JP2011202245A - Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method - Google Patents

Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method Download PDF

Info

Publication number
JP2011202245A
JP2011202245A JP2010071734A JP2010071734A JP2011202245A JP 2011202245 A JP2011202245 A JP 2011202245A JP 2010071734 A JP2010071734 A JP 2010071734A JP 2010071734 A JP2010071734 A JP 2010071734A JP 2011202245 A JP2011202245 A JP 2011202245A
Authority
JP
Japan
Prior art keywords
copper
zinc
reduction reaction
aqueous solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010071734A
Other languages
Japanese (ja)
Other versions
JP5566743B2 (en
Inventor
Tomohiro Ishii
智紘 石井
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010071734A priority Critical patent/JP5566743B2/en
Publication of JP2011202245A publication Critical patent/JP2011202245A/en
Application granted granted Critical
Publication of JP5566743B2 publication Critical patent/JP5566743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing copper-zinc alloy fine particles which are globular, have a nanometer particle size and are capable of suppressing dendrite formation therein.SOLUTION: The method of manufacturing copper alloy fine particle made of copper-zinc by electrolytic reduction reaction is characterized in that the alloy fine particles made of copper-zinc are deposited by the electrolytic reduction reaction from a reductive reaction aqueous solution which is (i) the reductive reaction aqueous solution containing at least copper sulfate, zinc sulfate, a complexing agent (a), an organic dispersant and an inorganic dispersant (reductive reaction aqueous solution 1), (ii) the reductive reaction aqueous solution containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant and an inorganic dispersant (reductive reaction aqueous solution 2), (iii) the reductive reaction aqueous solution containing at least copper tartrate, zinc oxide, an organic dispersant and an inorganic dispersant (reductive reaction aqueous solution 3) or (iv) the reductive reaction aqueous solution containing at least copper acetate, zinc acetate, an organic dispersant and an inorganic dispersant (reductive reaction aqueous solution 4), wherein a pH is 4.5 to 13.

Description

本発明は、銅−亜鉛合金微粒子の製造方法、及び該製造方法により得られる銅合金微粒子に関するものである。   The present invention relates to a method for producing copper-zinc alloy fine particles and copper alloy fine particles obtained by the production method.

ナノメートルサイズ(μm未満のサイズをいう。以下同じ)の金属微粒子は、比表面積が大きく、粒子径が小さくなるにつれて融点が除々に低下する性質を有し、新しい形態の物質として近年注目されつつある。このナノメートルサイズの金属微粒子は、粒子の種類によって、樹脂との複合化のための微粒子表面修飾、薄膜化技術・粒子の配列、機能素子向けの研究開発が行われ、回路配線、インターコネクター、触媒、電池電極、光機能素子、可視光LED素子などへの応用も検討されている。これらの金属微粒子の製造法として、気相合成法、液相合成法が知られている。   Nanometer-sized (referred to below μm size, hereinafter the same) metal fine particles have a large specific surface area, and have a property of gradually decreasing the melting point as the particle diameter decreases. is there. This nanometer-sized metal fine particle is subjected to fine particle surface modification for compounding with resin, thin film technology / particle arrangement, research and development for functional elements, depending on the type of particle, circuit wiring, interconnector, Applications to catalysts, battery electrodes, optical functional elements, visible light LED elements, and the like are also being studied. Gas phase synthesis methods and liquid phase synthesis methods are known as methods for producing these metal fine particles.

これらの微粒子の中でも銅−亜鉛合金微粒子は、バルク状態でも融点が低いので、ナノメートルサイズの該合金微粒子が商業的に得られれば電気・電子部品等に使用される焼結導電体として有望である。銅−亜鉛合金微粒子の気相合成法としては、例えば銅の塩化物及び合金化すべき元素の塩化物をそれぞれ加熱して蒸発させ、これらの蒸気を混合し水素ガスによって還元して平均粒子径が0.1〜1μmの銅50〜95重量%、亜鉛5〜50重量%からなる導電ペースト用銅合金粉が開示されている(特許文献1)。また液相合成法として、水アトマイズ法によって製造された体積平均径がいずれも3.0〜4.0μmの、銅合金粉における亜鉛の含有量が0.02〜1.2質量%の合金が開示されている(特許文献2)。又、還元溶液中の金属イオンを還元法により金属微粒子として析出させる際に、還元溶液中にハロゲンイオン又はアルカリ金属イオンと、有機分散剤とを散在させると、デンドライト化が防止できることが開示されている(特許文献3、特許文献4)。   Among these fine particles, the copper-zinc alloy fine particles have a low melting point even in the bulk state, so if nanometer-sized fine alloy particles can be obtained commercially, they are promising as sintered conductors used in electrical and electronic parts. is there. As a vapor phase synthesis method of copper-zinc alloy fine particles, for example, copper chloride and chloride of an element to be alloyed are heated and evaporated, these vapors are mixed, reduced by hydrogen gas, and the average particle size is reduced. A copper alloy powder for conductive paste made of 50 to 95% by weight of 0.1 to 1 μm copper and 5 to 50% by weight of zinc is disclosed (Patent Document 1). Further, as a liquid phase synthesis method, an alloy having a volume average diameter of 3.0 to 4.0 μm and a zinc content in a copper alloy powder of 0.02 to 1.2% by mass produced by a water atomization method. It is disclosed (Patent Document 2). Further, it is disclosed that when metal ions in a reducing solution are precipitated as metal fine particles by a reduction method, dendrites can be prevented by dispersing halogen ions or alkali metal ions and an organic dispersant in the reducing solution. (Patent Literature 3, Patent Literature 4).

特開2001−118424号公報JP 2001-118424 A 特開2009−99443号公報JP 2009-99443 A 特開2008−231564号公報JP 2008-231564 A 特開2009−185348号公報JP 2009-185348 A

