触媒金属層を溶かすには、例えば酸性溶液を用いる。どのような酸性溶液を用いるかは触媒金属層の金属種による。例えば、触媒金属層の材質がNiの場合には希硝酸を使用する。あるいは、触媒金属層からグラフェン素材を引き剥がすには、例えば触媒金属層の外周部分だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェン素材をめくるようにして機械的に引き剥がしてもよい。   In the step (c), for example, an acidic solution is used to dissolve the catalyst metal layer. Which acidic solution is used depends on the metal species of the catalyst metal layer. For example, dilute nitric acid is used when the material of the catalytic metal layer is Ni. Alternatively, in order to peel off the graphene material from the catalytic metal layer, for example, only the outer peripheral portion of the catalytic metal layer is etched away with an acidic solution, and the graphene material is turned off from the etched portion and mechanically peeled off. Also good.

工程(c)において、グラフェンをグラフェン素材として取り出す前又は後に電極端子を形成するにあたり、電極端子として、Ti層と保護層とAu又はSnからなる表層とをこの順で積層した構造を持つものを形成してもよい。こうすれば、電極端子はAu又はSnからなる表層を備えているため、ボンディングを容易且つ確実に行うことができる。ここで、電極端子を構成する各層は、例えば、電子ビーム蒸着法により形成してもよい。この場合、室温〜200℃の温度で真空中で蒸着するのが好ましい。あるいは、電解めっきにより形成してもよい。電極端子を形成したあと、電極特性の改善を図るために、不活性ガス中又は真空中、500℃程度の条件で熱処理してもよい。また、電極端子を形成する前に、不純物を蒸発脱離させるために、不活性ガス中又は真空中、加熱処理を行ってもよい。   In the step (c), before or after taking out graphene as a graphene material, an electrode terminal having a structure in which a Ti layer, a protective layer, and a surface layer made of Au or Sn are laminated in this order as an electrode terminal It may be formed. In this case, since the electrode terminal has a surface layer made of Au or Sn, bonding can be performed easily and reliably. Here, each layer constituting the electrode terminal may be formed by, for example, an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating. After the electrode terminals are formed, heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve electrode characteristics. In addition, before the electrode terminal is formed, heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities.

本発明のグラフェン素材は、一筆書きが可能な形状(例えばジグザグ状又は渦巻き状)の自立したグラフェン素材であって、両端に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を有するものである。こうしたグラフェン素材は、上述したグラフェン素材の製造方法によって容易に得ることができる。なお、「自立した」とは、テープなどの支持体などを有さず独立しているという意味である。   The graphene material of the present invention is a self-supporting graphene material having a shape that can be drawn with a single stroke (for example, zigzag shape or spiral shape), and includes a Ti layer and Mo, Ni, Ta, and W that form a base on both ends. The electrode terminal has a structure in which a protective layer mainly composed of a selected metal is laminated in this order. Such a graphene material can be easily obtained by the above-described method for producing a graphene material. Note that “self-supporting” means independent without having a support such as a tape.

グラフェン素材10を製造する手順を表す説明図(斜視図)である。It is explanatory drawing (perspective view) showing the procedure which manufactures the graphene raw material 10. FIG. 電極端子18の構造を示す断面図である。3 is a cross-sectional view showing a structure of an electrode terminal 18. FIG. グラフェン素材10を引っ張った状態の説明図であり、(a)は緩く引っ張ったときの説明図、(b)は強く引っ張ったときの説明図である。It is explanatory drawing of the state which pulled the graphene raw material 10, (a) is explanatory drawing when it pulls loosely, (b) is explanatory drawing when it pulls strongly. 渦巻き状の触媒金属層26が形成された基板本体12の平面図である。It is a top view of the board | substrate body 12 in which the spiral catalyst metal layer 26 was formed. 円筒状の基板本体32を用いてグラフェン素材50を製造するときの手順を表す説明図である。It is explanatory drawing showing the procedure at the time of manufacturing the graphene raw material 50 using the cylindrical substrate main body 32. FIG.

以下には、実施形態として、ジグザグ状の自立したグラフェン素材10を製造する場合を例に挙げて説明する。図1は、グラフェン素材10を製造する手順を表す説明図(斜視図)である。   Hereinafter, as an embodiment, a case where a zigzag self-supporting graphene material 10 is manufactured will be described as an example. FIG. 1 is an explanatory diagram (perspective view) showing a procedure for manufacturing the graphene material 10.

まず、四角形状のc面サファイアからなる基板本体12を用意し、その基板本体12の全面にNiを成膜して結晶層14とする(図1(a)参照)。続いて、リソグラフィ法により結晶層14を一筆書きが可能な形状、ここではジグザグ状にパターニングし、結晶層14を触媒金属層16とする(図1(b)参照)。   First, a substrate body 12 made of rectangular c-plane sapphire is prepared, and Ni is formed on the entire surface of the substrate body 12 to form a crystal layer 14 (see FIG. 1A). Subsequently, the crystal layer 14 is patterned into a shape that can be drawn with a single stroke by a lithography method, here, in a zigzag shape, and the crystal layer 14 is used as a catalyst metal layer 16 (see FIG. 1B).

