JP5783530B2 - Graphene wiring structure - Google Patents

Graphene wiring structure Download PDF

Info

Publication number
JP5783530B2
JP5783530B2 JP2011163193A JP2011163193A JP5783530B2 JP 5783530 B2 JP5783530 B2 JP 5783530B2 JP 2011163193 A JP2011163193 A JP 2011163193A JP 2011163193 A JP2011163193 A JP 2011163193A JP 5783530 B2 JP5783530 B2 JP 5783530B2
Authority
JP
Japan
Prior art keywords
graphene
layer
insulating resin
wiring structure
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011163193A
Other languages
Japanese (ja)
Other versions
JP2012144421A (en
Inventor
重弥 成塚
重弥 成塚
隆浩 丸山
隆浩 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meijo University
Original Assignee
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meijo University filed Critical Meijo University
Priority to JP2011163193A priority Critical patent/JP5783530B2/en
Priority to PCT/JP2012/065131 priority patent/WO2012173145A1/en
Publication of JP2012144421A publication Critical patent/JP2012144421A/en
Application granted granted Critical
Publication of JP5783530B2 publication Critical patent/JP5783530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene

Description

本発明は、グラフェン配線構造   The present invention is a graphene wiring structure

グラフェンは、炭素原子の六員環が単層で連なって平面状になった二次元材料である。このグラフェンは、電子移動度がシリコンの100倍以上と言われている。近年、グラフェンをチャネル材料として利用したトランジスタが提案されている(特許文献1参照)。特許文献1では、絶縁基板上に、絶縁分離膜で分離された触媒膜パターンを形成し、その触媒膜パターン上にグラフェンシートを成長させたあと、そのグラフェンシートの両側にドレイン電極及びソース電極を形成すると共に、グラフェンシート上にゲート絶縁膜を介してゲート電極を形成している。ここで、触媒膜パターンは絶縁膜で分離されているが、グラフェンシートは触媒膜パターンの端では横方向に延びることから、絶縁分離膜の両側の触媒膜パターンからグラフェンシートが延びて絶縁分離膜上でつながった構造が得られると説明されている。   Graphene is a two-dimensional material in which six-membered rings of carbon atoms are connected in a single layer to form a plane. This graphene is said to have an electron mobility of 100 times or more that of silicon. In recent years, a transistor using graphene as a channel material has been proposed (see Patent Document 1). In Patent Document 1, a catalyst film pattern separated by an insulating separation film is formed on an insulating substrate, a graphene sheet is grown on the catalyst film pattern, and then a drain electrode and a source electrode are formed on both sides of the graphene sheet. At the same time, a gate electrode is formed on the graphene sheet through a gate insulating film. Here, the catalyst film pattern is separated by the insulating film, but the graphene sheet extends in the lateral direction at the end of the catalyst film pattern, so that the graphene sheet extends from the catalyst film pattern on both sides of the insulating separation film. It is explained that the above connected structure is obtained.

特開2009−164432号公報JP 2009-164432 A

ところで、グラフェン素材を利用する方法については、これまであまり多く報告されていない。一例としては、グラファイトに粘着テープを付着させたあとそのテープを剥がすことにより、粘着テープの粘着面にグラファイトから分離したグラフェンシートを付着させたものを利用することが知られている。   By the way, there are not many reports on how to use graphene materials. As an example, it is known to use an adhesive tape having a graphene sheet separated from graphite attached to the adhesive surface of the adhesive tape by attaching the adhesive tape to graphite and then peeling the tape.

しかしながら、粘着テープに付着した状態のグラフェンシートでは、サイズがミクロンメータオーダーと小さい上に、層数も上手くコントロールできない、そのような状況のため配線材料としては適さず、限られた電流しか流すことができないという問題があった。また、柔軟性を確保したいという要望もあった。   However, the graphene sheet attached to the adhesive tape has a small size of micrometer order and the number of layers cannot be controlled well. There was a problem that could not. There was also a desire to ensure flexibility.

本発明はこのような課題を解決するためになされたものであり、比較的大きな電流を流すことができる柔軟なグラフェン配線構造を提供することを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to provide a flexible graphene wiring structure capable of flowing a relatively large current.

本発明のグラフェン配線構造は、絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には前記絶縁樹脂層が存在するものである。   In the graphene wiring structure of the present invention, an insulating resin layer and a graphene layer are repeatedly laminated, and the insulating resin layer exists above and below each graphene layer.

このグラフェン配線構造によれば、グラフェン層が多段になっているため、1つのグラフェン層と比べて大きな電流を流すことができる。また、それぞれの段のグラフェン層の層数を数層ないし数十層とあまり大きくない層数に制限することと、絶縁樹脂層の存在によって柔軟性が確保される。なお、「グラフェン層」とは、炭素原子の六員環が単層で連なったグラフェンシートを1枚又は複数枚(例えば2〜10枚)有する層をいう。   According to this graphene wiring structure, since the graphene layers are multi-staged, a larger current can be flowed compared to one graphene layer. Further, flexibility is ensured by limiting the number of graphene layers in each stage to a few layers to several tens of layers and the presence of an insulating resin layer. The “graphene layer” refers to a layer having one or a plurality of (for example, 2 to 10) graphene sheets in which six-membered rings of carbon atoms are connected in a single layer.

本発明のグラフェン配線構造において、前記絶縁樹脂層と前記グラフェン層との間には、グラフェン化を促進する機能を有する触媒金属層が介在していてもよい。こうしたグラフェン配線構造を作製する際に、絶縁樹脂層の上に触媒金属層を形成し、その触媒金属層に炭素源を供給してグラフェンを成長させた場合、絶縁樹脂層とグラフェン層との間には触媒金属層が介在することになるが、こうした触媒金属層は良好な導電性を有するため、そのまま残しておいてもよい。こうして得られたグラフェン配線構造は、絶縁樹脂層とグラフェン層との間には触媒金属層が介在することになる。なお、「グラフェン化を促進する機能」とは、炭素源と接触してその炭素源に含まれる炭素成分が互いに結合してグラフェンになるのを促進する機能をいう。   In the graphene wiring structure of the present invention, a catalyst metal layer having a function of promoting grapheneization may be interposed between the insulating resin layer and the graphene layer. When producing such a graphene wiring structure, when a catalytic metal layer is formed on an insulating resin layer and graphene is grown by supplying a carbon source to the catalytic metal layer, the gap between the insulating resin layer and the graphene layer is increased. In this case, a catalyst metal layer is interposed, but such a catalyst metal layer has good conductivity and may be left as it is. In the graphene wiring structure thus obtained, a catalytic metal layer is interposed between the insulating resin layer and the graphene layer. The “function to promote graphenization” refers to a function that promotes the formation of graphene by contacting the carbon source and combining the carbon components contained in the carbon source with each other.

本発明のグラフェン配線構造において、各グラフェン層は、いずれも奇数枚のグラフェンシートを積層したものであるか、又は、いずれも偶数枚のグラフェンシートを積層したものとしてもよい。奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、各グラフェン層がいずれも奇数枚のグラフェンシートを積層したものである場合には、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。また、偶数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、各グラフェン層がいずれも偶数枚のグラフェンシートを積層したものである場合には、その偶数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。   In the graphene wiring structure of the present invention, each graphene layer may be formed by stacking an odd number of graphene sheets, or may be formed by stacking an even number of graphene sheets. Since graphene layers with odd-numbered graphene sheets have similar electrical characteristics, if each graphene layer is a stack of odd-numbered graphene sheets, graphene layers with the odd-numbered graphene sheets stacked The electrical properties of the layer are emphasized. In addition, since the graphene layers with an even number of graphene sheets are similar in electrical characteristics, if each graphene layer is an even number of graphene sheets, the even number of graphene sheets are stacked. The electrical properties of the graphene layer are emphasized.

