WO2012173145A1 - Process for producing graphene material, graphene material, and graphene wiring structure - Google Patents

Process for producing graphene material, graphene material, and graphene wiring structure Download PDF

Info

Publication number
WO2012173145A1
WO2012173145A1 PCT/JP2012/065131 JP2012065131W WO2012173145A1 WO 2012173145 A1 WO2012173145 A1 WO 2012173145A1 JP 2012065131 W JP2012065131 W JP 2012065131W WO 2012173145 A1 WO2012173145 A1 WO 2012173145A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
metal layer
catalyst metal
shape
Prior art date
Application number
PCT/JP2012/065131
Other languages
French (fr)
Japanese (ja)
Inventor
重弥 成塚
隆浩 丸山
Original Assignee
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011131743A external-priority patent/JP5783526B2/en
Application filed by 学校法人 名城大学 filed Critical 学校法人 名城大学
Publication of WO2012173145A1 publication Critical patent/WO2012173145A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]

Definitions

  • the present invention relates to a graphene material manufacturing method, a graphene material, and a graphene wiring structure.
  • Graphene is a two-dimensional material in which six-membered rings of carbon atoms are connected in a single layer to form a planar shape. This graphene is said to have an electron mobility of 100 times or more that of silicon.
  • a transistor using graphene as a channel material has been proposed (see Patent Document 1).
  • Patent Document 1 a catalyst film pattern separated by an insulating separation film is formed on an insulating substrate, a graphene sheet is grown on the catalyst film pattern, and then a drain electrode and a source electrode are formed on both sides of the graphene sheet.
  • a gate electrode is formed on the graphene sheet by breaking the gate insulating film.
  • the catalyst film pattern is separated by the insulating film, but the graphene sheet extends in the lateral direction at the end of the catalyst film pattern, so that the graphene sheet extends from the catalyst film pattern on both sides of the insulating separation film. It is explained that the above connected structure is obtained.
  • the present invention has been made to solve such problems, and an object thereof is to easily produce a graphene material having a desired shape. It is another object of the present invention to easily produce a graphene material having a desired shape having electrode terminals that are difficult to peel off. It is another object of the present invention to provide a flexible graphene wiring structure that can flow a relatively large current.
  • the method for producing the graphene material of the present invention is as follows: (A-1) forming a catalyst metal layer having a predetermined shape having a function of promoting graphenization and a mask material for masking side surfaces of the catalyst metal layer on the substrate body; (B-1) supplying a carbon source to the surface of the catalytic metal layer to grow graphene; (C-1) extracting the graphene having the predetermined shape from the catalyst metal layer as a graphene material; Is included.
  • the shape of the graphene material inherits the shape of the catalytic metal layer as it is, if the catalytic metal layer is patterned into a desired shape, the graphene material of the desired shape can be obtained. Can do. Further, since the mask material is formed on the side surface of the catalyst metal layer, it is possible to suppress the growth of the graphene material on the side surface of the catalyst metal layer. Thereby, graphene closer to the desired shape can be produced, and the graphene material can be easily peeled off from the catalyst metal layer.
  • the graphene material refers to a material having one or more layers of graphene in which six-membered rings of carbon atoms are connected in a single layer.
  • the function of promoting grapheneization refers to a function of promoting the formation of graphene by contacting with a carbon source and combining the carbon components contained in the carbon source with each other.
  • the catalyst metal layer having a shape that can be drawn with one stroke may be formed. In this way, even when the area of the substrate is small, the length of the obtained graphene material can be increased. In this case, graphene having the same shape as that of the metal layer is obtained, but a linear graphene material is obtained by grasping and extending both ends thereof. Such a linear graphene material can be used for electrical wiring and the like.
  • the shape that can be drawn with one stroke may be, for example, a zigzag shape, a spiral shape, or a spiral shape. Specifically, when the substrate body is flat, the catalyst metal layer may be formed in a zigzag shape or a spiral shape, and when the substrate body is cylindrical, the catalyst metal layer may be formed in a spiral shape.
  • the substrate body is not particularly limited.
  • a c-plane sapphire substrate, an a-plane sapphire substrate, a Si substrate having a SiO 2 layer formed thereon, a SiC substrate, a ZnO substrate examples thereof include a GaN substrate (including a template substrate), a refractory metal substrate such as W, and a metal substrate having a grapheneization promoting catalytic ability.
  • a single crystal substrate is preferable because the crystal orientation of the catalytic metal layer is easily aligned.
  • the orientation of the catalytic metal layer may be aligned even if it is not a single crystal substrate.
  • the substrate body is basically required not to deteriorate in the step (b-1) of growing graphene.
  • a Si substrate having a SiO 2 layer formed on the surface is used as the substrate body, in order to suppress the reaction between Si and the catalytic metal layer, Ti, Pt, An intermediate layer such as SiO 2 is preferably provided.
  • the thickness of the intermediate layer is not particularly limited, but may be about 1 nm to 10 nm, for example.
  • examples of the material for the catalyst metal layer include Cu, Ni, Co, Ru, Fe, Pt, Au, and the like.
  • these metals those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable.
  • the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices.
  • the thickness of the catalyst metal layer is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles.
  • the material of the catalytic metal layer is preferably one that can dissolve carbon.
  • the carbon released from the catalyst metal layer becomes graphene in the step (b-1) described later, so that the graphene can be easily thickened.
  • the catalyst metal layer is preferably thick (for example, 200 nm or more).
  • a catalytic metal layer capable of solid-dissolving carbon Co capable of solid-dissolving carbon up to 4.1 at%, Ni capable of solid-dissolving carbon up to 2.7 at%, and carbon up to 0.7 at%. Examples thereof include Fe that can be dissolved in 095 at%.
  • Co and Ni that do not form a stable oxide with carbon are preferable.
  • the metal may be held at a high temperature in a vacuum or in an inert gas, and a carbon raw material (methane, acetylene, alcohol, etc.) may be supplied to the surface. .
  • step (a-1) in order to form a catalyst metal layer having a predetermined shape, patterning may be performed by, for example, a well-known photolithography method.
  • a catalytic metal full-surface coating layer (crystal layer) is first formed on the entire surface of the substrate, and then a resist pattern is formed so that a predetermined shape of the catalytic metal layer remains, and then wet etching or dry etching may be performed.
  • an etching solution may be appropriately selected according to the metal species of the catalyst metal layer.
  • dry etching a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer.
  • the catalyst metal In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
  • the material of the mask material is not particularly limited.
  • Refractory metals such as Ta and Mo. Since graphene hardly grows on the surface of such a mask material, a graphene sheet having a desired shape that is closer to the shape of the catalyst metal layer can be obtained.
  • the method for forming the mask material is not particularly limited, for example, the mask material may be deposited or sputtered.
  • step (a-1) the catalyst metal layer having the predetermined shape is formed on the substrate body, and then a mask layer is formed on the substrate body so that the catalyst metal layer is embedded, and the mask After forming a resist pattern so as to cover a portion of the layer other than the portion facing the catalyst metal layer, the mask layer is etched to mask the side surfaces of the catalyst metal layer with the mask material. Good.
  • a catalytic metal full-surface coating layer covering the entire surface of the substrate body is formed, and then a resist pattern having the same shape as the predetermined shape is formed on the entire surface coating layer.
  • Etching the entire surface covering layer forms the catalyst metal layer having the predetermined shape on the substrate body, and then leaving the resist pattern on the catalyst metal layer, the substrate body and the substrate
  • a mask layer that is thicker than the catalyst metal layer and thinner than the sum of the thickness of the catalyst metal layer and the resist pattern is formed on the resist pattern, and then the resist pattern and the mask layer on the resist pattern are formed.
  • the side surface of the catalyst metal layer may be masked by the mask material.
  • the catalyst metal has a function of promoting grapheneization.
  • examples of the carbon source include hydrocarbons and alcohols having 1 to 6 carbon atoms.
  • examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, and gas source MBE.
  • the growth temperature is set to 400 to 850 ° C.
  • a saturated vapor of alcohol such as methanol or ethanol is supplied as a carbon source.
  • the alcohol saturated vapor may be generated by flowing a carrier gas through a bubbler.
  • Argon, hydrogen, nitrogen or the like can be used as the carrier gas.
  • the pressure may be atmospheric pressure or under reduced pressure.
  • Thermal CVD sets the growth temperature to 800-1000 ° C. and supplies methane, ethylene, acetylene, benzene, etc. as the carbon source.
  • the carbon source is supplied with argon or hydrogen as a carrier gas, and the partial pressure of the carbon source is, for example, about 0.002-5 Pa.
  • the growth time may be 1-20 minutes, for example, and the pressure may be under pressure (for example, 1 kPa) or under reduced pressure. Hot filaments are often used to decompose the carbon source.
  • the growth temperature is 950 ° C.
  • the pressure is 1-1. 1 Pa
  • the carbon source is methane
  • the methane flow rate is 5 sccm
  • the carrier gas is hydrogen
  • the hydrogen flow rate is 20 sccm
  • the plasma power is about 100 W.
  • the gas source MBE uses, for example, ethanol as a carbon source, a flow rate of nitrogen or hydrogen gas saturated with ethanol at 0.3-2 sccm, and a W filament heated to 2000 ° C. for decomposition of the carbon source in a vacuum. .
  • the substrate temperature is about 400-600 ° C.
  • the catalyst metal layer in the step (c-1), the catalyst metal layer may be dissolved and the graphene having the predetermined shape may be taken out as the graphene material. In this way, the graphene material can be easily taken out.
  • step (c-1) for example, an acidic solution is used to dissolve the catalyst metal layer.
  • which acidic solution is used depends on the metal species of the catalyst metal layer. For example, dilute nitric acid is used when the material of the catalytic metal layer is Ni.
  • dilute nitric acid is used when the material of the catalytic metal layer is Ni.
  • the graphene material is turned off from the etched portion and mechanically peeled off. Also good.
  • the mask material in the step (c-1), may also be dissolved to take out the graphene having the predetermined shape as the graphene material. In this way, the graphene material can be taken out more easily.
  • the mask material is SiO 2 or Ti, hydrofluoric acid is used.
  • the graphene material of the present invention is a self-supporting graphene material having a shape that can be drawn with a single stroke (for example, a zigzag shape or a spiral shape). Such a graphene material can be easily obtained by the above-described method for producing a graphene material. Note that “self-supporting” means independent without having a support such as a tape.
  • (A-1) forming a catalytic metal full-surface coating layer that covers the entire surface of the substrate body, and then forming a mask material having a negative shape and a predetermined shape on the surface of the entire surface coating layer; (B-2) supplying a carbon source to the surface of the entire covering layer on which the mask material is formed to grow graphene on a portion where the mask material is not formed; (C-3) extracting the graphene having the predetermined shape from the entire surface coating layer as a graphene material; May be included.
  • the graphene is grown after forming a mask material on the surface of the catalyst metal full-surface coating layer without going through the step of patterning the entire surface coating layer to form a catalyst metal layer.
  • the graphene raw material of a desired shape can be obtained by a simpler process.
  • the shape having a negative relationship with the predetermined shape refers to the shape of the portion (remaining part) other than the predetermined shape.
  • the various aspects demonstrated with the manufacturing method of the graphene raw material mentioned above are employable.
  • the method for producing the graphene material of the present invention is as follows: (A-2) forming a catalyst metal layer having a predetermined shape on the substrate body having a function of promoting grapheneization; (B-2) supplying graphene to the surface of the catalytic metal layer to grow graphene; (C-2) extracting the graphene as a graphene material from the catalyst metal layer; Including Before or after taking out the graphene as a graphene material in the step (c-2), a Ti layer as a base and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W are formed. An electrode terminal having a laminated structure is formed.
  • the shape of the graphene material inherits the shape of the catalytic metal layer as it is, if the catalytic metal layer is patterned into a desired shape, the graphene material of the desired shape can be obtained. Can do.
  • the electrode terminal uses Ti having good reactivity with carbon as a layer in contact with graphene, the electrode terminal is an excellent ohmic electrode.
  • Mo, Ni, Ta, or W which does not easily react with Ti, is used for the protective layer formed immediately above the Ti layer, the phenomenon that Ti diffuses into the protective layer and peels from the graphene hardly occurs.
  • the protective layer may be made of a metal selected from the group described above (however, it includes an inevitable impurity component).
  • the graphene material refers to a material having one or more layers of graphene in which six-membered rings of carbon atoms are connected in a single layer.
  • the function of promoting grapheneization refers to a function of promoting the formation of graphene by contacting with a carbon source and combining the carbon components contained in the carbon source with each other.
  • the thickness of the Ti layer may be 1 nm-100 nm, and the thickness of the protective layer may be 5 nm-100 nm.
  • the catalyst metal layer having a shape that can be drawn with one stroke may be formed. In this way, even when the area of the substrate is small, the length of the obtained graphene material can be increased. In this case, graphene having the same shape as that of the metal layer is obtained, but a linear graphene material is obtained by grasping and extending both ends thereof. Such a linear graphene material can be used for electrical wiring and the like.
  • the shape that can be drawn with one stroke may be, for example, a zigzag shape, a spiral shape, or a spiral shape. Specifically, when the substrate body is flat, the catalyst metal layer may be formed in a zigzag shape or a spiral shape, and when the substrate body is cylindrical, the catalyst metal layer may be formed in a spiral shape.
  • the substrate body is not particularly limited.
  • a c-plane sapphire substrate, an a-plane sapphire substrate, a Si substrate having a SiO 2 layer formed on the surface, a SiC substrate, a ZnO substrate examples thereof include a GaN substrate (including a template substrate), a refractory metal substrate such as W, and a metal substrate having a grapheneization promoting catalytic ability.
  • a single crystal substrate is preferable because the crystal orientation of the catalytic metal layer is easily aligned.
  • the orientation of the catalytic metal layer may be aligned even if it is not a single crystal substrate.
  • the substrate main body basically needs to be not deteriorated in the step (b-2) of growing graphene.
  • a Si substrate having a SiO 2 layer formed on the surface is used as the substrate body, in order to suppress the reaction between Si and the catalytic metal layer, Ti, Pt, An intermediate layer such as SiO 2 is preferably provided.
  • the thickness of the intermediate layer is not particularly limited, but may be about 1 nm to 10 nm, for example.
  • examples of the material for the catalyst metal layer include Cu, Ni, Co, Ru, Fe, Pt, Au, and the like.
  • these metals those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable.
  • the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices.
  • the thickness of the catalyst metal layer is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles.
  • step (a-2) in order to form a catalyst metal layer having a predetermined shape, patterning may be performed by, for example, a well-known photolithography method.
  • a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching.
  • wet etching an etching solution may be appropriately selected according to the metal species of the catalyst metal layer.
  • dry etching a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer.
  • the catalyst metal In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
  • examples of the carbon source include hydrocarbons and alcohols having 1 to 6 carbon atoms.
  • examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, gas source MBE, and the like, as in step (b-1).
  • step (c-2) for example, an acidic solution is used to dissolve the catalyst metal layer.
  • which acidic solution is used depends on the metal species of the catalyst metal layer. For example, dilute nitric acid is used when the material of the catalytic metal layer is Ni.
  • dilute nitric acid is used when the material of the catalytic metal layer is Ni.
  • the graphene material is turned off from the etched portion and mechanically peeled off. Also good.
  • the electrode terminal has a structure in which a Ti layer, a protective layer, and a surface layer made of Au or Sn are laminated in this order as the electrode terminal. Things may be formed.
  • the electrode terminal since the electrode terminal has a surface layer made of Au or Sn, bonding can be performed easily and reliably.
  • each layer constituting the electrode terminal may be formed by, for example, an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating.
  • heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve electrode characteristics.
  • heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities.
  • the graphene material of the present invention is a self-supporting graphene material having a shape that can be drawn with a single stroke (for example, zigzag shape or spiral shape), and includes a Ti layer and Mo, Ni, Ta, and W that form a base on both ends.
  • the electrode terminal has a structure in which a protective layer mainly composed of a selected metal is laminated in this order.
  • Such a graphene material can be easily obtained by the above-described method for producing a graphene material.
  • self-supporting means independent without having a support such as a tape.
  • graphene layer refers to a layer having one or a plurality of (for example, 2 to 10) graphene sheets in which six-membered rings of carbon atoms are connected in a single layer.
  • a catalyst metal layer having a function of promoting grapheneization may be interposed between the insulating resin layer and the graphene layer.
  • a catalytic metal layer is formed on an insulating resin layer and graphene is grown by supplying a carbon source to the catalytic metal layer, the gap between the insulating resin layer and the graphene layer is increased.
  • a catalyst metal layer is interposed, but such a catalyst metal layer has good conductivity and may be left as it is.
  • a catalytic metal layer is interposed between the insulating resin layer and the graphene layer.
  • the “function to promote graphenization” refers to a function that promotes the formation of graphene by contacting the carbon source and combining the carbon components contained in the carbon source with each other.
  • each graphene layer may be formed by stacking an odd number of graphene sheets, or may be formed by stacking an even number of graphene sheets. Since graphene layers with odd-numbered graphene sheets have similar electrical characteristics, if each graphene layer is a stack of odd-numbered graphene sheets, graphene layers with the odd-numbered graphene sheets stacked The electrical properties of the layer are emphasized. In addition, since the graphene layers with an even number of graphene sheets are similar in electrical characteristics, if each graphene layer is an even number of graphene sheets, the even number of graphene sheets are stacked. The electrical properties of the graphene layer are emphasized.
  • the method for producing a graphene wiring structure of the present invention may include, for example, a process of repeating a work of providing an insulating resin layer on the graphene layer after providing the graphene layer on the insulating resin layer.
  • a separately prepared graphene layer may be disposed on the insulating resin layer.
  • a catalyst metal layer having a function of promoting graphene formation is formed on a substrate in a shape that can be drawn with one stroke, and a carbon source is supplied to the surface of the catalyst metal layer.
  • the graphene may be grown, and the graphene may be taken out as a graphene material from the catalyst metal layer.
  • the graphene wiring structure of the present invention may be manufactured by pulling both ends of the plurality of graphene materials taken out in this way into a substantially straight shape and then solidifying with an insulating resin while maintaining the state.
  • a method in which a catalytic metal layer having a function of promoting graphene formation is interposed between an insulating resin layer and a graphene layer is obtained by, for example, placing a catalytic metal layer on the insulating resin layer.
  • a graphene layer is formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer and forming the graphene layer so that the shape can be written (for example, linear, zigzag, spiral)
  • a step of repeating an operation of providing an insulating resin layer on the graphene layer while leaving the layer may be included.
  • a manufacturing method in which a catalytic metal layer having a function of promoting graphene formation is not interposed between the insulating resin layer and the graphene layer is, for example, a shape in which the catalytic metal layer can be drawn with a single stroke on the insulating resin layer.
  • the graphene layer was formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer, and the catalyst metal layer was melted and removed in a state where one end of the graphene layer was sandwiched between sandwiching members Further, it may include a step of repeating the operation of providing an insulating resin layer on the graphene layer.
  • the shape when the wiring is routed in advance is determined, if the insulating resin layer and catalytic metal layer are formed in the same shape, the completed graphene wiring structure can be used as it is without bending. Can do.
  • patterning may be performed by, for example, a well-known photolithography method.
  • a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching.
  • wet etching an etching solution may be appropriately selected according to the metal species of the catalyst metal layer.
  • dry etching a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer.
  • the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
  • examples of the carbon source include hydrocarbons having 1 to 6 carbon atoms and alcohols.
  • examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, gas source MBE and the like, as in the above-described step (b-1).
  • the growth temperature may be set appropriately below the heat resistance temperature of the insulating resin layer.
  • a temperature slightly lower than the heat resistance temperature may be used.
  • FIG. It is explanatory drawing (perspective view) showing the procedure which manufactures the graphene raw material 10.
  • FIG. It is explanatory drawing (sectional drawing) showing the manufacturing process of the board
  • FIG. It is a top view of the board
  • FIG. It is a top view of the board
  • FIG. 3 is a cross-sectional view showing a structure of an electrode terminal 218.
  • FIG. It is explanatory drawing of the state which pulled the graphene material 210, (a) is explanatory drawing when pulled loosely, (b) is explanatory drawing when it pulls strongly.
  • It is a top view of the board
  • FIG. 3 is a perspective view of a graphene wiring structure 310.
  • FIG. FIG. 13 is a cross-sectional view taken along line AA in FIG. 12. 6 is a manufacturing process diagram of the graphene wiring structure 310.
  • FIG. 3 is a perspective view of a graphene wiring structure 360.
  • FIG. It is BB sectional drawing of FIG. It is a manufacturing process diagram of the graphene material 410. It is a top view of the board
  • FIG. 1 is an explanatory diagram (perspective view) illustrating a procedure for manufacturing the graphene material 10
  • FIG. 2 is an explanatory diagram (sectional view) illustrating a manufacturing process of the graphene forming substrate 11.
  • a substrate body 12 made of rectangular c-plane sapphire is prepared (see FIG. 2A), and Ni is formed on the entire surface of the substrate body 12 to form a whole surface coating layer (crystal layer) 14 (FIG. 1 (a) and FIG. 2 (b)).
  • a resist pattern 13 is formed by lithography so that the entire surface coating layer 14 can be patterned in a single stroke, here a zigzag pattern (see FIG. 2C), and the entire surface coating layer 14 is formed into a zigzag type catalyst.
  • the metal layer 16 is used (see FIG. 2D).
  • the resist pattern 13 is removed to expose the catalyst metal layer 16 (see FIG.
  • Ti is formed so that the catalyst metal layer is embedded, and this is used as a mask layer 17 (FIG. 2). (See (f)), the surface of the mask layer 17 is polished to expose the catalytic metal layer 16 (see FIGS. 1B and 2G). In this manner, the graphene forming substrate 11 in which the Ti mask material 19 is formed on the side surface of the catalytic metal layer 16 is manufactured.
  • C atoms are supplied to Ni of the catalyst metal layer 16 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. The graphene grows by going (see FIG. 1C). Since graphene is formed on the catalyst metal layer 16 and is not easily formed on the mask material 19, it has the same shape as the catalyst metal layer 16, that is, a zigzag shape.
  • the graphene material 10 obtained in this manner is a zigzag self-supporting material, but can be formed into a wire by gripping and stretching the electrodes 18 and 20 at both ends (see FIG. 1 (f)). .
  • Such a wire is thin and can be used as an electrical wiring capable of flowing a large current.
  • a transistor structure can be fabricated in the middle of the electrical wiring thus fabricated to control the current flow.
  • the shape of the graphene material 10 inherits the shape of the catalyst metal layer 16 as it is, so that the catalyst metal layer 16 only needs to be patterned into a desired shape.
  • the graphene material 10 having the desired shape can be obtained.
  • the mask material 19 is formed on the side surface of the catalytic metal layer 16, it is possible to suppress the growth of graphene on the side surface of the catalytic metal layer 16.
  • the graphene material 10 closer to the desired shape can be produced.
  • the graphene material 10 can be easily peeled off from the catalyst metal layer 16.
  • the catalyst metal layer 16 has a zigzag shape that can be drawn with a single stroke, the length of the obtained graphene material 10 can be increased even when the area of the substrate body 12 is small.
  • the substrate body may be linear or cylindrical. By using a substrate having such a shape, a longer wiring structure can be easily manufactured.
  • graphene is grown using the graphene forming substrate 11 shown in FIGS. 1 and 2, but the graphene forming substrate 31 shown in FIG. 3 and the graphene forming substrate 41 shown in FIG. It may be produced and graphene may be grown using this.
  • the mask materials 39 and 49 are formed so as to be higher than the catalyst metal layer 16, it is possible to suppress the growth of graphene in the lateral direction, and the shape closer to the desired shape.
  • a graphene sheet is obtained.
  • the mask material be formed higher than the catalyst metal layer because graphene easily grows in the lateral direction.
  • FIG. 3 is an explanatory diagram (cross-sectional view) showing a manufacturing process of the graphene forming substrate 31.
  • FIGS. 3A to 3F are the same as FIGS. 2A to 2F, description thereof is omitted here.
  • a resist pattern 35 is formed so as to cover a portion of the mask layer 17 other than the portion facing the catalytic metal layer 16 (see FIG. 3G).
  • the mask layer 17 where the resist pattern 35 is not formed is removed by etching (see FIG. 3H), and the resist pattern 35 is further removed (see FIG. 3I).
  • the graphene forming substrate 31 in which the Ti mask material 39 is formed on the side surface of the catalytic metal layer 16 is obtained.
  • a substrate from which the pattern 35 is not removed may be used as it is as a substrate for forming graphene.
  • FIG. 4 is an explanatory diagram (cross-sectional view) showing a manufacturing process of the graphene forming substrate 41.
  • the substrate body 12 is prepared (see FIG. 4A), and Ni is formed on the entire surface of the substrate body 12 to form the entire coating layer 14 (see FIG. 4B).
  • a resist pattern 13 having the same zigzag shape as the graphene sheet 10 is formed (see FIG. 4C), and a portion of the entire covering layer 14 where the resist pattern 13 is not formed is removed by etching.
  • a zigzag catalyst metal layer 16 is formed (see FIG. 4D).
  • Ti is formed to be thinner than this, and this is used as a mask layer 47 (see FIG. 4E).
  • the mask layer 47 formed on the resist pattern 13 is also removed (see FIG. 4F).
  • the graphene forming substrate 41 in which the Ti mask material 49 is formed on the side surface of the catalytic metal layer 16 is obtained.
  • FIG. 5 is an explanatory diagram (perspective view) showing a procedure for manufacturing the graphene material 110.
  • a substrate main body 112 made of c-plane sapphire on a quadrilateral is prepared, and Ni is formed on the entire surface of the substrate main body 112 to form the entire surface covering layer 114 (see FIG. 5A).
  • a mask material 119 having a shape that can be drawn with a single stroke, here a zigzag shape, and a negative shape is formed on the surface of the entire covering layer 114 (see FIG. 5B).
  • the graphene forming substrate 111 is manufactured.
  • C atoms are supplied to Ni of the entire surface coating layer 114 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa.
  • graphene grows (see FIG. 5C). Since graphene is formed on the entire surface covering layer 114 and is not easily formed on the mask material 119, the graphene has the same shape as the entire surface covering layer 114 on which the mask material 119 is formed, that is, a zigzag shape.
  • square electrodes 118 and 120 are attached to both ends of the zigzag graphene (see FIG. 5D).
  • the graphene material 110 is a zigzag self-supporting material, but can be formed into a wire by grasping and stretching the electrodes 118 and 120 at both ends (see FIG. 5 (f)). . According to this manufacturing method, it is not necessary to perform patterning of the catalytic metal layer, so that a graphene sheet having a desired shape can be obtained more easily.
  • the zigzag-shaped catalyst metal layer 16 is formed on the substrate body 12, but the spiral-shaped catalyst metal layer 56 may be formed on the substrate body 52 as shown in FIG. 6 (plan view). Good. Also in this case, after growing graphene on the catalytic metal layer 56 in the same manner as in the above-described embodiment, if electrodes are attached to both ends of the graphene and then the catalytic metal layer 56 is melted, the graphene becomes a spiral graphene material. It can be taken out. Moreover, if both ends of the spiral graphene material are grasped and stretched, a wire can be obtained.
  • a graphene material having a shape other than the zigzag shape and the spiral shape can be taken out in the same manner as in the above-described embodiment as long as it is a one-stroke drawing shape.
  • any shape other than the one-stroke shape for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed.
  • a graphene material having an arbitrary shape can be taken out.
  • graphene is grown by thermal CVD.
  • graphene may be grown by a method other than thermal CVD, for example, alcohol CVD, plasma CVD, gas source MBE, or the like.
  • Ni is used as the material of the catalyst metal layer 16, but any material may be used as long as it has a function of promoting the growth of graphene.
  • any material may be used as long as it has a function of promoting the growth of graphene.
  • Ni for example, Cu, Co, Ru, Fe, Pt, Au and the like can be mentioned.
  • the graphene material 10 when removing the graphene material 10 from the catalyst metal layer 16, all of the catalyst metal layer 16 is dissolved. For example, only the vicinity of the end portion of the catalyst metal layer 16 on which the electrodes 18 and 20 are produced is etched with an acidic solution. Then, the graphene material 10 may be taken out by mechanically peeling off the graphene from the etched portion. Since graphene is a laminate of planar structures in which hexagonal carbon is secondarily bonded, about one or two layers of graphene remain on the catalyst metal layer 16, but the rest peel off cleanly. Note that the graphene remaining on the catalyst metal layer 16 can also serve as a seed for graphene growth when the catalyst metal layer 16 is reused. In the above-described embodiment, the mask material 19 is melted, but may be physically cut.
  • the substrate body 12 is plate-shaped
  • the substrate body may be cylindrical.
  • the substrate body may be hollow (the interior is empty) or solid (the interior is clogged).
  • the catalyst metal layer When growing graphene on a cylindrical and hollow substrate body, the catalyst metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer, Alternatively, the catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers.
  • a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle.
  • vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted.
  • a carbon source is supplied to the surface of the catalytic metal layer.
  • the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
  • the magnitude of a magnetic field generated from a coil is determined by the product of the number of turns of the coil and the current flowing as indicated by electromagnetics.
  • a graphene sheet is used, a thin wire shape is easier to produce than when a normal copper wire is used, and a larger current can be passed, so the coil according to the present invention has a smaller shape and a larger magnetic field. Can be generated. That is, a large conductance can be shown.
  • the coil can be wound 400 times with a length of 1 cm. it can.
  • a very simple manufacturing method that is, without winding the coil. Since the current that can be passed through the graphene sheet is also larger than that of a normal copper wire, the magnetic force generated from the coil can be increased.
  • this coil can be used not only as an inductance but also as a transformer by coupling and combining two coils with an iron core or the like, or as an electromagnet used for a motor or the like.
  • the coil shape is not limited to a cylindrical shape, but can be assembled into equipment as it is grown if the substrate shape is changed to an elliptical cylindrical shape, a rectangular cylindrical shape, etc. according to the iron core shape of a motor or the like. .
  • the coil formed on the outside and inside of the cylindrical substrate is equipped with an iron core for use.
  • a transformer can be configured by dividing a graphene sheet coil containing an iron core into parts and using them as independent windings.
  • this structure can be applied to devices such as motors and transformers by winding in a coil shape. As described above, a structure in which a metal conductor is fused with a graphene sheet can also be easily produced according to the present invention.
  • FIG. 7 is an explanatory diagram (perspective view) showing a procedure for manufacturing the graphene material 210.
  • a substrate body 212 made of rectangular c-plane sapphire is prepared, and Ni is formed on the entire surface of the substrate body 212 to form a crystal layer 214 (see FIG. 7A).
  • the crystal layer 214 is patterned into a shape that can be drawn with a single stroke by a lithography method, here, in a zigzag shape, and the crystal layer 214 is used as a catalyst metal layer 216 (see FIG. 7B).
  • C atoms are supplied to Ni of the catalyst metal layer 216 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. Graphene grows by going (see FIG. 7C).
  • graphene Since graphene is formed on the catalyst metal layer 216, it has the same shape as the catalyst metal layer 216, that is, a zigzag shape. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.
  • the electrode terminal 218 is made of an underlying Ti layer 218a, a protective layer 218b mainly composed of a metal selected from the group consisting of Mo, Ni, Ta, and W, and Au or Sn.
  • the surface layer 218c is laminated in this order.
  • the electrode terminals 220 are laminated so as to have a three-layer structure.
  • Each layer may be formed by an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating.
  • heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve electrode characteristics.
  • heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities.
  • the electrode terminals 218 and 220 are appropriately protected with a protective film, and the catalytic metal layer 216 is dissolved with an acidic solution.
  • the catalyst metal layer 216 is Ni, dilute nitric acid is used.
  • the protective film of the electrode terminals 218 and 220 is removed (see FIG. 7E).
  • the protective film for the electrode terminals 218 and 220 include photoresist and wax. Further, when a photoresist is used as the protective film, it is removed with acetone and a stripping solution, and when a wax is used, it is removed with an organic solvent.
  • the graphene material 210 obtained in this way is a zigzag self-supporting material, but can be made into a wire by gripping and stretching the electrode terminals 218 and 220 at both ends (see FIG. 7 (f)). ).
  • Such a wire is thin and can be used as an electrical wiring capable of flowing a large current.
  • a transistor structure can be fabricated in the middle of the electrical wiring thus fabricated to control the current flow.
  • the wire shown in FIG. 9A is obtained.
  • Such a structure is telescopic, and for example, when both ends are greatly separated from the shape shown in FIG. 9A, the shape becomes elongated as shown in FIG. 9B.
  • a cylinder having an inner diameter smaller than the width wa in FIG. 9A and larger than the width wb in FIG. 9B is prepared. After inserting the wire in the state shown in FIG. When unwound, the wire is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.
  • the shape of the graphene material 210 inherits the shape of the catalyst metal layer 216 as it is, and therefore, as long as the catalyst metal layer 216 is patterned into a desired shape.
  • the graphene material 210 having the desired shape can be obtained.
  • the catalytic metal layer 216 has a zigzag shape that can be drawn with a single stroke, the length of the obtained graphene material 210 can be increased even when the area of the substrate body 212 is small.
  • the electrode terminals 218 and 220 are excellent ohmic electrodes because Ti having good reactivity with carbon is used for the base layer in contact with the graphene.
  • the substrate body may be linear or cylindrical. By using a substrate having such a shape, a longer wiring structure can be easily manufactured.
  • the zigzag-shaped catalyst metal layer 216 is formed on the substrate body 212.
  • the spiral catalyst metal layer 226 is formed on the substrate body 212. May be.
  • electrodes are attached to both ends of the graphene, and then the catalyst metal layer 226 is melted, so that the graphene becomes a spiral graphene material. It can be taken out.
  • both ends of the spiral graphene material are grasped and stretched, a wire can be obtained.
  • a graphene material having a shape other than the zigzag shape and the spiral shape can be taken out in the same manner as in the above-described embodiment as long as it is a one-stroke drawing shape.
  • any shape other than the one-stroke shape for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed.
  • a graphene material having an arbitrary shape can be taken out.
  • graphene is grown by thermal CVD.
  • graphene may be grown by a method other than thermal CVD, for example, alcohol CVD, plasma CVD, gas source MBE, or the like.
  • Ni is adopted as the material of the catalyst metal layer 216, but any material may be adopted as long as it has a function of promoting the growth of graphene.
  • any material may be adopted as long as it has a function of promoting the growth of graphene.
  • Ni for example, Cu, Co, Ru, Fe, Pt, Au and the like can be mentioned.
  • the catalyst metal layer 216 when the graphene material 210 is taken out from the catalyst metal layer 216, the catalyst metal layer 216 is completely dissolved. For example, only the vicinity of the end of the catalyst metal layer 216 from which the electrode terminals 218 and 220 are manufactured is an acidic solution.
  • the graphene material 210 may be taken out by etching away and mechanically peeling off the graphene from the etched portion. Since graphene is formed by stacking a planar structure in which hexagonal carbon is secondarily bonded, about one or two layers of graphene remain on the catalyst metal layer 216, but the rest peels cleanly. Note that the graphene remaining on the catalyst metal layer 16 can also serve as a seed for graphene growth when the catalyst metal layer 216 is reused.
  • the substrate body 212 is plate-shaped
  • the substrate body may be cylindrical.
  • patterning of the catalytic metal layer is performed in a spiral manner as if a ribbon is wound around the substrate body, and graphene is grown on the surface of the catalytic metal layer, thereby producing very long and smooth linear graphene.
  • the material can be easily obtained.
  • FIG. FIG. 11A shows a state in which a spiral catalyst metal layer 236 is provided on a cylindrical substrate body 232
  • FIG. 11B shows a graphene material 250 grown by growing graphene on the surface of the catalyst metal layer 236. The formed state is shown.
  • the substrate main body 232 is illustrated as being solid (the inside is clogged), but may be hollow (the inside is hollow).
  • the helical graphene material 250 taken out from the catalyst metal layer 236 also becomes longer when both ends are pulled, and at the same time the coil diameter becomes smaller.
  • a cylinder having an inner diameter smaller than the coil diameter when the force is loosened is prepared larger than the coil diameter when both ends are pulled, and after inserting the graphene material 250 with both ends pulled into this cylinder, the both ends are gripped. Is released, the graphene material 250 is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.
  • a spiral catalytic metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer.
  • a helical catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers.
  • a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology.
  • the pattern may be transferred, or may be mechanically patterned using a fine marking needle.
  • vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted.
  • a carbon source is supplied to the surface of the catalytic metal layer.
  • the substrate body When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
  • the magnitude of a magnetic field generated from a coil is determined by the product of the number of turns of the coil and the current flowing as indicated by electromagnetics.
  • a graphene sheet is used, a thin wire shape is easier to produce than when a normal copper wire is used, and a larger current can be passed, so the coil according to the present invention has a smaller shape and a larger magnetic field. Can be generated. That is, a large conductance can be shown.
  • the coil can be wound 400 times with a length of 1 cm. it can.
  • a very simple manufacturing method that is, without performing a coil winding operation. Since the current that can be passed through the graphene sheet is also larger than that of a normal copper wire, the magnetic force generated from the coil can be increased.
  • this coil can be used not only as an inductance but also as a transformer by coupling and combining two coils with an iron core or the like, or as an electromagnet used for a motor or the like.
  • the coil shape is not limited to a cylindrical shape, but can be assembled into equipment as it is grown if the substrate shape is changed to an elliptical cylindrical shape, a rectangular cylindrical shape, etc. according to the iron core shape of a motor or the like. .
  • the coil formed on the outside and inside of the cylindrical substrate body is equipped with an iron core for use.
  • a transformer can be configured by dividing a graphene sheet coil containing an iron core into parts and using them as independent windings.
  • this structure can be applied to devices such as motors and transformers by winding in a coil shape. As described above, a structure in which a metal conductor is fused with a graphene sheet can also be easily produced according to the present invention.
  • FIG. 12 is a perspective view of the graphene wiring structure 310
  • FIG. 13 is a cross-sectional view taken along the line AA of FIG.
  • insulating resin layers 312, 322, 332, and 342 and graphene layers 316, 326, and 336 are repeatedly stacked. Insulating resin layers 312 and 322 exist above and below the graphene layer 316, insulating resin layers 322 and 332 exist above and below the graphene layer 326, and insulating resin layers 332 and 342 exist above and below the graphene layer 336. .
  • a catalytic metal layer 314 is interposed between the insulating resin layer 312 and the graphene layer 316
  • a catalytic metal layer 324 is interposed between the insulating resin layer 322 and the graphene layer 326
  • a catalytic metal layer 334 is interposed between the layers 336.
  • the catalytic metal layers 314, 324, and 334 have a function of promoting grapheneization.
  • Each of the graphene layers 316, 326, and 336 is formed by laminating an odd number (three in this case) of graphene sheets.
  • FIG. 14 is a manufacturing process diagram of the graphene wiring structure 310.
  • an insulating resin layer 312 made of heat-resistant polyimide (for example, Kapton H type manufactured by DuPont) is prepared (see FIG. 14A). At this time, a substrate on which the insulating resin layer 312 is formed may be prepared.
  • a catalytic metal layer 314 is vapor-deposited on the insulating resin layer 312 and patterned by a well-known photolithography method if necessary, and then heat treatment is performed to crystallize the catalytic metal layer 314 (FIG. 14). (See (b)).
  • the catalyst metal layer 314 may be crystallized while being deposited by a pulse sputtering deposition (PSD) technique.
  • PSD pulse sputtering deposition
  • the material of the catalyst metal layer 314 include Cu, Ni, Co, Ru, Fe, Pt, and Au.
  • these metals those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable.
  • the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices.
  • the thickness of the catalyst metal layer 314 is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles.
  • Ni is used as the catalyst metal layer 314 and is patterned so as to be a rectangular thin plate. When Ni is crystallized, the Ni surface is rearranged in the (111) plane. A triangular lattice with Ni atoms as vertices is formed on the Ni (111) plane.
  • An insulating resin layer 312 provided with a crystallized catalyst metal layer 314 is placed in a reaction vessel (not shown), and a graphene is grown by supplying a carbon raw material on the catalyst metal layer 314 so that the graphene layer 316 is formed. It forms (refer FIG.14 (c)).
  • the graphene layer 316 may be formed by the above-described alcohol CVD, thermal CVD, plasma CVD, gas source MBE, or the like without exceeding the heat resistance temperature of the insulating resin layer 312. Grow. In the graphene growth process, C atoms are arranged immediately above the center of gravity of each triangle composed of Ni atoms.
  • the number of graphene sheets in the graphene layer 316 is controlled by monitoring the Raman shift position of the graphene layer 316 with a Raman spectrum measurement device attached to the reaction vessel. Specifically, it is known that the Raman shift positions in the case of one, two, five, and ten graphene sheets are different (Fig. 2 of PhysicalPhysReview Letters, Vol.97, p187401 (2006)). reference). For this reason, the number of graphene sheets is determined in advance, the Raman shift position corresponding to the number of sheets is confirmed in advance, and graphene is grown until the Raman shift position is reached.
  • An insulating resin layer 322 made of heat-resistant polyimide is formed on the graphene layer 316 (see FIG. 14D), and then the above-described step (2) is performed again to pattern and crystallize.
  • the catalyst metal layer 324 is formed on the insulating resin layer 322 (see FIG. 14E), and the graphene layer 326 is formed on the catalyst metal layer 324 by performing the above-described step (3) ( (Refer FIG.14 (f)).
  • the insulating resin layer 322 for example, after applying a thermosetting polyimide resin, the resin is cured by heat treatment, or a heat-resistant polyimide film is attached.
  • step (4) described above is repeated a predetermined number of times according to the number of graphene layers (here, three) of the target graphene wiring structure 310 (see FIG. 14G).
  • the insulating resin layer 332, the catalytic metal layer 334, and the graphene layer 336 are stacked in this order on the graphene layer 326.
  • thermosetting polyimide resin is applied to the graphene layer 336 and cured by heat treatment to form the insulating resin layer 342, thereby obtaining the target graphene wiring structure 310 (see FIG. 14H).
  • substrate is removed.
  • both ends of the insulating resin layers 312, 322, 332, and 342 of the graphene wiring structure 310 are removed to expose the graphene layers 316, 326, 336 and the catalytic metal layers 314, 324, 334, and the exposed portions. Is covered with metal.
  • metal portions 312 a, 322 a, 332 a, and 342 a are formed at one end, which are one end of the graphene layers 316, 326, 336 and one end of the catalytic metal layers 314, 324, 334.
  • metal portions 312b, 322b, 332b, and 342b are formed at the other end, which are integrated with the other ends of the graphene layers 316, 326, and 336 and the other ends of the catalytic metal layers 314, 324, and 334. It becomes an electrode.
  • the graphene wiring structure 310 having electrodes formed at both ends in this manner is used for bus bars such as fuel cells and lithium secondary batteries and automobile harnesses.
  • the graphene wiring structure 310 of the present embodiment described in detail above since the graphene layers 316, 326, and 336 are multi-stage (three stages), for example, a larger current flows than in the case of only the graphene layer 316. Can do.
  • the presence of the insulating resin layers 312, 322, 332, and 342 ensures flexibility, and the graphene layers 316, 326, and 336 are protected.
  • a catalytic metal layer 314 is interposed between the insulating resin layer 312 and the graphene layer 316
  • a catalytic metal layer 324 is interposed between the insulating resin layer 322 and the graphene layer 326, and the insulating resin layer 332 and the graphene layer
  • the catalyst metal layer 334 is interposed between the layer 336 and the catalyst metal layers 314, 324, and 334 have good conductivity, it is advantageous when a large current flows.
  • each of the graphene layers 316, 326, and 336 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.
  • FIG. 16 is a perspective view of the graphene wiring structure 360
  • FIG. 17 is a cross-sectional view taken along the line BB of FIG.
  • insulating resin layers 362, 372, 382, 392 and graphene layers 366, 376, 386 are repeatedly stacked.
  • the insulating resin layers 362 and 372 exist above and below the graphene layer 366
  • the insulating resin layers 372 and 382 exist above and below the graphene layer 376
  • the insulating resin layers 382 and 392 exist above and below the graphene layer 386, respectively.
  • Each of the graphene layers 366, 376, and 386 is formed by laminating an odd number (three in this case) of graphene sheets.
  • FIG. 18 is a manufacturing process diagram of the graphene material 410 used as the graphene layers 366, 376, and 386.
  • a substrate body 412 made of rectangular c-plane sapphire is prepared, and Ni is deposited on the entire surface of the substrate body 412 to form a crystal layer 414 (see FIG. 18A).
  • the crystal layer 414 is patterned by a lithography method into a shape that can be written with a single stroke, here a zigzag shape, and the crystal layer 414 is used as a catalyst metal layer 416 (see FIG. 18B).
  • C atoms are supplied to Ni of the catalyst metal layer 416 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged immediately above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. As a result, graphene grows to become a graphene material 410 (see FIG. 18C).
  • the graphene material 410 Since the graphene material 410 is formed on the catalyst metal layer 416, the graphene material 410 has the same shape as the catalyst metal layer 416, that is, a zigzag shape.
  • the graphene material 410 is formed of three graphene sheets by controlling the number of sheets as in the third embodiment. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.
  • the catalyst metal layer 416 is dissolved with an acidic solution.
  • the catalyst metal layer 416 is Ni, dilute nitric acid is used.
  • the graphene material 410 is taken out (see FIG. 18D).
  • the obtained graphene material 410 has a zigzag shape, that is, a shape including linear portions 410a and bent portions 410b alternately. Note that when the graphene material 410 is taken out, instead of melting the catalyst metal layer 416, the graphene material 410 may be mechanically peeled off.
  • the graphene material 410 thus obtained is a zigzag self-supporting material, but can be formed into a wire material by grasping and stretching both ends (see FIG. 18 (e)). However, it does not actually extend straight, but has a shape in which a plurality of linear portions 410a are connected by bent portions 410b as shown in parentheses. Three such graphene materials 410 are prepared, both ends are gripped and stretched to have a shape close to a straight line, and are arranged with a gap in the vertical direction, and in that state, are solidified with an insulating resin. In this way, even if the gripping of both ends of the graphene material 410 is released, the graphene material 410 maintains a shape close to a straight line.
  • insulating resin layers 362, 372, 382, and 392 are shown, but as can be seen from this manufacturing method, the insulating resin layers 362, 372, 382, and 392 are insulated resin at a time. It is formed integrally by solidifying.
  • the graphene wiring structure 360 is previously solidified with an insulating resin so that both ends of the graphene layers 366, 376, and 386 are exposed. Therefore, if the exposed portion is covered with metal, electrodes are formed at both ends of the graphene wiring structure 360 as in the third embodiment.
  • the graphene wiring structure 360 in which the electrodes are thus formed at both ends is used, for example, for a bus bar such as a fuel cell or a lithium secondary battery, and a harness for an automobile.
  • the graphene layers 366, 376, and 386 are multi-stage (three stages), for example, a larger current flows than in the case of the graphene layer 366 alone. Can do.
  • the presence of the insulating resin layers 362, 372, 382, and 392 ensures flexibility, and the graphene layers 366, 376, and 386 are protected.
  • Each of the graphene layers 366, 376, and 386 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.
  • both ends of the insulating resin layers 312, 322, 332, and 342 of the graphene wiring structure 310 are removed, and the graphene layers 316, 326, 336, and Although the catalyst metal layers 314, 324, and 334 were exposed and the exposed portions were covered with metal, the insulating resin layer 12 having metal portions 312a and 312b instead of the insulating resin layer 312 in the manufacturing process diagram shown in FIG. May be used.
  • the other insulating resin layers 322, 332, and 342 have the same configuration.
  • a graphene wiring structure 310 having electrodes at both ends shown in FIG. 15 is obtained.
  • each graphene layer is composed of the same odd number of graphene sheets, but different odd numbers of graphene sheets may be used.
  • the graphene layer 316 of the third embodiment may be one
  • the graphene layer 326 may be three
  • the graphene layer 336 may be five.
  • all the graphene layers may be composed of the same even number of graphene sheets, or different even numbers of graphene sheets.
  • the zigzag-shaped catalyst metal layer 416 is formed on the substrate body 412, but a spiral-shaped catalyst metal layer 426 is formed on the substrate body 412 as shown in FIG. 19 (plan view). May be.
  • the graphene can be taken out as a spiral graphene material by melting the catalyst metal layer 426 or peeling the graphene. It can be made into a wire by gripping and stretching both ends of the spiral graphene material.
  • the graphene material having the shape can be taken out in the same manner as in the above-described fourth embodiment as long as it is a one-stroke drawing shape.
  • any shape other than the one-stroke shape for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed.
  • a graphene material having an arbitrary shape can be taken out.
  • the substrate body 412 is plate-shaped
  • the substrate body may be cylindrical.
  • the substrate body may be hollow (the interior is empty) or solid (the interior is clogged).
  • the catalyst metal layer When growing graphene on a cylindrical and hollow substrate body, the catalyst metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer, Alternatively, the catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers.
  • a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle.
  • vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted.
  • a carbon source is supplied to the surface of the catalytic metal layer.
  • the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
  • FIG. 14H has been described as an example of the graphene wiring structure of the present invention.
  • the outermost graphene layer 336 is not covered with an insulating resin. What is exposed can also be said to be an example of the graphene wiring structure of the present invention.
  • an insulating resin layer and a graphene layer are repeatedly stacked except for the catalytic metal layer 334 and the graphene layer 336, and an insulating resin layer exists above and below each graphene layer.
  • the structure of FIG. 14G includes the graphene wiring structure of the present invention.
  • Those having the structure shown in FIG. 14G may be used as bus bars for fuel cells, lithium secondary batteries, and the like.
  • the graphene material and the graphene wiring structure of the present invention can be used for fine electrical wiring and the like, for example, a bus bar for a lithium secondary battery, an automobile harness, and the like.