次に、触媒金属層16のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。すると、Ni表面は(111)面に再配列される。Ni(111)面には、Ni原子を頂点とした三角格子が構成される。そして、供給されたC原子は、Ni原子から構成されるそれぞれの三角形の重心の真上に配置されることで、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長していく(図1(c)参照)。グラフェンは触媒金属層16上に形成されるため、触媒金属層16と同じ形状つまりジグザグ状となる。なお、グラフェンが成長しすぎると、横方向に延びてジグザグを形成する溝を塞いでしまうため、そうなる前に成長を止める。   Next, C atoms are supplied to Ni of the catalyst metal layer 16 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. The graphene grows by going (see FIG. 1C). Since graphene is formed on the catalyst metal layer 16, it has the same shape as the catalyst metal layer 16, that is, a zigzag shape. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.

次に、ジグザグ状のグラフェンの両末端に四角形の電極端子18,20を取り付ける(図1(d)参照)。電極端子18は、図2に示すように、下地をなすTi層18aと、Mo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層18bと、Au又はSnからなる表層18cをこの順に積層したものである。電極端子20も、同様にして3層構造となるように積層したものである。各層は、電子ビーム蒸着法により形成してもよい。この場合、室温〜200℃の温度で真空中で蒸着するのが好ましい。あるいは、電解めっきにより形成してもよい。電極端子18,20を形成したあと、電極特性の改善を図るために、不活性ガス中又は真空中、500℃程度の条件で熱処理してもよい。また、電極端子18,20を形成する前に、不純物を蒸発脱離させるために、不活性ガス中又は真空中、加熱処理を行ってもよい。その後、電極端子18,20を適宜保護膜で保護し、触媒金属層16を酸性溶液で溶かす。ここでは、触媒金属層16はNiであるため、希硝酸を用いる。そして、触媒金属層16が溶けたあと、グラフェンをグラフェン素材10として取り出し、最後に電極端子18,20の保護膜を除去する(図1(e)参照)。なお、電極端子18,20の保護膜としては、例えばフォトレジストやワックスが挙げられる。また、保護膜としてフォトレジストを用いた場合にはアセトンならびに剥離液により除去し、ワックスを用いた場合には、有機溶媒により除去すればよい。   Next, square electrode terminals 18 and 20 are attached to both ends of the zigzag graphene (see FIG. 1D). As shown in FIG. 2, the electrode terminal 18 is made of a Ti layer 18a as a base, a protective layer 18b mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W, and Au or Sn. The surface layer 18c is laminated in this order. Similarly, the electrode terminals 20 are laminated so as to have a three-layer structure. Each layer may be formed by an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating. After the electrode terminals 18 and 20 are formed, heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve the electrode characteristics. Further, before the electrode terminals 18 and 20 are formed, heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities. Thereafter, the electrode terminals 18 and 20 are appropriately protected with a protective film, and the catalytic metal layer 16 is dissolved with an acidic solution. Here, since the catalyst metal layer 16 is Ni, dilute nitric acid is used. Then, after the catalytic metal layer 16 is melted, the graphene is taken out as the graphene material 10, and finally the protective films of the electrode terminals 18 and 20 are removed (see FIG. 1 (e)). In addition, as a protective film of the electrode terminals 18 and 20, a photoresist and wax are mentioned, for example. Further, when a photoresist is used as the protective film, it is removed with acetone and a stripping solution, and when a wax is used, it is removed with an organic solvent.

このようにして得られたグラフェン素材10は、ジグザグ状の自立した素材であるが、両末端の電極端子18,20を把持して伸ばすことにより線材にすることができる(図1(f)参照)。こうした線材は細くて大きな電流を流せる電気配線として利用可能である。また、グラフェンシートの特長を生かし、このように作製した電気配線の途中に、トランジスタ構造を作製し、電流の流れを制御することも可能である。   The graphene material 10 thus obtained is a zigzag self-supporting material, but can be formed into a wire by gripping and stretching the electrode terminals 18 and 20 at both ends (see FIG. 1 (f)). ). Such a wire is thin and can be used as an electrical wiring capable of flowing a large current. In addition, taking advantage of the graphene sheet, a transistor structure can be fabricated in the middle of the electrical wiring thus fabricated to control the current flow.