本発明のグラフェン配線構造の製法は、例えば、絶縁樹脂層の上にグラフェン層を設けたあと該グラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。ここで、絶縁樹脂層の上にグラフェン層を設けるにあたり、別途作製しておいたグラフェン層を前記絶縁樹脂層の上に配置してもよい。このようにグラフェン層を別途作製するには、例えば、基板の上にグラフェン化を促進する機能を有する触媒金属層を一筆書きが可能な形状に形成し、触媒金属層の表面に炭素源を供給してグラフェンを成長させ、触媒金属層からグラフェンをグラフェン素材として取り出してもよい。なお、こうして取り出した複数のグラフェン素材の両端を引っ張って略直線状にした後、その状態を保ったまま絶縁樹脂で固めることにより、本発明のグラフェン配線構造を作製してもよい。   The method for producing a graphene wiring structure according to the present invention may include, for example, a process of repeating an operation of providing a graphene layer on an insulating resin layer and then providing an insulating resin layer on the graphene layer. Here, when the graphene layer is provided on the insulating resin layer, a separately prepared graphene layer may be disposed on the insulating resin layer. In order to separately prepare the graphene layer in this way, for example, a catalyst metal layer having a function of promoting graphene formation is formed on a substrate in a shape that can be drawn with one stroke, and a carbon source is supplied to the surface of the catalyst metal layer. Then, the graphene may be grown, and the graphene may be taken out as a graphene material from the catalyst metal layer. Note that the graphene wiring structure of the present invention may be manufactured by pulling both ends of the plurality of graphene materials taken out in this way into a substantially straight shape and then solidifying with an insulating resin while maintaining the state.

本発明のグラフェン配線構造のうち、絶縁樹脂層とグラフェン層との間にグラフェン化を促進する機能を有する触媒金属層が介在するものの製法は、例えば、絶縁樹脂層の上に触媒金属層を一筆書きが可能な形状(例えば直線状、ジグザグ状、渦巻き状など)となるように形成し、該触媒金属層の表面に炭素源を供給してグラフェンを成長させることによりグラフェン層を設け、触媒金属層を残したままグラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。また、絶縁樹脂層とグラフェン層との間にグラフェン化を促進する機能を有する触媒金属層が介在しないものの製法は、例えば、絶縁樹脂層の上に触媒金属層を一筆書きが可能な形状となるように形成し、該触媒金属層の表面に炭素源を供給してグラフェンを成長させることによりグラフェン層を設け、そのグラフェン層の一端を挟持部材で挟み込んだ状態で触媒金属層を溶かして除去したあとグラフェン層の上に絶縁樹脂層を設ける、という作業を繰り返す工程を含むものとしてもよい。なお、予め配線を引き回したときの形状が決まっている場合には、絶縁樹脂層や触媒金属層をそれと同様の形状に形成しておけば、できあがったグラフェン配線構造を曲げることなくそのまま使用することができる。   In the graphene wiring structure of the present invention, a method in which a catalytic metal layer having a function of promoting graphene formation is interposed between an insulating resin layer and a graphene layer is obtained by, for example, placing a catalytic metal layer on the insulating resin layer. A graphene layer is formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer and forming the graphene layer so that the shape can be written (for example, linear, zigzag, spiral) A step of repeating an operation of providing an insulating resin layer on the graphene layer while leaving the layer may be included. In addition, a manufacturing method in which a catalytic metal layer having a function of promoting graphene formation is not interposed between the insulating resin layer and the graphene layer is, for example, a shape in which the catalytic metal layer can be drawn with a single stroke on the insulating resin layer. The graphene layer was formed by growing a graphene by supplying a carbon source to the surface of the catalyst metal layer, and the catalyst metal layer was melted and removed in a state where one end of the graphene layer was sandwiched between sandwiching members Further, it may include a step of repeating the operation of providing an insulating resin layer on the graphene layer. In addition, if the shape when the wiring is routed in advance is determined, if the insulating resin layer and catalytic metal layer are formed in the same shape, the completed graphene wiring structure can be used as it is without bending. Can do.

上述した製法において、触媒金属層を一筆書きが可能な形状に形成するには、例えば、周知のフォトリソグラフィ法によってパターニングしてもよい。その場合、まず基板の全面に触媒金属層を形成し、次に所定形状の触媒金属層が残るようにレジストパターンを形成したあとウェットエッチング又はドライエッチングを行ってもよい。ウェットエッチングは、触媒金属層の金属種に応じて適宜エッチング液を選定すればよい。ドライエッチングも、触媒金属層の金属種に応じて適宜使用するガスを選定すればよい。また、所定形状の触媒金属層を形成するには、所定形状以外の部分を被覆するシャドウマスクを用いて触媒金属を蒸着又はスパッタしてもよい。   In the manufacturing method described above, in order to form the catalytic metal layer into a shape that can be drawn with a single stroke, patterning may be performed by, for example, a well-known photolithography method. In that case, first, a catalytic metal layer may be formed on the entire surface of the substrate, and then a resist pattern may be formed so as to leave a catalyst metal layer having a predetermined shape, followed by wet etching or dry etching. For wet etching, an etching solution may be appropriately selected according to the metal species of the catalyst metal layer. In dry etching, a gas to be used may be selected as appropriate according to the metal species of the catalyst metal layer. In order to form a catalyst metal layer having a predetermined shape, the catalyst metal may be deposited or sputtered using a shadow mask that covers a portion other than the predetermined shape.

上述した製法において、炭素源としては、例えば、炭素数1〜6の炭化水素やアルコールなどが挙げられる。   In the production method described above, examples of the carbon source include hydrocarbons having 1 to 6 carbon atoms and alcohols.