しかし、特許文献1には、積層セラミックコンデンサ外部電極用銅−亜鉛合金粉をペーストにして高温(焼成完了温度:633〜770℃程度)で焼結して電気比抵抗(μΩ・cm)が評価されているが、焼成温度はいずれも極めて高温である。特許文献2には、回路導体形成用や積層セラミックコンデンサ外部電極用に使用される導電材ペーストとして、亜鉛の含有量を0.02〜1.2質量%とし、かつリン0.005〜0.05質量%と共存させることにより、耐食耐酸化性を著しく向上できることが開示されている。特許文献3、4には、還元反応水溶液中の銅イオンを還元して、銅微粒子を析出させる際にハロゲンイオン又はアルカリ金属イオンと、有機分散剤とを存在させて、析出する銅微粒子のデンドライト状の凝集を防止しているが、銅−亜鉛からなる銅合金微粒子を析出させること、及び低温で焼結が可能となる微粒子分散溶液いついては記載されていない。電子部品や半導体などの実装接続に用いられるペーストやインクにおいて、多く用いられる金属粒子は、粒子サイズを小さくすると、低温における加熱でも粒子同士の相互焼結が起こり、金属的な導電性が得られるため、実用的にも金属微粒子が用いられるようになってきているが、より低温でのプロセスに適用するためには、粒子の融点が低くなるような合金化を行うことが必要になる。本発明は、電解還元を行うことにより、デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法、及びこれらの製造により得られる銅合金微粒子を提供することを目的とする。   However, Patent Document 1 evaluates electrical resistivity (μΩ · cm) by using a copper-zinc alloy powder for multilayer ceramic capacitor external electrode as a paste and sintering it at a high temperature (firing completion temperature: about 633 to 770 ° C.). However, all of the firing temperatures are extremely high. In Patent Document 2, as a conductive material paste used for forming a circuit conductor or a multilayer ceramic capacitor external electrode, the zinc content is 0.02 to 1.2 mass%, and phosphorus is 0.005 to 0.005. It is disclosed that the corrosion resistance and oxidation resistance can be remarkably improved by coexisting with 05% by mass. Patent Documents 3 and 4 describe that dendrites of copper fine particles deposited by reducing the copper ions in the reduction reaction aqueous solution and precipitating copper fine particles in the presence of halogen ions or alkali metal ions and an organic dispersant. However, there is no description of a fine particle dispersion solution that can precipitate copper alloy fine particles made of copper-zinc and that can be sintered at a low temperature. In pastes and inks used for mounting and connection of electronic parts and semiconductors, metal particles that are often used can reduce the particle size and cause mutual sintering of particles even when heated at low temperatures, resulting in metallic conductivity. For this reason, metal fine particles have been used practically, but in order to apply to a process at a lower temperature, it is necessary to perform alloying that lowers the melting point of the particles. The present invention provides a method for producing copper-zinc alloy fine particles having a spherical shape and a nanometer size with suppressed dendrite, and copper alloy fine particles obtained by the production thereof, by performing electrolytic reduction. Objective.

本発明者らは、液相において従来行われていた電解還元を行う際に、通常使用される光沢剤や光沢補助剤を用いることなく、銅−亜鉛合金微粒子が析出可能とする特定の成分である金属塩、有機分散剤、及び無機分散剤を電解還元反応水溶液に添加して、電解還元を行うとデンドライト化が抑制された、平均一次粒子径がナノメートルサイズの銅−亜鉛からなる銅合金微粒子が効率よく製造できることを見出し、本発明を完成するに至った。   The inventors of the present invention have a specific component that allows copper-zinc alloy fine particles to be deposited without using a normally used brightener or gloss auxiliary when performing electrolytic reduction conventionally performed in a liquid phase. A copper alloy composed of copper-zinc with an average primary particle size of nanometer size, in which dendriticization is suppressed by adding a certain metal salt, organic dispersant, and inorganic dispersant to the electrolytic reduction reaction aqueous solution and performing electrolytic reduction. The inventors have found that fine particles can be produced efficiently, and have completed the present invention.

即ち、本発明は、以下の〈1〉〜〈11〉に記載する発明を要旨とする。
〈1〉電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、
(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は
(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、
でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法(以下、第一の態様ということがある)。
〈2〉前記還元反応水溶液1における錯化剤(a)がグリセリン、トリエタノールアミン、エタノールアミン、シュウ酸ナトリウム、ピロリン酸カリウム、ピロリン酸ナトリウム、及びグルコヘプトン酸ナトリウムから選択される1種又は2種以上であることを特徴とする、前記〈1〉に記載の銅合金微粒子の製造方法。
〈3〉前記還元反応水溶液2における水溶性亜鉛化合物が塩化亜鉛又は硫酸亜鉛であり、錯化剤(b)がチオ硫酸ナトリウムであることを特徴とする、前記〈1〉に記載の銅合金微粒子の製造方法。
〈4〉前記有機分散剤が水溶性高分子からなる有機分散剤であって、ポリエチレンイミン、ポリビニルピロリドン、ポリアクリル酸、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、デンプン、及びゼラチンから選択される1種又は2種以上であることを特徴とする、前記〈1〉ないし〈3〉のいずれかに記載の銅合金微粒子の製造方法。
〈5〉前記還元反応水溶液中における無機分散剤の濃度が無機分散剤と銅原子及び亜鉛原子のモル比(無機分散剤/(銅+亜鉛))で0.01〜20であることを特徴とする、前記〈1〉ないし〈4〉のいずれかに記載の銅合金微粒子の製造方法。
That is, the gist of the present invention is the invention described in the following <1> to <11>.
<1> A method for producing copper alloy fine particles comprising copper-zinc by electrolytic reduction reaction,
(I) Reduction reaction aqueous solution (reduction reaction aqueous solution 1) containing at least copper sulfate, zinc sulfate, complexing agent (a), organic dispersant, and inorganic dispersant,
(ii) A reduction reaction aqueous solution (reduction reaction aqueous solution 2) containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant, and an inorganic dispersant,
(iii) Reduction reaction aqueous solution (reduction reaction aqueous solution 3) containing at least copper tartrate, zinc oxide, an organic dispersant, and an inorganic dispersant, or
(iv) a reduction reaction aqueous solution (reduction reaction aqueous solution 4) containing at least copper acetate, zinc acetate, an organic dispersant, and an inorganic dispersant;
A method for producing copper alloy fine particles (hereinafter referred to as a first aspect), characterized in that an alloy fine particle comprising copper-zinc is precipitated by electrolytic reduction reaction from a reduction reaction aqueous solution having a pH of 4.5 to 13. There).
<2> One or two complexing agents (a) in the reduction reaction aqueous solution 1 are selected from glycerin, triethanolamine, ethanolamine, sodium oxalate, potassium pyrophosphate, sodium pyrophosphate, and sodium glucoheptonate It is the above, The manufacturing method of the copper alloy fine particle as described in said <1>.
<3> The copper alloy fine particles according to <1>, wherein the water-soluble zinc compound in the aqueous reduction reaction solution 2 is zinc chloride or zinc sulfate, and the complexing agent (b) is sodium thiosulfate. Manufacturing method.
<4> The organic dispersant is an organic dispersant composed of a water-soluble polymer, and is selected from polyethyleneimine, polyvinylpyrrolidone, polyacrylic acid, carboxymethylcellulose, polyacrylamide, polyvinyl alcohol, polyethylene oxide, starch, and gelatin. The method for producing copper alloy fine particles according to any one of <1> to <3>, wherein the method is one or more types.
<5> The concentration of the inorganic dispersant in the reduction reaction aqueous solution is 0.01 to 20 in terms of a molar ratio of the inorganic dispersant to copper atoms and zinc atoms (inorganic dispersant / (copper + zinc)). The method for producing fine copper alloy particles according to any one of <1> to <4>.