より詳細には、グラフェン素材10の両端18,20を把持して伸ばすと、図3(a)に示す線材となる。このような構造は伸縮自在であり、例えば図3(a)の形状から両端を大きく離間させると、図3(b)に示すように伸長した形状となる。このため、こうした線材は、相対位置が動く2つの電子機器を電気的に接続するのに好適である。また、図3(a)の幅waより小さく図3(b)の幅wbより大きい内径をもつ筒を用意し、この筒に図3(b)の状態で線材を挿入したあと両端の把持を解くと、復元力により線材は筒内に固定される。この筒を絶縁体で形成すれば、この筒が被覆材になるため、電線ケーブルとして利用できる。このとき、筒内の空間を絶縁樹脂で埋めてもよい。   More specifically, when the both ends 18 and 20 of the graphene material 10 are gripped and extended, the wire shown in FIG. Such a structure can be expanded and contracted. For example, when both ends are greatly separated from the shape shown in FIG. 3A, an extended shape is obtained as shown in FIG. For this reason, such a wire is suitable for electrically connecting two electronic devices whose relative positions move. Also, a cylinder having an inner diameter smaller than the width wa in FIG. 3A and larger than the width wb in FIG. 3B is prepared. After inserting the wire in the state shown in FIG. When unwound, the wire is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.

以上説明した本実施形態のグラフェン素材10の製造方法によれば、グラフェン素材10の形状は触媒金属層16の形状をそのまま受け継ぐことになるため、触媒金属層16を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材10を得ることができる。また、触媒金属層16は、一筆書きが可能なジグザグ状であるため、基板本体12の面積が小さい場合であっても、得られるグラフェン素材10の長さを長くすることができる。更に、電極端子18,20は、グラフェンと接する下地層に炭素との反応性のよいTiを使用しているため、優れたオーミック電極となる。更にまた、下地層の直上に形成される保護層にTiと反応しにくいMo,Ni,Ta又はWを使用しているため、Tiが保護層に拡散してグラフェンから剥離するという現象が起こりにくい。加えて、表層にAu又はSnを使用しているため、ボンディングを容易且つ確実に行うことができる。   According to the method for manufacturing the graphene material 10 of the present embodiment described above, the shape of the graphene material 10 inherits the shape of the catalyst metal layer 16 as it is, so that the catalyst metal layer 16 only needs to be patterned into a desired shape. The graphene material 10 having the desired shape can be obtained. Moreover, since the catalyst metal layer 16 has a zigzag shape that can be drawn with a single stroke, the length of the obtained graphene material 10 can be increased even when the area of the substrate body 12 is small. Further, the electrode terminals 18 and 20 are excellent ohmic electrodes because Ti having good reactivity with carbon is used for the underlayer in contact with the graphene. Furthermore, since Mo, Ni, Ta or W, which does not easily react with Ti, is used for the protective layer formed immediately above the underlayer, the phenomenon that Ti diffuses into the protective layer and peels off from the graphene hardly occurs. . In addition, since Au or Sn is used for the surface layer, bonding can be performed easily and reliably.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。基板本体は、線状、円筒状でも良く、このような形状の基板を用いることにより、より長い配線構造を容易に作製することが可能となる。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention. The substrate body may be linear or cylindrical. By using a substrate having such a shape, a longer wiring structure can be easily manufactured.

例えば、上述した実施形態では、ジグザグ状の触媒金属層16を基板本体12上に形成したが、図4(平面図)に示すように渦巻き状の触媒金属層26を基板本体12上に形成してもよい。この場合も上述した実施形態と同様にして触媒金属層26上にグラフェンを成長させたあと、グラフェンの両末端に電極を取り付け、その後触媒金属層26を溶かせば、グラフェンを渦巻き状のグラフェン素材として取り出すことができる。また、渦巻き状のグラフェン素材の両末端を把持して伸ばせば線材にすることができる。あるいは、ジグザグ状や渦巻き状以外でも、一筆書き形状であれば上述した実施形態と同様にしてその形状のグラフェン素材を取り出すことができる。あるいは、一筆書き形状以外の形状、例えば三角形や四角形などの多角形、円形、楕円形、星形など任意の形状を採用してもよい。この場合には、任意の形状のグラフェン素材を取り出すことができる。   For example, in the above-described embodiment, the zigzag-shaped catalyst metal layer 16 is formed on the substrate body 12, but the spiral catalyst metal layer 26 is formed on the substrate body 12 as shown in FIG. 4 (plan view). May be. Also in this case, after growing graphene on the catalytic metal layer 26 in the same manner as in the above-described embodiment, if electrodes are attached to both ends of the graphene and then the catalytic metal layer 26 is melted, the graphene can be used as a spiral graphene material. It can be taken out. Moreover, if both ends of the spiral graphene material are grasped and stretched, a wire can be obtained. Alternatively, a graphene material having a shape other than the zigzag shape and the spiral shape can be taken out in the same manner as in the above-described embodiment as long as it is a one-stroke drawing shape. Alternatively, any shape other than the one-stroke shape, for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed. In this case, a graphene material having an arbitrary shape can be taken out.

上述した実施形態では、熱CVDによりグラフェンを成長させたが、熱CVD以外の方法、例えばアルコールCVD、プラズマCVD、ガスソースMBEなどによりグラフェンを成長させてもよい。   In the above-described embodiment, graphene is grown by thermal CVD. However, graphene may be grown by a method other than thermal CVD, for example, alcohol CVD, plasma CVD, gas source MBE, or the like.