Abstract

A substrate main body (12) is prepared first, and a crystalline nickel layer (14) is formed over the whole of a surface of the substrate main body (12). Successively, the crystalline layer (14) is patterned zigzag by lithography to form a catalyst metal layer (16). Furthermore, titanium is deposited as a mask material (17) on the sidewalls of the catalyst metal layer (16). Subsequently, carbon atoms are supplied to the catalyst metal layer (16) by feeding a gas mixture of acetylene and argon. As a result, the nickel surface undergoes a rearrangement into the (111) plane, and the supplied carbon atoms form a hexagonal lattice to grow graphene. Since the graphene is formed on the catalyst metal layer (16), the graphene comes to have the same shape as the catalyst metal layer (16), i.e., a zigzag shape. Next, square electrodes (18, 20) are attached to both ends of the zigzag graphene. Thereafter, the catalyst metal layer (16) is dissolved away by means of an acidic solution, and the graphene is taken out as a graphene material (10).

Description

グラフェン素材の製造方法、グラフェン素材及びグラフェン配線構造Graphene material manufacturing method, graphene material, and graphene wiring structure
 本発明は、グラフェン素材の製造方法、グラフェン素材及びグラフェン配線構造に関する。 The present invention relates to a graphene material manufacturing method, a graphene material, and a graphene wiring structure.
 グラフェンは、炭素原子の六員環が単層で連なって平面状になった二次元材料である。このグラフェンは、電子移動度がシリコンの100倍以上と言われている。近年、グラフェンをチャネル材料として利用したトランジスタが提案されている(特許文献1参照)。特許文献1では、絶縁基板上に、絶縁分離膜で分離された触媒膜パターンを形成し、その触媒膜パターン上にグラフェンシートを成長させたあと、そのグラフェンシートの両側にドレイン電極及びソース電極を形成すると共に、グラフェンシート上にゲート絶縁膜を解してゲート電極を形成している。ここで、触媒膜パターンは絶縁膜で分離されているが、グラフェンシートは触媒膜パターンの端では横方向に延びることから、絶縁分離膜の両側の触媒膜パターンからグラフェンシートが延びて絶縁分離膜上でつながった構造が得られると説明されている。 Graphene is a two-dimensional material in which six-membered rings of carbon atoms are connected in a single layer to form a planar shape. This graphene is said to have an electron mobility of 100 times or more that of silicon. In recent years, a transistor using graphene as a channel material has been proposed (see Patent Document 1). In Patent Document 1, a catalyst film pattern separated by an insulating separation film is formed on an insulating substrate, a graphene sheet is grown on the catalyst film pattern, and then a drain electrode and a source electrode are formed on both sides of the graphene sheet. At the same time, a gate electrode is formed on the graphene sheet by breaking the gate insulating film. Here, the catalyst film pattern is separated by the insulating film, but the graphene sheet extends in the lateral direction at the end of the catalyst film pattern, so that the graphene sheet extends from the catalyst film pattern on both sides of the insulating separation film. It is explained that the above connected structure is obtained.
特開2009-164432号公報JP 2009-164432 A
 ところで、グラフェン素材を単離する方法については、これまであまり多く報告されていない。一例としては、グラファイトに粘着テープを付着させたあとそのテープを剥がすことにより、粘着テープの粘着面にグラファイトから分離したグラフェンシートを付着させるという方法が知られている。 By the way, there have not been many reports on how to isolate graphene materials. As an example, there is known a method of attaching a graphene sheet separated from graphite to the adhesive surface of an adhesive tape by attaching the adhesive tape to graphite and then peeling the tape.
 しかしながら、こうした方法では、グラファイトからきれいにグラフェンシートが分離しないことがあるため、所望形状のグラフェンシートを得ることが困難であった。また、グラフェンシートの両端に電極端子を設ける場合、電極端子がグラフェンシートから剥離してしまうおそれもあった。更に、粘着テープに付着した状態のグラフェンシートでは、サイズがミクロンメータオーダーと小さい上に、層数も上手くコントロールできないため、配線材料としては適さず、限られた電流しか流すことができないという問題があった。更にまた、柔軟性を確保したいという要望もあった。 However, in such a method, it is difficult to obtain a graphene sheet having a desired shape because the graphene sheet may not be separated cleanly from graphite. Moreover, when providing an electrode terminal in the both ends of a graphene sheet, there also existed a possibility that an electrode terminal might peel from a graphene sheet. Furthermore, the graphene sheet attached to the adhesive tape has a problem that the size is as small as a micrometer order and the number of layers cannot be controlled well. there were. Furthermore, there was a request to ensure flexibility.
 本発明はこのような課題を解決するためになされたものであり、所望形状のグラフェン素材を容易に作製することを目的とする。また、剥離しにくい電極端子を有する所望形状のグラフェン素材を容易に作製することを目的とする。また、比較的大きな電流を流すことができる柔軟なグラフェン配線構造を提供することを目的とする。 The present invention has been made to solve such problems, and an object thereof is to easily produce a graphene material having a desired shape. It is another object of the present invention to easily produce a graphene material having a desired shape having electrode terminals that are difficult to peel off. It is another object of the present invention to provide a flexible graphene wiring structure that can flow a relatively large current.
[第1発明]
 本発明のグラフェン素材の製造方法は、
(a-1)グラフェン化を促進する機能を有する所定形状の触媒金属層と該触媒金属層の側面をマスクするマスク材とを基板本体上に形成する工程と、
(b-1)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
(c-1)前記触媒金属層から前記所定形状のグラフェンをグラフェン素材として取り出す工程と、
 を含むものである。
[First invention]
The method for producing the graphene material of the present invention is as follows:
(A-1) forming a catalyst metal layer having a predetermined shape having a function of promoting graphenization and a mask material for masking side surfaces of the catalyst metal layer on the substrate body;
(B-1) supplying a carbon source to the surface of the catalytic metal layer to grow graphene;
(C-1) extracting the graphene having the predetermined shape from the catalyst metal layer as a graphene material;
Is included.
 このグラフェン素材の製造方法によれば、グラフェン素材の形状は触媒金属層の形状をそのまま受け継ぐことになるため、触媒金属層を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材を得ることができる。また、触媒金属層の側面にマスク材が形成されていることで、グラフェン素材が触媒金属層の側面で成長することを抑制することが可能である。これにより、所望形状により近いグラフェンを作製でき、また、触媒金属層からグラフェン素材を容易に引き剥がすことができる。 According to this graphene material manufacturing method, since the shape of the graphene material inherits the shape of the catalytic metal layer as it is, if the catalytic metal layer is patterned into a desired shape, the graphene material of the desired shape can be obtained. Can do. Further, since the mask material is formed on the side surface of the catalyst metal layer, it is possible to suppress the growth of the graphene material on the side surface of the catalyst metal layer. Thereby, graphene closer to the desired shape can be produced, and the graphene material can be easily peeled off from the catalyst metal layer.
 ここで、グラフェン素材とは、炭素原子の六員環が単層で連なったグラフェンを1層又は複数層有する素材をいう。また、グラフェン化を促進する機能とは、炭素源と接触してその炭素源に含まれる炭素成分が互いに結合してグラフェンになるのを促進する機能をいう。 Here, the graphene material refers to a material having one or more layers of graphene in which six-membered rings of carbon atoms are connected in a single layer. In addition, the function of promoting grapheneization refers to a function of promoting the formation of graphene by contacting with a carbon source and combining the carbon components contained in the carbon source with each other.
 本発明のグラフェン素材の製造方法において、前記工程(a-1)では、前記触媒金属層として一筆書きが可能な形状のものを形成してもよい。こうすれば、基板の面積が小さい場合であっても、得られるグラフェン素材の長さを長くすることができる。この場合、金属層と同形状のグラフェンが得られるが、その両端を把持して伸ばすことにより線状のグラフェン素材が得られる。こうした線状のグラフェン素材は、電気配線等に利用可能である。一筆書きが可能な形状は、例えば、ジグザグ状であってもよいし渦巻き状であってもよいし螺旋状であってもよい。具体的には、基板本体が平板状の場合には触媒金属層をジグザグ状又は渦巻き状に形成し、基板本体が円筒状の場合には触媒金属層を螺旋状に形成してもよい。 In the method for producing a graphene material of the present invention, in the step (a-1), the catalyst metal layer having a shape that can be drawn with one stroke may be formed. In this way, even when the area of the substrate is small, the length of the obtained graphene material can be increased. In this case, graphene having the same shape as that of the metal layer is obtained, but a linear graphene material is obtained by grasping and extending both ends thereof. Such a linear graphene material can be used for electrical wiring and the like. The shape that can be drawn with one stroke may be, for example, a zigzag shape, a spiral shape, or a spiral shape. Specifically, when the substrate body is flat, the catalyst metal layer may be formed in a zigzag shape or a spiral shape, and when the substrate body is cylindrical, the catalyst metal layer may be formed in a spiral shape.
 工程(a-1)において、基板本体としては、特に限定するものではないが、例えばc面サファイア基板、a面サファイア基板、表面にSiO2層が形成されたSi基板、SiC基板、ZnO基板、GaN基板(テンプレート基板を含む)、W等の高融点金属基板、グラフェン化促進触媒能を有する金属の基板などが挙げられる。こうした基板本体は、単結晶基板の方が触媒金属層の結晶方位を揃えやすいため好ましい。但し、単結晶基板でなくても触媒金属層の方位は揃うことがあり得る。また、基板本体は、基本的には、グラフェンを成長させる工程(b-1)において劣化しないことが必要である。なお、基板本体として、表面にSiO2層が形成されたSi基板を用いる場合には、Siと触媒金属層との反応を抑制するために、基板と触媒金属層との間にTi,Pt,SiO2等の中間層を設けることが好ましい。中間層の厚さは、特に限定するものではないが、例えば1nm-10nm程度としてもよい。 In the step (a-1), the substrate body is not particularly limited. For example, a c-plane sapphire substrate, an a-plane sapphire substrate, a Si substrate having a SiO 2 layer formed thereon, a SiC substrate, a ZnO substrate, Examples thereof include a GaN substrate (including a template substrate), a refractory metal substrate such as W, and a metal substrate having a grapheneization promoting catalytic ability. As such a substrate body, a single crystal substrate is preferable because the crystal orientation of the catalytic metal layer is easily aligned. However, the orientation of the catalytic metal layer may be aligned even if it is not a single crystal substrate. Further, the substrate body is basically required not to deteriorate in the step (b-1) of growing graphene. When a Si substrate having a SiO 2 layer formed on the surface is used as the substrate body, in order to suppress the reaction between Si and the catalytic metal layer, Ti, Pt, An intermediate layer such as SiO 2 is preferably provided. The thickness of the intermediate layer is not particularly limited, but may be about 1 nm to 10 nm, for example.
 工程(a-1)において、触媒金属層の材質としては、Cu,Ni,Co,Ru,Fe,Pt,Au等が挙げられる。こうした金属のうち、表面に三角格子(三角形の頂点に金属原子が配置された構造)を持つものが好ましい。例えば、FCCの(111)面、BCCの(110)面、HCPの(0001)面が三角格子になる。触媒金属層の厚さは、特に限定するものではないが、例えば1-500nm程度としてもよい。但し、膜厚が薄すぎると、触媒金属が粒子化してしまうおそれがあるため、粒子化しない程度の厚さとするのが好ましい。また、触媒金属層の材質としては、炭素を固溶可能なものが好ましい。炭素を固溶した触媒金属を用いた場合、後述する工程(b-1)において、触媒金属層から放出された炭素がグラフェンとなることにより、グラフェンを容易に厚膜化できる。なお、グラフェンを厚膜化するには、触媒金属層が厚い(例えば200nm以上など)ことが好ましい。このような炭素を固溶可能な触媒金属層としては、炭素を最大で4.1at%固溶可能なCoや、炭素を最大で2.7at%固溶可能なNi、炭素を最大で0.095at%固溶可能なFeなどが挙げられる。なかでも、炭素と安定な酸化物をつくらないCoやNiが好ましい。なお、Co、Ni、Feなどに炭素を含有させるためには、金属を真空中若しくは不活性ガス中に高温で保持し、その表面に炭素原料(メタン、アセチレン、アルコールなど)を供給すればよい。 In step (a-1), examples of the material for the catalyst metal layer include Cu, Ni, Co, Ru, Fe, Pt, Au, and the like. Among these metals, those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable. For example, the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices. The thickness of the catalyst metal layer is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles. Further, the material of the catalytic metal layer is preferably one that can dissolve carbon. When a catalyst metal in which carbon is dissolved is used, the carbon released from the catalyst metal layer becomes graphene in the step (b-1) described later, so that the graphene can be easily thickened. In order to increase the thickness of graphene, the catalyst metal layer is preferably thick (for example, 200 nm or more). As such a catalytic metal layer capable of solid-dissolving carbon, Co capable of solid-dissolving carbon up to 4.1 at%, Ni capable of solid-dissolving carbon up to 2.7 at%, and carbon up to 0.7 at%. Examples thereof include Fe that can be dissolved in 095 at%. Of these, Co and Ni that do not form a stable oxide with carbon are preferable. In order to contain carbon in Co, Ni, Fe, etc., the metal may be held at a high temperature in a vacuum or in an inert gas, and a carbon raw material (methane, acetylene, alcohol, etc.) may be supplied to the surface. .
 工程(a-1)において、所定形状の触媒金属層を形成するには、例えば、周知のフォトリソグラフィ法によってパターニングしてもよい。その場合、まず基板の全面に触媒金属製の全面被覆層(結晶層)を形成し、次に所定形状の触媒金属層が残るようにレジストパターンを形成したあとウェットエッチング又はドライエッチングを行ってもよい。ウェットエッチングは、触媒金属層の金属種に応じて適宜エッチング液を選定すればよい。ドライエッチングも、触媒金属層の金属種に応じて適宜使用するガスを選定すればよい。また、所定形状の触媒金属層を形成するには、所定形状以外の部分を被覆するシャドウマスクを用いて触媒金属を蒸着又はスパッタしてもよい。 In step (a-1), in order to form a catalyst metal layer having a predetermined shape, patterning may be performed by, for example, a well-known photolithography method. In that case, a catalytic metal full-surface coating layer (crystal layer) is first formed on the entire surface of the substrate, and then a resist pattern is formed so that a predetermined shape of the catalytic metal layer remains, and then wet etching or dry etching may be performed. Good. For wet etching, an etching solution may be appropriately selected according to the metal species of the catalyst metal layer. In dry etching, a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer. In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
 工程(a-1)において、マスク材の材質は特に限定されないが、SiO2やSi34などの絶縁物や、触媒金属層と比較して触媒作用が低く炭素の溶解度が低いTi,W,Ta,Moなどの高融点金属などが挙げられる。このようなマスク材表面にはグラフェンが成長しにくいため、触媒金属層の形状により近い、所望形状のグラフェンシートを得ることができる。マスク材を形成する方法は特に限定されないが、例えばマスク材を蒸着又はスパッタしてもよい。 In the step (a-1), the material of the mask material is not particularly limited. However, Ti, W having low catalytic action and low carbon solubility compared to an insulator such as SiO 2 or Si 3 N 4 or a catalytic metal layer. , Refractory metals such as Ta and Mo. Since graphene hardly grows on the surface of such a mask material, a graphene sheet having a desired shape that is closer to the shape of the catalyst metal layer can be obtained. Although the method for forming the mask material is not particularly limited, for example, the mask material may be deposited or sputtered.
 工程(a-1)では、前記基板本体上に前記所定形状の触媒金属層を形成し、次に前記基板本体上に、前記触媒金属層が埋設されるようにマスク層を形成し、前記マスク層のうち前記触媒金属層と対向する部分以外の部分を覆うようにレジストパターンを形成したあと、前記マスク層のエッチングを行うことにより、前記触媒金属層の側面を前記マスク材でマスクしてもよい。 In step (a-1), the catalyst metal layer having the predetermined shape is formed on the substrate body, and then a mask layer is formed on the substrate body so that the catalyst metal layer is embedded, and the mask After forming a resist pattern so as to cover a portion of the layer other than the portion facing the catalyst metal layer, the mask layer is etched to mask the side surfaces of the catalyst metal layer with the mask material. Good.
 工程(a-1)では、前記基板本体の全面を被覆する触媒金属製の全面被覆層を形成し、次に該全面被覆層の上に前記所定形状と同形状のレジストパターンを形成したあと、前記全面被覆層のエッチングを行うことにより、前記基板本体上に前記所定形状の触媒金属層を形成し、次に前記触媒金属層の上に前記レジストパターンを残した状態で、前記基板本体及び前記レジストパターンの上に前記触媒金属層よりも厚く前記触媒金属層と前記レジストパターンとの厚さの和よりも薄いマスク層を形成し、次に前記レジストパターンと前記レジストパターン上のマスク層とを除去することにより、前記触媒金属層の側面を前記マスク材でマスクしてもよい。なお、触媒金属はグラフェン化を促進する機能を有するものである。 In the step (a-1), a catalytic metal full-surface coating layer covering the entire surface of the substrate body is formed, and then a resist pattern having the same shape as the predetermined shape is formed on the entire surface coating layer. Etching the entire surface covering layer forms the catalyst metal layer having the predetermined shape on the substrate body, and then leaving the resist pattern on the catalyst metal layer, the substrate body and the substrate A mask layer that is thicker than the catalyst metal layer and thinner than the sum of the thickness of the catalyst metal layer and the resist pattern is formed on the resist pattern, and then the resist pattern and the mask layer on the resist pattern are formed. By removing, the side surface of the catalyst metal layer may be masked by the mask material. The catalyst metal has a function of promoting grapheneization.
 工程(b-1)において、炭素源としては、例えば、炭素数1~6の炭化水素やアルコールなどが挙げられる。また、グラフェンを成長させる方法としては、例えば、アルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどが挙げられる。 In step (b-1), examples of the carbon source include hydrocarbons and alcohols having 1 to 6 carbon atoms. Examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, and gas source MBE.
 アルコールCVDは、例えば、成長温度を400-850℃とし、炭素源としてメタノールやエタノールなどのアルコールの飽和蒸気を供給する。アルコール飽和蒸気は、バブラにキャリアガスを流すことにより発生させてもよい。キャリアガスとしては、アルゴン、水素、窒素などを利用することができる。圧力は大気圧であってもよいし、減圧下であってもよい。 In alcohol CVD, for example, the growth temperature is set to 400 to 850 ° C., and a saturated vapor of alcohol such as methanol or ethanol is supplied as a carbon source. The alcohol saturated vapor may be generated by flowing a carrier gas through a bubbler. Argon, hydrogen, nitrogen or the like can be used as the carrier gas. The pressure may be atmospheric pressure or under reduced pressure.
 熱CVDは、例えば、成長温度を800-1000℃とし、炭素源としてメタン、エチレン、アセチレン、ベンゼンなどを供給する。炭素源はアルゴンや水素などをキャリアガスとして供給し、炭素源の分圧は例えば0.002-5Pa程度とする。成長時間は例えば1-20分、圧力は加圧下(例えば1kPa)であってもよいし減圧下であってもよい。炭素源を分解するためにホットフィラメントを使用することが多い。 Thermal CVD, for example, sets the growth temperature to 800-1000 ° C. and supplies methane, ethylene, acetylene, benzene, etc. as the carbon source. The carbon source is supplied with argon or hydrogen as a carrier gas, and the partial pressure of the carbon source is, for example, about 0.002-5 Pa. The growth time may be 1-20 minutes, for example, and the pressure may be under pressure (for example, 1 kPa) or under reduced pressure. Hot filaments are often used to decompose the carbon source.
 プラズマCVDは、例えば、成長温度を950℃、圧力を1-1.1Pa、炭素源をメタン、メタン流量を5sccm、キャリアガスを水素、水素流量を20sccmとし、プラズマパワーを100W程度とする。 In plasma CVD, for example, the growth temperature is 950 ° C., the pressure is 1-1. 1 Pa, the carbon source is methane, the methane flow rate is 5 sccm, the carrier gas is hydrogen, the hydrogen flow rate is 20 sccm, and the plasma power is about 100 W.
 ガスソースMBEは、例えば、炭素源としてエタノールを用い、エタノールで飽和した窒素ないしは水素ガスの流量を0.3-2sccmとし、真空中で炭素源分解のため2000℃に加熱したWフィラメントを使用する。基板温度は400-600℃程度である。 The gas source MBE uses, for example, ethanol as a carbon source, a flow rate of nitrogen or hydrogen gas saturated with ethanol at 0.3-2 sccm, and a W filament heated to 2000 ° C. for decomposition of the carbon source in a vacuum. . The substrate temperature is about 400-600 ° C.
 本発明のグラフェン素材の製造方法において、前記工程(c-1)では、前記触媒金属層を溶かして前記所定形状のグラフェンをグラフェン素材として取り出してもよい。こうすれば、グラフェン素材を容易に取り出すことができる。 In the method for producing a graphene material of the present invention, in the step (c-1), the catalyst metal layer may be dissolved and the graphene having the predetermined shape may be taken out as the graphene material. In this way, the graphene material can be easily taken out.
 工程(c-1)において、触媒金属層を溶かすには、例えば酸性溶液を用いる。どのような酸性溶液を用いるかは触媒金属層の金属種による。例えば、触媒金属層の材質がNiの場合には希硝酸を使用する。あるいは、触媒金属層からグラフェン素材を引き剥がすには、例えば触媒金属層の外周部分だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェン素材をめくるようにして機械的に引き剥がしてもよい。 In step (c-1), for example, an acidic solution is used to dissolve the catalyst metal layer. Which acidic solution is used depends on the metal species of the catalyst metal layer. For example, dilute nitric acid is used when the material of the catalytic metal layer is Ni. Alternatively, in order to peel off the graphene material from the catalyst metal layer, for example, only the outer peripheral portion of the catalyst metal layer is etched away with an acidic solution, and the graphene material is turned off from the etched portion and mechanically peeled off. Also good.
 本発明のグラフェン素材の製造方法において、工程(c-1)では、マスク材をも溶かして前記所定形状のグラフェンをグラフェン素材として取り出してもよい。こうすれば、グラフェン素材をより容易に取り出すことができる。例えば、マスク材の材質がSiO2やTiの場合には、フッ酸を使用する。 In the method for producing a graphene material of the present invention, in the step (c-1), the mask material may also be dissolved to take out the graphene having the predetermined shape as the graphene material. In this way, the graphene material can be taken out more easily. For example, when the mask material is SiO 2 or Ti, hydrofluoric acid is used.
 本発明のグラフェン素材は、一筆書きが可能な形状(例えばジグザグ状又は渦巻き状)の自立したグラフェン素材である。こうしたグラフェン素材は、上述したグラフェン素材の製造方法によって容易に得ることができる。なお、「自立した」とは、テープなどの支持体などを有さず独立しているという意味である。 The graphene material of the present invention is a self-supporting graphene material having a shape that can be drawn with a single stroke (for example, a zigzag shape or a spiral shape). Such a graphene material can be easily obtained by the above-described method for producing a graphene material. Note that “self-supporting” means independent without having a support such as a tape.
 あるいは、上述したグラフェン素材の製造方法の他に、以下の製造方法を採用してもよい。すなわち、
(a-1)基板本体の全面を被覆する触媒金属製の全面被覆層を形成し、次に前記全面被覆層の表面に所定形状とネガの関係にある形状のマスク材を形成する工程と、
(b-2)前記マスク材を形成した前記全面被覆層の表面に炭素源を供給して前記マスク材が形成されていない部分にグラフェンを成長させる工程と、
(c-3)前記全面被覆層から前記所定形状のグラフェンをグラフェン素材として取り出す工程と、
 を含むものとしてもよい。この製造方法では、全面被覆層をパターニングして触媒金属層とする工程を経ることなく、触媒金属製の全面被覆層の表面にマスク材を形成してからグラフェンを成長させる。このため、より簡単な工程で所望形状のグラフェン素材を得ることができる。ここで、所定形状とネガの関係にある形状とは、所定形状以外の部分(残部)の形状をいう。なお、この製造方法においても、上述したグラフェン素材の製造方法で説明した種々の態様を採用することができる。
Or you may employ | adopt the following manufacturing methods other than the manufacturing method of the graphene raw material mentioned above. That is,
(A-1) forming a catalytic metal full-surface coating layer that covers the entire surface of the substrate body, and then forming a mask material having a negative shape and a predetermined shape on the surface of the entire surface coating layer;
(B-2) supplying a carbon source to the surface of the entire covering layer on which the mask material is formed to grow graphene on a portion where the mask material is not formed;
(C-3) extracting the graphene having the predetermined shape from the entire surface coating layer as a graphene material;
May be included. In this manufacturing method, the graphene is grown after forming a mask material on the surface of the catalyst metal full-surface coating layer without going through the step of patterning the entire surface coating layer to form a catalyst metal layer. For this reason, the graphene raw material of a desired shape can be obtained by a simpler process. Here, the shape having a negative relationship with the predetermined shape refers to the shape of the portion (remaining part) other than the predetermined shape. In addition, also in this manufacturing method, the various aspects demonstrated with the manufacturing method of the graphene raw material mentioned above are employable.
[第2発明]
 本発明のグラフェン素材の製造方法は、
(a-2)グラフェン化を促進する機能を有する所定形状の触媒金属層を基板本体上に形成する工程と、
(b-2)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
(c-2)前記触媒金属層から前記グラフェンをグラフェン素材として取り出す工程と、
 を含み、
 前記工程(c-2)で前記グラフェンをグラフェン素材として取り出す前又は後に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を形成するものである。
[Second invention]
The method for producing the graphene material of the present invention is as follows:
(A-2) forming a catalyst metal layer having a predetermined shape on the substrate body having a function of promoting grapheneization;
(B-2) supplying graphene to the surface of the catalytic metal layer to grow graphene;