〈6〉前記無機分散剤がハロゲンイオン、アルカリ金属イオン、及びアルカリ土類金属イオンから選択される1種又は2種以上であることを特徴とする、前記〈1〉ないし〈5〉のいずれかに記載の銅合金微粒子の製造方法。
〈7〉前記ハロゲンイオンの供給源が塩化水素、塩化カリウム、塩化ナトリウム、塩化アンモニウム、臭化水素、臭化カリウム、臭化ナトリウム、臭化アンモニウム、沃化水素、沃化カリウム、沃化ナトリウム、沃化アンモニウム、フッ化水素、フッ化カリウム、フッ化ナトリウム、及び弗化アンモニウムから選択される1種又は2種以上であり、
前記アルカリ金属イオンの供給源が水酸化ナトリウム、水酸化カリウム、硫酸ナトリウム、硫酸カリウム、酒石酸ナトリウム、酒石酸カリウム、酢酸ナトリウム、及び酢酸カリウムから選択される1種又は2種以上であり、
前記アルカリ土類金属イオンの供給源が臭化カルシウム、臭化バリウム、塩化カルシウム、塩化バリウム、沃化カルシウム、及び沃化バリウムから選択される1種又は2種以上であることを特徴とする、前記〈6〉に記載の銅合金微粒子の製造方法。
<6> Any of the above <1> to <5>, wherein the inorganic dispersant is one or more selected from halogen ions, alkali metal ions, and alkaline earth metal ions The manufacturing method of copper alloy fine particles as described in 2.
<7> The source of the halogen ion is hydrogen chloride, potassium chloride, sodium chloride, ammonium chloride, hydrogen bromide, potassium bromide, sodium bromide, ammonium bromide, hydrogen iodide, potassium iodide, sodium iodide, One or more selected from ammonium iodide, hydrogen fluoride, potassium fluoride, sodium fluoride, and ammonium fluoride,
The alkali metal ion source is one or more selected from sodium hydroxide, potassium hydroxide, sodium sulfate, potassium sulfate, sodium tartrate, potassium tartrate, sodium acetate, and potassium acetate;
The source of the alkaline earth metal ions is one or more selected from calcium bromide, barium bromide, calcium chloride, barium chloride, calcium iodide, and barium iodide, The method for producing copper alloy fine particles according to <6>.

〈8〉前記還元反応水溶液中における無機分散剤の濃度が無機分散剤と銅原子及び亜鉛原子の質量比(無機分散剤/(銅+亜鉛))で0.01〜20であることを特徴とする、前記〈6〉に記載の銅合金微粒子の製造方法。
〈9〉前記還元反応水溶液中の銅原子濃度が0.01〜4モル/リットルであり、亜鉛原子濃度が前記銅原子濃度の0.01〜1モル倍であることを特徴とする、前記〈1〉ないし〈8〉のいずれかに記載の銅合金微粒子の製造方法。
〈10〉前記還元反応水溶液中に設けられたアノード(陽極)とカソード(陰極)間に電圧を印加して還元反応を行うことによりカソード表面付近に銅−亜鉛からなる銅合金微粒子を析出させることを特徴とする、前記〈1〉ないし〈9〉のいずれかに記載の銅合金微粒子の製造方法。
〈11〉前記〈1〉ないし〈10〉のいずれかに記載の還元反応により製造された、銅−亜鉛からなる銅合金微粒子の平均一次粒子径が1〜80nmの範囲であり、かつ平均アスペクト比が10以下である銅合金微粒子(以下、第二の態様ということがある)。
<8> The concentration of the inorganic dispersant in the reduction reaction aqueous solution is 0.01 to 20 in terms of a mass ratio of the inorganic dispersant to the copper atom and the zinc atom (inorganic dispersant / (copper + zinc)). The manufacturing method of the copper alloy fine particles according to <6>.
<9> The copper atom concentration in the reduction reaction aqueous solution is 0.01 to 4 mol / liter, and the zinc atom concentration is 0.01 to 1 mol times the copper atom concentration. 1> thru | or the manufacturing method of the copper alloy fine particle in any one of <8>.
<10> Depositing copper alloy fine particles composed of copper-zinc in the vicinity of the cathode surface by applying a voltage between the anode (anode) and the cathode (cathode) provided in the aqueous solution of the reduction reaction to perform a reduction reaction. The method for producing fine copper alloy particles according to any one of <1> to <9>.
<11> The average primary particle diameter of copper alloy fine particles made of copper-zinc produced by the reduction reaction according to any one of <1> to <10> is in the range of 1 to 80 nm, and the average aspect ratio Copper alloy fine particles having an A of 10 or less (hereinafter sometimes referred to as a second embodiment).

本発明の還元反応水溶液に、特定の銅と亜鉛の金属塩(又は錯体)を組み合わせた還元反応水溶液とし、且つ有機分散剤を添加することにより、電解還元反応で析出する金属微粒子を平均一次粒子径がナノメータサイズの合金微粒子として析出させる可能となる。又、該還元反応水溶液に無機分散剤が添加されていることにより、合金微粒子が析出する際にデンドライト状の凝集が抑制された銅−亜鉛からなる銅合金微粒子が形成される。   A reduction reaction aqueous solution in which a specific copper and zinc metal salt (or complex) is combined with the reduction reaction aqueous solution of the present invention, and by adding an organic dispersant, the fine metal particles precipitated in the electrolytic reduction reaction are average primary particles. It is possible to deposit as nanometer-sized alloy fine particles. In addition, by adding an inorganic dispersant to the reduction reaction aqueous solution, copper alloy fine particles composed of copper-zinc in which dendritic aggregation is suppressed when alloy fine particles are precipitated are formed.

以下、本発明について詳述する。
〔1〕銅合金微粒子の製造方法
本発明の「銅合金微粒子の製造方法」は、電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、
(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は
(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、
でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる銅合金微粒子を析出させることを特徴とする。
Hereinafter, the present invention will be described in detail.
[1] Method for producing copper alloy fine particles “The method for producing copper alloy fine particles” of the present invention is a method for producing copper alloy fine particles comprising copper-zinc by electrolytic reduction reaction,
(I) Reduction reaction aqueous solution (reduction reaction aqueous solution 1) containing at least copper sulfate, zinc sulfate, complexing agent (a), organic dispersant, and inorganic dispersant,
(ii) A reduction reaction aqueous solution (reduction reaction aqueous solution 2) containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant, and an inorganic dispersant,
(iii) Reduction reaction aqueous solution (reduction reaction aqueous solution 3) containing at least copper tartrate, zinc oxide, an organic dispersant, and an inorganic dispersant, or
(iv) a reduction reaction aqueous solution (reduction reaction aqueous solution 4) containing at least copper acetate, zinc acetate, an organic dispersant, and an inorganic dispersant;
Then, copper alloy fine particles made of copper-zinc are deposited from an aqueous reduction reaction solution having a pH of 4.5 to 13 by electrolytic reduction reaction.