上述した実施形態では、触媒金属層16の材質としてNiを採用したが、グラフェンの成長を促進する機能を有する金属であればどのような材質を採用してもよい。Ni以外には、例えばCu,Co,Ru,Fe,Pt,Auなどが挙げられる。   In the above-described embodiment, Ni is adopted as the material of the catalyst metal layer 16, but any material may be adopted as long as it has a function of promoting the growth of graphene. In addition to Ni, for example, Cu, Co, Ru, Fe, Pt, Au and the like can be mentioned.

上述した実施形態では、触媒金属層16からグラフェン素材10を取り出すにあたり、触媒金属層16をすべて溶かしたが、例えば電極端子18,20を作製した触媒金属層16の端部付近だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェンをめくるようにして機械的に引き剥がすことでグラフェン素材10を取り出してもよい。グラフェンは六角形状の炭素が2次的に結合してなる平面構造が積層したものであるため、グラフェンのうち1,2層程度は触媒金属層16上に残るものの、残りはきれいに剥がれる。なお、グラフェンのうち触媒金属層16上に残ったものは、触媒金属層16を再利用する場合、グラフェン成長のシード的な役割を果たすことも可能である。   In the embodiment described above, when the graphene material 10 is taken out from the catalyst metal layer 16, all of the catalyst metal layer 16 is dissolved. For example, only the vicinity of the end of the catalyst metal layer 16 in which the electrode terminals 18 and 20 are produced is an acidic solution. The graphene material 10 may be taken out by etching away and mechanically peeling off the graphene from the etched portion. Since graphene is a laminate of planar structures in which hexagonal carbon is secondarily bonded, about one or two layers of graphene remain on the catalyst metal layer 16, but the rest peel off cleanly. Note that the graphene remaining on the catalyst metal layer 16 can also serve as a seed for graphene growth when the catalyst metal layer 16 is reused.

上述した実施形態では、基板本体12が板状の場合について説明したが、基板本体が円筒状であってもよい。その場合には、例えば基板本体にリボンを巻き付けるような感じで螺旋状に触媒金属層のパターニングを行い、その触媒金属層の表面にグラフェンを成長させることで、非常に長く滑らかな線状のグラフェン素材を簡単に得ることができる。その一例を図5に示す。図5(a)は円筒状の基板本体32に螺旋状の触媒金属層36を設けた状態を示し、図5(b)はその触媒金属層36の表面にグラフェンを成長させてグラフェン素材50を形成した状態を示す。基板本体32は、中実(中が詰まっている)のものを例示したが、中空(中が空洞)であってもよい。触媒金属層36から取り出した螺旋状のグラフェン素材50も、両端を引っ張ると長くなると同時にコイル径が小さくなり、力を緩めると復元力により元の形状に戻る。このため、両端を引っ張った状態のコイル径より大きく力を緩めた状態のコイル径より小さい内径をもつ筒を用意し、この筒に両端を引っ張った状態のグラフェン素材50を挿入したあと両端の把持を解くと、復元力によりグラフェン素材50は筒内に固定される。この筒を絶縁体で形成すれば、この筒が被覆材になるため、電線ケーブルとして利用できる。このとき、筒内の空間を絶縁樹脂で埋めてもよい。   In the embodiment described above, the case where the substrate body 12 is plate-shaped has been described, but the substrate body may be cylindrical. In that case, for example, patterning of the catalytic metal layer is performed in a spiral manner as if a ribbon is wound around the substrate body, and graphene is grown on the surface of the catalytic metal layer, thereby producing very long and smooth linear graphene. The material can be easily obtained. An example is shown in FIG. FIG. 5A shows a state in which a spiral catalytic metal layer 36 is provided on a cylindrical substrate body 32, and FIG. 5B shows a graphene material 50 grown by growing graphene on the surface of the catalytic metal layer 36. The formed state is shown. The substrate main body 32 is illustrated as being solid (the inside is clogged), but may be hollow (the inside is hollow). The helical graphene material 50 taken out from the catalyst metal layer 36 also becomes longer when both ends are pulled, and at the same time the coil diameter becomes smaller. When the force is loosened, the original shape is restored by the restoring force. Therefore, a cylinder having an inner diameter smaller than the coil diameter when the force is loosened is prepared larger than the coil diameter when both ends are pulled, and after inserting the graphene material 50 with both ends pulled into this cylinder, the both ends are gripped. When the graph is solved, the graphene material 50 is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.