上述した製法において、グラフェンを成長させる方法としては、例えば、アルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどが挙げられる。アルコールCVDは、例えば、成長温度を絶縁樹脂層の耐熱温度未満で適宜設定し、炭素源としてメタノールやエタノールなどのアルコールの飽和蒸気を供給する。アルコール飽和蒸気は、バブラにキャリアガスを流すことにより発生させてもよい。キャリアガスとしては、アルゴン、水素、窒素などを利用することができる。圧力は大気圧であってもよいし、減圧下であってもよい。熱CVDは、例えば、成長温度を絶縁樹脂層の耐熱温度未満で適宜設定し、炭素源としてメタン、エチレン、アセチレン、ベンゼンなどを供給する。炭素源はアルゴンや水素などをキャリアガスとして供給し、炭素源の分圧は例えば0.002−5Pa程度とする。成長時間は例えば1−20分、圧力は加圧下(例えば1kPa)であってもよいし減圧下であってもよい。炭素源を分解するためにホットフィラメントを使用することが多い。プラズマCVDは、例えば、成長温度を絶縁樹脂層の耐熱温度未満で適宜設定し、圧力を1−1.1Pa、炭素源をメタン、メタン流量を5sccm、キャリアガスを水素、水素流量を20sccmとし、プラズマパワーを100W程度とする。なお、成長温度を絶縁樹脂層の耐熱温度未満で適宜設定するにあたっては、例えばその耐熱温度をわずかに下回る温度としてもよい。ガスソースMBEは、例えば、炭素源としてエタノールを用い、エタノールで飽和した窒素ないしは水素ガスの流量を0.3−2sccmとし、真空中で炭素源分解のため2000℃に加熱したWフィラメントを使用する。基板温度は400−600℃程度である。   In the manufacturing method described above, examples of the method for growing graphene include alcohol CVD, thermal CVD, plasma CVD, and gas source MBE. In alcohol CVD, for example, the growth temperature is set appropriately below the heat resistance temperature of the insulating resin layer, and a saturated vapor of alcohol such as methanol or ethanol is supplied as a carbon source. The alcohol saturated vapor may be generated by flowing a carrier gas through a bubbler. Argon, hydrogen, nitrogen or the like can be used as the carrier gas. The pressure may be atmospheric pressure or under reduced pressure. In the thermal CVD, for example, the growth temperature is appropriately set below the heat resistance temperature of the insulating resin layer, and methane, ethylene, acetylene, benzene, or the like is supplied as a carbon source. The carbon source is supplied with argon or hydrogen as a carrier gas, and the partial pressure of the carbon source is, for example, about 0.002-5 Pa. The growth time may be 1 to 20 minutes, for example, and the pressure may be under pressure (for example, 1 kPa) or under reduced pressure. Hot filaments are often used to decompose the carbon source. In the plasma CVD, for example, the growth temperature is set appropriately below the heat resistance temperature of the insulating resin layer, the pressure is 1-1.1 Pa, the carbon source is methane, the methane flow rate is 5 sccm, the carrier gas is hydrogen, the hydrogen flow rate is 20 sccm, The plasma power is about 100W. In setting the growth temperature appropriately below the heat resistance temperature of the insulating resin layer, for example, a temperature slightly lower than the heat resistance temperature may be used. The gas source MBE uses, for example, ethanol as a carbon source, a nitrogen or hydrogen gas saturated with ethanol at a flow rate of 0.3-2 sccm, and a W filament heated to 2000 ° C. in order to decompose the carbon source in a vacuum. . The substrate temperature is about 400-600 ° C.

グラフェン配線構造10の斜視図である。1 is a perspective view of a graphene wiring structure 10. FIG. 図1のA−A断面図である。It is AA sectional drawing of FIG. グラフェン配線構造10の製造工程図である。FIG. 6 is a manufacturing process diagram of the graphene wiring structure 10. 両端に電極が形成されたグラフェン配線構造10の断面図である。It is sectional drawing of the graphene wiring structure 10 in which the electrode was formed in both ends. グラフェン配線構造60の斜視図である。2 is a perspective view of a graphene wiring structure 60. FIG. 図5のB−B断面図である。It is BB sectional drawing of FIG. グラフェン素材110の製造工程図である。It is a manufacturing process figure of graphene material 110. 渦巻き状の触媒金属層126が形成された基板本体112の平面図である。It is a top view of the board | substrate body 112 in which the spiral catalyst metal layer 126 was formed.

以下には、本発明の好適な実施形態を図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1はグラフェン配線構造10の斜視図、図2は図1のA−A断面図である。
[First Embodiment]
1 is a perspective view of the graphene wiring structure 10, and FIG. 2 is a cross-sectional view taken along the line AA of FIG.

本実施形態のグラフェン配線構造10は、絶縁樹脂層12,22,32,42とグラフェン層16,26,36とが繰り返し積層されている。グラフェン層16の上下には絶縁樹脂層12,22が存在し、グラフェン層26の上下には絶縁樹脂層22,32が存在し、グラフェン層36の上下には絶縁樹脂層32,42が存在する。また、絶縁樹脂層12とグラフェン層16との間には触媒金属層14が介在し、絶縁樹脂層22とグラフェン層26との間には触媒金属層24が介在し、絶縁樹脂層32とグラフェン層36との間には触媒金属層34が介在する。触媒金属層14,24,34は、グラフェン化を促進する機能を有する。各グラフェン層16,26,36は、いずれも奇数枚(ここでは3枚)のグラフェンシートが積層されたものである。   In the graphene wiring structure 10 of this embodiment, insulating resin layers 12, 22, 32, and 42 and graphene layers 16, 26, and 36 are repeatedly stacked. The insulating resin layers 12 and 22 exist above and below the graphene layer 16, the insulating resin layers 22 and 32 exist above and below the graphene layer 26, and the insulating resin layers 32 and 42 exist above and below the graphene layer 36. . Further, the catalytic metal layer 14 is interposed between the insulating resin layer 12 and the graphene layer 16, and the catalytic metal layer 24 is interposed between the insulating resin layer 22 and the graphene layer 26, so that the insulating resin layer 32 and the graphene are A catalytic metal layer 34 is interposed between the layers 36. The catalytic metal layers 14, 24, and 34 have a function of promoting grapheneization. Each of the graphene layers 16, 26, and 36 is formed by laminating an odd number (three in this case) of graphene sheets.

次に、こうしたグラフェン配線構造10の製造例について図3を参照しながら説明する。図3はグラフェン配線構造10の製造工程図である。   Next, an example of manufacturing the graphene wiring structure 10 will be described with reference to FIG. FIG. 3 is a manufacturing process diagram of the graphene wiring structure 10.

(1)まず耐熱性ポリイミド(例えばデュポン社製のカプトン Hタイプなど)からなる絶縁樹脂層12を用意する(図3(a)参照)。このとき、絶縁樹脂層12が形成された基板を用意してもよい。 (1) First, an insulating resin layer 12 made of heat-resistant polyimide (for example, Kapton H type manufactured by DuPont) is prepared (see FIG. 3A). At this time, a substrate on which the insulating resin layer 12 is formed may be prepared.

(2)その絶縁樹脂層12の上に触媒金属層14を蒸着し、必要に応じて周知のフォトリソグラフィ法によってパターニングし、その後、熱処理を行うことにより触媒金属層14を結晶化させる(図3(b)参照)。なお、上記手法の他に、パルススパッター堆積法(PSD)技術によって触媒金属層14を堆積させながら結晶化させてもよい。触媒金属層14の材質としては、Cu,Ni,Co,Ru,Fe,Pt,Au等が挙げられる。こうした金属のうち、表面に三角格子(三角形の頂点に金属原子が配置された構造)を持つものが好ましい。例えば、FCCの(111)面、BCCの(110)面、HCPの(0001)面が三角格子になる。触媒金属層14の厚さは、特に限定するものではないが、例えば1−500nm程度としてもよい。但し、膜厚が薄すぎると、触媒金属が粒子化してしまうおそれがあるため、粒子化しない程度の厚さとするのが好ましい。本実施形態では、触媒金属層14としてNiを用い、長方形状の薄板となるようにパターニングするものとする。Niを結晶化させると、Ni表面は(111)面に再配列される。そして、Ni(111)面には、Ni原子を頂点とした三角格子が構成される。 (2) A catalytic metal layer 14 is vapor-deposited on the insulating resin layer 12, patterned by a well-known photolithography method as necessary, and then heat-treated to crystallize the catalytic metal layer 14 (FIG. 3). (See (b)). In addition to the above method, the catalytic metal layer 14 may be crystallized while being deposited by a pulse sputtering deposition (PSD) technique. Examples of the material of the catalyst metal layer 14 include Cu, Ni, Co, Ru, Fe, Pt, and Au. Among these metals, those having a triangular lattice (a structure in which metal atoms are arranged at the apexes of the triangle) on the surface are preferable. For example, the FCC (111) plane, the BCC (110) plane, and the HCP (0001) plane are triangular lattices. The thickness of the catalyst metal layer 14 is not particularly limited, but may be about 1 to 500 nm, for example. However, if the film thickness is too thin, there is a possibility that the catalyst metal may be formed into particles, so that the thickness is preferably set so as not to form particles. In the present embodiment, Ni is used as the catalytic metal layer 14 and is patterned so as to be a rectangular thin plate. When Ni is crystallized, the Ni surface is rearranged in the (111) plane. A triangular lattice with Ni atoms as vertices is formed on the Ni (111) plane.