以下に本発明の還元反応水溶液1〜4について記載する。
(1)有機分散剤
本発明における有機分散剤の作用のメカニズムは定かではないが、還元反応水溶液中において還元反応による銅合金微粒子の結晶核の生成を助長し、更に生成した結晶を分散させる作用を有するものと推定される。有機分散剤として、水溶性の高分子化合物を使用することができる、このような水溶性の高分子化合物としてポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプン、ゼラチン等が例示できる。
The reduction reaction aqueous solutions 1 to 4 of the present invention are described below.
(1) Organic dispersant The mechanism of the action of the organic dispersant in the present invention is not clear, but it promotes the formation of crystal nuclei of the copper alloy fine particles by the reduction reaction in the aqueous reduction reaction solution, and further disperses the generated crystals. It is estimated that A water-soluble polymer compound can be used as the organic dispersant. As such a water-soluble polymer compound, an amine polymer such as polyethyleneimine or polyvinylpyrrolidone; a carboxyl such as polyacrylic acid or carboxymethylcellulose can be used. Examples include hydrocarbon polymers having acid groups; acrylamides such as polyacrylamide; polyvinyl alcohol, polyethylene oxide, and starch and gelatin.

上記例示した水溶性の高分子化合物の具体例として、ポリエチレンイミン(平均分子量:100〜100,000)、ポリビニルピロリドン(平均分子量:1000〜500、000)、カルボキシメチルセルロース(ヒドロキシル基Na塩のカルボキシメチル基への置換度:0.4以上、平均分子量:1000〜100,000)、ポリアクリル酸(平均分子量:1000〜10000)、ポリアクリルアミド(平均分子量:100〜6,000,000)、ポリビニルアルコール(分子量:1000〜100,000)、ポリエチレングリコール(平均分子量:100〜50,000)、ポリエチレンオキシド(平均分子量:50,000〜900,000)、ゼラチン(平均分子量:61,000〜67,000)、水溶性のデンプン等が挙げられる。   Specific examples of the water-soluble polymer compounds exemplified above include polyethyleneimine (average molecular weight: 100 to 100,000), polyvinylpyrrolidone (average molecular weight: 1000 to 500,000), carboxymethyl cellulose (carboxymethyl of hydroxyl group Na salt) Substitution degree: 0.4 or more, average molecular weight: 1000 to 100,000), polyacrylic acid (average molecular weight: 1000 to 10,000), polyacrylamide (average molecular weight: 100 to 6,000,000), polyvinyl alcohol (Molecular weight: 1000 to 100,000), polyethylene glycol (average molecular weight: 100 to 50,000), polyethylene oxide (average molecular weight: 50,000 to 900,000), gelatin (average molecular weight: 61,000 to 67,000) ), Water-soluble starch And the like.

上記かっこ内に示す範囲にある平均分子量の高分子化合物は水溶性を有するので、本発明の有機分散剤として好適に使用できる。尚、これらの有機分散剤は、2種以上を混合して使用することもできる。前記還元反応水溶液中における有機分散剤の濃度は、有機分散剤と、銅原子及び亜鉛原子の質量比(有機分散剤/(銅+亜鉛))で0.01〜30が好ましく、0.5〜10がより好ましい。該比が前記0.01未満では還元反応が著しく遅くなり、前記30を超えると添加効果がなくなるおそれがある。   Since the polymer compound having an average molecular weight in the range shown in the parentheses is water-soluble, it can be suitably used as the organic dispersant of the present invention. In addition, these organic dispersing agents can also be used in mixture of 2 or more types. The concentration of the organic dispersant in the reduction reaction aqueous solution is preferably 0.01 to 30, preferably 0.5 to 0.5 by mass ratio of the organic dispersant and the copper atom and the zinc atom (organic dispersant / (copper + zinc)). 10 is more preferable. When the ratio is less than 0.01, the reduction reaction is remarkably slow, and when it exceeds 30, the effect of addition may be lost.

(2)無機分散剤
本発明における無機分散剤は、ハロゲンイオン、アルカリ金属イオン、及びアルカリ土類金属イオンから選択される1種又は2種以上であることが望ましい。本発明における無機分散剤の作用についてのメカニズムは明らかではないが、還元反応水溶液中に好適な濃度範囲で存在していると、銅合金の結晶核の生成を促進すると共に、還元反応により銅合金微粒子の結晶が結晶核から成長する際にデンドライト状の凝集を抑制して、結晶が略球状に成長していくのを助長しているものと推定される。一方、還元反応水溶液中に無機分散剤を存在させずに、銅イオン、亜鉛イオン、及び有機分散剤が溶解している水溶液から電解還元により銅−亜鉛合金微粒子を析出させた場合には、析出した結晶中に原料の銅化合物と亜鉛化合物の混入、及びこれらの化合物の結晶面を介して結晶がデンドライト状に成長していく。特許文献4において無機分散剤は、還元反応水溶液中でデンドライト状の凝集を抑制して、粒子が略球状に成長するのを助長していることが電子顕微鏡等で確認されている。
(2) Inorganic dispersant The inorganic dispersant in the present invention is preferably one or more selected from halogen ions, alkali metal ions, and alkaline earth metal ions. The mechanism of the action of the inorganic dispersant in the present invention is not clear, but when it exists in a suitable concentration range in the reduction reaction aqueous solution, the formation of crystal nuclei of the copper alloy is promoted and the copper alloy is reduced by the reduction reaction. It is presumed that dendritic agglomeration is suppressed when the fine crystal grows from the crystal nucleus, and that the crystal grows into a substantially spherical shape. On the other hand, when copper-zinc alloy fine particles are precipitated by electrolytic reduction from an aqueous solution in which copper ions, zinc ions, and organic dispersants are dissolved without the presence of an inorganic dispersant in the reduction reaction aqueous solution, precipitation occurs. The crystal grows in a dendrite shape through mixing of the raw material copper compound and zinc compound and the crystal planes of these compounds. In Patent Document 4, it has been confirmed with an electron microscope or the like that the inorganic dispersant suppresses dendrite-like aggregation in the reduction reaction aqueous solution and promotes the growth of particles into a substantially spherical shape.