円筒状で中空の基板本体にグラフェンを成長させる場合には、基板本体の外面及び内面のいずれか一方に螺旋状の触媒金属層をパターニングし、その触媒金属層の表面にグラフェンを成長させてもよいし、あるいは、基板本体の外面及び内面の両方に螺旋状の触媒金属層をパターニングし、両触媒金属層の表面にグラフェンを成長させてもよい。円筒状で中空の絶縁基板本体の内面に螺旋状の触媒金属層をパターニングしてグラフェンを成長させた場合、螺旋状のグラフェンを剥がすことなくそのままコイルとして利用可能である。この場合、グラフェンからなるコイルは円筒によって保護される。また、円筒状の基板本体に触媒金属層を形成する方法としては、通常のフォトリソグラフィーに準じた手法を基板本体を回転させながら適用してもよいし、ナノインプリントの技術を用いて機械的にリソグラフィーパターンを転写してもよいし、細いけがき針を使用して機械的にパターニングしてもよい。触媒金属を成膜する方法は、蒸着を採用してもよいし、その金属を含む液状の原料を吹き付ける、もしくはその液中に基板を浸し、その後、熱処理を行い触媒金属の薄膜を形成する方法を採用してもよい。触媒金属層の表面にグラフェンを成長させるには、触媒金属層の表面に炭素源を供給するが、基板本体が円筒状で中空の場合には、基板本体を真空チャンバーと見立ててその中に炭素源となる原料ガスを流してグラフェンを成長させることができるため、真空チャンバーを用意する必要がなくなり、装置構成の大幅な簡略化、ひいては生産性の向上や生産コストの削減など多くの優れた効果を期待できる。   When growing graphene on a cylindrical and hollow substrate body, a spiral catalytic metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer. Alternatively, a helical catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers. When graphene is grown by patterning a spiral catalytic metal layer on the inner surface of a cylindrical and hollow insulating substrate body, it can be used as a coil without peeling off the spiral graphene. In this case, the coil made of graphene is protected by the cylinder. In addition, as a method of forming the catalytic metal layer on the cylindrical substrate body, a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle. As a method for forming a catalyst metal film, vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted. In order to grow graphene on the surface of the catalytic metal layer, a carbon source is supplied to the surface of the catalytic metal layer. When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.

円筒形状の基板本体を用いた場合、基板本体から他の支持材に転写することにより、また、基板本体から引きはがすことなくそのままの形状で使用することにより、優れたコイル特性が示される。一般的に、コイルから発生する磁界の大きさは、電磁気学が示すようにコイルの巻き数と流す電流の積で決まる。グラフェンシートを用いた場合は、通常の銅線を用いた場合より細い線形状が作製しやすく、なおかつより大きな電流を流すこともできるので、本発明によるコイルはより小さな形状で、より大きな磁界を発生することができる。すなわち、大きなコンダクタンスを示すことができる。例えば、20マイクロメータ幅のグラフェンシートを、隣同士のグラフェンシートの間隔5マイクロメータで、すなわち、周期25マイクロメータで作製しコイルを形成すれば、1cmの長さでコイルを400回巻くことができる。このように、本発明によれば、極めて簡便な作製方法により、すなわち、コイルを巻く作業を行うことなしに、従来より大幅に小型化した高性能なコイルの生産が可能である。グラフェンシートに流せる電流も通常の銅線より大きいため、上記コイルから発生する磁力は、より大きくできる。このコイルは、単にインダクタンスとして使用するばかりでなく、二つのコイルを鉄心などによりカップリングし組み合わすことによりトランスとして、また、モーター等に使用する電磁石として使用できることはいうまでもない。さらに、コイル形状は円筒状ばかりでなく、モーター等の鉄心形状にあわせ楕円筒状、四角筒状などと必要によって基板形状を変化させれば、成長したそのままの形で機器にアセンブルすることもできる。トランスを作製する場合は、サイズを変えた基板本体を用い、鉄心の周りに同心的にこのコイルを重ねることで良い。また、円筒状の基板本体の外側、内側に形成したコイルに鉄心を装備し利用する。もしくは、鉄心を入れたグラフェンシートコイルを部分に分割し、それぞれを独立した巻き線として利用することで、トランスを構成することができる。以上のように、本発明によれば、各種磁性機器の性能向上、小型化、生産性向上が実現できる。   When a cylindrical substrate body is used, excellent coil characteristics can be obtained by transferring the substrate body to another support material and using the substrate body as it is without being pulled off from the substrate body. In general, the magnitude of a magnetic field generated from a coil is determined by the product of the number of turns of the coil and the current flowing as indicated by electromagnetics. When a graphene sheet is used, a thin wire shape is easier to produce than when a normal copper wire is used, and a larger current can be passed, so the coil according to the present invention has a smaller shape and a larger magnetic field. Can be generated. That is, a large conductance can be shown. For example, if a graphene sheet having a width of 20 micrometers is formed with a gap of 5 micrometers between adjacent graphene sheets, that is, a period of 25 micrometers and a coil is formed, the coil can be wound 400 times with a length of 1 cm. it can. As described above, according to the present invention, it is possible to produce a high-performance coil which is significantly reduced in size by a very simple manufacturing method, that is, without performing a coil winding operation. Since the current that can be passed through the graphene sheet is also larger than that of a normal copper wire, the magnetic force generated from the coil can be increased. Needless to say, this coil can be used not only as an inductance but also as a transformer by coupling and combining two coils with an iron core or the like, or as an electromagnet used for a motor or the like. Furthermore, the coil shape is not limited to a cylindrical shape, but can be assembled into the equipment as it is grown if the substrate shape is changed to an elliptical cylindrical shape, a rectangular cylindrical shape, etc. according to the iron core shape of a motor or the like. . In the case of producing a transformer, it is sufficient to use a substrate body having a different size and to stack this coil concentrically around the iron core. The coil formed on the outside and inside of the cylindrical substrate body is equipped with an iron core for use. Alternatively, a transformer can be configured by dividing a graphene sheet coil containing an iron core into parts and using them as independent windings. As described above, according to the present invention, performance improvement, size reduction, and productivity improvement of various magnetic devices can be realized.