(C-2) extracting the graphene as a graphene material from the catalyst metal layer;
Including
Before or after taking out the graphene as a graphene material in the step (c-2), a Ti layer as a base and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W are formed. An electrode terminal having a laminated structure is formed.
 このグラフェン素材の製造方法によれば、グラフェン素材の形状は触媒金属層の形状をそのまま受け継ぐことになるため、触媒金属層を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材を得ることができる。また、電極端子は、グラフェンと接する層として炭素との反応性のよいTiを使用しているため、優れたオーミック電極となる。更に、Ti層の直上に形成される保護層にTiと反応しにくいMo,Ni,Ta又はWを使用しているため、Tiが保護層に拡散してグラフェンから剥離するという現象が起こりにくい。なお、保護層は、上述した群より選ばれた金属からなるもの(但し、不可避的な不純物成分を含む)としてもよい。 According to this graphene material manufacturing method, since the shape of the graphene material inherits the shape of the catalytic metal layer as it is, if the catalytic metal layer is patterned into a desired shape, the graphene material of the desired shape can be obtained. Can do. In addition, since the electrode terminal uses Ti having good reactivity with carbon as a layer in contact with graphene, the electrode terminal is an excellent ohmic electrode. Furthermore, since Mo, Ni, Ta, or W, which does not easily react with Ti, is used for the protective layer formed immediately above the Ti layer, the phenomenon that Ti diffuses into the protective layer and peels from the graphene hardly occurs. The protective layer may be made of a metal selected from the group described above (however, it includes an inevitable impurity component).
 ここで、グラフェン素材とは、炭素原子の六員環が単層で連なったグラフェンを1層又は複数層有する素材をいう。また、グラフェン化を促進する機能とは、炭素源と接触してその炭素源に含まれる炭素成分が互いに結合してグラフェンになるのを促進する機能をいう。また、Ti層の厚さは1nm-100nmとしてもよく、保護層の厚さは5nm-100nmとしてもよい。 Here, the graphene material refers to a material having one or more layers of graphene in which six-membered rings of carbon atoms are connected in a single layer. In addition, the function of promoting grapheneization refers to a function of promoting the formation of graphene by contacting with a carbon source and combining the carbon components contained in the carbon source with each other. Further, the thickness of the Ti layer may be 1 nm-100 nm, and the thickness of the protective layer may be 5 nm-100 nm.
 本発明のグラフェン素材の製造方法において、前記工程(a-2)では、前記触媒金属層として一筆書きが可能な形状のものを形成してもよい。こうすれば、基板の面積が小さい場合であっても、得られるグラフェン素材の長さを長くすることができる。この場合、金属層と同形状のグラフェンが得られるが、その両端を把持して伸ばすことにより線状のグラフェン素材が得られる。こうした線状のグラフェン素材は、電気配線等に利用可能である。一筆書きが可能な形状は、例えば、ジグザグ状であってもよいし渦巻き状であってもよいし螺旋状であってもよい。具体的には、基板本体が平板状の場合には触媒金属層をジグザグ状又は渦巻き状に形成し、基板本体が円筒状の場合には触媒金属層を螺旋状に形成してもよい。 In the method for producing a graphene material of the present invention, in the step (a-2), the catalyst metal layer having a shape that can be drawn with one stroke may be formed. In this way, even when the area of the substrate is small, the length of the obtained graphene material can be increased. In this case, graphene having the same shape as that of the metal layer is obtained, but a linear graphene material is obtained by grasping and extending both ends thereof. Such a linear graphene material can be used for electrical wiring and the like. The shape that can be drawn with one stroke may be, for example, a zigzag shape, a spiral shape, or a spiral shape. Specifically, when the substrate body is flat, the catalyst metal layer may be formed in a zigzag shape or a spiral shape, and when the substrate body is cylindrical, the catalyst metal layer may be formed in a spiral shape.
 工程(a-2)において、基板本体としては、特に限定するものではないが、例えばc面サファイア基板、a面サファイア基板、表面にSiO2層が形成されたSi基板、SiC基板、ZnO基板、GaN基板(テンプレート基板を含む)、W等の高融点金属基板、グラフェン化促進触媒能を有する金属の基板などが挙げられる。こうした基板本体は、単結晶基板の方が触媒金属層の結晶方位を揃えやすいため好ましい。但し、単結晶基板でなくても触媒金属層の方位は揃うことがあり得る。また、基板本体は、基本的には、グラフェンを成長させる工程(b-2)において劣化しないことが必要である。なお、基板本体として、表面にSiO2層が形成されたSi基板を用いる場合には、Siと触媒金属層との反応を抑制するために、基板と触媒金属層との間にTi,Pt,SiO2等の中間層を設けることが好ましい。中間層の厚さは、特に限定するものではないが、例えば1nm-10nm程度としてもよい。 In the step (a-2), the substrate body is not particularly limited. For example, a c-plane sapphire substrate, an a-plane sapphire substrate, a Si substrate having a SiO 2 layer formed on the surface, a SiC substrate, a ZnO substrate, Examples thereof include a GaN substrate (including a template substrate), a refractory metal substrate such as W, and a metal substrate having a grapheneization promoting catalytic ability. As such a substrate body, a single crystal substrate is preferable because the crystal orientation of the catalytic metal layer is easily aligned. However, the orientation of the catalytic metal layer may be aligned even if it is not a single crystal substrate. Further, the substrate main body basically needs to be not deteriorated in the step (b-2) of growing graphene. When a Si substrate having a SiO 2 layer formed on the surface is used as the substrate body, in order to suppress the reaction between Si and the catalytic metal layer, Ti, Pt, An intermediate layer such as SiO 2 is preferably provided. The thickness of the intermediate layer is not particularly limited, but may be about 1 nm to 10 nm, for example.
 工程(a-2)において、触媒金属層の材質としては、Cu,Ni,Co,Ru,Fe,Pt,Au等が挙げられる。こうした金属のうち、表面に三角格子(三角形の頂点に金属原子が配置された構造)を持つものが好ましい。例えば、FCCの(111)面、BCCの(110)面、HCPの(0001)面が三角格子になる。触媒金属層の厚さは、特に限定するものではないが、例えば1-500nm程度としてもよい。但し、膜厚が薄すぎると、触媒金属が粒子化してしまうおそれがあるため、粒子化しない程度の厚さとするのが好ましい。 In step (a-2), examples of the material for the catalyst metal layer include Cu, Ni, Co, Ru, Fe, Pt, Au, and the like. Among these metals, those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable. For example, the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices. The thickness of the catalyst metal layer is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles.
 工程(a-2)において、所定形状の触媒金属層を形成するには、例えば、周知のフォトリソグラフィ法によってパターニングしてもよい。その場合、まず基板の全面に触媒金属層を形成し、次に所定形状の触媒金属層が残るようにレジストパターンを形成したあとウェットエッチング又はドライエッチングを行ってもよい。ウェットエッチングは、触媒金属層の金属種に応じて適宜エッチング液を選定すればよい。ドライエッチングも、触媒金属層の金属種に応じて適宜使用するガスを選定すればよい。また、所定形状の触媒金属層を形成するには、所定形状以外の部分を被覆するシャドウマスクを用いて触媒金属を蒸着又はスパッタしてもよい。 In step (a-2), in order to form a catalyst metal layer having a predetermined shape, patterning may be performed by, for example, a well-known photolithography method. In that case, first, a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching. For wet etching, an etching solution may be appropriately selected according to the metal species of the catalyst metal layer. In dry etching, a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer. In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
 工程(b-2)において、炭素源としては、例えば、炭素数1~6の炭化水素やアルコールなどが挙げられる。また、グラフェンを成長させる方法としては、例えば、工程(b-1)と同様、アルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどが挙げられる。 In step (b-2), examples of the carbon source include hydrocarbons and alcohols having 1 to 6 carbon atoms. Examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, gas source MBE, and the like, as in step (b-1).
 工程(c-2)において、触媒金属層を溶かすには、例えば酸性溶液を用いる。どのような酸性溶液を用いるかは触媒金属層の金属種による。例えば、触媒金属層の材質がNiの場合には希硝酸を使用する。あるいは、触媒金属層からグラフェン素材を引き剥がすには、例えば触媒金属層の外周部分だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェン素材をめくるようにして機械的に引き剥がしてもよい。 In step (c-2), for example, an acidic solution is used to dissolve the catalyst metal layer. Which acidic solution is used depends on the metal species of the catalyst metal layer. For example, dilute nitric acid is used when the material of the catalytic metal layer is Ni. Alternatively, in order to peel off the graphene material from the catalyst metal layer, for example, only the outer peripheral portion of the catalyst metal layer is etched away with an acidic solution, and the graphene material is turned off from the etched portion and mechanically peeled off. Also good.
 工程(c-2)において、グラフェンをグラフェン素材として取り出す前又は後に電極端子を形成するにあたり、電極端子として、Ti層と保護層とAu又はSnからなる表層とをこの順で積層した構造を持つものを形成してもよい。こうすれば、電極端子はAu又はSnからなる表層を備えているため、ボンディングを容易且つ確実に行うことができる。ここで、電極端子を構成する各層は、例えば、電子ビーム蒸着法により形成してもよい。この場合、室温~200℃の温度で真空中で蒸着するのが好ましい。あるいは、電解めっきにより形成してもよい。電極端子を形成したあと、電極特性の改善を図るために、不活性ガス中又は真空中、500℃程度の条件で熱処理してもよい。また、電極端子を形成する前に、不純物を蒸発脱離させるために、不活性ガス中又は真空中、加熱処理を行ってもよい。 In the step (c-2), before or after taking out graphene as a graphene material, the electrode terminal has a structure in which a Ti layer, a protective layer, and a surface layer made of Au or Sn are laminated in this order as the electrode terminal. Things may be formed. In this case, since the electrode terminal has a surface layer made of Au or Sn, bonding can be performed easily and reliably. Here, each layer constituting the electrode terminal may be formed by, for example, an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating. After the electrode terminals are formed, heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve electrode characteristics. In addition, before the electrode terminal is formed, heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities.
 本発明のグラフェン素材は、一筆書きが可能な形状(例えばジグザグ状又は渦巻き状)の自立したグラフェン素材であって、両端に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を有するものである。こうしたグラフェン素材は、上述したグラフェン素材の製造方法によって容易に得ることができる。なお、「自立した」とは、テープなどの支持体などを有さず独立しているという意味である。 The graphene material of the present invention is a self-supporting graphene material having a shape that can be drawn with a single stroke (for example, zigzag shape or spiral shape), and includes a Ti layer and Mo, Ni, Ta, and W that form a base on both ends. The electrode terminal has a structure in which a protective layer mainly composed of a selected metal is laminated in this order. Such a graphene material can be easily obtained by the above-described method for producing a graphene material. Note that “self-supporting” means independent without having a support such as a tape.
[第3発明]
 本発明のグラフェン配線構造は、絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には前記絶縁樹脂層が存在するものである。
[Third invention]
In the graphene wiring structure of the present invention, an insulating resin layer and a graphene layer are repeatedly laminated, and the insulating resin layer exists above and below each graphene layer.
 このグラフェン配線構造によれば、グラフェン層が多段になっているため、1つのグラフェン層と比べて大きな電流を流すことができる。また、それぞれの段のグラフェン層の層数を数層ないし数十層とあまり大きくない層数に制限することと、絶縁樹脂層の存在によって柔軟性が確保される。なお、「グラフェン層」とは、炭素原子の六員環が単層で連なったグラフェンシートを1枚又は複数枚(例えば2~10枚)有する層をいう。 According to this graphene wiring structure, since the graphene layer is multi-staged, it is possible to pass a larger current than one graphene layer. Further, flexibility is ensured by limiting the number of graphene layers in each stage to a few layers to several tens of layers and the presence of an insulating resin layer. The “graphene layer” refers to a layer having one or a plurality of (for example, 2 to 10) graphene sheets in which six-membered rings of carbon atoms are connected in a single layer.
 本発明のグラフェン配線構造において、前記絶縁樹脂層と前記グラフェン層との間には、グラフェン化を促進する機能を有する触媒金属層が介在していてもよい。こうしたグラフェン配線構造を作製する際に、絶縁樹脂層の上に触媒金属層を形成し、その触媒金属層に炭素源を供給してグラフェンを成長させた場合、絶縁樹脂層とグラフェン層との間には触媒金属層が介在することになるが、こうした触媒金属層は良好な導電性を有するため、そのまま残しておいてもよい。こうして得られたグラフェン配線構造は、絶縁樹脂層とグラフェン層との間には触媒金属層が介在することになる。なお、「グラフェン化を促進する機能」とは、炭素源と接触してその炭素源に含まれる炭素成分が互いに結合してグラフェンになるのを促進する機能をいう。 In the graphene wiring structure of the present invention, a catalyst metal layer having a function of promoting grapheneization may be interposed between the insulating resin layer and the graphene layer. When producing such a graphene wiring structure, when a catalytic metal layer is formed on an insulating resin layer and graphene is grown by supplying a carbon source to the catalytic metal layer, the gap between the insulating resin layer and the graphene layer is increased. In this case, a catalyst metal layer is interposed, but such a catalyst metal layer has good conductivity and may be left as it is. In the graphene wiring structure thus obtained, a catalytic metal layer is interposed between the insulating resin layer and the graphene layer. The “function to promote graphenization” refers to a function that promotes the formation of graphene by contacting the carbon source and combining the carbon components contained in the carbon source with each other.
 本発明のグラフェン配線構造において、各グラフェン層は、いずれも奇数枚のグラフェンシートを積層したものであるか、又は、いずれも偶数枚のグラフェンシートを積層したものとしてもよい。奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、各グラフェン層がいずれも奇数枚のグラフェンシートを積層したものである場合には、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。また、偶数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、各グラフェン層がいずれも偶数枚のグラフェンシートを積層したものである場合には、その偶数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。 In the graphene wiring structure of the present invention, each graphene layer may be formed by stacking an odd number of graphene sheets, or may be formed by stacking an even number of graphene sheets. Since graphene layers with odd-numbered graphene sheets have similar electrical characteristics, if each graphene layer is a stack of odd-numbered graphene sheets, graphene layers with the odd-numbered graphene sheets stacked The electrical properties of the layer are emphasized. In addition, since the graphene layers with an even number of graphene sheets are similar in electrical characteristics, if each graphene layer is an even number of graphene sheets, the even number of graphene sheets are stacked. The electrical properties of the graphene layer are emphasized.
 本発明のグラフェン配線構造の製法は、例えば、絶縁樹脂層の上にグラフェン層を設けたあと該グラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。ここで、絶縁樹脂層の上にグラフェン層を設けるにあたり、別途作製しておいたグラフェン層を前記絶縁樹脂層の上に配置してもよい。このようにグラフェン層を別途作製するには、例えば、基板の上にグラフェン化を促進する機能を有する触媒金属層を一筆書きが可能な形状に形成し、触媒金属層の表面に炭素源を供給してグラフェンを成長させ、触媒金属層からグラフェンをグラフェン素材として取り出してもよい。なお、こうして取り出した複数のグラフェン素材の両端を引っ張って略直線状にした後、その状態を保ったまま絶縁樹脂で固めることにより、本発明のグラフェン配線構造を作製してもよい。 The method for producing a graphene wiring structure of the present invention may include, for example, a process of repeating a work of providing an insulating resin layer on the graphene layer after providing the graphene layer on the insulating resin layer. Here, when the graphene layer is provided on the insulating resin layer, a separately prepared graphene layer may be disposed on the insulating resin layer. In order to separately prepare the graphene layer in this way, for example, a catalyst metal layer having a function of promoting graphene formation is formed on a substrate in a shape that can be drawn with one stroke, and a carbon source is supplied to the surface of the catalyst metal layer. Then, the graphene may be grown, and the graphene may be taken out as a graphene material from the catalyst metal layer. Note that the graphene wiring structure of the present invention may be manufactured by pulling both ends of the plurality of graphene materials taken out in this way into a substantially straight shape and then solidifying with an insulating resin while maintaining the state.
 本発明のグラフェン配線構造のうち、絶縁樹脂層とグラフェン層との間にグラフェン化を促進する機能を有する触媒金属層が介在するものの製法は、例えば、絶縁樹脂層の上に触媒金属層を一筆書きが可能な形状(例えば直線状、ジグザグ状、渦巻き状など)となるように形成し、該触媒金属層の表面に炭素源を供給してグラフェンを成長させることによりグラフェン層を設け、触媒金属層を残したままグラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。また、絶縁樹脂層とグラフェン層との間にグラフェン化を促進する機能を有する触媒金属層が介在しないものの製法は、例えば、絶縁樹脂層の上に触媒金属層を一筆書きが可能な形状となるように形成し、該触媒金属層の表面に炭素源を供給してグラフェンを成長させることによりグラフェン層を設け、そのグラフェン層の一端を挟持部材で挟み込んだ状態で触媒金属層を溶かして除去したあとグラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。なお、予め配線を引き回したときの形状が決まっている場合には、絶縁樹脂層や触媒金属層をそれと同様の形状に形成しておけば、できあがったグラフェン配線構造を曲げることなくそのまま使用することができる。 In the graphene wiring structure of the present invention, a method in which a catalytic metal layer having a function of promoting graphene formation is interposed between an insulating resin layer and a graphene layer is obtained by, for example, placing a catalytic metal layer on the insulating resin layer. A graphene layer is formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer and forming the graphene layer so that the shape can be written (for example, linear, zigzag, spiral) A step of repeating an operation of providing an insulating resin layer on the graphene layer while leaving the layer may be included. In addition, a manufacturing method in which a catalytic metal layer having a function of promoting graphene formation is not interposed between the insulating resin layer and the graphene layer is, for example, a shape in which the catalytic metal layer can be drawn with a single stroke on the insulating resin layer. The graphene layer was formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer, and the catalyst metal layer was melted and removed in a state where one end of the graphene layer was sandwiched between sandwiching members Further, it may include a step of repeating the operation of providing an insulating resin layer on the graphene layer. In addition, if the shape when the wiring is routed in advance is determined, if the insulating resin layer and catalytic metal layer are formed in the same shape, the completed graphene wiring structure can be used as it is without bending. Can do.
 上述した製法において、触媒金属層を一筆書きが可能な形状に形成するには、例えば、周知のフォトリソグラフィ法によってパターニングしてもよい。その場合、まず基板の全面に触媒金属層を形成し、次に所定形状の触媒金属層が残るようにレジストパターンを形成したあとウェットエッチング又はドライエッチングを行ってもよい。ウェットエッチングは、触媒金属層の金属種に応じて適宜エッチング液を選定すればよい。ドライエッチングも、触媒金属層の金属種に応じて適宜使用するガスを選定すればよい。また、所定形状の触媒金属層を形成するには、所定形状以外の部分を被覆するシャドウマスクを用いて触媒金属を蒸着又はスパッタしてもよい。 In the manufacturing method described above, in order to form the catalyst metal layer into a shape that can be drawn with a single stroke, patterning may be performed by, for example, a well-known photolithography method. In that case, first, a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching. For wet etching, an etching solution may be appropriately selected according to the metal species of the catalyst metal layer. In dry etching, a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer. In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.
 上述した製法において、炭素源としては、例えば、炭素数1~6の炭化水素やアルコールなどが挙げられる。 In the above-described production method, examples of the carbon source include hydrocarbons having 1 to 6 carbon atoms and alcohols.
 上述した製法において、グラフェンを成長させる方法としては、例えば、上述した工程(b-1)と同様、アルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどが挙げられる。なお、熱CVDやプラズマCVDでは、成長温度を絶縁樹脂層の耐熱温度未満に適宜設定してもよい。なお、成長温度を絶縁樹脂層の耐熱温度未満で適宜設定するにあたっては、例えばその耐熱温度をわずかに下回る温度としてもよい。 In the above-described manufacturing method, examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, gas source MBE and the like, as in the above-described step (b-1). In thermal CVD or plasma CVD, the growth temperature may be set appropriately below the heat resistance temperature of the insulating resin layer. In setting the growth temperature appropriately below the heat resistance temperature of the insulating resin layer, for example, a temperature slightly lower than the heat resistance temperature may be used.
グラフェン素材10を製造する手順を表す説明図(斜視図)である。It is explanatory drawing (perspective view) showing the procedure which manufactures the graphene raw material 10. FIG. グラフェン形成用基板11の製造工程を表す説明図(断面図)である。It is explanatory drawing (sectional drawing) showing the manufacturing process of the board | substrate 11 for graphene formation. グラフェン形成用基板31の製造工程を表す説明図(断面図)である。It is explanatory drawing (sectional drawing) showing the manufacturing process of the board | substrate 31 for graphene formation. グラフェン形成用基板41の製造工程を表す説明図(断面図)である。It is explanatory drawing (sectional drawing) showing the manufacturing process of the board | substrate 41 for graphene formation. グラフェン素材110を製造する手順を表す説明図(斜視図)である。It is explanatory drawing (perspective view) showing the procedure which manufactures the graphene raw material 110. FIG. 渦巻き状の触媒金属層56が形成された基板本体52の平面図である。It is a top view of the board | substrate body 52 in which the spiral catalyst metal layer 56 was formed. グラフェン素材210を製造する手順を表す説明図(斜視図)である。It is explanatory drawing (perspective view) showing the procedure which manufactures the graphene raw material 210. FIG. 電極端子218の構造を示す断面図である。3 is a cross-sectional view showing a structure of an electrode terminal 218. FIG. グラフェン素材210を引っ張った状態の説明図であり、(a)は緩く引っ張ったときの説明図、(b)は強く引っ張ったときの説明図である。It is explanatory drawing of the state which pulled the graphene material 210, (a) is explanatory drawing when pulled loosely, (b) is explanatory drawing when it pulls strongly. 渦巻き状の触媒金属層226が形成された基板本体212の平面図である。It is a top view of the board | substrate body 212 in which the spiral catalyst metal layer 226 was formed. 円筒状の基板本体232を用いてグラフェン素材250を製造するときの手順を表す説明図である。It is explanatory drawing showing the procedure at the time of manufacturing the graphene raw material 250 using the cylindrical substrate main body 232. FIG. グラフェン配線構造310の斜視図である。3 is a perspective view of a graphene wiring structure 310. FIG. 図12のA-A断面図である。FIG. 13 is a cross-sectional view taken along line AA in FIG. 12. グラフェン配線構造310の製造工程図である。6 is a manufacturing process diagram of the graphene wiring structure 310. FIG. 両端に電極が形成されたグラフェン配線構造310の断面図である。It is sectional drawing of the graphene wiring structure 310 in which the electrode was formed in both ends. グラフェン配線構造360の斜視図である。3 is a perspective view of a graphene wiring structure 360. FIG. 図16のB-B断面図である。It is BB sectional drawing of FIG. グラフェン素材410の製造工程図である。It is a manufacturing process diagram of the graphene material 410. 渦巻き状の触媒金属層426が形成された基板本体412の平面図である。It is a top view of the board | substrate body 412 in which the spiral catalyst metal layer 426 was formed.
[第1実施形態]
 以下には、第1発明を具現化した実施形態として、ジグザグ状の自立したグラフェン素材10を製造する場合を例に挙げて説明する。図1は、グラフェン素材10を製造する手順を表す説明図(斜視図)であり、図2は、グラフェン形成用基板11の製造工程を表す説明図(断面図)である。
[First Embodiment]
Hereinafter, a case where a zigzag self-supporting graphene material 10 is manufactured will be described as an example embodying the first invention. FIG. 1 is an explanatory diagram (perspective view) illustrating a procedure for manufacturing the graphene material 10, and FIG. 2 is an explanatory diagram (sectional view) illustrating a manufacturing process of the graphene forming substrate 11.
 まず、四角形状のc面サファイアからなる基板本体12を用意し(図2(a)参照)、その基板本体12の全面にNiを成膜して全面被覆層(結晶層)14とする(図1(a)、図2(b)参照)。続いて、リソグラフィ法により全面被覆層14を一筆書きが可能な形状、ここではジグザグ状にパターニングするようレジストパターン13を形成し(図2(c)参照)、全面被覆層14をジグザグ状の触媒金属層16とする(図2(d)参照)。次に、レジストパターン13を除去して触媒金属層16を露出させ(図2(e)参照)、この触媒金属層が埋設されるようにTiを形成してこれをマスク層17とし(図2(f)参照)、マスク層17の表面を研磨して触媒金属層16を露出させる(図1(b)、図2(g)参照)。このようにして、触媒金属層16の側面にTi製のマスク材19が形成されたグラフェン形成用基板11を製造する。 First, a substrate body 12 made of rectangular c-plane sapphire is prepared (see FIG. 2A), and Ni is formed on the entire surface of the substrate body 12 to form a whole surface coating layer (crystal layer) 14 (FIG. 1 (a) and FIG. 2 (b)). Subsequently, a resist pattern 13 is formed by lithography so that the entire surface coating layer 14 can be patterned in a single stroke, here a zigzag pattern (see FIG. 2C), and the entire surface coating layer 14 is formed into a zigzag type catalyst. The metal layer 16 is used (see FIG. 2D). Next, the resist pattern 13 is removed to expose the catalyst metal layer 16 (see FIG. 2E), Ti is formed so that the catalyst metal layer is embedded, and this is used as a mask layer 17 (FIG. 2). (See (f)), the surface of the mask layer 17 is polished to expose the catalytic metal layer 16 (see FIGS. 1B and 2G). In this manner, the graphene forming substrate 11 in which the Ti mask material 19 is formed on the side surface of the catalytic metal layer 16 is manufactured.