前記ハロゲンイオンの供給源として、塩化水素、塩化カリウム、塩化ナトリウム、塩化アンモニウム、臭化水素、臭化カリウム、臭化ナトリウム、臭化アンモニウム、沃化水素、沃化カリウム、沃化ナトリウム、沃化アンモニウム、フッ化水素、フッ化カリウム、フッ化ナトリウム、及び弗化アンモニウム等から選択される1種又は2種以上が例示でき、前記アルカリ金属イオンの供給源として、水酸化ナトリウム、水酸化カリウム、硫酸ナトリウム、硫酸カリウム、酒石酸ナトリウム、酒石酸カリウム、酢酸ナトリウム、及び酢酸カリウム等から選択される1種又は2種以上が例示でき、前記アルカリ土類金属イオンの供給源として、臭化カルシウム、臭化バリウム、塩化カルシウム、塩化バリウム、沃化カルシウム、及び沃化バリウムから選択される1種又は2種以上が例示できる。銅−亜鉛合金微粒子を電解析出させる場合、前記還元反応水溶液中における無機分散剤と、銅原子及び亜鉛原子のモル比([無機分散剤/(銅+亜鉛)])は好ましくは0.01〜20、より好ましくは0.05〜10である。該モル比が前記20を超えると還元反応が遅くなり、一方前記0.01未満では、添加効果が十分に発揮されない。   As the source of halogen ions, hydrogen chloride, potassium chloride, sodium chloride, ammonium chloride, hydrogen bromide, potassium bromide, sodium bromide, ammonium bromide, hydrogen iodide, potassium iodide, sodium iodide, iodide Examples thereof include one or more selected from ammonium, hydrogen fluoride, potassium fluoride, sodium fluoride, ammonium fluoride, and the like. Examples of the alkali metal ion supply source include sodium hydroxide, potassium hydroxide, Examples thereof include one or more selected from sodium sulfate, potassium sulfate, sodium tartrate, potassium tartrate, sodium acetate, and potassium acetate. Examples of the alkaline earth metal ion source include calcium bromide, bromide Barium, calcium chloride, barium chloride, calcium iodide and barium iodide One or more kinds selected can be exemplified. When electrolytically depositing copper-zinc alloy fine particles, the molar ratio of the inorganic dispersant to the copper atom and zinc atom ([inorganic dispersant / (copper + zinc)]) in the reduction reaction aqueous solution is preferably 0.01. -20, more preferably 0.05-10. When the molar ratio exceeds 20, the reduction reaction becomes slow. On the other hand, when the molar ratio is less than 0.01, the effect of addition is not sufficiently exhibited.

(3)還元反応水溶液中の金属塩
(イ)還元反応水溶液1
還元反応水溶液1は、少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液である。還元反応水溶液中における硫酸銅の濃度は、0.01〜4.0モル/リットルが好ましい。該濃度が0.01モル/リットル未満では、銅−亜鉛合金微粒子の生成量が低減し反応相からの銅−亜鉛合金微粒子の収率が低下するという不都合を生じ、一方、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。よリ好ましい硫酸銅の濃度は、0.05〜0.5モル/リットルである。硫酸亜鉛の濃度は、前記硫酸銅の濃度の0.01〜1モル倍(モル倍はモル濃度の比を示す。以下同じ。)が好ましく、0.1〜0.5モル倍がより好ましい。該濃度が0.01モル倍未満では、還元される亜鉛量が低下するおそれがあり、一方、1モル倍を超えると銅と亜鉛の金属間化合物からなる微粒子を析出するおそれがある。錯化剤(a)は、グリセリン、トリエタノールアミン、エタノールアミン、シュウ酸ナトリウム、ピロリン酸カリウム、ピロリン酸ナトリウム、及びグルコヘプトン酸ナトリウムから選択される1種又は2種以上が好ましい。錯化剤(a)の使用量は、前記硫酸銅の濃度の2〜60モル倍が好ましく、5〜30モル倍がより好ましい。該濃度が2モル倍未満では、銅と亜鉛の共析が困難となるおそれがあり、一方、60モル倍を超えると金属の還元反応が遅くなるおそれがある。
(3) Metal salt in reduction aqueous solution (a) Reduction reaction aqueous solution 1
The reduction reaction aqueous solution 1 is a reduction reaction aqueous solution containing at least copper sulfate, zinc sulfate, a complexing agent (a), an organic dispersant, and an inorganic dispersant. The concentration of copper sulfate in the reduction reaction aqueous solution is preferably 0.01 to 4.0 mol / liter. When the concentration is less than 0.01 mol / liter, the production amount of copper-zinc alloy fine particles is reduced, resulting in a disadvantage that the yield of copper-zinc alloy fine particles from the reaction phase is lowered, while 4.0 mol / liter If it exceeds 1 liter, coarse agglomeration may occur between the produced particles. A more preferable concentration of copper sulfate is 0.05 to 0.5 mol / liter. The concentration of zinc sulfate is preferably 0.01 to 1 mol times the molar concentration of copper sulfate (mole times indicate a molar concentration ratio; the same shall apply hereinafter), and more preferably 0.1 to 0.5 mol times. If the concentration is less than 0.01 mol times, the amount of zinc to be reduced may be reduced, whereas if it exceeds 1 mol times, fine particles composed of an intermetallic compound of copper and zinc may be precipitated. The complexing agent (a) is preferably one or more selected from glycerin, triethanolamine, ethanolamine, sodium oxalate, potassium pyrophosphate, sodium pyrophosphate, and sodium glucoheptonate. The amount of the complexing agent (a) used is preferably 2 to 60 mol times, more preferably 5 to 30 mol times the concentration of the copper sulfate. If the concentration is less than 2 mol times, the eutectoid of copper and zinc may be difficult. On the other hand, if it exceeds 60 mol times, the metal reduction reaction may be delayed.

(ロ)還元反応水溶液2
還元反応水溶液2は、少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液である。還元反応水溶液中における塩化第一銅の濃度は、0.01〜4.0モル/リットルが好ましい。該濃度が0.01モル/リットル未満では、銅−亜鉛合金微粒子の生成量が低減し反応相からの銅−亜鉛合金微粒子の収率が低下するという不都合を生じ、一方、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。より好ましい塩化第一銅の濃度は、0.05〜0.5モル/リットルである。水溶性亜鉛化合物としては、塩化亜鉛又は硫酸亜鉛が好ましく、錯化剤(b)はチオ硫酸ナトリウムが好ましい。好ましい水溶性亜鉛化合物の濃度は、前記塩化第一銅の濃度の0.01〜1モル倍が好ましく、0.1〜0.5モル倍がより好ましい。該濃度が0.01モル倍未満では、還元される亜鉛量が低下するおそれがあり、一方、1モル倍を超えると銅と亜鉛の金属間化合物からなる微粒子が析出するおっそれがある。錯化剤(b)の使用量は、前記塩化第一銅の濃度の5〜30モル倍が好ましく、7〜10モル倍がより好ましい。該濃度が5モル倍未満では、銅と亜鉛の共析が困難となるおそれがあり、一方、30モル倍を超えると金属の還元反応が遅くなるおそれがある。
(B) Reduction reaction aqueous solution 2
The reduction reaction aqueous solution 2 is a reduction reaction aqueous solution containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant, and an inorganic dispersant. The concentration of cuprous chloride in the reduction reaction aqueous solution is preferably 0.01 to 4.0 mol / liter. When the concentration is less than 0.01 mol / liter, the production amount of copper-zinc alloy fine particles is reduced, resulting in a disadvantage that the yield of copper-zinc alloy fine particles from the reaction phase is lowered, while 4.0 mol / liter If it exceeds 1 liter, coarse agglomeration may occur between the produced particles. The concentration of cuprous chloride is more preferably 0.05 to 0.5 mol / liter. The water-soluble zinc compound is preferably zinc chloride or zinc sulfate, and the complexing agent (b) is preferably sodium thiosulfate. A preferable concentration of the water-soluble zinc compound is preferably 0.01 to 1 mol times, more preferably 0.1 to 0.5 mol times the concentration of the cuprous chloride. If the concentration is less than 0.01 mol times, the amount of zinc to be reduced may be reduced. On the other hand, if it exceeds 1 mol times, fine particles composed of an intermetallic compound of copper and zinc may be deposited. The amount of the complexing agent (b) used is preferably 5 to 30 mol times, more preferably 7 to 10 mol times the concentration of the cuprous chloride. If the concentration is less than 5 mol times, the eutectoid of copper and zinc may be difficult, whereas if it exceeds 30 mol times, the reduction reaction of the metal may be delayed.