一方、線状形状の基板本体として、銅などの金属線を用いた場合は、グラフェンシートの成長後、基板本体から分離せずにそのままの形状で使用することも可能である。この場合は、中心の金属部も伝導性に寄与し、周囲のグラフェンシートも同時に導電性に寄与するため、従来の金属線よりも優れた導電率ならびに耐電流特性が示される。本構造は配線材料に用いることができるほか、コイル形状に巻くことにより、モーター、トランス等の機器に応用することが可能である。以上のように、金属導体をグラフェンシートと融合した構造も、本発明によれば簡便に作製することができる。   On the other hand, when a metal wire such as copper is used as the linear substrate body, it can be used as it is without being separated from the substrate body after the growth of the graphene sheet. In this case, the central metal part also contributes to the conductivity, and the surrounding graphene sheet also contributes to the conductivity at the same time. Therefore, the conductivity and current resistance characteristics superior to those of the conventional metal wires are exhibited. In addition to being used as a wiring material, this structure can be applied to devices such as motors and transformers by winding in a coil shape. As described above, a structure in which a metal conductor is fused with a graphene sheet can also be easily produced according to the present invention.

本発明のグラフェン素材は、微細な電気配線などに利用可能である。   The graphene material of the present invention can be used for fine electrical wiring and the like.

10 グラフェン素材、12 基板本体、14 結晶層、16 触媒金属層、18,20 電極端子、18a Ti層、18b 保護層、18c 表層、26 触媒金属層、32 基板本体、36 触媒金属層、50 グラフェン素材 10 graphene material, 12 substrate body, 14 crystal layer, 16 catalyst metal layer, 18, 20 electrode terminal, 18a Ti layer, 18b protective layer, 18c surface layer, 26 catalyst metal layer, 32 substrate body, 36 catalyst metal layer, 50 graphene Material

Claims (7)

(a)グラフェン化を促進する機能を有する所定形状の触媒金属層を基板本体上に形成する工程と、
(b)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
(c)前記触媒金属層から前記グラフェンをグラフェン素材として取り出す工程と、
を含み、
前記工程(c)で前記グラフェンをグラフェン素材として取り出す前又は後に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を形成する、
グラフェン素材の製造方法。
(A) forming a catalyst metal layer having a predetermined shape on the substrate body having a function of promoting grapheneization;
(B) supplying a carbon source to the surface of the catalytic metal layer to grow graphene;
(C) extracting the graphene as a graphene material from the catalyst metal layer;
Including
Before or after taking out the graphene as a graphene material in the step (c), a Ti layer as a base and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W in this order. Forming electrode terminals with a laminated structure;
Graphene material manufacturing method.
前記工程(a)では、前記触媒金属層として一筆書きが可能な形状のものを形成する、請求項1に記載のグラフェン素材の製造方法。   The method for producing a graphene material according to claim 1, wherein in the step (a), the catalyst metal layer is formed with a shape that can be drawn with a single stroke. 前記工程(a)では、前記一筆書きが可能な形状はジグザグ状、渦巻き状又は螺旋状である、請求項2に記載のグラフェン素材の製造方法。   3. The method for producing a graphene material according to claim 2, wherein in the step (a), the one-stroke writing shape is a zigzag shape, a spiral shape, or a spiral shape. 前記工程(c)では、前記触媒金属層からジグザグ状、渦巻き状又は螺旋状のグラフェンを取り出したあと両端を把持して伸ばすことにより線状のグラフェン素材を得る、請求項2又は3に記載のグラフェン素材の製造方法。   In the step (c), a linear graphene material is obtained by taking out zigzag, spiral, or spiral graphene from the catalyst metal layer and then stretching by grasping both ends. Graphene material manufacturing method. 前記工程(c)では、前記触媒金属層から前記グラフェン素材として取り出すにあたり、前記触媒金属層を溶かして前記グラフェン素材を取り出すか、又は、前記触媒金属層から前記グラフェン素材を引き剥がす、請求項1〜4のいずれか1項に記載のグラフェン素材の製造方法。   In the step (c), when the graphene material is extracted from the catalyst metal layer, the catalyst metal layer is dissolved and the graphene material is extracted, or the graphene material is peeled off from the catalyst metal layer. The manufacturing method of the graphene raw material of any one of -4. 前記電極端子として、前記Ti層と前記保護層とAu又はSnからなる表層とをこの順で積層した構造を持つものを形成する、
請求項1〜5のいずれか1項に記載のグラフェン素材の製造方法。
The electrode terminal is formed with a structure in which the Ti layer, the protective layer, and a surface layer made of Au or Sn are laminated in this order.
The manufacturing method of the graphene raw material of any one of Claims 1-5.
ジグザグ状、渦巻き状又は螺旋状の自立したグラフェン素材であって、
両端に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を有する、
グラフェン素材。
Zigzag, spiral or spiral free-standing graphene material,
At both ends, an electrode terminal having a structure in which an underlying Ti layer and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W are laminated in this order,
Graphene material.
JP2011131743A 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material Active JP5783526B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011131743A JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material
PCT/JP2012/065131 WO2012173145A1 (en) 2011-06-14 2012-06-13 Process for producing graphene material, graphene material, and graphene wiring structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010284762 2010-12-21
JP2010284762 2010-12-21
JP2011131743A JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material