(3)図示しない反応容器内に、結晶化した触媒金属層14を備えた絶縁樹脂層12を入れ、その触媒金属層14の上に炭素原料を供給することによりグラフェンを成長させグラフェン層16を形成する(図3(c)参照)。触媒金属層14の上にグラフェン層16を形成するには、絶縁樹脂層12の耐熱温度を超えないようにして、上述したアルコールCVD、熱CVD、プラズマCVD、ガスソースMBEなどの手法によりグラフェンを成長させる。グラフェンの成長過程において、C原子はNi原子から構成されるそれぞれの三角形の重心の真上に配置される。これにより、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長していく。グラフェン層16のグラフェンシートの枚数の制御は、反応容器に取り付けたラマンスペクトル測定装置でグラフェン層16のラマンシフト位置をモニタリングすることにより行う。具体的には、グラフェンシートが1枚、2枚、5枚、10枚の場合におけるラマンシフト位置はそれぞれ異なることが知られている(Physical Review Letters, Vol.97, p187401(2006)の図2参照)。このため、グラフェンシートの枚数を予め決めておき、その枚数に対応したラマンシフト位置を予め確認しておき、そのラマンシフト位置になるまでグラフェンを成長させる。 (3) An insulating resin layer 12 having a crystallized catalyst metal layer 14 is placed in a reaction vessel (not shown), and a graphene is grown by supplying a carbon raw material on the catalyst metal layer 14 to grow the graphene layer 16. It forms (refer FIG.3 (c)). In order to form the graphene layer 16 on the catalytic metal layer 14, the graphene is formed by the above-described methods such as alcohol CVD, thermal CVD, plasma CVD, and gas source MBE without exceeding the heat resistance temperature of the insulating resin layer 12. Grow. In the graphene growth process, C atoms are arranged immediately above the center of gravity of each triangle composed of Ni atoms. Thereby, a hexagon having a C atom as a vertex is formed, and graphene grows as the hexagons are bonded to each other. Control of the number of graphene sheets in the graphene layer 16 is performed by monitoring the Raman shift position of the graphene layer 16 with a Raman spectrum measuring device attached to the reaction vessel. Specifically, it is known that the Raman shift positions are different when the number of graphene sheets is one, two, five, and ten (Physical Review Letters, Vol. 97, p187401 (2006), FIG. 2). reference). For this reason, the number of graphene sheets is determined in advance, the Raman shift position corresponding to the number of sheets is confirmed in advance, and graphene is grown until the Raman shift position is reached.

(4)グラフェン層16の上に耐熱性ポリイミドからなる絶縁樹脂層22を形成し(図3(d)参照)、その後、再び上述した(2)の工程を行うことにより、パターニングされ結晶化した触媒金属層24を絶縁樹脂層22の上に形成し(図3(e)参照)、更に上述した(3)の工程を行うことにより、触媒金属層24の上にグラフェン層26を形成する(図3(f)参照)。絶縁樹脂層22を形成するには、例えば、熱硬化性ポリイミド樹脂を塗布したあと熱処理してその樹脂を硬化させるか、あるいは、耐熱性ポリイミドフィルムを貼り付ける。 (4) An insulating resin layer 22 made of heat-resistant polyimide is formed on the graphene layer 16 (see FIG. 3D), and then the above-described step (2) is performed again to pattern and crystallize. The catalyst metal layer 24 is formed on the insulating resin layer 22 (see FIG. 3E), and the graphene layer 26 is formed on the catalyst metal layer 24 by performing the above-described step (3) (see FIG. 3E). (Refer FIG.3 (f)). In order to form the insulating resin layer 22, for example, after applying a thermosetting polyimide resin, the resin is cured by heat treatment, or a heat-resistant polyimide film is attached.

(5)目的とするグラフェン配線構造10のグラフェン層の数(ここでは3つ)に応じて上述した(4)の工程を所定回数繰り返す(図3(g)参照)。その結果、グラフェン層26の上に絶縁樹脂層32、触媒金属層34、グラフェン層36がこの順に積層される。 (5) The above-described process (4) is repeated a predetermined number of times according to the number of graphene layers (three in this case) of the target graphene wiring structure 10 (see FIG. 3G). As a result, the insulating resin layer 32, the catalyst metal layer 34, and the graphene layer 36 are laminated on the graphene layer 26 in this order.

(6)最後に、グラフェン層36に熱硬化性ポリイミド樹脂を塗布し、熱処理して硬化させて絶縁樹脂層42とし、目的とするグラフェン配線構造10を得る(図3(h)参照)。なお、上述した(1)の工程で絶縁樹脂層12が形成された基板を用いた場合には、その基板を除去する。 (6) Finally, a thermosetting polyimide resin is applied to the graphene layer 36 and cured by heat treatment to form the insulating resin layer 42, thereby obtaining the target graphene wiring structure 10 (see FIG. 3H). In addition, when the board | substrate with which the insulating resin layer 12 was formed at the process of (1) mentioned above is used, the board | substrate is removed.

次に、グラフェン配線構造10の使用例について説明する。グラフェン配線構造10を使用するには、まず、両端に電極を形成する。具体的には、グラフェン配線構造10の絶縁樹脂層12,22,32,42の両端を除去し、グラフェン層16,26,36及び触媒金属層14,24,34を露出させ、その露出した部分を金属で被覆する。これにより、図4に示すように、一端には金属部分12a,22a,32a,42aが形成されるが、これらはグラフェン層16,26,36の一端及び触媒金属層14,24,34の一端と一体となって電極となる。また、他端には金属部分12b、22b、32b、42bが形成されるが、これらはグラフェン層16,26,36の他端及び触媒金属層14,24,34の他端と一体となって電極となる。こうして両端に電極が形成されたグラフェン配線構造10は、例えば燃料電池やリチウム二次電池等のバスバーや自動車のハーネスに使用される。   Next, a usage example of the graphene wiring structure 10 will be described. In order to use the graphene wiring structure 10, first, electrodes are formed on both ends. Specifically, both ends of the insulating resin layers 12, 22, 32, 42 of the graphene wiring structure 10 are removed to expose the graphene layers 16, 26, 36 and the catalyst metal layers 14, 24, 34, and the exposed portions. Is covered with metal. As a result, as shown in FIG. 4, the metal portions 12a, 22a, 32a, and 42a are formed at one end, which are one end of the graphene layers 16, 26, and 36 and one end of the catalytic metal layers 14, 24, and 34. And an electrode together. Further, metal portions 12b, 22b, 32b, and 42b are formed at the other end, which are integrated with the other ends of the graphene layers 16, 26, and 36 and the other ends of the catalytic metal layers 14, 24, and 34. It becomes an electrode. The graphene wiring structure 10 in which the electrodes are thus formed at both ends is used, for example, for a bus bar such as a fuel cell or a lithium secondary battery, or a harness of an automobile.