 次に、触媒金属層16のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。すると、Ni表面は(111)面に再配列される。Ni(111)面には、Ni原子を頂点とした三角格子が構成される。そして、供給されたC原子は、Ni原子から構成されるそれぞれの三角形の重心の真上に配置されることで、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長していく(図1(c)参照)。グラフェンは触媒金属層16上に形成され、マスク材19上には形成されにくいため、触媒金属層16と同じ形状つまりジグザグ状となる。 Next, C atoms are supplied to Ni of the catalyst metal layer 16 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. The graphene grows by going (see FIG. 1C). Since graphene is formed on the catalyst metal layer 16 and is not easily formed on the mask material 19, it has the same shape as the catalyst metal layer 16, that is, a zigzag shape.
 次に、ジグザグ状のグラフェンの両末端に四角形の電極18,20を取り付ける(図1(d)参照)。その後、触媒金属層16及びマスク材19を酸性溶液で溶かす。ここでは、触媒金属層16はNiであるため、希硝酸を用いる。また、マスク材19はTiであるため、フッ酸を用いる。そして、触媒金属層16及びマスク材19が溶けたあと、グラフェンをグラフェン素材10として取り出す(図1(e)参照)。 Next, square electrodes 18 and 20 are attached to both ends of the zigzag graphene (see FIG. 1 (d)). Thereafter, the catalyst metal layer 16 and the mask material 19 are dissolved with an acidic solution. Here, since the catalyst metal layer 16 is Ni, dilute nitric acid is used. Further, since the mask material 19 is Ti, hydrofluoric acid is used. And after the catalyst metal layer 16 and the mask material 19 melt | dissolve, graphene is taken out as the graphene raw material 10 (refer FIG.1 (e)).
 このようにして得られたグラフェン素材10は、ジグザグ状の自立した素材であるが、両末端の電極18,20を把持して伸ばすことにより線材にすることができる(図1(f)参照)。こうした線材は細くて大きな電流を流せる電気配線として利用可能である。また、グラフェンシートの特長を生かし、このように作製した電気配線の途中に、トランジスタ構造を作製し、電流の流れを制御することも可能である。 The graphene material 10 obtained in this manner is a zigzag self-supporting material, but can be formed into a wire by gripping and stretching the electrodes 18 and 20 at both ends (see FIG. 1 (f)). . Such a wire is thin and can be used as an electrical wiring capable of flowing a large current. In addition, taking advantage of the graphene sheet, a transistor structure can be fabricated in the middle of the electrical wiring thus fabricated to control the current flow.
 以上説明した本実施形態のグラフェン素材10の製造方法によれば、グラフェン素材10の形状は触媒金属層16の形状をそのまま受け継ぐことになるため、触媒金属層16を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材10を得ることができる。また、触媒金属層16の側面にマスク材19が形成されていることで、グラフェンが触媒金属層16の側面で成長することを抑制することが可能である。これにより、所望形状により近いグラフェン素材10を作製できる。また、触媒金属層16からグラフェン素材10を容易に引き剥がすことができる。また、触媒金属層16は、一筆書きが可能なジグザグ状であるため、基板本体12の面積が小さい場合であっても、得られるグラフェン素材10の長さを長くすることができる。 According to the method for manufacturing the graphene material 10 of the present embodiment described above, the shape of the graphene material 10 inherits the shape of the catalyst metal layer 16 as it is, so that the catalyst metal layer 16 only needs to be patterned into a desired shape. The graphene material 10 having the desired shape can be obtained. In addition, since the mask material 19 is formed on the side surface of the catalytic metal layer 16, it is possible to suppress the growth of graphene on the side surface of the catalytic metal layer 16. Thereby, the graphene material 10 closer to the desired shape can be produced. Further, the graphene material 10 can be easily peeled off from the catalyst metal layer 16. Moreover, since the catalyst metal layer 16 has a zigzag shape that can be drawn with a single stroke, the length of the obtained graphene material 10 can be increased even when the area of the substrate body 12 is small.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。基板本体は、線状、円筒状でも良く、このような形状の基板を用いることにより、より長い配線構造を容易に作製することが可能となる。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention. The substrate body may be linear or cylindrical. By using a substrate having such a shape, a longer wiring structure can be easily manufactured.
 例えば、上述した実施形態では、図1,2に示すグラフェン形成用基板11を用いてグラフェンを成長させたが、図3に示すグラフェン形成用基板31や、図4に示すグラフェン形成用基板41を作製し、これを用いてグラフェンを成長させてもよい。グラフェン形成用基板31,41では、マスク材39,49が触媒金属層16より高くなるように形成されているため、グラフェンが横方向に成長することを抑制可能であり、所望形状により近い形状のグラフェンシートが得られる。特に、グラフェンシートを厚膜化(多層化)する場合には、グラフェンが横方向にも成長しやすいため、マスク材を触媒金属層より高く形成することが好ましい。 For example, in the above-described embodiment, graphene is grown using the graphene forming substrate 11 shown in FIGS. 1 and 2, but the graphene forming substrate 31 shown in FIG. 3 and the graphene forming substrate 41 shown in FIG. It may be produced and graphene may be grown using this. In the graphene forming substrates 31 and 41, since the mask materials 39 and 49 are formed so as to be higher than the catalyst metal layer 16, it is possible to suppress the growth of graphene in the lateral direction, and the shape closer to the desired shape. A graphene sheet is obtained. In particular, when the graphene sheet is thickened (multilayered), it is preferable that the mask material be formed higher than the catalyst metal layer because graphene easily grows in the lateral direction.
 図3は、グラフェン形成用基板31の製造工程を表す説明図(断面図)である。この製造工程では、図3(a)~(f)は、図2(a)~(f)と同様のため、ここでは記載を省略する。図3(f)のようにマスク層17を形成したあと、マスク層17のうち触媒金属層16と対向する部分以外の部分を覆うようにレジストパターン35を形成する(図3(g)参照)。そして、レジストパターン35が形成されていない部分のマスク層17をエッチングを行うことにより除去し(図3(h)参照)、さらにレジストパターン35を除去する(図3(i)参照)。このようにして、触媒金属層16の側面にTi製のマスク材39が形成されたグラフェン形成用基板31が得られる。なお、パターン35を除去していないもの(図3(h)参照)をそのままグラフェン形成用基板として用いてもよい。 FIG. 3 is an explanatory diagram (cross-sectional view) showing a manufacturing process of the graphene forming substrate 31. In this manufacturing process, since FIGS. 3A to 3F are the same as FIGS. 2A to 2F, description thereof is omitted here. After the mask layer 17 is formed as shown in FIG. 3F, a resist pattern 35 is formed so as to cover a portion of the mask layer 17 other than the portion facing the catalytic metal layer 16 (see FIG. 3G). . Then, the mask layer 17 where the resist pattern 35 is not formed is removed by etching (see FIG. 3H), and the resist pattern 35 is further removed (see FIG. 3I). In this way, the graphene forming substrate 31 in which the Ti mask material 39 is formed on the side surface of the catalytic metal layer 16 is obtained. Note that a substrate from which the pattern 35 is not removed (see FIG. 3H) may be used as it is as a substrate for forming graphene.
 図4は、グラフェン形成用基板41の製造工程を表す説明図(断面図)である。この製造工程では、まず、基板本体12を用意し(図4(a)参照)、その基板本体12の全面にNiを成膜して全面被覆層14とする(図4(b)参照)。続いて、グラフェンシート10と同様のジグザグ状と同形状のレジストパターン13を形成し(図4(c)参照)、全面被覆層14のうちレジストパターン13が形成されていない部分をエッチングにより除去してジグザグ状の触媒金属層16とする(図4(d)参照)。続いて、触媒金属層16の上にレジストパターン13を残した状態で、基板本体12及びレジストパターン13の上に触媒金属層16よりも厚く触媒金属層16とレジストパターン13との厚さの和よりも薄くなるようにTiを成膜してこれをマスク層47とする(図4(e)参照)。そして、レジストパターン13を除去することにより、レジストパターン13上に形成されたマスク層47をも除去する(図4(f)参照)。このようにして、触媒金属層16の側面にTi製のマスク材49が形成されたグラフェン形成用基板41が得られる。 FIG. 4 is an explanatory diagram (cross-sectional view) showing a manufacturing process of the graphene forming substrate 41. In this manufacturing process, first, the substrate body 12 is prepared (see FIG. 4A), and Ni is formed on the entire surface of the substrate body 12 to form the entire coating layer 14 (see FIG. 4B). Subsequently, a resist pattern 13 having the same zigzag shape as the graphene sheet 10 is formed (see FIG. 4C), and a portion of the entire covering layer 14 where the resist pattern 13 is not formed is removed by etching. Thus, a zigzag catalyst metal layer 16 is formed (see FIG. 4D). Subsequently, the sum of the thicknesses of the catalyst metal layer 16 and the resist pattern 13 which is thicker than the catalyst metal layer 16 on the substrate body 12 and the resist pattern 13 with the resist pattern 13 left on the catalyst metal layer 16. Ti is formed to be thinner than this, and this is used as a mask layer 47 (see FIG. 4E). Then, by removing the resist pattern 13, the mask layer 47 formed on the resist pattern 13 is also removed (see FIG. 4F). Thus, the graphene forming substrate 41 in which the Ti mask material 49 is formed on the side surface of the catalytic metal layer 16 is obtained.
 上述した実施形態では、図1に示す製造方法でグラフェン素材10を製造するものとしたが、例えば図5に示す方法でグラフェン素材を製造するものとしてもよい。図5は、グラフェン素材110を製造する手順を表す説明図(斜視図)である。まず、四角形上のc面サファイアからなる基板本体112を用意し、その基板本体112の全面にNiを成膜して全面被覆層114とする(図5(a)参照)。続いて、全面被覆層114の表面に一筆書きが可能な形状、ここではジグザグ状、とネガの関係にある形状のマスク材119を形成する(図5(b)参照)。このようにして、グラフェン形成用基板111を製造する。次に、全面被覆層114のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。これによりグラフェンが成長していく(図5(c)参照)。グラフェンは全面被覆層114上に形成され、マスク材119上には形成されにくいため、マスク材119が形成された残部の全面被覆層114と同じ形状つまりジグザグ状となる。次に、ジグザグ状のグラフェンの両末端に四角形の電極118,120を取り付ける(図5(d)参照)。その後、全面被覆層114及びマスク材119を酸性溶液で溶かす。そして、全面被覆層114及びマスク材119が溶けたあと、グラフェンをグラフェン素材110として取り出す(図5(e)参照)。このようにして得られたグラフェン素材110は、ジグザグ状の自立した素材であるが、両末端の電極118,120を把持して伸ばすことにより線材にすることができる(図5(f)参照)。この製造方法によれば、触媒金属層のパターニングを行う必要がないため、より容易に、所望形状のグラフェンシートを得ることができる。 In the embodiment described above, the graphene material 10 is manufactured by the manufacturing method shown in FIG. 1, but the graphene material may be manufactured by the method shown in FIG. 5, for example. FIG. 5 is an explanatory diagram (perspective view) showing a procedure for manufacturing the graphene material 110. First, a substrate main body 112 made of c-plane sapphire on a quadrilateral is prepared, and Ni is formed on the entire surface of the substrate main body 112 to form the entire surface covering layer 114 (see FIG. 5A). Subsequently, a mask material 119 having a shape that can be drawn with a single stroke, here a zigzag shape, and a negative shape is formed on the surface of the entire covering layer 114 (see FIG. 5B). In this way, the graphene forming substrate 111 is manufactured. Next, C atoms are supplied to Ni of the entire surface coating layer 114 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Thereby, graphene grows (see FIG. 5C). Since graphene is formed on the entire surface covering layer 114 and is not easily formed on the mask material 119, the graphene has the same shape as the entire surface covering layer 114 on which the mask material 119 is formed, that is, a zigzag shape. Next, square electrodes 118 and 120 are attached to both ends of the zigzag graphene (see FIG. 5D). Thereafter, the entire covering layer 114 and the mask material 119 are dissolved with an acidic solution. Then, after the entire covering layer 114 and the mask material 119 are melted, the graphene is taken out as the graphene material 110 (see FIG. 5E). The graphene material 110 thus obtained is a zigzag self-supporting material, but can be formed into a wire by grasping and stretching the electrodes 118 and 120 at both ends (see FIG. 5 (f)). . According to this manufacturing method, it is not necessary to perform patterning of the catalytic metal layer, so that a graphene sheet having a desired shape can be obtained more easily.
 上述した実施形態では、ジグザグ状の触媒金属層16を基板本体12上に形成したが、図6(平面図)に示すように渦巻き状の触媒金属層56を基板本体52上に形成してもよい。この場合も上述した実施形態と同様にして触媒金属層56上にグラフェンを成長させたあと、グラフェンの両末端に電極を取り付け、その後触媒金属層56を溶かせば、グラフェンを渦巻き状のグラフェン素材として取り出すことができる。また、渦巻き状のグラフェン素材の両末端を把持して伸ばせば線材にすることができる。あるいは、ジグザグ状や渦巻き状以外でも、一筆書き形状であれば上述した実施形態と同様にしてその形状のグラフェン素材を取り出すことができる。あるいは、一筆書き形状以外の形状、例えば三角形や四角形などの多角形、円形、楕円形、星形など任意の形状を採用してもよい。この場合には、任意の形状のグラフェン素材を取り出すことができる。 In the embodiment described above, the zigzag-shaped catalyst metal layer 16 is formed on the substrate body 12, but the spiral-shaped catalyst metal layer 56 may be formed on the substrate body 52 as shown in FIG. 6 (plan view). Good. Also in this case, after growing graphene on the catalytic metal layer 56 in the same manner as in the above-described embodiment, if electrodes are attached to both ends of the graphene and then the catalytic metal layer 56 is melted, the graphene becomes a spiral graphene material. It can be taken out. Moreover, if both ends of the spiral graphene material are grasped and stretched, a wire can be obtained. Alternatively, a graphene material having a shape other than the zigzag shape and the spiral shape can be taken out in the same manner as in the above-described embodiment as long as it is a one-stroke drawing shape. Alternatively, any shape other than the one-stroke shape, for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed. In this case, a graphene material having an arbitrary shape can be taken out.
 上述した実施形態では、熱CVDによりグラフェンを成長させたが、熱CVD以外の方法、例えばアルコールCVD、プラズマCVD、ガスソースMBEなどによりグラフェンを成長させてもよい。 In the embodiment described above, graphene is grown by thermal CVD. However, graphene may be grown by a method other than thermal CVD, for example, alcohol CVD, plasma CVD, gas source MBE, or the like.
 上述した実施形態では、触媒金属層16の材質としてNiを採用したが、グラフェンの成長を促進する機能を有する金属であればどのような材質を採用してもよい。Ni以外には、例えばCu,Co,Ru,Fe,Pt,Auなどが挙げられる。 In the embodiment described above, Ni is used as the material of the catalyst metal layer 16, but any material may be used as long as it has a function of promoting the growth of graphene. In addition to Ni, for example, Cu, Co, Ru, Fe, Pt, Au and the like can be mentioned.
 上述した実施形態では、触媒金属層16からグラフェン素材10を取り出すにあたり、触媒金属層16をすべて溶かしたが、例えば電極18,20を作製した触媒金属層16の端部付近だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェンをめくるようにして機械的に引き剥がすことでグラフェン素材10を取り出してもよい。グラフェンは六角形状の炭素が2次的に結合してなる平面構造が積層したものであるため、グラフェンのうち1,2層程度は触媒金属層16上に残るものの、残りはきれいに剥がれる。なお、グラフェンのうち触媒金属層16上に残ったものは、触媒金属層16を再利用する場合、グラフェン成長のシード的な役割を果たすことも可能である。また、上述した実施形態では、マスク材19を溶かしたが、物理的に切断してもよい。 In the embodiment described above, when removing the graphene material 10 from the catalyst metal layer 16, all of the catalyst metal layer 16 is dissolved. For example, only the vicinity of the end portion of the catalyst metal layer 16 on which the electrodes 18 and 20 are produced is etched with an acidic solution. Then, the graphene material 10 may be taken out by mechanically peeling off the graphene from the etched portion. Since graphene is a laminate of planar structures in which hexagonal carbon is secondarily bonded, about one or two layers of graphene remain on the catalyst metal layer 16, but the rest peel off cleanly. Note that the graphene remaining on the catalyst metal layer 16 can also serve as a seed for graphene growth when the catalyst metal layer 16 is reused. In the above-described embodiment, the mask material 19 is melted, but may be physically cut.
 上述した実施形態では、基板本体12が板状の場合について説明したが、基板本体が円筒状であってもよい。その場合には、例えば基板本体にリボンを巻き付けるような感じで触媒金属層のパターニングを行い、その触媒金属層の表面にグラフェンを成長させることで、非常に長く滑らかな線状のグラフェン素材を簡単に得ることができる。このとき、基板本体は、中空(中が空)であってもよいし、中実(中が詰まっている)であってもよい。円筒状で中空の基板本体にグラフェンを成長させる場合には、基板本体の外面及び内面のいずれか一方に触媒金属層をパターニングし、その触媒金属層の表面にグラフェンを成長させてもよいし、あるいは、基板本体の外面及び内面の両方に触媒金属層をパターニングし、両触媒金属層の表面にグラフェンを成長させてもよい。また、円筒状の基板本体に触媒金属層を形成する方法としては、通常のフォトリソグラフィーに準じた手法を基板本体を回転させながら適用してもよいし、ナノインプリントの技術を用いて機械的にリソグラフィーパターンを転写してもよいし、細いけがき針を使用して機械的にパターニングしてもよい。触媒金属を成膜する方法は、蒸着を採用してもよいし、その金属を含む液状の原料を吹き付ける、もしくはその液中に基板を浸し、その後、熱処理を行い触媒金属の薄膜を形成する方法を採用してもよい。触媒金属層の表面にグラフェンを成長させるには、触媒金属層の表面に炭素源を供給するが、基板本体が円筒状で中空の場合には、基板本体を真空チャンバーと見立ててその中に炭素源となる原料ガスを流してグラフェンを成長させることができるため、真空チャンバーを用意する必要がなくなり、装置構成の大幅な簡略化、ひいては生産性の向上や生産コストの削減など多くの優れた効果を期待できる。 In the above-described embodiment, the case where the substrate body 12 is plate-shaped has been described, but the substrate body may be cylindrical. In that case, for example, by patterning the catalytic metal layer as if a ribbon is wrapped around the substrate body, and growing graphene on the surface of the catalytic metal layer, a very long and smooth linear graphene material can be easily obtained Can get to. At this time, the substrate body may be hollow (the interior is empty) or solid (the interior is clogged). When growing graphene on a cylindrical and hollow substrate body, the catalyst metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer, Alternatively, the catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers. In addition, as a method of forming the catalytic metal layer on the cylindrical substrate body, a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle. As a method for forming a catalyst metal film, vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted. In order to grow graphene on the surface of the catalytic metal layer, a carbon source is supplied to the surface of the catalytic metal layer. When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
 円筒形状の基板を用いた場合、基板から他の支持材に転写することにより、また、基板から引きはがすことなくそのままの形状で使用することにより、優れたコイル特性が示される。一般的に、コイルから発生する磁界の大きさは、電磁気学が示すようにコイルの巻き数と流す電流の積で決まる。グラフェンシートを用いた場合は、通常の銅線を用いた場合より細い線形状が作製しやすく、なおかつより大きな電流を流すこともできるので、本発明によるコイルはより小さな形状で、より大きな磁界を発生することができる。すなわち、大きなコンダクタンスを示すことができる。例えば、20マイクロメータ幅のグラフェンシートを、隣同士のグラフェンシートの間隔5マイクロメータで、すなわち、周期25マイクロメータで作製しコイルを形成すれば、1cmの長さでコイルを400回巻くことができる。このように、本発明によれば、極めて簡便な作製方法により、すなわち、コイルを巻くことなしに、従来より大幅に小型化した高性能なコイルの生産が可能である。グラフェンシートに流せる電流も通常の銅線より大きいため、上記コイルから発生する磁力は、より大きくできる。このコイルは、単にインダクタンスとして使用するばかりでなく、二つのコイルを鉄心などによりカップリングし組み合わすことによりトランスとして、また、モーター等に使用する電磁石として使用できることはいうまでもない。さらに、コイル形状は円筒状ばかりでなく、モーター等の鉄心形状にあわせ楕円筒状、四角筒状などと必要によって基板形状を変化させれば、成長したそのままの形で機器にアセンブルすることもできる。トランスを作製する場合は、サイズを変えた基板を用い、鉄心の周りに同心的にこのコイルを重ねることで良い。また、円筒状基板の外側、内側に形成したコイルに鉄心を装備し利用する。もしくは、鉄心を入れたグラフェンシートコイルを部分に分割し、それぞれを独立した巻き線として利用することで、トランスを構成することができる。以上のように、本発明によれば、各種磁性機器の性能向上、小型化、生産性向上が実現できる。 When a cylindrical substrate is used, excellent coil characteristics are exhibited by transferring it from the substrate to another support material or using it as it is without being peeled off from the substrate. In general, the magnitude of a magnetic field generated from a coil is determined by the product of the number of turns of the coil and the current flowing as indicated by electromagnetics. When a graphene sheet is used, a thin wire shape is easier to produce than when a normal copper wire is used, and a larger current can be passed, so the coil according to the present invention has a smaller shape and a larger magnetic field. Can be generated. That is, a large conductance can be shown. For example, if a graphene sheet having a width of 20 micrometers is formed with a gap of 5 micrometers between adjacent graphene sheets, that is, a period of 25 micrometers and a coil is formed, the coil can be wound 400 times with a length of 1 cm. it can. As described above, according to the present invention, it is possible to produce a high-performance coil that is greatly reduced in size by a very simple manufacturing method, that is, without winding the coil. Since the current that can be passed through the graphene sheet is also larger than that of a normal copper wire, the magnetic force generated from the coil can be increased. Needless to say, this coil can be used not only as an inductance but also as a transformer by coupling and combining two coils with an iron core or the like, or as an electromagnet used for a motor or the like. Furthermore, the coil shape is not limited to a cylindrical shape, but can be assembled into equipment as it is grown if the substrate shape is changed to an elliptical cylindrical shape, a rectangular cylindrical shape, etc. according to the iron core shape of a motor or the like. . In the case of producing a transformer, it is sufficient to use a substrate having a different size and to stack this coil concentrically around the iron core. In addition, the coil formed on the outside and inside of the cylindrical substrate is equipped with an iron core for use. Alternatively, a transformer can be configured by dividing a graphene sheet coil containing an iron core into parts and using them as independent windings. As described above, according to the present invention, performance improvement, size reduction, and productivity improvement of various magnetic devices can be realized.
 一方、線状形状の基板として、銅などの金属線を用いた場合は、グラフェンシートの成長後、基板から分離せずにそのままの形状で使用することも可能である。この場合は、中心の金属部も伝導性に寄与し、周囲のグラフェンシートも同時に導電性に寄与するため、従来の金属線よりも優れた導電率ならびに耐電流特性が示される。本構造は配線材料に用いることができるほか、コイル形状に巻くことにより、モーター、トランス等の機器に応用することが可能である。以上の様に、金属導体をグラフェンシートと融合した構造も、本発明によれば簡便に作製することができる。 On the other hand, when a metal wire such as copper is used as the linear substrate, it can be used as it is without being separated from the substrate after the growth of the graphene sheet. In this case, the central metal part also contributes to the conductivity, and the surrounding graphene sheet also contributes to the conductivity at the same time. Therefore, the conductivity and current resistance characteristics superior to those of the conventional metal wires are exhibited. In addition to being used as a wiring material, this structure can be applied to devices such as motors and transformers by winding in a coil shape. As described above, a structure in which a metal conductor is fused with a graphene sheet can also be easily produced according to the present invention.
[第2実施形態]
 以下には、第2発明を具現化した実施形態として、ジグザグ状の自立したグラフェン素材210を製造する場合を例に挙げて説明する。図7は、グラフェン素材210を製造する手順を表す説明図(斜視図)である。
[Second Embodiment]
Hereinafter, a case where a zigzag self-supporting graphene material 210 is manufactured will be described as an example embodying the second invention. FIG. 7 is an explanatory diagram (perspective view) showing a procedure for manufacturing the graphene material 210.
 まず、四角形状のc面サファイアからなる基板本体212を用意し、その基板本体212の全面にNiを成膜して結晶層214とする(図7(a)参照)。続いて、リソグラフィ法により結晶層214を一筆書きが可能な形状、ここではジグザグ状にパターニングし、結晶層214を触媒金属層216とする(図7(b)参照)。 First, a substrate body 212 made of rectangular c-plane sapphire is prepared, and Ni is formed on the entire surface of the substrate body 212 to form a crystal layer 214 (see FIG. 7A). Subsequently, the crystal layer 214 is patterned into a shape that can be drawn with a single stroke by a lithography method, here, in a zigzag shape, and the crystal layer 214 is used as a catalyst metal layer 216 (see FIG. 7B).
 次に、触媒金属層216のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。すると、Ni表面は(111)面に再配列される。Ni(111)面には、Ni原子を頂点とした三角格子が構成される。そして、供給されたC原子は、Ni原子から構成されるそれぞれの三角形の重心の真上に配置されることで、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長していく(図7(c)参照)。グラフェンは触媒金属層216上に形成されるため、触媒金属層216と同じ形状つまりジグザグ状となる。なお、グラフェンが成長しすぎると、横方向に延びてジグザグを形成する溝を塞いでしまうため、そうなる前に成長を止める。 Next, C atoms are supplied to Ni of the catalyst metal layer 216 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. Graphene grows by going (see FIG. 7C). Since graphene is formed on the catalyst metal layer 216, it has the same shape as the catalyst metal layer 216, that is, a zigzag shape. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.