Publications (2)

Publication Number Publication Date
JP2012144419A true JP2012144419A (en) 2012-08-02
JP5783526B2 JP5783526B2 (en) 2015-09-24

Family

ID=46313520

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2011029429A Withdrawn JP2012144415A (en) 2010-12-21 2011-02-15 Method for producing graphene material, and the graphene material
JP2011131743A Active JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material
JP2011149418A Active JP5783529B2 (en) 2010-12-21 2011-07-05 Graphene material manufacturing method
JP2011163193A Active JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure
JP2012549828A Active JP5688775B2 (en) 2010-12-21 2011-12-20 Graphene material manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011029429A Withdrawn JP2012144415A (en) 2010-12-21 2011-02-15 Method for producing graphene material, and the graphene material

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2011149418A Active JP5783529B2 (en) 2010-12-21 2011-07-05 Graphene material manufacturing method
JP2011163193A Active JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure
JP2012549828A Active JP5688775B2 (en) 2010-12-21 2011-12-20 Graphene material manufacturing method

Country Status (2)

Country Link
JP (5) JP2012144415A (en)
WO (2) WO2012086233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206318A (en) * 2014-06-24 2015-12-30 美特科技(苏州)有限公司 Brocade silk yarn
JP2017020944A (en) * 2015-07-13 2017-01-26 日本電信電話株式会社 Method for producing carbon microelectrode
CN110152705A (en) * 2019-05-06 2019-08-23 杭州电子科技大学 A kind of preparation method of TaON@Ni@graphene ternary heterojunction catalysis material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150417B2 (en) * 2010-09-16 2015-10-06 Graphensic Ab Process for growth of graphene
KR101271951B1 (en) * 2011-05-27 2013-06-07 포항공과대학교 산학협력단 Method of preparing carbon thin film
WO2013129312A1 (en) 2012-02-27 2013-09-06 学校法人 名城大学 Process for producing catalyst metal layer and process for producing graphene material
CN103378247B (en) * 2012-04-25 2016-12-14 清华大学 Epitaxial structure
JP5763597B2 (en) * 2012-07-23 2015-08-12 日本電信電話株式会社 Method for producing graphene
JP6074270B2 (en) * 2013-01-15 2017-02-01 東京エレクトロン株式会社 Graphene patterning method and patterning member
JP6441901B2 (en) * 2013-05-01 2018-12-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method for producing a partially independent two-dimensional crystal film and device comprising such a film
JP2015024937A (en) * 2013-07-26 2015-02-05 住友電気工業株式会社 Method of producing graphite film and graphite structure
JP2015040156A (en) * 2013-08-23 2015-03-02 日本電信電話株式会社 Graphene formation method and formation apparatus
CN103738939B (en) * 2013-10-21 2016-04-13 华中科技大学 A kind of method that Graphene is peeled off fast
KR101850107B1 (en) * 2016-05-30 2018-04-20 주식회사 엔젤 The Electromagnet And The Production Method
JP6748033B2 (en) * 2017-06-08 2020-08-26 日本電信電話株式会社 Carbon tube manufacturing method
CN110745815B (en) * 2018-07-24 2022-08-16 南开大学 Method for preparing graphene-metal composite wire
US11694895B2 (en) * 2019-02-14 2023-07-04 The Government of the United States of America, as represented by the Secretarv of the Navy Method and use for low-temperature epitaxy and film texturing between a two-dimensional crystalline layer and metal film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same
JP2009164432A (en) * 2008-01-08 2009-07-23 Fujitsu Ltd Method of manufacturing semiconductor apparatus, semiconductor apparatus, and wiring structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142273A1 (en) * 2006-06-08 2007-12-13 International Business Machines Corporation Highly heat conductive, flexible sheet
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP5470610B2 (en) * 2007-10-04 2014-04-16 国立大学法人福井大学 Graphene sheet manufacturing method
KR101344493B1 (en) * 2007-12-17 2013-12-24 삼성전자주식회사 Single crystalline graphene sheet and process for preparing the same
JP5403644B2 (en) * 2008-01-25 2014-01-29 ニッタ株式会社 Carbon fiber manufacturing method
JP5303957B2 (en) * 2008-02-20 2013-10-02 株式会社デンソー Graphene substrate and manufacturing method thereof