以上詳述した本実施形態のグラフェン配線構造10によれば、グラフェン層16,26,36が多段(3段)になっているため、例えばグラフェン層16のみの場合と比べて大きな電流を流すことができる。また、絶縁樹脂層12,22,32,42の存在によって柔軟性が確保されるし、グラフェン層16,26,36が保護される。   According to the graphene wiring structure 10 of the present embodiment described in detail above, the graphene layers 16, 26, and 36 are multi-stage (three stages), and therefore, a larger current flows than in the case of the graphene layer 16 alone, for example. Can do. Further, flexibility is ensured by the presence of the insulating resin layers 12, 22, 32, and 42, and the graphene layers 16, 26, and 36 are protected.

また、絶縁樹脂層12とグラフェン層16との間には触媒金属層14が介在し、絶縁樹脂層22とグラフェン層26との間には触媒金属層24が介在し、絶縁樹脂層32とグラフェン層36との間には触媒金属層34が介在するが、こうした触媒金属層14,24,34は良好な導電性を有するため、大きな電流を流す場合に有利になる。   Further, the catalytic metal layer 14 is interposed between the insulating resin layer 12 and the graphene layer 16, and the catalytic metal layer 24 is interposed between the insulating resin layer 22 and the graphene layer 26, so that the insulating resin layer 32 and the graphene are A catalytic metal layer 34 is interposed between the layer 36 and the catalytic metal layers 14, 24, 34 have good conductivity, which is advantageous when a large current flows.

更に、各グラフェン層16,26,36は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものであるが、奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。   Further, each of the graphene layers 16, 26, and 36 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.

[第2実施形態]
図5はグラフェン配線構造60の斜視図、図6は図5のB−B断面図である。
[Second Embodiment]
5 is a perspective view of the graphene wiring structure 60, and FIG. 6 is a cross-sectional view taken along the line BB of FIG.

本実施形態のグラフェン配線構造60は、図6に示すように、絶縁樹脂層62,72,82,92とグラフェン層66,76,86とが繰り返し積層されている。グラフェン層66の上下には絶縁樹脂層62,72が存在し、グラフェン層76の上下には絶縁樹脂層72,82が存在し、グラフェン層86の上下には絶縁樹脂層82,92が存在する。各グラフェン層66,76,86は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものである。   In the graphene wiring structure 60 of this embodiment, as shown in FIG. 6, insulating resin layers 62, 72, 82, 92 and graphene layers 66, 76, 86 are repeatedly stacked. Insulating resin layers 62 and 72 exist above and below the graphene layer 66, insulating resin layers 72 and 82 exist above and below the graphene layer 76, and insulating resin layers 82 and 92 exist above and below the graphene layer 86. . Each of the graphene layers 66, 76, 86 is formed by stacking an odd number of graphene sheets (here, three sheets).

次に、こうしたグラフェン配線構造60の製造例について図7を参照しながら説明する。図7はグラフェン層66,76,86として使用されるグラフェン素材110の製造工程図である。   Next, an example of manufacturing the graphene wiring structure 60 will be described with reference to FIG. FIG. 7 is a manufacturing process diagram of the graphene material 110 used as the graphene layers 66, 76, 86.

まず、四角形状のc面サファイアからなる基板本体112を用意し、その基板本体112の全面にNiを成膜して結晶層114とする(図7(a)参照)。続いて、リソグラフィ法により結晶層114を一筆書きが可能な形状、ここではジグザグ状にパターニングし、結晶層114を触媒金属層116とする(図7(b)参照)。   First, a substrate body 112 made of quadrangular c-plane sapphire is prepared, and Ni is deposited on the entire surface of the substrate body 112 to form a crystal layer 114 (see FIG. 7A). Subsequently, the crystal layer 114 is patterned by a lithography method into a shape that can be drawn with a single stroke, here, a zigzag shape, and the crystal layer 114 is used as the catalyst metal layer 116 (see FIG. 7B).

次に、触媒金属層116のNiに対して、温度600℃、圧力1kPaにてアセチレンとアルゴンとの混合ガスによりC原子を供給する。すると、Ni表面は(111)面に再配列される。Ni(111)面には、Ni原子を頂点とした三角格子が構成される。そして、供給されたC原子は、Ni原子から構成されるそれぞれの三角形の重心の真上に配置されることで、C原子を頂点とした六角形が形成され、この六角形が互いに結合していくことでグラフェンが成長してグラフェン素材110となる(図7(c)参照)。グラフェン素材110は、触媒金属層116上に形成されるため、触媒金属層116と同じ形状つまりジグザグ状となる。このグラフェン素材110は、第1実施形態と同様に枚数の制御を行い、3枚のグラフェンシートからなるものとする。なお、グラフェンが成長しすぎると、横方向に延びてジグザグを形成する溝を塞いでしまうため、そうなる前に成長を止める。   Next, C atoms are supplied to Ni of the catalytic metal layer 116 by a mixed gas of acetylene and argon at a temperature of 600 ° C. and a pressure of 1 kPa. Then, the Ni surface is rearranged in the (111) plane. On the Ni (111) plane, a triangular lattice having Ni atoms as vertices is formed. The supplied C atoms are arranged right above the center of gravity of each triangle composed of Ni atoms, so that a hexagon having the C atom as a vertex is formed. As a result, graphene grows to become the graphene material 110 (see FIG. 7C). Since the graphene material 110 is formed on the catalyst metal layer 116, it has the same shape as the catalyst metal layer 116, that is, a zigzag shape. The graphene material 110 is controlled by the number of sheets as in the first embodiment, and is composed of three graphene sheets. Note that if the graphene grows too much, the groove that extends in the lateral direction and closes the groove that forms the zigzag is blocked.

その後、触媒金属層116を酸性溶液で溶かす。ここでは、触媒金属層116はNiであるため、希硝酸を用いる。そして、触媒金属層116が溶けたあと、グラフェン素材110を取り出す(図7(d)参照)。得られたグラフェン素材110は、ジグザグ状つまり線状部110aと屈曲部110bとを交互に備えた形状である。なお、グラフェン素材110を取り出す際には、触媒金属層116を溶かす代わりに、グラフェン素材110をめくるようにして機械的に剥がしてもよい。   Thereafter, the catalytic metal layer 116 is dissolved with an acidic solution. Here, since the catalytic metal layer 116 is Ni, dilute nitric acid is used. Then, after the catalytic metal layer 116 is melted, the graphene material 110 is taken out (see FIG. 7D). The obtained graphene material 110 has a zigzag shape, that is, a shape having alternating linear portions 110a and bent portions 110b. When the graphene material 110 is taken out, the graphene material 110 may be mechanically peeled off instead of melting the catalyst metal layer 116.