(ハ)還元反応水溶液3
還元反応水溶液3は、少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液である。この還元反応水溶液3において、酒石酸銅は錯イオンを形成しているので新に錯化剤の添加は不要である。還元反応水溶液中における酒石酸銅の濃度は、0.01〜4.0モル/リットルが好ましい。該濃度が0.01モル/リットル未満では、銅−亜鉛合金微粒子の生成量が低減し反応相からの銅−亜鉛合金微粒子の収率が低下するという不都合を生じ、一方、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。より好ましい酒石酸銅の濃度は、0.05〜0.5モル/リットルである。好ましい酸化亜鉛の濃度は、前記酒石酸銅の濃度の0.01〜1モル倍が好ましく、0.1〜0.5モル倍がより好ましい。該濃度が0.01モル倍未満では、還元される亜鉛量が低下するおそれがあり、一方、1モル倍を超えると銅と亜鉛の金属間化合物からなる微粒子を析出するおそれがある。
(C) Reduction reaction aqueous solution 3
The reduction reaction aqueous solution 3 is a reduction reaction aqueous solution containing at least copper tartrate, zinc oxide, an organic dispersant, and an inorganic dispersant. In this reduction reaction aqueous solution 3, copper tartrate forms complex ions, so that it is not necessary to newly add a complexing agent. The concentration of copper tartrate in the reduction reaction aqueous solution is preferably 0.01 to 4.0 mol / liter. When the concentration is less than 0.01 mol / liter, the production amount of copper-zinc alloy fine particles is reduced, resulting in a disadvantage that the yield of copper-zinc alloy fine particles from the reaction phase is lowered, while 4.0 mol / liter If it exceeds 1 liter, coarse agglomeration may occur between the produced particles. A more preferable concentration of copper tartrate is 0.05 to 0.5 mol / liter. The preferable zinc oxide concentration is preferably 0.01 to 1 mol times, more preferably 0.1 to 0.5 mol times the concentration of the copper tartrate. If the concentration is less than 0.01 mol times, the amount of zinc to be reduced may be reduced, whereas if it exceeds 1 mol times, fine particles composed of an intermetallic compound of copper and zinc may be precipitated.

(ニ)還元反応水溶液4
還元反応水溶液4は、少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液である。還元反応水溶液中における酢酸銅の濃度は、0.01〜4.0モル/リットルが好ましい。該濃度が0.01モル/リットル未満では、銅−亜鉛合金微粒子の生成量が低減し反応相からの銅−亜鉛合金微粒子の収率が低下するという不都合を生じ、一方、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。よリ好ましい酢酸銅の濃度は、0.05〜0.5モル/リットルである。好ましい酢酸亜鉛の濃度は、前記酢酸銅の濃度の0.01〜1モル倍が好ましく、0.01〜0.5モル倍がより好ましい。該濃度が0.01モル倍未満では、還元される亜鉛量が低下するおそれがあり、一方、1モル倍を超えると銅と亜鉛の金属間化合物からなる微粒子を析出するおそれがある。
(D) Reduction reaction aqueous solution 4
The reduction reaction aqueous solution 4 is a reduction reaction aqueous solution containing at least copper acetate, zinc acetate, an organic dispersant, and an inorganic dispersant. The concentration of copper acetate in the reduction reaction aqueous solution is preferably 0.01 to 4.0 mol / liter. When the concentration is less than 0.01 mol / liter, the production amount of copper-zinc alloy fine particles is reduced, resulting in a disadvantage that the yield of copper-zinc alloy fine particles from the reaction phase is lowered, while 4.0 mol / liter If it exceeds 1 liter, coarse agglomeration may occur between the produced particles. A more preferable copper acetate concentration is 0.05 to 0.5 mol / liter. The preferable concentration of zinc acetate is preferably 0.01 to 1 mol times, more preferably 0.01 to 0.5 mol times the concentration of copper acetate. If the concentration is less than 0.01 mol times, the amount of zinc to be reduced may be reduced, whereas if it exceeds 1 mol times, fine particles composed of an intermetallic compound of copper and zinc may be precipitated.

(4)電解還元について
(イ)電極(陽極と陰極)材料等
陰極は、白金、カーボン等が好ましく、陽極は、銅、銅−亜鉛合金、カーボン、白金等が好ましい。尚、陰極表面付近に析出した粒子を脱離、回収するために陰極に超音波振動等の揺動を与えることが可能な構造とすることもできる。
(ロ)電解還元反応
電解還元反応のpHは4.5〜13の範囲に調整する。pHが4.5未満だと錯化剤の効果が低下するなどの悪影響を与える場合があり、pHが13を超えると電流密度範囲が狭くなり、電流効率が低下する場合がある。尚、pHの調整は次亜リン酸アルカリ金属塩等の添加により行うことができる。電流密度は好ましくは0.3〜20A/dm、より好ましくは5〜15A/dm程度である。還元温度は、0〜70℃が好ましく、高温になるほど還元反応速度は速くなり、低温になるほど析出する粒子の粒径は小さくなる傾向がある。
(4) Electroreduction (a) Electrode (Anode and Cathode) Materials, etc. The cathode is preferably platinum, carbon or the like, and the anode is preferably copper, copper-zinc alloy, carbon, platinum or the like. In addition, in order to desorb and collect particles deposited in the vicinity of the cathode surface, it is possible to adopt a structure capable of imparting oscillation such as ultrasonic vibration to the cathode.
(B) Electrolytic reduction reaction The pH of the electrolytic reduction reaction is adjusted to a range of 4.5-13. If the pH is less than 4.5, the effect of the complexing agent may be adversely affected. If the pH exceeds 13, the current density range may be narrowed, and the current efficiency may be reduced. The pH can be adjusted by adding an alkali metal hypophosphite or the like. The current density is preferably about 0.3 to 20 A / dm 2 , more preferably about 5 to 15 A / dm 2 . The reduction temperature is preferably 0 to 70 ° C., the higher the temperature, the faster the reduction reaction rate, and the lower the temperature, the smaller the particle size of the precipitated particles.