 次に、ジグザグ状のグラフェンの両末端に四角形の電極端子218,220を取り付ける(図7(d)参照)。電極端子218は、図8に示すように、下地をなすTi層218aと、Mo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層218bと、Au又はSnからなる表層218cをこの順に積層したものである。電極端子220も、同様にして3層構造となるように積層したものである。各層は、電子ビーム蒸着法により形成してもよい。この場合、室温~200℃の温度で真空中で蒸着するのが好ましい。あるいは、電解めっきにより形成してもよい。電極端子218,220を形成したあと、電極特性の改善を図るために、不活性ガス中又は真空中、500℃程度の条件で熱処理してもよい。また、電極端子218,220を形成する前に、不純物を蒸発脱離させるために、不活性ガス中又は真空中、加熱処理を行ってもよい。その後、電極端子218,220を適宜保護膜で保護し、触媒金属層216を酸性溶液で溶かす。ここでは、触媒金属層216はNiであるため、希硝酸を用いる。そして、触媒金属層216が溶けたあと、グラフェンをグラフェン素材210として取り出し、最後に電極端子218,220の保護膜を除去する(図7(e)参照)。なお、電極端子218,220の保護膜としては、例えばフォトレジストやワックスが挙げられる。また、保護膜としてフォトレジストを用いた場合にはアセトンならびに剥離液により除去し、ワックスを用いた場合には、有機溶媒により除去すればよい。 Next, square electrode terminals 218 and 220 are attached to both ends of the zigzag graphene (see FIG. 7D). As shown in FIG. 8, the electrode terminal 218 is made of an underlying Ti layer 218a, a protective layer 218b mainly composed of a metal selected from the group consisting of Mo, Ni, Ta, and W, and Au or Sn. The surface layer 218c is laminated in this order. Similarly, the electrode terminals 220 are laminated so as to have a three-layer structure. Each layer may be formed by an electron beam evaporation method. In this case, it is preferable to deposit in vacuum at a temperature of room temperature to 200 ° C. Alternatively, it may be formed by electrolytic plating. After the electrode terminals 218 and 220 are formed, heat treatment may be performed in an inert gas or in a vacuum at about 500 ° C. in order to improve electrode characteristics. In addition, before the electrode terminals 218 and 220 are formed, heat treatment may be performed in an inert gas or in vacuum in order to evaporate and desorb impurities. Thereafter, the electrode terminals 218 and 220 are appropriately protected with a protective film, and the catalytic metal layer 216 is dissolved with an acidic solution. Here, since the catalyst metal layer 216 is Ni, dilute nitric acid is used. Then, after the catalyst metal layer 216 is melted, the graphene is taken out as the graphene material 210, and finally the protective film of the electrode terminals 218 and 220 is removed (see FIG. 7E). Examples of the protective film for the electrode terminals 218 and 220 include photoresist and wax. Further, when a photoresist is used as the protective film, it is removed with acetone and a stripping solution, and when a wax is used, it is removed with an organic solvent.
 このようにして得られたグラフェン素材210は、ジグザグ状の自立した素材であるが、両末端の電極端子218,220を把持して伸ばすことにより線材にすることができる(図7(f)参照)。こうした線材は細くて大きな電流を流せる電気配線として利用可能である。また、グラフェンシートの特長を生かし、このように作製した電気配線の途中に、トランジスタ構造を作製し、電流の流れを制御することも可能である。 The graphene material 210 obtained in this way is a zigzag self-supporting material, but can be made into a wire by gripping and stretching the electrode terminals 218 and 220 at both ends (see FIG. 7 (f)). ). Such a wire is thin and can be used as an electrical wiring capable of flowing a large current. In addition, taking advantage of the graphene sheet, a transistor structure can be fabricated in the middle of the electrical wiring thus fabricated to control the current flow.
 より詳細には、グラフェン素材210の両端218,220を把持して伸ばすと、図9(a)に示す線材となる。このような構造は伸縮自在であり、例えば図9(a)の形状から両端を大きく離間させると、図9(b)に示すように伸長した形状となる。このため、こうした線材は、相対位置が動く2つの電子機器を電気的に接続するのに好適である。また、図9(a)の幅waより小さく図9(b)の幅wbより大きい内径をもつ筒を用意し、この筒に図9(b)の状態で線材を挿入したあと両端の把持を解くと、復元力により線材は筒内に固定される。この筒を絶縁体で形成すれば、この筒が被覆材になるため、電線ケーブルとして利用できる。このとき、筒内の空間を絶縁樹脂で埋めてもよい。 More specifically, when the both ends 218 and 220 of the graphene material 210 are gripped and extended, the wire shown in FIG. 9A is obtained. Such a structure is telescopic, and for example, when both ends are greatly separated from the shape shown in FIG. 9A, the shape becomes elongated as shown in FIG. 9B. For this reason, such a wire is suitable for electrically connecting two electronic devices whose relative positions move. Also, a cylinder having an inner diameter smaller than the width wa in FIG. 9A and larger than the width wb in FIG. 9B is prepared. After inserting the wire in the state shown in FIG. When unwound, the wire is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.
 以上説明した本実施形態のグラフェン素材210の製造方法によれば、グラフェン素材210の形状は触媒金属層216の形状をそのまま受け継ぐことになるため、触媒金属層216を所望形状にパターニングしさえすれば、その所望形状のグラフェン素材210を得ることができる。また、触媒金属層216は、一筆書きが可能なジグザグ状であるため、基板本体212の面積が小さい場合であっても、得られるグラフェン素材210の長さを長くすることができる。更に、電極端子218,220は、グラフェンと接する下地層に炭素との反応性のよいTiを使用しているため、優れたオーミック電極となる。更にまた、下地層の直上に形成される保護層にTiと反応しにくいMo,Ni,Ta又はWを使用しているため、Tiが保護層に拡散してグラフェンから剥離するという現象が起こりにくい。加えて、表層にAu又はSnを使用しているため、ボンディングを容易且つ確実に行うことができる。 According to the manufacturing method of the graphene material 210 of the present embodiment described above, the shape of the graphene material 210 inherits the shape of the catalyst metal layer 216 as it is, and therefore, as long as the catalyst metal layer 216 is patterned into a desired shape. The graphene material 210 having the desired shape can be obtained. Further, since the catalytic metal layer 216 has a zigzag shape that can be drawn with a single stroke, the length of the obtained graphene material 210 can be increased even when the area of the substrate body 212 is small. Furthermore, the electrode terminals 218 and 220 are excellent ohmic electrodes because Ti having good reactivity with carbon is used for the base layer in contact with the graphene. Furthermore, since Mo, Ni, Ta or W, which does not easily react with Ti, is used for the protective layer formed immediately above the underlayer, the phenomenon that Ti diffuses into the protective layer and peels off from the graphene hardly occurs. . In addition, since Au or Sn is used for the surface layer, bonding can be performed easily and reliably.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。基板本体は、線状、円筒状でも良く、このような形状の基板を用いることにより、より長い配線構造を容易に作製することが可能となる。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention. The substrate body may be linear or cylindrical. By using a substrate having such a shape, a longer wiring structure can be easily manufactured.
 例えば、上述した実施形態では、ジグザグ状の触媒金属層216を基板本体212上に形成したが、図10(平面図)に示すように渦巻き状の触媒金属層226を基板本体212上に形成してもよい。この場合も上述した実施形態と同様にして触媒金属層226上にグラフェンを成長させたあと、グラフェンの両末端に電極を取り付け、その後触媒金属層226を溶かせば、グラフェンを渦巻き状のグラフェン素材として取り出すことができる。また、渦巻き状のグラフェン素材の両末端を把持して伸ばせば線材にすることができる。あるいは、ジグザグ状や渦巻き状以外でも、一筆書き形状であれば上述した実施形態と同様にしてその形状のグラフェン素材を取り出すことができる。あるいは、一筆書き形状以外の形状、例えば三角形や四角形などの多角形、円形、楕円形、星形など任意の形状を採用してもよい。この場合には、任意の形状のグラフェン素材を取り出すことができる。 For example, in the embodiment described above, the zigzag-shaped catalyst metal layer 216 is formed on the substrate body 212. However, as shown in FIG. 10 (plan view), the spiral catalyst metal layer 226 is formed on the substrate body 212. May be. In this case as well, after growing graphene on the catalyst metal layer 226 in the same manner as in the above-described embodiment, electrodes are attached to both ends of the graphene, and then the catalyst metal layer 226 is melted, so that the graphene becomes a spiral graphene material. It can be taken out. Moreover, if both ends of the spiral graphene material are grasped and stretched, a wire can be obtained. Alternatively, a graphene material having a shape other than the zigzag shape and the spiral shape can be taken out in the same manner as in the above-described embodiment as long as it is a one-stroke drawing shape. Alternatively, any shape other than the one-stroke shape, for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed. In this case, a graphene material having an arbitrary shape can be taken out.
 上述した実施形態では、熱CVDによりグラフェンを成長させたが、熱CVD以外の方法、例えばアルコールCVD、プラズマCVD、ガスソースMBEなどによりグラフェンを成長させてもよい。 In the embodiment described above, graphene is grown by thermal CVD. However, graphene may be grown by a method other than thermal CVD, for example, alcohol CVD, plasma CVD, gas source MBE, or the like.
 上述した実施形態では、触媒金属層216の材質としてNiを採用したが、グラフェンの成長を促進する機能を有する金属であればどのような材質を採用してもよい。Ni以外には、例えばCu,Co,Ru,Fe,Pt,Auなどが挙げられる。 In the above-described embodiment, Ni is adopted as the material of the catalyst metal layer 216, but any material may be adopted as long as it has a function of promoting the growth of graphene. In addition to Ni, for example, Cu, Co, Ru, Fe, Pt, Au and the like can be mentioned.
 上述した実施形態では、触媒金属層216からグラフェン素材210を取り出すにあたり、触媒金属層216をすべて溶かしたが、例えば電極端子218,220を作製した触媒金属層216の端部付近だけを酸性溶液でエッチングしてえぐり取り、エッチングされた箇所からグラフェンをめくるようにして機械的に引き剥がすことでグラフェン素材210を取り出してもよい。グラフェンは六角形状の炭素が2次的に結合してなる平面構造が積層したものであるため、グラフェンのうち1,2層程度は触媒金属層216上に残るものの、残りはきれいに剥がれる。なお、グラフェンのうち触媒金属層16上に残ったものは、触媒金属層216を再利用する場合、グラフェン成長のシード的な役割を果たすことも可能である。 In the above-described embodiment, when the graphene material 210 is taken out from the catalyst metal layer 216, the catalyst metal layer 216 is completely dissolved. For example, only the vicinity of the end of the catalyst metal layer 216 from which the electrode terminals 218 and 220 are manufactured is an acidic solution. The graphene material 210 may be taken out by etching away and mechanically peeling off the graphene from the etched portion. Since graphene is formed by stacking a planar structure in which hexagonal carbon is secondarily bonded, about one or two layers of graphene remain on the catalyst metal layer 216, but the rest peels cleanly. Note that the graphene remaining on the catalyst metal layer 16 can also serve as a seed for graphene growth when the catalyst metal layer 216 is reused.
 上述した実施形態では、基板本体212が板状の場合について説明したが、基板本体が円筒状であってもよい。その場合には、例えば基板本体にリボンを巻き付けるような感じで螺旋状に触媒金属層のパターニングを行い、その触媒金属層の表面にグラフェンを成長させることで、非常に長く滑らかな線状のグラフェン素材を簡単に得ることができる。その一例を図11に示す。図11(a)は円筒状の基板本体232に螺旋状の触媒金属層236を設けた状態を示し、図11(b)はその触媒金属層236の表面にグラフェンを成長させてグラフェン素材250を形成した状態を示す。基板本体232は、中実(中が詰まっている)のものを例示したが、中空(中が空洞)であってもよい。触媒金属層236から取り出した螺旋状のグラフェン素材250も、両端を引っ張ると長くなると同時にコイル径が小さくなり、力を緩めると復元力により元の形状に戻る。このため、両端を引っ張った状態のコイル径より大きく力を緩めた状態のコイル径より小さい内径をもつ筒を用意し、この筒に両端を引っ張った状態のグラフェン素材250を挿入したあと両端の把持を解くと、復元力によりグラフェン素材250は筒内に固定される。この筒を絶縁体で形成すれば、この筒が被覆材になるため、電線ケーブルとして利用できる。このとき、筒内の空間を絶縁樹脂で埋めてもよい。 In the above-described embodiment, the case where the substrate body 212 is plate-shaped has been described, but the substrate body may be cylindrical. In that case, for example, patterning of the catalytic metal layer is performed in a spiral manner as if a ribbon is wound around the substrate body, and graphene is grown on the surface of the catalytic metal layer, thereby producing very long and smooth linear graphene. The material can be easily obtained. An example is shown in FIG. FIG. 11A shows a state in which a spiral catalyst metal layer 236 is provided on a cylindrical substrate body 232, and FIG. 11B shows a graphene material 250 grown by growing graphene on the surface of the catalyst metal layer 236. The formed state is shown. The substrate main body 232 is illustrated as being solid (the inside is clogged), but may be hollow (the inside is hollow). The helical graphene material 250 taken out from the catalyst metal layer 236 also becomes longer when both ends are pulled, and at the same time the coil diameter becomes smaller. When the force is relaxed, the original shape is restored by the restoring force. For this reason, a cylinder having an inner diameter smaller than the coil diameter when the force is loosened is prepared larger than the coil diameter when both ends are pulled, and after inserting the graphene material 250 with both ends pulled into this cylinder, the both ends are gripped. Is released, the graphene material 250 is fixed in the cylinder by the restoring force. If this cylinder is formed of an insulator, this cylinder becomes a covering material and can be used as an electric cable. At this time, the space in the cylinder may be filled with an insulating resin.
 円筒状で中空の基板本体にグラフェンを成長させる場合には、基板本体の外面及び内面のいずれか一方に螺旋状の触媒金属層をパターニングし、その触媒金属層の表面にグラフェンを成長させてもよいし、あるいは、基板本体の外面及び内面の両方に螺旋状の触媒金属層をパターニングし、両触媒金属層の表面にグラフェンを成長させてもよい。円筒状で中空の絶縁基板本体の内面に螺旋状の触媒金属層をパターニングしてグラフェンを成長させた場合、螺旋状のグラフェンを剥がすことなくそのままコイルとして利用可能である。この場合、グラフェンからなるコイルは円筒によって保護される。また、円筒状の基板本体に触媒金属層を形成する方法としては、通常のフォトリソグラフィーに準じた手法を基板本体を回転させながら適用してもよいし、ナノインプリントの技術を用いて機械的にリソグラフィーパターンを転写してもよいし、細いけがき針を使用して機械的にパターニングしてもよい。触媒金属を成膜する方法は、蒸着を採用してもよいし、その金属を含む液状の原料を吹き付ける、もしくはその液中に基板を浸し、その後、熱処理を行い触媒金属の薄膜を形成する方法を採用してもよい。触媒金属層の表面にグラフェンを成長させるには、触媒金属層の表面に炭素源を供給するが、基板本体が円筒状で中空の場合には、基板本体を真空チャンバーと見立ててその中に炭素源となる原料ガスを流してグラフェンを成長させることができるため、真空チャンバーを用意する必要がなくなり、装置構成の大幅な簡略化、ひいては生産性の向上や生産コストの削減など多くの優れた効果を期待できる。 When growing graphene on a cylindrical and hollow substrate body, a spiral catalytic metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer. Alternatively, a helical catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers. When graphene is grown by patterning a spiral catalytic metal layer on the inner surface of a cylindrical and hollow insulating substrate body, it can be used as a coil without peeling off the spiral graphene. In this case, the coil made of graphene is protected by the cylinder. In addition, as a method of forming the catalytic metal layer on the cylindrical substrate body, a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle. As a method for forming a catalyst metal film, vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted. In order to grow graphene on the surface of the catalytic metal layer, a carbon source is supplied to the surface of the catalytic metal layer. When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
 円筒形状の基板本体を用いた場合、基板本体から他の支持材に転写することにより、また、基板本体から引きはがすことなくそのままの形状で使用することにより、優れたコイル特性が示される。一般的に、コイルから発生する磁界の大きさは、電磁気学が示すようにコイルの巻き数と流す電流の積で決まる。グラフェンシートを用いた場合は、通常の銅線を用いた場合より細い線形状が作製しやすく、なおかつより大きな電流を流すこともできるので、本発明によるコイルはより小さな形状で、より大きな磁界を発生することができる。すなわち、大きなコンダクタンスを示すことができる。例えば、20マイクロメータ幅のグラフェンシートを、隣同士のグラフェンシートの間隔5マイクロメータで、すなわち、周期25マイクロメータで作製しコイルを形成すれば、1cmの長さでコイルを400回巻くことができる。このように、本発明によれば、極めて簡便な作製方法により、すなわち、コイルを巻く作業を行うことなしに、従来より大幅に小型化した高性能なコイルの生産が可能である。グラフェンシートに流せる電流も通常の銅線より大きいため、上記コイルから発生する磁力は、より大きくできる。このコイルは、単にインダクタンスとして使用するばかりでなく、二つのコイルを鉄心などによりカップリングし組み合わすことによりトランスとして、また、モーター等に使用する電磁石として使用できることはいうまでもない。さらに、コイル形状は円筒状ばかりでなく、モーター等の鉄心形状にあわせ楕円筒状、四角筒状などと必要によって基板形状を変化させれば、成長したそのままの形で機器にアセンブルすることもできる。トランスを作製する場合は、サイズを変えた基板本体を用い、鉄心の周りに同心的にこのコイルを重ねることで良い。また、円筒状の基板本体の外側、内側に形成したコイルに鉄心を装備し利用する。もしくは、鉄心を入れたグラフェンシートコイルを部分に分割し、それぞれを独立した巻き線として利用することで、トランスを構成することができる。以上のように、本発明によれば、各種磁性機器の性能向上、小型化、生産性向上が実現できる。 When a cylindrical substrate body is used, excellent coil characteristics are exhibited by transferring the substrate body to another support material and using the substrate body as it is without being peeled off from the substrate body. In general, the magnitude of a magnetic field generated from a coil is determined by the product of the number of turns of the coil and the current flowing as indicated by electromagnetics. When a graphene sheet is used, a thin wire shape is easier to produce than when a normal copper wire is used, and a larger current can be passed, so the coil according to the present invention has a smaller shape and a larger magnetic field. Can be generated. That is, a large conductance can be shown. For example, if a graphene sheet having a width of 20 micrometers is formed with a gap of 5 micrometers between adjacent graphene sheets, that is, a period of 25 micrometers and a coil is formed, the coil can be wound 400 times with a length of 1 cm. it can. As described above, according to the present invention, it is possible to produce a high-performance coil which is significantly reduced in size by a very simple manufacturing method, that is, without performing a coil winding operation. Since the current that can be passed through the graphene sheet is also larger than that of a normal copper wire, the magnetic force generated from the coil can be increased. Needless to say, this coil can be used not only as an inductance but also as a transformer by coupling and combining two coils with an iron core or the like, or as an electromagnet used for a motor or the like. Furthermore, the coil shape is not limited to a cylindrical shape, but can be assembled into equipment as it is grown if the substrate shape is changed to an elliptical cylindrical shape, a rectangular cylindrical shape, etc. according to the iron core shape of a motor or the like. . In the case of producing a transformer, it is sufficient to use a substrate body having a different size and to stack this coil concentrically around the iron core. The coil formed on the outside and inside of the cylindrical substrate body is equipped with an iron core for use. Alternatively, a transformer can be configured by dividing a graphene sheet coil containing an iron core into parts and using them as independent windings. As described above, according to the present invention, performance improvement, size reduction, and productivity improvement of various magnetic devices can be realized.
 一方、線状形状の基板本体として、銅などの金属線を用いた場合は、グラフェンシートの成長後、基板本体から分離せずにそのままの形状で使用することも可能である。この場合は、中心の金属部も伝導性に寄与し、周囲のグラフェンシートも同時に導電性に寄与するため、従来の金属線よりも優れた導電率ならびに耐電流特性が示される。本構造は配線材料に用いることができるほか、コイル形状に巻くことにより、モーター、トランス等の機器に応用することが可能である。以上のように、金属導体をグラフェンシートと融合した構造も、本発明によれば簡便に作製することができる。 On the other hand, when a metal wire such as copper is used as the linear substrate body, it can be used as it is without being separated from the substrate body after the growth of the graphene sheet. In this case, the central metal part also contributes to the conductivity, and the surrounding graphene sheet also contributes to the conductivity at the same time. Therefore, the conductivity and current resistance characteristics superior to those of the conventional metal wires are exhibited. In addition to being used as a wiring material, this structure can be applied to devices such as motors and transformers by winding in a coil shape. As described above, a structure in which a metal conductor is fused with a graphene sheet can also be easily produced according to the present invention.
[第3実施形態]
 以下には、第3発明を具現化した実施形態を、図面を参照しながら説明する。
[Third Embodiment]
Hereinafter, embodiments embodying the third invention will be described with reference to the drawings.
 図12はグラフェン配線構造310の斜視図、図13は図12のA-A断面図である。 12 is a perspective view of the graphene wiring structure 310, and FIG. 13 is a cross-sectional view taken along the line AA of FIG.
 本実施形態のグラフェン配線構造310は、絶縁樹脂層312,322,332,342とグラフェン層316,326,336とが繰り返し積層されている。グラフェン層316の上下には絶縁樹脂層312,322が存在し、グラフェン層326の上下には絶縁樹脂層322,332が存在し、グラフェン層336の上下には絶縁樹脂層332,342が存在する。また、絶縁樹脂層312とグラフェン層316との間には触媒金属層314が介在し、絶縁樹脂層322とグラフェン層326との間には触媒金属層324が介在し、絶縁樹脂層332とグラフェン層336との間には触媒金属層334が介在する。触媒金属層314,324,334は、グラフェン化を促進する機能を有する。各グラフェン層316,326,336は、いずれも奇数枚(ここでは3枚)のグラフェンシートが積層されたものである。 In the graphene wiring structure 310 of this embodiment, insulating resin layers 312, 322, 332, and 342 and graphene layers 316, 326, and 336 are repeatedly stacked. Insulating resin layers 312 and 322 exist above and below the graphene layer 316, insulating resin layers 322 and 332 exist above and below the graphene layer 326, and insulating resin layers 332 and 342 exist above and below the graphene layer 336. . Further, a catalytic metal layer 314 is interposed between the insulating resin layer 312 and the graphene layer 316, and a catalytic metal layer 324 is interposed between the insulating resin layer 322 and the graphene layer 326, and the insulating resin layer 332 and the graphene layer A catalytic metal layer 334 is interposed between the layers 336. The catalytic metal layers 314, 324, and 334 have a function of promoting grapheneization. Each of the graphene layers 316, 326, and 336 is formed by laminating an odd number (three in this case) of graphene sheets.
 次に、こうしたグラフェン配線構造310の製造例について図14を参照しながら説明する。図14はグラフェン配線構造310の製造工程図である。 Next, an example of manufacturing the graphene wiring structure 310 will be described with reference to FIG. FIG. 14 is a manufacturing process diagram of the graphene wiring structure 310.
(1)まず耐熱性ポリイミド(例えばデュポン社製のカプトン Hタイプなど)からなる絶縁樹脂層312を用意する(図14(a)参照)。このとき、絶縁樹脂層312が形成された基板を用意してもよい。 (1) First, an insulating resin layer 312 made of heat-resistant polyimide (for example, Kapton H type manufactured by DuPont) is prepared (see FIG. 14A). At this time, a substrate on which the insulating resin layer 312 is formed may be prepared.
(2)その絶縁樹脂層312の上に触媒金属層314を蒸着し、必要に応じて周知のフォトリソグラフィ法によってパターニングし、その後、熱処理を行うことにより触媒金属層314を結晶化させる(図14(b)参照)。なお、上記手法の他に、パルススパッター堆積法(PSD)技術によって触媒金属層314を堆積させながら結晶化させてもよい。触媒金属層314の材質としては、Cu,Ni,Co,Ru,Fe,Pt,Au等が挙げられる。こうした金属のうち、表面に三角格子(三角形の頂点に金属原子が配置された構造)を持つものが好ましい。例えば、FCCの(111)面、BCCの(110)面、HCPの(0001)面が三角格子になる。触媒金属層314の厚さは、特に限定するものではないが、例えば1-500nm程度としてもよい。但し、膜厚が薄すぎると、触媒金属が粒子化してしまうおそれがあるため、粒子化しない程度の厚さとするのが好ましい。本実施形態では、触媒金属層314としてNiを用い、長方形状の薄板となるようにパターニングするものとする。Niを結晶化させると、Ni表面は(111)面に再配列される。そして、Ni(111)面には、Ni原子を頂点とした三角格子が構成される。 (2) A catalytic metal layer 314 is vapor-deposited on the insulating resin layer 312 and patterned by a well-known photolithography method if necessary, and then heat treatment is performed to crystallize the catalytic metal layer 314 (FIG. 14). (See (b)). In addition to the above method, the catalyst metal layer 314 may be crystallized while being deposited by a pulse sputtering deposition (PSD) technique. Examples of the material of the catalyst metal layer 314 include Cu, Ni, Co, Ru, Fe, Pt, and Au. Among these metals, those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable. For example, the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices. The thickness of the catalyst metal layer 314 is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles. In the present embodiment, Ni is used as the catalyst metal layer 314 and is patterned so as to be a rectangular thin plate. When Ni is crystallized, the Ni surface is rearranged in the (111) plane. A triangular lattice with Ni atoms as vertices is formed on the Ni (111) plane.