このようにして得られたグラフェン素材110は、ジグザグ状の自立した素材であるが、両末端を把持して伸ばすことにより線材にすることができる(図7(e)参照)。但し、実際には真っ直ぐに伸びるわけではなく、かっこ内に示すように複数の線状部110aが屈曲部110bで連なった形状になる。こうしたグラフェン素材110を3本用意し、両端を把持して伸ばして直線に近い形状にすると共に上下方向に隙間を空けて並べ、その状態で絶縁樹脂で固める。こうすることにより、グラフェン素材110の両端の把持を解いたとしても、グラフェン素材110は直線に近い形状を維持する。図6に示すB−B断面図では、複数の絶縁樹脂層62,72,82,92を示したが、この製法からわかるように、絶縁樹脂層62,72,82,92は一度に絶縁樹脂を固めて一体に形成されたものである。   The graphene material 110 obtained in this manner is a zigzag self-supporting material, but can be formed into a wire by grasping and stretching both ends (see FIG. 7E). However, it does not actually extend straight, but has a shape in which a plurality of linear portions 110a are connected by bent portions 110b as shown in parentheses. Three such graphene materials 110 are prepared, both ends are gripped and stretched to form a shape close to a straight line, and are arranged with a gap in the vertical direction, and in that state, are solidified with an insulating resin. By doing so, even if the gripping of both ends of the graphene material 110 is released, the graphene material 110 maintains a shape close to a straight line. 6 shows a plurality of insulating resin layers 62, 72, 82, 92. As can be seen from this manufacturing method, the insulating resin layers 62, 72, 82, 92 are insulated resin at a time. It is formed integrally by solidifying.

次に、グラフェン配線構造60の使用例について説明する。グラフェン配線構造60は、予めグラフェン層66,76,86の両端が露出するように絶縁樹脂で固めたものである。このため、その露出した部分を金属で被覆すれば、第1実施形態と同様、グラフェン配線構造60の両端に電極が形成される。こうして両端に電極が形成されたグラフェン配線構造60は、例えば燃料電池やリチウム二次電池等のバスバーや自動車のハーネスに使用される。   Next, a usage example of the graphene wiring structure 60 will be described. The graphene wiring structure 60 is previously hardened with an insulating resin so that both ends of the graphene layers 66, 76, and 86 are exposed. For this reason, if the exposed part is covered with metal, electrodes are formed at both ends of the graphene wiring structure 60 as in the first embodiment. The graphene wiring structure 60 in which the electrodes are thus formed at both ends is used, for example, for a bus bar such as a fuel cell or a lithium secondary battery, or an automobile harness.

以上詳述した本実施形態のグラフェン配線構造60によれば、グラフェン層66,76,86が多段(3段)になっているため、例えばグラフェン層66のみの場合と比べて大きな電流を流すことができる。また、絶縁樹脂層62,72,82,92の存在によって柔軟性が確保されるし、グラフェン層66,76,86が保護される。   According to the graphene wiring structure 60 of the present embodiment described in detail above, since the graphene layers 66, 76, 86 are multi-stage (three stages), for example, a larger current flows than in the case of the graphene layer 66 alone. Can do. Further, the presence of the insulating resin layers 62, 72, 82, and 92 ensures flexibility and protects the graphene layers 66, 76, and 86.

また、各グラフェン層66,76,86は、いずれも奇数枚(ここでは3枚)のグラフェンシートを積層したものであるが、奇数枚のグラフェンシートを積層したグラフェン層は電気特性が似通っているため、その奇数枚のグラフェンシートを積層したグラフェン層の電気特性が強調される。   Each of the graphene layers 66, 76, and 86 is formed by stacking an odd number of graphene sheets (here, three sheets), but the graphene layers formed by stacking an odd number of graphene sheets have similar electrical characteristics. Therefore, the electrical characteristics of the graphene layer in which the odd number of graphene sheets are stacked are emphasized.

[その他の実施形態]
上述した第1実施形態では、グラフェン配線構造10の両端に電極を形成するにあたり、グラフェン配線構造10の絶縁樹脂層12,22,32,42の両端を除去し、グラフェン層16,26,36及び触媒金属層14,24,34を露出させ、その露出した部分を金属で被覆したが、図3に示す製造工程図の絶縁樹脂層12の代わりに、金属部分12a,12bを有する絶縁樹脂層12を使用してもよい。この場合、他の絶縁樹脂層22,32,42も同様の構成とする。こうすれば、絶縁樹脂層42を形成した時点で、図4に示す両端に電極を有するグラフェン配線構造10が得られる。
[Other Embodiments]
In the first embodiment described above, when forming electrodes on both ends of the graphene wiring structure 10, both ends of the insulating resin layers 12, 22, 32, 42 of the graphene wiring structure 10 are removed, and the graphene layers 16, 26, 36 and Although the catalytic metal layers 14, 24, and 34 are exposed and the exposed portions are covered with metal, the insulating resin layer 12 having the metal portions 12a and 12b instead of the insulating resin layer 12 in the manufacturing process diagram shown in FIG. May be used. In this case, the other insulating resin layers 22, 32, and 42 have the same configuration. In this way, when the insulating resin layer 42 is formed, the graphene wiring structure 10 having electrodes at both ends shown in FIG. 4 is obtained.

上述した第1及び第2実施形態では、各グラフェン層はすべて同じ奇数枚のグラフェンシートからなるものとしたが、異なる奇数枚のグラフェンシートとしてもよい。例えば、第1実施形態のグラフェン層16が1枚、グラフェン層26が3枚、グラフェン層36が5枚であってもよい。また、各グラフェン層をすべて同じ偶数枚のグラフェンシートからなるものとしてもよく、異なる偶数枚のグラフェンシートとしてもよい。   In the first and second embodiments described above, each graphene layer is composed of the same odd number of graphene sheets, but may be different odd numbers of graphene sheets. For example, the graphene layer 16 of the first embodiment may be one, the graphene layer 26 may be three, and the graphene layer 36 may be five. Further, all the graphene layers may be composed of the same even number of graphene sheets, or different even numbers of graphene sheets.

上述した第2実施形態では、ジグザグ状の触媒金属層116を基板本体112上に形成したが、図8(平面図)に示すように渦巻き状の触媒金属層126を基板本体112上に形成してもよい。この場合も上述した第2実施形態と同様にして触媒金属層126上にグラフェンを成長させたあと、触媒金属層126を溶かすかグラフェンを剥がせば、グラフェンを渦巻き状のグラフェン素材として取り出すことができ、この渦巻き状のグラフェン素材の両末端を把持して伸ばせば線材にすることができる。あるいは、ジグザグ状や渦巻き状以外でも、一筆書き形状であれば上述した第2実施形態と同様にしてその形状のグラフェン素材を取り出すことができる。あるいは、一筆書き形状以外の形状、例えば三角形や四角形などの多角形、円形、楕円形、星形など任意の形状を採用してもよい。この場合には、任意の形状のグラフェン素材を取り出すことができる。   In the second embodiment described above, the zigzag catalyst metal layer 116 is formed on the substrate body 112. However, as shown in FIG. 8 (plan view), a spiral catalyst metal layer 126 is formed on the substrate body 112. May be. Also in this case, after growing graphene on the catalyst metal layer 126 in the same manner as in the second embodiment described above, the graphene can be taken out as a spiral graphene material by melting the catalyst metal layer 126 or peeling the graphene. It can be made into a wire by gripping and stretching both ends of the spiral graphene material. Alternatively, a graphene material having a shape other than the zigzag shape or the spiral shape can be taken out in the same manner as in the second embodiment described above as long as it is a single stroke shape. Alternatively, any shape other than the one-stroke shape, for example, a polygon such as a triangle or a quadrangle, a circle, an ellipse, or a star shape may be employed. In this case, a graphene material having an arbitrary shape can be taken out.