(ハ)電解溶液からの銅合金微粒子の回収
電解還元反応終了後に、電極の洗浄等により電極表面に付着した銅合金微粒子を回収する。回収方法としては、電極に逆電流を流し、電極表面に付着した微粒子を脱離させ、沈殿物を回収することも可能である。また上記したように、陰極に超音波振動等の揺動を与える回収を行うこともできる。かくして得られる銅合金微粒子は、平均一次粒子径が1〜80nmの範囲であり、かつ平均アスペクト比が10以下の比較的小さい略球状である。尚、前記平均一次粒子径と平均アスペクト比は、透過型電子顕微鏡(TEM)で観察し、JIS Z8827−1に規定される解析方法によって求めることができる。本発明において平均一次粒子径は透過型電子顕微鏡で観察可能な粒子の数平均粒子径である。
(C) Recovery of copper alloy fine particles from the electrolytic solution After completion of the electrolytic reduction reaction, the copper alloy fine particles adhering to the electrode surface are recovered by washing the electrode or the like. As a recovery method, it is possible to apply a reverse current to the electrode, desorb the fine particles adhering to the electrode surface, and recover the precipitate. Further, as described above, it is possible to carry out recovery by giving a swing such as ultrasonic vibration to the cathode. The copper alloy fine particles thus obtained have a relatively small spherical shape having an average primary particle diameter in the range of 1 to 80 nm and an average aspect ratio of 10 or less. The average primary particle diameter and the average aspect ratio can be obtained by an observation method with a transmission electron microscope (TEM) and an analysis method defined in JIS Z8827-1. In the present invention, the average primary particle diameter is the number average particle diameter of particles observable with a transmission electron microscope.

〔2〕第2の態様
前記第1の態様に記載の還元反応により製造された、銅−亜鉛からなる合金微粒子は、平均一次粒子径が1〜80nmの範囲であり、かつ平均アスペクト比が10以下である。上記第1の態様に記載の製造方法により得られる銅合金微粒子は、有機分散剤と無機分散剤の存在下に還元反応がおこなわれる結果、デンドライト化が抑制されて平均一次粒子径が好ましくは1〜80nmの範囲、より好ましくは1〜50nmの範囲であり、平均アスペクト比が好ましくは10以下、より好ましくは5以下、特に好ましくは2以下の略球状のものである。
[2] Second Aspect The alloy fine particles made of copper-zinc produced by the reduction reaction according to the first aspect have an average primary particle diameter in the range of 1 to 80 nm and an average aspect ratio of 10 It is as follows. The copper alloy fine particles obtained by the production method described in the first aspect are preferably reduced in dendrite as a result of a reduction reaction in the presence of an organic dispersant and an inorganic dispersant, and the average primary particle size is preferably 1. It is in the range of ˜80 nm, more preferably in the range of 1˜50 nm, and the average aspect ratio is preferably 10 or less, more preferably 5 or less, and particularly preferably 2 or less.

以下本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。電解還元反応により銅−亜鉛からなる銅合金微粒子を調製して、得られた微粒子の評価を行った。
[実施例1]
(1)銅合金微粒子の調製
まず、銅イオンとして硫酸銅0.1モル/L、亜鉛イオンとして硫酸亜鉛0.02モル/L、錯化剤としてエタノールアミン5.7モル/L、無機分散剤として硫酸ナトリウム0.01モル/L、有機分散剤としてポリビニルピロリドン(数平均分子量:3500)5g/Lを含有する1000mlの還元反応水溶液を調製した。pHは約5.0であった。
次にこの溶液中で2cm四方の銅シートからなる陽極(アノード電極)と白金基板からなる陰極(カソード電極)間を浴温25℃で、電流密度10A/dmで30分間通電を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
得られた銅合金微粒子について、透過電子顕微鏡(TEM)による観測結果、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅90質量%、亜鉛10質量%の合金であった。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples. Copper alloy fine particles comprising copper-zinc were prepared by electrolytic reduction reaction, and the obtained fine particles were evaluated.
[Example 1]
(1) Preparation of copper alloy fine particles First, copper sulfate 0.1 mol / L as copper ions, zinc sulfate 0.02 mol / L as zinc ions, ethanolamine 5.7 mol / L as complexing agent, inorganic dispersant As an organic dispersant, 1000 ml of a reduction reaction aqueous solution containing 0.01 g / L of polyvinyl pyrrolidone (number average molecular weight: 3500) was prepared. The pH was about 5.0.
Next, in this solution, an electric current was applied between an anode (anode electrode) made of a 2 cm square copper sheet and a cathode (cathode electrode) made of a platinum substrate at a bath temperature of 25 ° C. and a current density of 10 A / dm 2 for 30 minutes. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of produced copper alloy fine particles The obtained copper alloy fine particles were observed with a transmission electron microscope (TEM). As a result, the primary particle diameter of 90% or more of the particles was in the range of 5 to 50 nm, and the average aspect ratio was 1. .5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 90% by mass of copper and 10% by mass of zinc.

[実施例2]
(1)銅合金微粒子の調製
まず、銅イオンとして塩化第一銅0.1モル/L、亜鉛イオンとして塩化亜鉛0.01モル/L、錯化剤としてチオ硫酸ナトリウム0.8モル/L、無機分散剤として塩化アンモニウム1.5モル/L、有機分散剤としてポリビニルピロリドン(数平均分子量:3500)5g/Lを含有する1000mlの還元反応水溶液を調製した。pHは約5.0であった。
次にこの溶液中で2cm四方の銅シートからなる陽極(アノード電極)と、白金基板からなる陰極(カソード電極)間を浴温25℃で、白金基板からなる陽極(アノード電極)と陰極(カソード電極)を用いて陰極電流密度10A/dmで30分間通電を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
得られた銅合金微粒子について、透過電子顕微鏡(TEM)による観測結果、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅98質量%、亜鉛2質量%の合金であった。
[Example 2]
(1) Preparation of copper alloy fine particles First, cuprous chloride 0.1 mol / L as copper ions, zinc chloride 0.01 mol / L as zinc ions, sodium thiosulfate 0.8 mol / L as complexing agent, A 1000 ml aqueous reduction reaction solution containing 1.5 mol / L of ammonium chloride as an inorganic dispersant and 5 g / L of polyvinylpyrrolidone (number average molecular weight: 3500) as an organic dispersant was prepared. The pH was about 5.0.
Next, an anode (anode electrode) composed of a 2 cm square copper sheet and a cathode (cathode electrode) composed of a platinum substrate in this solution at a bath temperature of 25 ° C., and an anode (anode electrode) composed of a platinum substrate and a cathode (cathode) Electrode) was used for 30 minutes at a cathode current density of 10 A / dm 2 . The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of produced copper alloy fine particles The obtained copper alloy fine particles were observed with a transmission electron microscope (TEM). As a result, the primary particle diameter of 90% or more of the particles was in the range of 5 to 50 nm, and the average aspect ratio was 1. .5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 98 mass% copper and 2 mass% zinc.