(3)図示しない反応容器内に、結晶化した触媒金属層314を備えた絶縁樹脂層312を入れ、その触媒金属層314の上に炭素原料を供給することによりグラフェンを成長させグラフェン層316を形成する(図14(c)参照)。触媒金属層314の上にグラフェン層316を形成するには、絶縁樹脂層312の耐熱温度を超えないようにして、上述したアルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどの手法によりグラフェンを成長させる。グラフェンの成長過程において、C原子はNi原子から構成されるそれぞれの三角形の重心の真上に配置される。これにより、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長していく。グラフェン層316のグラフェンシートの枚数の制御は、反応容器に取り付けたラマンスペクトル測定装置でグラフェン層316のラマンシフト位置をモニタリングすることにより行う。具体的には、グラフェンシートが1枚、2枚、5枚、10枚の場合におけるラマンシフト位置はそれぞれ異なることが知られている(Physical Review Letters, Vol.97, p187401(2006)の図2参照)。このため、グラフェンシートの枚数を予め決めておき、その枚数に対応したラマンシフト位置を予め確認しておき、そのラマンシフト位置になるまでグラフェンを成長させる。 (3) An insulating resin layer 312 provided with a crystallized catalyst metal layer 314 is placed in a reaction vessel (not shown), and a graphene is grown by supplying a carbon raw material on the catalyst metal layer 314 so that the graphene layer 316 is formed. It forms (refer FIG.14 (c)). In order to form the graphene layer 316 on the catalytic metal layer 314, the graphene layer 316 may be formed by the above-described alcohol CVD, thermal CVD, plasma CVD, gas source MBE, or the like without exceeding the heat resistance temperature of the insulating resin layer 312. Grow. In the graphene growth process, C atoms are arranged immediately above the center of gravity of each triangle composed of Ni atoms. Thereby, a hexagon having a C atom as a vertex is formed, and graphene grows as the hexagons are bonded to each other. The number of graphene sheets in the graphene layer 316 is controlled by monitoring the Raman shift position of the graphene layer 316 with a Raman spectrum measurement device attached to the reaction vessel. Specifically, it is known that the Raman shift positions in the case of one, two, five, and ten graphene sheets are different (Fig. 2 of PhysicalPhysReview Letters, Vol.97, p187401 (2006)). reference). For this reason, the number of graphene sheets is determined in advance, the Raman shift position corresponding to the number of sheets is confirmed in advance, and graphene is grown until the Raman shift position is reached.
(4)グラフェン層316の上に耐熱性ポリイミドからなる絶縁樹脂層322を形成し(図14(d)参照)、その後、再び上述した(2)の工程を行うことにより、パターニングされ結晶化した触媒金属層324を絶縁樹脂層322の上に形成し(図14(e)参照)、更に上述した(3)の工程を行うことにより、触媒金属層324の上にグラフェン層326を形成する(図14(f)参照)。絶縁樹脂層322を形成するには、例えば、熱硬化性ポリイミド樹脂を塗布したあと熱処理してその樹脂を硬化させるか、あるいは、耐熱性ポリイミドフィルムを貼り付ける。 (4) An insulating resin layer 322 made of heat-resistant polyimide is formed on the graphene layer 316 (see FIG. 14D), and then the above-described step (2) is performed again to pattern and crystallize. The catalyst metal layer 324 is formed on the insulating resin layer 322 (see FIG. 14E), and the graphene layer 326 is formed on the catalyst metal layer 324 by performing the above-described step (3) ( (Refer FIG.14 (f)). In order to form the insulating resin layer 322, for example, after applying a thermosetting polyimide resin, the resin is cured by heat treatment, or a heat-resistant polyimide film is attached.
(5)目的とするグラフェン配線構造310のグラフェン層の数(ここでは3つ)に応じて上述した(4)の工程を所定回数繰り返す(図14(g)参照)。その結果、グラフェン層326の上に絶縁樹脂層332、触媒金属層334、グラフェン層336がこの順に積層される。 (5) The step (4) described above is repeated a predetermined number of times according to the number of graphene layers (here, three) of the target graphene wiring structure 310 (see FIG. 14G). As a result, the insulating resin layer 332, the catalytic metal layer 334, and the graphene layer 336 are stacked in this order on the graphene layer 326.
(6)最後に、グラフェン層336に熱硬化性ポリイミド樹脂を塗布し、熱処理して硬化させて絶縁樹脂層342とし、目的とするグラフェン配線構造310を得る(図14(h)参照)。なお、上述した(1)の工程で絶縁樹脂層312が形成された基板を用いた場合には、その基板を除去する。 (6) Finally, a thermosetting polyimide resin is applied to the graphene layer 336 and cured by heat treatment to form the insulating resin layer 342, thereby obtaining the target graphene wiring structure 310 (see FIG. 14H). In addition, when the board | substrate with which the insulating resin layer 312 was formed in the process of (1) mentioned above is used, the board | substrate is removed.
 次に、グラフェン配線構造310の使用例について説明する。グラフェン配線構造310を使用するには、まず、両端に電極を形成する。具体的には、グラフェン配線構造310の絶縁樹脂層312,322,332,342の両端を除去し、グラフェン層316,326,336及び触媒金属層314,324,334を露出させ、その露出した部分を金属で被覆する。これにより、図15に示すように、一端には金属部分312a,322a,332a,342aが形成されるが、これらはグラフェン層316,326,336の一端及び触媒金属層314,324,334の一端と一体となって電極となる。また、他端には金属部分312b、322b、332b、342bが形成されるが、これらはグラフェン層316,326,336の他端及び触媒金属層314,324,334の他端と一体となって電極となる。こうして両端に電極が形成されたグラフェン配線構造310は、例えば燃料電池やリチウム二次電池等のバスバーや自動車のハーネスに使用される。 Next, a usage example of the graphene wiring structure 310 will be described. In order to use the graphene wiring structure 310, first, electrodes are formed on both ends. Specifically, both ends of the insulating resin layers 312, 322, 332, and 342 of the graphene wiring structure 310 are removed to expose the graphene layers 316, 326, 336 and the catalytic metal layers 314, 324, 334, and the exposed portions. Is covered with metal. As a result, as shown in FIG. 15, metal portions 312 a, 322 a, 332 a, and 342 a are formed at one end, which are one end of the graphene layers 316, 326, 336 and one end of the catalytic metal layers 314, 324, 334. And an electrode together. Further, metal portions 312b, 322b, 332b, and 342b are formed at the other end, which are integrated with the other ends of the graphene layers 316, 326, and 336 and the other ends of the catalytic metal layers 314, 324, and 334. It becomes an electrode. The graphene wiring structure 310 having electrodes formed at both ends in this manner is used for bus bars such as fuel cells and lithium secondary batteries and automobile harnesses.
 以上詳述した本実施形態のグラフェン配線構造310によれば、グラフェン層316,326,336が多段(3段)になっているため、例えばグラフェン層316のみの場合と比べて大きな電流を流すことができる。また、絶縁樹脂層312,322,332,342の存在によって柔軟性が確保されるし、グラフェン層316,326,336が保護される。 According to the graphene wiring structure 310 of the present embodiment described in detail above, since the graphene layers 316, 326, and 336 are multi-stage (three stages), for example, a larger current flows than in the case of only the graphene layer 316. Can do. In addition, the presence of the insulating resin layers 312, 322, 332, and 342 ensures flexibility, and the graphene layers 316, 326, and 336 are protected.
 また、絶縁樹脂層312とグラフェン層316との間には触媒金属層314が介在し、絶縁樹脂層322とグラフェン層326との間には触媒金属層324が介在し、絶縁樹脂層332とグラフェン層336との間には触媒金属層334が介在するが、こうした触媒金属層314,324,334は良好な導電性を有するため、大きな電流を流す場合に有利になる。 Further, a catalytic metal layer 314 is interposed between the insulating resin layer 312 and the graphene layer 316, and a catalytic metal layer 324 is interposed between the insulating resin layer 322 and the graphene layer 326, and the insulating resin layer 332 and the graphene layer Although the catalyst metal layer 334 is interposed between the layer 336 and the catalyst metal layers 314, 324, and 334 have good conductivity, it is advantageous when a large current flows.
 更に、各グラフェン層316,326,336は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものであるが、奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。 Further, each of the graphene layers 316, 326, and 336 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.
[第4実施形態]
 以下には、第3発明を具現化した実施形態を、図面を参照しながら説明する。図16はグラフェン配線構造360の斜視図、図17は図16のB-B断面図である。
[Fourth Embodiment]
Hereinafter, embodiments embodying the third invention will be described with reference to the drawings. 16 is a perspective view of the graphene wiring structure 360, and FIG. 17 is a cross-sectional view taken along the line BB of FIG.
 本実施形態のグラフェン配線構造360は、図17に示すように、絶縁樹脂層362,372,382,392とグラフェン層366,376,386とが繰り返し積層されている。グラフェン層366の上下には絶縁樹脂層362,372が存在し、グラフェン層376の上下には絶縁樹脂層372,382が存在し、グラフェン層386の上下には絶縁樹脂層382,392が存在する。各グラフェン層366,376,386は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものである。 In the graphene wiring structure 360 of the present embodiment, as shown in FIG. 17, insulating resin layers 362, 372, 382, 392 and graphene layers 366, 376, 386 are repeatedly stacked. The insulating resin layers 362 and 372 exist above and below the graphene layer 366, the insulating resin layers 372 and 382 exist above and below the graphene layer 376, and the insulating resin layers 382 and 392 exist above and below the graphene layer 386, respectively. . Each of the graphene layers 366, 376, and 386 is formed by laminating an odd number (three in this case) of graphene sheets.
 次に、こうしたグラフェン配線構造360の製造例について図18を参照しながら説明する。図18はグラフェン層366,376,386として使用されるグラフェン素材410の製造工程図である。 Next, a manufacturing example of such a graphene wiring structure 360 will be described with reference to FIG. FIG. 18 is a manufacturing process diagram of the graphene material 410 used as the graphene layers 366, 376, and 386.
 まず、四角形状のc面サファイアからなる基板本体412を用意し、その基板本体412の全面にNiを成膜して結晶層414とする(図18(a)参照)。続いて、リソグラフィ法により結晶層414を一筆書きが可能な形状、ここではジグザグ状にパターニングし、結晶層414を触媒金属層416とする(図18(b)参照)。 First, a substrate body 412 made of rectangular c-plane sapphire is prepared, and Ni is deposited on the entire surface of the substrate body 412 to form a crystal layer 414 (see FIG. 18A). Subsequently, the crystal layer 414 is patterned by a lithography method into a shape that can be written with a single stroke, here a zigzag shape, and the crystal layer 414 is used as a catalyst metal layer 416 (see FIG. 18B).
 次に、触媒金属層416のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。すると、Ni表面は(111)面に再配列される。Ni(111)面には、Ni原子を頂点とした三角格子が構成される。そして、供給されたC原子は、Ni原子から構成されるそれぞれの三角形の重心の真上に配置されることで、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長してグラフェン素材410となる(図18(c)参照)。グラフェン素材410は、触媒金属層416上に形成されるため、触媒金属層416と同じ形状つまりジグザグ状となる。このグラフェン素材410は、第3実施形態と同様に枚数の制御を行い、3枚のグラフェンシートからなるものとする。なお、グラフェンが成長しすぎると、横方向に延びてジグザグを形成する溝を塞いでしまうため、そうなる前に成長を止める。 Next, C atoms are supplied to Ni of the catalyst metal layer 416 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged immediately above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. As a result, graphene grows to become a graphene material 410 (see FIG. 18C). Since the graphene material 410 is formed on the catalyst metal layer 416, the graphene material 410 has the same shape as the catalyst metal layer 416, that is, a zigzag shape. The graphene material 410 is formed of three graphene sheets by controlling the number of sheets as in the third embodiment. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.
 その後、触媒金属層416を酸性溶液で溶かす。ここでは、触媒金属層416はNiであるため、希硝酸を用いる。そして、触媒金属層416が溶けたあと、グラフェン素材410を取り出す(図18(d)参照)。得られたグラフェン素材410は、ジグザグ状つまり線状部410aと屈曲部410bとを交互に備えた形状である。なお、グラフェン素材410を取り出す際には、触媒金属層416を溶かす代わりに、グラフェン素材410をめくるようにして機械的に剥がしてもよい。 Thereafter, the catalyst metal layer 416 is dissolved with an acidic solution. Here, since the catalyst metal layer 416 is Ni, dilute nitric acid is used. Then, after the catalyst metal layer 416 is melted, the graphene material 410 is taken out (see FIG. 18D). The obtained graphene material 410 has a zigzag shape, that is, a shape including linear portions 410a and bent portions 410b alternately. Note that when the graphene material 410 is taken out, instead of melting the catalyst metal layer 416, the graphene material 410 may be mechanically peeled off.
 このようにして得られたグラフェン素材410は、ジグザグ状の自立した素材であるが、両末端を把持して伸ばすことにより線材にすることができる(図18(e)参照)。但し、実際には真っ直ぐに伸びるわけではなく、かっこ内に示すように複数の線状部410aが屈曲部410bで連なった形状になる。こうしたグラフェン素材410を3本用意し、両端を把持して伸ばして直線に近い形状にすると共に上下方向に隙間を空けて並べ、その状態で絶縁樹脂で固める。こうすることにより、グラフェン素材410の両端の把持を解いたとしても、グラフェン素材410は直線に近い形状を維持する。図17に示すB-B断面図では、複数の絶縁樹脂層362,372,382,392を示したが、この製法からわかるように、絶縁樹脂層362,372,382,392は一度に絶縁樹脂を固めて一体に形成されたものである。 The graphene material 410 thus obtained is a zigzag self-supporting material, but can be formed into a wire material by grasping and stretching both ends (see FIG. 18 (e)). However, it does not actually extend straight, but has a shape in which a plurality of linear portions 410a are connected by bent portions 410b as shown in parentheses. Three such graphene materials 410 are prepared, both ends are gripped and stretched to have a shape close to a straight line, and are arranged with a gap in the vertical direction, and in that state, are solidified with an insulating resin. In this way, even if the gripping of both ends of the graphene material 410 is released, the graphene material 410 maintains a shape close to a straight line. In the BB cross-sectional view shown in FIG. 17, a plurality of insulating resin layers 362, 372, 382, and 392 are shown, but as can be seen from this manufacturing method, the insulating resin layers 362, 372, 382, and 392 are insulated resin at a time. It is formed integrally by solidifying.
 次に、グラフェン配線構造360の使用例について説明する。グラフェン配線構造360は、予めグラフェン層366,376,386の両端が露出するように絶縁樹脂で固めたものである。このため、その露出した部分を金属で被覆すれば、第3実施形態と同様、グラフェン配線構造360の両端に電極が形成される。こうして両端に電極が形成されたグラフェン配線構造360は、例えば燃料電池やリチウム二次電池等のバスバーや自動車のハーネスに使用される。 Next, a usage example of the graphene wiring structure 360 will be described. The graphene wiring structure 360 is previously solidified with an insulating resin so that both ends of the graphene layers 366, 376, and 386 are exposed. Therefore, if the exposed portion is covered with metal, electrodes are formed at both ends of the graphene wiring structure 360 as in the third embodiment. The graphene wiring structure 360 in which the electrodes are thus formed at both ends is used, for example, for a bus bar such as a fuel cell or a lithium secondary battery, and a harness for an automobile.
 以上詳述した本実施形態のグラフェン配線構造360によれば、グラフェン層366,376,386が多段(3段)になっているため、例えばグラフェン層366のみの場合と比べて大きな電流を流すことができる。また、絶縁樹脂層362,372,382,392の存在によって柔軟性が確保されるし、グラフェン層366,376,386が保護される。 According to the graphene wiring structure 360 of the present embodiment described in detail above, since the graphene layers 366, 376, and 386 are multi-stage (three stages), for example, a larger current flows than in the case of the graphene layer 366 alone. Can do. In addition, the presence of the insulating resin layers 362, 372, 382, and 392 ensures flexibility, and the graphene layers 366, 376, and 386 are protected.
 また、各グラフェン層366,376,386は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものであるが、奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。 Each of the graphene layers 366, 376, and 386 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.
[その他の実施形態]
 上述した第3実施形態では、グラフェン配線構造310の両端に電極を形成するにあたり、グラフェン配線構造310の絶縁樹脂層312,322,332,342の両端を除去し、グラフェン層316,326,336及び触媒金属層314,324,334を露出させ、その露出した部分を金属で被覆したが、図14に示す製造工程図の絶縁樹脂層312の代わりに、金属部分312a,312bを有する絶縁樹脂層12を使用してもよい。この場合、他の絶縁樹脂層322,332,342も同様の構成とする。こうすれば、絶縁樹脂層342を形成した時点で、図15に示す両端に電極を有するグラフェン配線構造310が得られる。
[Other Embodiments]
In the third embodiment described above, when forming electrodes on both ends of the graphene wiring structure 310, both ends of the insulating resin layers 312, 322, 332, and 342 of the graphene wiring structure 310 are removed, and the graphene layers 316, 326, 336, and Although the catalyst metal layers 314, 324, and 334 were exposed and the exposed portions were covered with metal, the insulating resin layer 12 having metal portions 312a and 312b instead of the insulating resin layer 312 in the manufacturing process diagram shown in FIG. May be used. In this case, the other insulating resin layers 322, 332, and 342 have the same configuration. Thus, when the insulating resin layer 342 is formed, a graphene wiring structure 310 having electrodes at both ends shown in FIG. 15 is obtained.
 上述した第3及び第4実施形態では、各グラフェン層はすべて同じ奇数枚のグラフェンシートからなるものとしたが、異なる奇数枚のグラフェンシートとしてもよい。例えば、第3実施形態のグラフェン層316が1枚、グラフェン層326が3枚、グラフェン層336が5枚であってもよい。また、各グラフェン層をすべて同じ偶数枚のグラフェンシートからなるものとしてもよく、異なる偶数枚のグラフェンシートとしてもよい。 In the third and fourth embodiments described above, each graphene layer is composed of the same odd number of graphene sheets, but different odd numbers of graphene sheets may be used. For example, the graphene layer 316 of the third embodiment may be one, the graphene layer 326 may be three, and the graphene layer 336 may be five. Further, all the graphene layers may be composed of the same even number of graphene sheets, or different even numbers of graphene sheets.
 上述した第4実施形態では、ジグザグ状の触媒金属層416を基板本体412上に形成したが、図19(平面図)に示すように渦巻き状の触媒金属層426を基板本体412上に形成してもよい。この場合も上述した第4実施形態と同様にして触媒金属層426上にグラフェンを成長させたあと、触媒金属層426を溶かすかグラフェンを剥がせば、グラフェンを渦巻き状のグラフェン素材として取り出すことができ、この渦巻き状のグラフェン素材の両末端を把持して伸ばせば線材にすることができる。あるいは、ジグザグ状や渦巻き状以外でも、一筆書き形状であれば上述した第4実施形態と同様にしてその形状のグラフェン素材を取り出すことができる。あるいは、一筆書き形状以外の形状、例えば三角形や四角形などの多角形、円形、楕円形、星形など任意の形状を採用してもよい。この場合には、任意の形状のグラフェン素材を取り出すことができる。 In the fourth embodiment described above, the zigzag-shaped catalyst metal layer 416 is formed on the substrate body 412, but a spiral-shaped catalyst metal layer 426 is formed on the substrate body 412 as shown in FIG. 19 (plan view). May be. Also in this case, after growing graphene on the catalyst metal layer 426 in the same manner as in the fourth embodiment described above, the graphene can be taken out as a spiral graphene material by melting the catalyst metal layer 426 or peeling the graphene. It can be made into a wire by gripping and stretching both ends of the spiral graphene material. Alternatively, other than the zigzag shape or the spiral shape, the graphene material having the shape can be taken out in the same manner as in the above-described fourth embodiment as long as it is a one-stroke drawing shape. Alternatively, any shape other than the one-stroke shape, for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed. In this case, a graphene material having an arbitrary shape can be taken out.
 上述した第4実施形態では、基板本体412が板状の場合について説明したが、基板本体が円筒状であってもよい。その場合には、例えば基板本体にリボンを巻き付けるような感じで触媒金属層のパターニングを行い、その触媒金属層の表面にグラフェンを成長させることで、非常に長く滑らかな線状のグラフェン素材を簡単に得ることができる。このとき、基板本体は、中空(中が空)であってもよいし、中実(中が詰まっている)であってもよい。円筒状で中空の基板本体にグラフェンを成長させる場合には、基板本体の外面及び内面のいずれか一方に触媒金属層をパターニングし、その触媒金属層の表面にグラフェンを成長させてもよいし、あるいは、基板本体の外面及び内面の両方に触媒金属層をパターニングし、両触媒金属層の表面にグラフェンを成長させてもよい。また、円筒状の基板本体に触媒金属層を形成する方法としては、通常のフォトリソグラフィーに準じた手法を基板本体を回転させながら適用してもよいし、ナノインプリントの技術を用いて機械的にリソグラフィーパターンを転写してもよいし、細いけがき針を使用して機械的にパターニングしてもよい。触媒金属を成膜する方法は、蒸着を採用してもよいし、その金属を含む液状の原料を吹き付ける、もしくはその液中に基板を浸し、その後、熱処理を行い触媒金属の薄膜を形成する方法を採用してもよい。触媒金属層の表面にグラフェンを成長させるには、触媒金属層の表面に炭素源を供給するが、基板本体が円筒状で中空の場合には、基板本体を真空チャンバーと見立ててその中に炭素源となる原料ガスを流してグラフェンを成長させることができるため、真空チャンバーを用意する必要がなくなり、装置構成の大幅な簡略化、ひいては生産性の向上や生産コストの削減など多くの優れた効果を期待できる。 In the above-described fourth embodiment, the case where the substrate body 412 is plate-shaped has been described, but the substrate body may be cylindrical. In that case, for example, by patterning the catalytic metal layer as if a ribbon is wrapped around the substrate body, and growing graphene on the surface of the catalytic metal layer, a very long and smooth linear graphene material can be easily obtained Can get to. At this time, the substrate body may be hollow (the interior is empty) or solid (the interior is clogged). When growing graphene on a cylindrical and hollow substrate body, the catalyst metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer, Alternatively, the catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers. In addition, as a method of forming the catalytic metal layer on the cylindrical substrate body, a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle. As a method for forming a catalyst metal film, vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted. In order to grow graphene on the surface of the catalytic metal layer, a carbon source is supplied to the surface of the catalytic metal layer. When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.
 上述した第3実施形態では、図14(h)の構造を本発明のグラフェン配線構造の一例として説明したが、図14(g)のように最表面のグラフェン層336が絶縁樹脂で被覆されず露出しているものも本発明のグラフェン配線構造の一例といえる。というのは、図14(g)のうち触媒金属層334及びグラフェン層336を除いた部分は、絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には絶縁樹脂層が存在する構造(本発明のグラフェン配線構造)となっているからである。つまり、図14(g)の構造は、本発明のグラフェン配線構造を含んでいる。こうした図14(g)の構造を持つものを燃料電池やリチウム二次電池等のバスバーとして利用してもよい。 In the third embodiment described above, the structure of FIG. 14H has been described as an example of the graphene wiring structure of the present invention. However, as shown in FIG. 14G, the outermost graphene layer 336 is not covered with an insulating resin. What is exposed can also be said to be an example of the graphene wiring structure of the present invention. This is because, in FIG. 14G, an insulating resin layer and a graphene layer are repeatedly stacked except for the catalytic metal layer 334 and the graphene layer 336, and an insulating resin layer exists above and below each graphene layer. This is because it has a structure (graphene wiring structure of the present invention). That is, the structure of FIG. 14G includes the graphene wiring structure of the present invention. Those having the structure shown in FIG. 14G may be used as bus bars for fuel cells, lithium secondary batteries, and the like.
 この出願は、2011年6月14日に出願された日本国特許出願第2011-131743号、2011年7月5日に出願された日本国特許出願第2011-149418号、及び2011年7月26日に出願された日本国特許出願第2011-163193号を優先権主張の基礎としており、引用によりその内容全てが本明細書に含まれる。 This application includes Japanese Patent Application No. 2011-131743 filed on June 14, 2011, Japanese Patent Application No. 2011-149418 filed on July 5, 2011, and July 26, 2011. Japanese Patent Application No. 2011-163193 filed on the same day is used as a basis for claiming priority, and the entire contents thereof are incorporated herein by reference.
 本発明のグラフェン素材やグラフェン配線構造は、微細な電気配線などに利用可能であり、例えばリチウム二次電池のバスバーや自動車のハーネスなどに利用可能である。 The graphene material and the graphene wiring structure of the present invention can be used for fine electrical wiring and the like, for example, a bus bar for a lithium secondary battery, an automobile harness, and the like.
10,110 グラフェン素材、11,31,41,111 グラフェン形成用基板、12,52,112 基板本体、13,35,43 レジストパターン、14,114 全面被覆層、16,56 触媒金属層、17,47 マスク層、19,39,49,119 マスク材、18,20,118,120 電極、210 グラフェン素材、212 基板本体、214 結晶層、216 触媒金属層、218,220 電極端子、218a Ti層、218b 保護層、218c 表層、226 触媒金属層、232 基板本体、236 触媒金属層、250 グラフェン素材、310 グラフェン配線構造、312,322,332,342 絶縁樹脂層、312a,312b,322a,322b,332a,332b,342a,342b 金属部分、314,324,334 触媒金属層、316,326,336 グラフェン層、360 グラフェン配線構造、362,372,382,392 絶縁樹脂層、366,376,386 グラフェン層、410 グラフェン素材、410a 線状部、410b 屈曲部、412 基板本体、414 結晶層、416 触媒金属層、426 触媒金属層 10, 110 graphene material, 11, 31, 41, 111 graphene forming substrate, 12, 52, 112 substrate body, 13, 35, 43 resist pattern, 14, 114 full coverage layer, 16, 56 catalyst metal layer, 17, 47 mask layer, 19, 39, 49, 119 mask material, 18, 20, 118, 120 electrode, 210 graphene material, 212 substrate body, 214 crystal layer, 216 catalyst metal layer, 218, 220 electrode terminal, 218a Ti layer, 218b protective layer, 218c surface layer, 226 catalytic metal layer, 232 substrate body, 236 catalytic metal layer, 250 graphene material, 310 graphene wiring structure, 312, 322, 332, 342 insulating resin layer, 312a, 312b, 322a, 322b, 332a , 332b, 342a, 42b metal portion, 314, 324, 334 catalyst metal layer, 316, 326, 336 graphene layer, 360 graphene wiring structure, 362, 372, 382, 392 insulating resin layer, 366, 376, 386 graphene layer, 410 graphene material, 410a Linear part, 410b bent part, 412 substrate body, 414 crystal layer, 416 catalyst metal layer, 426 catalyst metal layer