上述した第2実施形態では、基板本体112が板状の場合について説明したが、基板本体が円筒状であってもよい。その場合には、例えば基板本体にリボンを巻き付けるような感じで触媒金属層のパターニングを行い、その触媒金属層の表面にグラフェンを成長させることで、非常に長く滑らかな線状のグラフェン素材を簡単に得ることができる。このとき、基板本体は、中空(中が空)であってもよいし、中実(中が詰まっている)であってもよい。円筒状で中空の基板本体にグラフェンを成長させる場合には、基板本体の外面及び内面のいずれか一方に触媒金属層をパターニングし、その触媒金属層の表面にグラフェンを成長させてもよいし、あるいは、基板本体の外面及び内面の両方に触媒金属層をパターニングし、両触媒金属層の表面にグラフェンを成長させてもよい。また、円筒状の基板本体に触媒金属層を形成する方法としては、通常のフォトリソグラフィーに準じた手法を基板本体を回転させながら適用してもよいし、ナノインプリントの技術を用いて機械的にリソグラフィーパターンを転写してもよいし、細いけがき針を使用して機械的にパターニングしてもよい。触媒金属を成膜する方法は、蒸着を採用してもよいし、その金属を含む液状の原料を吹き付ける、もしくはその液中に基板を浸し、その後、熱処理を行い触媒金属の薄膜を形成する方法を採用してもよい。触媒金属層の表面にグラフェンを成長させるには、触媒金属層の表面に炭素源を供給するが、基板本体が円筒状で中空の場合には、基板本体を真空チャンバーと見立ててその中に炭素源となる原料ガスを流してグラフェンを成長させることができるため、真空チャンバーを用意する必要がなくなり、装置構成の大幅な簡略化、ひいては生産性の向上や生産コストの削減など多くの優れた効果を期待できる。   In the second embodiment described above, the case where the substrate body 112 is plate-shaped has been described, but the substrate body may be cylindrical. In that case, for example, by patterning the catalytic metal layer as if a ribbon is wrapped around the substrate body, and growing graphene on the surface of the catalytic metal layer, a very long and smooth linear graphene material can be easily obtained Can get to. At this time, the substrate body may be hollow (the interior is empty) or solid (the interior is clogged). When growing graphene on a cylindrical and hollow substrate body, the catalyst metal layer may be patterned on either the outer surface or the inner surface of the substrate body, and the graphene may be grown on the surface of the catalyst metal layer, Alternatively, the catalyst metal layer may be patterned on both the outer surface and the inner surface of the substrate body, and graphene may be grown on the surfaces of both catalyst metal layers. In addition, as a method of forming the catalytic metal layer on the cylindrical substrate body, a technique according to ordinary photolithography may be applied while rotating the substrate body, or mechanical lithography using nanoimprint technology. The pattern may be transferred, or may be mechanically patterned using a fine marking needle. As a method for forming a catalyst metal film, vapor deposition may be employed, or a liquid raw material containing the metal is sprayed, or a substrate is immersed in the liquid, followed by heat treatment to form a catalyst metal thin film. May be adopted. In order to grow graphene on the surface of the catalytic metal layer, a carbon source is supplied to the surface of the catalytic metal layer. When the substrate body is cylindrical and hollow, the substrate body is regarded as a vacuum chamber and carbon is contained therein. Since graphene can be grown by flowing the source gas as a source, there is no need to prepare a vacuum chamber, and there are many excellent effects such as greatly simplifying the equipment configuration and eventually improving productivity and reducing production costs. Can be expected.

上述した第1実施形態では、図3(h)の構造を本発明のグラフェン配線構造の一例として説明したが、図3(g)のように最表面のグラフェン層36が絶縁樹脂で被覆されず露出しているものも本発明のグラフェン配線構造の一例といえる。というのは、図3(g)のうち触媒金属層34及びグラフェン層36を除いた部分は、絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には絶縁樹脂層が存在する構造(本発明のグラフェン配線構造)となっているからである。つまり、図3(g)の構造は、本発明のグラフェン配線構造を含んでいる。こうした図3(g)の構造を持つものを燃料電池やリチウム二次電池等のバスバーとして利用してもよい。   In the first embodiment described above, the structure of FIG. 3H has been described as an example of the graphene wiring structure of the present invention, but the outermost graphene layer 36 is not covered with an insulating resin as shown in FIG. What is exposed can also be said to be an example of the graphene wiring structure of the present invention. This is because, in FIG. 3G, the insulating resin layer and the graphene layer are repeatedly laminated except for the catalytic metal layer 34 and the graphene layer 36, and the insulating resin layers exist above and below each graphene layer. This is because it has a structure (graphene wiring structure of the present invention). That is, the structure of FIG. 3G includes the graphene wiring structure of the present invention. Those having the structure shown in FIG. 3G may be used as bus bars for fuel cells, lithium secondary batteries, and the like.

本発明のグラフェン配線構造は、例えばリチウム二次電池のバスバーや自動車のハーネスなどに利用可能である。   The graphene wiring structure of the present invention can be used for, for example, a bus bar of a lithium secondary battery or a harness of an automobile.

10 グラフェン配線構造、12,22,32,42 絶縁樹脂層、12a,12b,22a,22b,32a,32b,42a,42b 金属部分、14,24,34 触媒金属層、16,26,36 グラフェン層、60 グラフェン配線構造、62,72,82,92 絶縁樹脂層、66,76,86 グラフェン層、110 グラフェン素材、110a 線状部、110b 屈曲部、112 基板本体、114 結晶層、116 触媒金属層、126 触媒金属層 10 Graphene wiring structure, 12, 22, 32, 42 Insulating resin layer, 12a, 12b, 22a, 22b, 32a, 32b, 42a, 42b Metal part, 14, 24, 34 Catalyst metal layer, 16, 26, 36 Graphene layer , 60 Graphene wiring structure, 62, 72, 82, 92 Insulating resin layer, 66, 76, 86 Graphene layer, 110 Graphene material, 110a Linear portion, 110b Bending portion, 112 Substrate body, 114 Crystal layer, 116 Catalyst metal layer 126 Catalyst metal layer

Claims (3)

絶縁樹脂層とグラフェン層とが繰り返し積層され、各グラフェン層の上下には前記絶縁樹脂層が存在する、グラフェン配線構造。   A graphene wiring structure in which an insulating resin layer and a graphene layer are repeatedly laminated, and the insulating resin layer exists above and below each graphene layer. 前記絶縁樹脂層と前記グラフェン層との間には、グラフェン化を促進する機能を有する触媒金属層が介在する、請求項1に記載のグラフェン配線構造。   The graphene wiring structure according to claim 1, wherein a catalyst metal layer having a function of promoting grapheneization is interposed between the insulating resin layer and the graphene layer. 各グラフェン層は、いずれも奇数枚のグラフェンシートを積層したものであるか、又は、いずれも偶数枚のグラフェンシートを積層したものである、
請求項1又は2に記載のグラフェン配線構造。
Each graphene layer is a laminate of an odd number of graphene sheets or a laminate of an even number of graphene sheets.
The graphene wiring structure according to claim 1 or 2.
JP2011163193A 2010-12-21 2011-07-26 Graphene wiring structure Active JP5783530B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011163193A JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure
PCT/JP2012/065131 WO2012173145A1 (en) 2011-06-14 2012-06-13 Process for producing graphene material, graphene material, and graphene wiring structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010284762 2010-12-21
JP2010284762 2010-12-21
JP2011163193A JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure

Publications (2)

Publication Number Publication Date
JP2012144421A JP2012144421A (en) 2012-08-02
JP5783530B2 true JP5783530B2 (en) 2015-09-24