JP5553353B2 (en) * 2008-03-26 2014-07-16 学校法人早稲田大学 Monoatomic film manufacturing method
FR2937343B1 (en) * 2008-10-17 2011-09-02 Ecole Polytech METHOD OF CONTROLLED GROWTH OF GRAPHENE FILM
US20120082787A1 (en) * 2009-03-27 2012-04-05 Jun-Ichi Fujita Method for producing graphene film, method for manufacturing electronic element, and method for transferring graphene film to substrate
JP2011213090A (en) * 2009-09-29 2011-10-27 Sekisui Chem Co Ltd Resin laminated sheet
EP2500947B1 (en) * 2009-11-13 2018-10-24 Fujitsu Limited A method of manufacturing a semiconductor device
KR20120058127A (en) * 2010-11-29 2012-06-07 삼성전기주식회사 An insulating resin composition for multilayer wiring board and a multilayer wiring board comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same
JP2009164432A (en) * 2008-01-08 2009-07-23 Fujitsu Ltd Method of manufacturing semiconductor apparatus, semiconductor apparatus, and wiring structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.REINA ET AL: "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", NANO LETTERS, vol. 9, no. 1, JPN6011046833, 14 January 2009 (2009-01-14), pages 30 - 35, ISSN: 0003101434 *
CAO,Y. ET AL: "Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 13, no. 17, JPN6012044652, 7 May 2011 (2011-05-07), pages 7660 - 7665, ISSN: 0003101435 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206318A (en) * 2014-06-24 2015-12-30 美特科技(苏州)有限公司 Brocade silk yarn
JP2017020944A (en) * 2015-07-13 2017-01-26 日本電信電話株式会社 Method for producing carbon microelectrode
CN110152705A (en) * 2019-05-06 2019-08-23 杭州电子科技大学 A kind of preparation method of TaON@Ni@graphene ternary heterojunction catalysis material
CN110152705B (en) * 2019-05-06 2021-11-23 杭州电子科技大学 Preparation method of TaON @ Ni @ graphene ternary heterojunction photocatalytic material

Also Published As

Publication number Publication date
JP2012144421A (en) 2012-08-02
WO2012086641A1 (en) 2012-06-28
JPWO2012086641A1 (en) 2014-05-22
JP5783530B2 (en) 2015-09-24
JP2012144420A (en) 2012-08-02
WO2012086233A1 (en) 2012-06-28
JP5783526B2 (en) 2015-09-24
JP2012144415A (en) 2012-08-02
JP5688775B2 (en) 2015-03-25
JP5783529B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5783526B2 (en) Graphene material manufacturing method and graphene material
JP5242643B2 (en) Semiconductor device
US8482126B2 (en) Semiconductor device
JP5353009B2 (en) Semiconductor device manufacturing method and semiconductor device
WO2012173145A1 (en) Process for producing graphene material, graphene material, and graphene wiring structure
JP5972735B2 (en) Semiconductor device
JP5708493B2 (en) Semiconductor device and manufacturing method thereof
TWI518905B (en) A graphene transistor with a self-aligned gate
CN103109372B (en) The manufacture method of semiconductor device and the growing method of Graphene
US20070004225A1 (en) Low-temperature catalyzed formation of segmented nanowire of dielectric material
KR102037469B1 (en) Graphene electronic device and manufacturing method thereof
US8859402B2 (en) Method for making epitaxial structure
CN103378236A (en) Epitaxy structural body with microstructure
JP5671896B2 (en) Semiconductor device and manufacturing method thereof
TW201442952A (en) Graphene film, electronic device and electronic device production method
US9105484B2 (en) Epitaxial stucture
JP2006202942A (en) Electronic device equipped with nanotube wiring and its manufacturing method
KR20160103420A (en) Method of intercalating insulating layer between metal and graphene layer and method of fabricating semiconductor device using the same
US20160221830A1 (en) Method of producing graphene film
JP5656888B2 (en) Graphene transistor
KR101687619B1 (en) Method for manufacturing graphene using graphene oxide
JP2010147237A (en) Method of manufacturing wiring structure, and wiring structure
WO2005071715A2 (en) Nanotube fabrication basis
KR20150057564A (en) Graphene film and method for manufacturing the same
JP2019036672A (en) Manufacturing method for nanowire transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5783526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250