Claims (15)

  1. (a-1)グラフェン化を促進する機能を有する所定形状の触媒金属層と該触媒金属層の側面をマスクするマスク材とを基板本体上に形成する工程と、
    (b-1)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
    (c-1)前記触媒金属層から前記所定形状のグラフェンをグラフェン素材として取り出す工程と、
     を含むグラフェン素材の製造方法。
    (A-1) forming a catalyst metal layer having a predetermined shape having a function of promoting graphenization and a mask material for masking side surfaces of the catalyst metal layer on the substrate body;
    (B-1) supplying a carbon source to the surface of the catalytic metal layer to grow graphene;
    (C-1) extracting the graphene having the predetermined shape from the catalyst metal layer as a graphene material;
    Of graphene material including
  2.  前記工程(a-1)では、前記基板本体上に前記所定形状の触媒金属層を形成し、次に前記基板本体上に、前記触媒金属層が埋設されるようにマスク層を形成し、前記マスク層のうち前記触媒金属層と対向する部分以外の部分を覆うようにレジストパターンを形成したあと、前記マスク層のエッチングを行うことにより、前記触媒金属層の側面を前記マスク材でマスクする、
     請求項1に記載のグラフェン素材の製造方法。
    In the step (a-1), the catalyst metal layer having the predetermined shape is formed on the substrate body, and then a mask layer is formed on the substrate body so that the catalyst metal layer is embedded, After forming a resist pattern so as to cover a portion of the mask layer other than the portion facing the catalyst metal layer, the side of the catalyst metal layer is masked with the mask material by etching the mask layer,
    The manufacturing method of the graphene raw material of Claim 1.
  3.  前記工程(a-1)では、前記基板本体の全面を被覆する触媒金属製の全面被覆層を形成し、次に該全面被覆層の上に前記所定形状と同形状のレジストパターンを形成したあと、前記全面被覆層のエッチングを行うことにより、前記基板本体上に前記所定形状の触媒金属層を形成し、次に前記触媒金属層の上に前記レジストパターンを残した状態で、前記基板本体及び前記レジストパターンの上に前記触媒金属層よりも厚く前記触媒金属層と前記レジストパターンとの厚さの和よりも薄いマスク層を形成し、次に前記レジストパターンと前記レジストパターン上のマスク層とを除去することにより、前記触媒金属層の側面を前記マスク材でマスクする、
     請求項1に記載のグラフェン素材の製造方法。
    In the step (a-1), a catalytic metal full-surface covering layer covering the entire surface of the substrate body is formed, and then a resist pattern having the same shape as the predetermined shape is formed on the entire surface covering layer. Etching the entire surface covering layer to form the catalyst metal layer having the predetermined shape on the substrate body, and then leaving the resist pattern on the catalyst metal layer, Forming a mask layer on the resist pattern that is thicker than the catalyst metal layer and thinner than the sum of the thickness of the catalyst metal layer and the resist pattern, and then the resist pattern and the mask layer on the resist pattern; Masking the side surfaces of the catalyst metal layer with the mask material by removing
    The manufacturing method of the graphene raw material of Claim 1.
  4.  前記マスク材は、絶縁物であるか、又は、前記触媒金属層と比較して触媒作用が低く炭素の溶解度が低い金属、である、請求項1~3のいずれか1項に記載のグラフェン素材の製造方法。 The graphene material according to any one of claims 1 to 3, wherein the mask material is an insulator, or a metal having low catalytic action and low carbon solubility compared to the catalytic metal layer. Manufacturing method.
  5. (a-1)基板本体の全面を被覆する触媒金属製の全面被覆層を形成し、次に前記全面被覆層の表面に所定形状とネガの関係にある形状のマスク材を形成する工程と、
    (b-1)前記マスク材を形成した前記全面被覆層の表面に炭素源を供給して前記マスク材が形成されていない部分にグラフェンを成長させる工程と、
    (c-1)前記全面被覆層から前記所定形状のグラフェンをグラフェン素材として取り出す工程と、
     を含むグラフェン素材の製造方法。
    (A-1) forming a catalytic metal full-surface coating layer that covers the entire surface of the substrate body, and then forming a mask material having a negative shape and a predetermined shape on the surface of the entire surface coating layer;
    (B-1) supplying a carbon source to the surface of the entire covering layer on which the mask material is formed to grow graphene on a portion where the mask material is not formed;
    (C-1) extracting the graphene having the predetermined shape from the entire surface coating layer as a graphene material;
    Of graphene material including
  6. (a-2)グラフェン化を促進する機能を有する所定形状の触媒金属層を基板本体上に形成する工程と、
    (b-2)前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、
    (c-2)前記触媒金属層から前記グラフェンをグラフェン素材として取り出す工程と、
     を含み、
     前記工程(c-2)で前記グラフェンをグラフェン素材として取り出す前又は後に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を形成する、
     グラフェン素材の製造方法。
    (A-2) forming a catalyst metal layer having a predetermined shape on the substrate body having a function of promoting grapheneization;
    (B-2) supplying graphene to the surface of the catalytic metal layer to grow graphene;
    (C-2) extracting the graphene as a graphene material from the catalyst metal layer;
    Including
    Before or after taking out the graphene as a graphene material in the step (c-2), a Ti layer as a base and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W are formed. Form an electrode terminal with a stacked structure in order,
    Graphene material manufacturing method.
  7.  前記工程(a-2)では、前記触媒金属層として一筆書きが可能な形状のものを形成する、請求項6に記載のグラフェン素材の製造方法。 The method for producing a graphene material according to claim 6, wherein in the step (a-2), the catalyst metal layer is formed with a shape that can be drawn with a single stroke.
  8.  前記工程(a-2)では、前記一筆書きが可能な形状はジグザグ状、渦巻き状又は螺旋状である、請求項7に記載のグラフェン素材の製造方法。 The method for producing a graphene material according to claim 7, wherein in the step (a-2), the shape that can be drawn with one stroke is a zigzag shape, a spiral shape, or a spiral shape.
  9.  前記工程(c-2)では、前記触媒金属層からジグザグ状、渦巻き状又は螺旋状のグラフェンを取り出したあと両端を把持して伸ばすことにより線状のグラフェン素材を得る、請求項7又は8に記載のグラフェン素材の製造方法。 In the step (c-2), a linear graphene material is obtained by taking out zigzag, spiral, or spiral graphene from the catalyst metal layer and then stretching the graphene by gripping both ends. The manufacturing method of the graphene raw material of description.
  10.  前記工程(c-2)では、前記触媒金属層から前記グラフェン素材として取り出すにあたり、前記触媒金属層を溶かして前記グラフェン素材を取り出すか、又は、前記触媒金属層から前記グラフェン素材を引き剥がす、請求項6~9のいずれか1項に記載のグラフェン素材の製造方法。 In the step (c-2), when the graphene material is taken out from the catalyst metal layer, the catalyst metal layer is dissolved and the graphene material is taken out, or the graphene material is peeled off from the catalyst metal layer. Item 10. The method for producing a graphene material according to any one of Items 6 to 9.
  11.  前記電極端子として、前記Ti層と前記保護層とAu又はSnからなる表層とをこの順で積層した構造を持つものを形成する、
     請求項6~10のいずれか1項に記載のグラフェン素材の製造方法。
    The electrode terminal is formed with a structure in which the Ti layer, the protective layer, and a surface layer made of Au or Sn are laminated in this order.
    The method for producing a graphene material according to any one of claims 6 to 10.
  12.  ジグザグ状、渦巻き状又は螺旋状の自立したグラフェン素材であって、
     両端に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を有する、
     グラフェン素材。
    Zigzag, spiral or spiral free-standing graphene material,
    At both ends, an electrode terminal having a structure in which an underlying Ti layer and a protective layer mainly composed of a metal selected from the group consisting of Mo, Ni, Ta and W are laminated in this order,
    Graphene material.
  13.  絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には前記絶縁樹脂層が存在する、グラフェン配線構造。 A graphene wiring structure in which an insulating resin layer and a graphene layer are repeatedly laminated, and the insulating resin layers exist above and below each graphene layer.
  14.  前記絶縁樹脂層と前記グラフェン層との間には、グラフェン化を促進する機能を有する触媒金属層が介在する、請求項13に記載のグラフェン配線構造。 The graphene wiring structure according to claim 13, wherein a catalyst metal layer having a function of promoting grapheneization is interposed between the insulating resin layer and the graphene layer.
  15.  各グラフェン層は、いずれも奇数枚のグラフェンシートを積層したものであるか、又は、いずれも偶数枚のグラフェンシートを積層したものである、
     請求項13又は14に記載のグラフェン配線構造。
    Each graphene layer is a laminate of an odd number of graphene sheets or a laminate of an even number of graphene sheets.
    The graphene wiring structure according to claim 13 or 14.
PCT/JP2012/065131 2011-06-14 2012-06-13 Process for producing graphene material, graphene material, and graphene wiring structure WO2012173145A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-131743 2011-06-14
JP2011131743A JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material
JP2011-149418 2011-07-05
JP2011149418A JP5783529B2 (en) 2010-12-21 2011-07-05 Graphene material manufacturing method
JP2011163193A JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure
JP2011-163193 2011-07-26