Family

ID=46313520

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2011029429A Withdrawn JP2012144415A (en) 2010-12-21 2011-02-15 Method for producing graphene material, and the graphene material
JP2011131743A Active JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material
JP2011149418A Active JP5783529B2 (en) 2010-12-21 2011-07-05 Graphene material manufacturing method
JP2011163193A Active JP5783530B2 (en) 2010-12-21 2011-07-26 Graphene wiring structure
JP2012549828A Active JP5688775B2 (en) 2010-12-21 2011-12-20 Graphene material manufacturing method

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2011029429A Withdrawn JP2012144415A (en) 2010-12-21 2011-02-15 Method for producing graphene material, and the graphene material
JP2011131743A Active JP5783526B2 (en) 2010-12-21 2011-06-14 Graphene material manufacturing method and graphene material
JP2011149418A Active JP5783529B2 (en) 2010-12-21 2011-07-05 Graphene material manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012549828A Active JP5688775B2 (en) 2010-12-21 2011-12-20 Graphene material manufacturing method

Country Status (2)

Country Link
JP (5) JP2012144415A (en)
WO (2) WO2012086233A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150417B2 (en) * 2010-09-16 2015-10-06 Graphensic Ab Process for growth of graphene
KR101271951B1 (en) * 2011-05-27 2013-06-07 포항공과대학교 산학협력단 Method of preparing carbon thin film
WO2013129312A1 (en) 2012-02-27 2013-09-06 学校法人 名城大学 Process for producing catalyst metal layer and process for producing graphene material
CN103378247B (en) * 2012-04-25 2016-12-14 清华大学 Epitaxial structure
JP5763597B2 (en) * 2012-07-23 2015-08-12 日本電信電話株式会社 Method for producing graphene
JP6074270B2 (en) * 2013-01-15 2017-02-01 東京エレクトロン株式会社 Graphene patterning method and patterning member
JP6441901B2 (en) * 2013-05-01 2018-12-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method for producing a partially independent two-dimensional crystal film and device comprising such a film
JP2015024937A (en) * 2013-07-26 2015-02-05 住友電気工業株式会社 Method of producing graphite film and graphite structure
JP2015040156A (en) * 2013-08-23 2015-03-02 日本電信電話株式会社 Graphene formation method and formation apparatus
CN103738939B (en) * 2013-10-21 2016-04-13 华中科技大学 A kind of method that Graphene is peeled off fast
CN105206318A (en) * 2014-06-24 2015-12-30 美特科技(苏州)有限公司 Brocade silk yarn
JP6339976B2 (en) * 2015-07-13 2018-06-06 日本電信電話株式会社 Method for producing carbon microelectrode
KR101850107B1 (en) * 2016-05-30 2018-04-20 주식회사 엔젤 The Electromagnet And The Production Method
JP6748033B2 (en) * 2017-06-08 2020-08-26 日本電信電話株式会社 Carbon tube manufacturing method
CN110745815B (en) * 2018-07-24 2022-08-16 南开大学 Method for preparing graphene-metal composite wire
US11694895B2 (en) * 2019-02-14 2023-07-04 The Government of the United States of America, as represented by the Secretarv of the Navy Method and use for low-temperature epitaxy and film texturing between a two-dimensional crystalline layer and metal film
CN110152705B (en) * 2019-05-06 2021-11-23 杭州电子科技大学 Preparation method of TaON @ Ni @ graphene ternary heterojunction photocatalytic material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142273A1 (en) * 2006-06-08 2007-12-13 International Business Machines Corporation Highly heat conductive, flexible sheet
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP5470610B2 (en) * 2007-10-04 2014-04-16 国立大学法人福井大学 Graphene sheet manufacturing method
KR100923304B1 (en) * 2007-10-29 2009-10-23 삼성전자주식회사 Graphene sheet and process for preparing the same
KR101344493B1 (en) * 2007-12-17 2013-12-24 삼성전자주식회사 Single crystalline graphene sheet and process for preparing the same
JP5353009B2 (en) * 2008-01-08 2013-11-27 富士通株式会社 Semiconductor device manufacturing method and semiconductor device
JP5403644B2 (en) * 2008-01-25 2014-01-29 ニッタ株式会社 Carbon fiber manufacturing method
JP5303957B2 (en) * 2008-02-20 2013-10-02 株式会社デンソー Graphene substrate and manufacturing method thereof
JP5553353B2 (en) * 2008-03-26 2014-07-16 学校法人早稲田大学 Monoatomic film manufacturing method
FR2937343B1 (en) * 2008-10-17 2011-09-02 Ecole Polytech METHOD OF CONTROLLED GROWTH OF GRAPHENE FILM
US20120082787A1 (en) * 2009-03-27 2012-04-05 Jun-Ichi Fujita Method for producing graphene film, method for manufacturing electronic element, and method for transferring graphene film to substrate
JP2011213090A (en) * 2009-09-29 2011-10-27 Sekisui Chem Co Ltd Resin laminated sheet
EP2500947B1 (en) * 2009-11-13 2018-10-24 Fujitsu Limited A method of manufacturing a semiconductor device
KR20120058127A (en) * 2010-11-29 2012-06-07 삼성전기주식회사 An insulating resin composition for multilayer wiring board and a multilayer wiring board comprising the same

Also Published As

Publication number Publication date
JP2012144421A (en) 2012-08-02
WO2012086641A1 (en) 2012-06-28
JPWO2012086641A1 (en) 2014-05-22
JP2012144420A (en) 2012-08-02
WO2012086233A1 (en) 2012-06-28
JP5783526B2 (en) 2015-09-24
JP2012144419A (en) 2012-08-02
JP2012144415A (en) 2012-08-02
JP5688775B2 (en) 2015-03-25
JP5783529B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5783530B2 (en) Graphene wiring structure
KR101813172B1 (en) Process for preparing multiple layered graphene
JP5353009B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5470610B2 (en) Graphene sheet manufacturing method
TWI588285B (en) Process for forming carbon film or inorganic material film on substrate
KR101878730B1 (en) 3-dimensional graphene structure and process for preparing and transferring the same
JP5105028B2 (en) Conductive thin film and transparent conductive film containing graphene
JP5027167B2 (en) Carbon nanotube structure and manufacturing method thereof
US9178020B2 (en) Graphene structure and method of manufacturing the graphene structure, and graphene device and method of manufacturing the graphene device
US20130266729A1 (en) Method for making strip shaped graphene layer
JP2011102231A (en) Method of fabricating graphene using catalyst alloy
US20130264193A1 (en) Method for making strip shaped graphene layer
TWI456787B (en) Method for making light-emitting diode
CN101820036A (en) Method for preparing light-emitting diode
WO2012173145A1 (en) Process for producing graphene material, graphene material, and graphene wiring structure
KR20120053294A (en) Method for forming graphene pattern and method for manufacturing electronic element having graphene pattern
JP5671896B2 (en) Semiconductor device and manufacturing method thereof
US9373429B2 (en) Method of obtaining graphene
JP2011201774A (en) Method for producing carbon nanotube bulk structure
JP5656888B2 (en) Graphene transistor
KR101984696B1 (en) The nano wire-graphene structure and the method of manufacturing the nano wire-graphene structure
KR20140001371A (en) Graphene substrate and manufacturing method thereof
JP2014122154A (en) Composite material including carbon nanotube bulk structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5783530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250