Publications (1)

Publication Number Publication Date
WO2012173145A1 true WO2012173145A1 (en) 2012-12-20

Family

ID=47357826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065131 WO2012173145A1 (en) 2011-06-14 2012-06-13 Process for producing graphene material, graphene material, and graphene wiring structure

Country Status (1)

Country Link
WO (1) WO2012173145A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187415A (en) * 2012-03-08 2013-09-19 Fujitsu Ltd Manufacturing method of structure containing thin film graphite, and electric component
US20150262736A1 (en) * 2014-03-12 2015-09-17 Merry Electronics (Suzhou) Co., Ltd. Graphene conducting wire production method
US20150262735A1 (en) * 2014-03-12 2015-09-17 Merry Electronics (Suzhou) Co., Ltd. Method of making copper-clad graphene conducting wire
CN107611343A (en) * 2017-09-11 2018-01-19 佛山杰致信息科技有限公司 High score sub-pole plate barrier film lead-acid accumulator
CN112573511A (en) * 2020-12-03 2021-03-30 铜仁学院 Simple preparation method of graphene
CN113363480A (en) * 2021-04-01 2021-09-07 万向一二三股份公司 Positive plate containing strip graphene conductive agent and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142273A1 (en) * 2006-06-08 2007-12-13 International Business Machines Corporation Highly heat conductive, flexible sheet
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same
JP2009164432A (en) * 2008-01-08 2009-07-23 Fujitsu Ltd Method of manufacturing semiconductor apparatus, semiconductor apparatus, and wiring structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142273A1 (en) * 2006-06-08 2007-12-13 International Business Machines Corporation Highly heat conductive, flexible sheet
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same
JP2009164432A (en) * 2008-01-08 2009-07-23 Fujitsu Ltd Method of manufacturing semiconductor apparatus, semiconductor apparatus, and wiring structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.REINA ET AL.: "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", NANO LETTERS, vol. 9, no. 1, 14 January 2009 (2009-01-14), pages 30 - 35 *
CAO,Y. ET AL.: "Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 13, no. 17, 7 May 2011 (2011-05-07), pages 7660 - 7665 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187415A (en) * 2012-03-08 2013-09-19 Fujitsu Ltd Manufacturing method of structure containing thin film graphite, and electric component
US20150262736A1 (en) * 2014-03-12 2015-09-17 Merry Electronics (Suzhou) Co., Ltd. Graphene conducting wire production method
US20150262735A1 (en) * 2014-03-12 2015-09-17 Merry Electronics (Suzhou) Co., Ltd. Method of making copper-clad graphene conducting wire
CN107611343A (en) * 2017-09-11 2018-01-19 佛山杰致信息科技有限公司 High score sub-pole plate barrier film lead-acid accumulator
CN112573511A (en) * 2020-12-03 2021-03-30 铜仁学院 Simple preparation method of graphene
CN113363480A (en) * 2021-04-01 2021-09-07 万向一二三股份公司 Positive plate containing strip graphene conductive agent and lithium ion battery
CN113363480B (en) * 2021-04-01 2022-09-06 万向一二三股份公司 Positive plate containing strip graphene conductive agent and lithium ion battery

Similar Documents

Publication Publication Date Title
JP5783526B2 (en) Graphene material manufacturing method and graphene material
WO2012173145A1 (en) Process for producing graphene material, graphene material, and graphene wiring structure
TWI518905B (en) A graphene transistor with a self-aligned gate
EP2690664B1 (en) Transistors and methods of manufacturing the same
JP5708493B2 (en) Semiconductor device and manufacturing method thereof
JP5242643B2 (en) Semiconductor device
KR101273695B1 (en) Method for forming graphene pattern and method for manufacturing electronic element having graphene pattern
JP5453045B2 (en) Substrate on which graphene layer is grown and electronic / optical integrated circuit device using the same
US8482126B2 (en) Semiconductor device
US20090093131A1 (en) Low-temperature catalyzed formation of segmented nanowire of dielectric material
KR20110051584A (en) Method of fabricating graphene using alloy catalyst
KR20120119789A (en) Process for preparing multiple layered graphene
CN110770925B (en) High-temperature superconducting wire for improving engineering current density
TW201133860A (en) Semiconductor device, power circuit, and manufacturing method of semiconductor device
US20150144885A1 (en) Graphene structure and method of manufacturing the graphene structure, and graphene device and method of manufacturing the graphene device
JP2014063912A (en) Semiconductor device
KR101685791B1 (en) Stacked structure of nano carbon material and hexagonal boron nitride for leading wire and interconnection of semiconductors
KR20130079051A (en) Graphene electronic device and manufacturing method thereof
JP5671896B2 (en) Semiconductor device and manufacturing method thereof
US20140363363A1 (en) Method for producing catalytic metal layer and method for producing graphene material
KR20160103420A (en) Method of intercalating insulating layer between metal and graphene layer and method of fabricating semiconductor device using the same
JP2004319675A (en) Carbon nanotube inductor and its manufacturing method
JP5656888B2 (en) Graphene transistor
JP2010147237A (en) Method of manufacturing wiring structure, and wiring structure
KR20130043446A (en) Method for gaining graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800567

Country of ref document: EP

Kind code of ref document: A1