[実施例3]
(1)銅合金微粒子の調製
まず、銅イオンとして酒石酸銅0.096モル/L、亜鉛イオンとして酸化亜鉛0.032モル/L、無機分散剤として水酸化ナトリウム2.5モル/L、有機分散剤としてポリビニルピロリドン(数平均分子量:3500)5g/Lを含有する1000mlの還元反応水溶液を調製した。pHは約5.0であった。
次にこの溶液中で2cm四方の銅シートからなる陽極(アノード電極)と、白金基板からなる陰極(カソード電極)間を浴温25℃で、白金基板からなる陽極(アノード電極)と陰極(カソード電極)を用いて陰極電流密度10A/dmで30分間通電を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
銅合金微粒子について、透過電子顕微鏡(TEM)による観測結果、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅80質量%、亜鉛20質量%の合金であった。
[Example 3]
(1) Preparation of copper alloy fine particles First, copper tartrate 0.096 mol / L as copper ions, zinc oxide 0.032 mol / L as zinc ions, sodium hydroxide 2.5 mol / L as inorganic dispersant, organic dispersion As an agent, 1000 ml of an aqueous reduction reaction solution containing 5 g / L of polyvinylpyrrolidone (number average molecular weight: 3500) was prepared. The pH was about 5.0.
Next, an anode (anode electrode) composed of a 2 cm square copper sheet and a cathode (cathode electrode) composed of a platinum substrate in this solution at a bath temperature of 25 ° C., and an anode (anode electrode) composed of a platinum substrate and a cathode (cathode) Electrode) was used for 30 minutes at a cathode current density of 10 A / dm 2 . The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of produced copper alloy fine particles As for the copper alloy fine particles, observation results by transmission electron microscope (TEM) show that the primary particle diameter of 90% or more of the particles is in the range of 5 to 50 nm and the average aspect ratio is 1.5. there were. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 80% by mass of copper and 20% by mass of zinc.

[実施例4]
(1)銅合金微粒子の調製
まず、銅イオンとして酢酸銅0.1モル/L、亜鉛イオンとして酢酸亜鉛0.01モル/L、無機分散剤として酢酸ナトリウム0.01モル/L、有機分散剤としてポリビニルピロリドン(数平均分子量:3500)5g/Lを含有する1000mlの還元反応水溶液を調製した。pHは約5.0であった。次にこの溶液中で2cm四方の銅シートからなる陽極(アノード電極)と白金基板からなる陰極(カソード電極)間を浴温25℃で、電流密度15A/dmで30分間通電を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
得られた銅合金微粒子について、透過電子顕微鏡(TEM)による観測結果、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅95質量%、亜鉛5質量%の合金であった。
[Example 4]
(1) Preparation of copper alloy fine particles First, copper acetate 0.1 mol / L, zinc ion 0.01 mol / L as zinc ion, sodium acetate 0.01 mol / L as inorganic dispersant, organic dispersant As a solution, 1000 ml of a reduction reaction aqueous solution containing 5 g / L of polyvinylpyrrolidone (number average molecular weight: 3500) was prepared. The pH was about 5.0. Next, in this solution, a current was applied between an anode (anode electrode) made of a 2 cm square copper sheet and a cathode (cathode electrode) made of a platinum substrate at a bath temperature of 25 ° C. and a current density of 15 A / dm 2 for 30 minutes. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of produced copper alloy fine particles The obtained copper alloy fine particles were observed with a transmission electron microscope (TEM). As a result, the primary particle diameter of 90% or more of the particles was in the range of 5 to 50 nm, and the average aspect ratio was 1. .5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 95% by mass of copper and 5% by mass of zinc.

[比較例1]
還元反応水溶液中の無機分散剤濃度を0モル/Lとして、電解還元反応により銅合金微粒子を調製して、得られた微粒子の評価を行った。
(1)銅合金微粒子の調製
酢酸ナトリウム濃度を0モル/Lとした以外は実施例4と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
銅合金微粒子について、透過電子顕微鏡(TEM)により観測した結果、粒子の90%以上の一次粒子径は5〜300nmの範囲で、結晶形状はデンドライト状に凝集して、1〜10μmの凝集体になっていることが観察された。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅95質量%、亜鉛5質量%の合金であった。
[Comparative Example 1]
Copper alloy fine particles were prepared by electrolytic reduction reaction with the inorganic dispersant concentration in the reduction reaction aqueous solution being 0 mol / L, and the obtained fine particles were evaluated.
(1) Preparation of copper alloy fine particles A reduction reaction aqueous solution was prepared and subjected to an electrolytic reduction reaction in the same manner as in Example 4 except that the sodium acetate concentration was 0 mol / L. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of generated copper alloy fine particles As a result of observing the copper alloy fine particles with a transmission electron microscope (TEM), the primary particle diameter of 90% or more of the particles is in the range of 5 to 300 nm, and the crystal shape is aggregated in a dendrite shape And it was observed that it became an aggregate of 1-10 micrometers. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 95% by mass of copper and 5% by mass of zinc.

[比較例2]
(1)銅合金微粒子の調製
硫酸ナトリウム濃度を0モル/Lとした以外は実施例1と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅合金微粒子を得た。
(2)生成した銅合金微粒子の評価
得られた銅合金微粒子について、透過電子顕微鏡(TEM)により観測した結果、粒子の90%以上の一次粒子径は5〜300nmの範囲で、結晶形状はデンドライト状に凝集して、1〜10μmの凝集体になっていることが観察された。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅90質量%、亜鉛10質量%の合金であった。
[Comparative Example 2]
(1) Preparation of copper alloy fine particles A reduction reaction aqueous solution was prepared and subjected to an electrolytic reduction reaction in the same manner as in Example 1 except that the sodium sulfate concentration was 0 mol / L. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper alloy fine particles.
(2) Evaluation of the produced copper alloy fine particles The obtained copper alloy fine particles were observed with a transmission electron microscope (TEM). It was observed that the agglomerates were 1 to 10 μm. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 90% by mass of copper and 10% by mass of zinc.

Claims (11)

電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、
(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は
(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、
でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。
A method for producing copper alloy fine particles comprising copper-zinc by electrolytic reduction reaction,
(I) Reduction reaction aqueous solution (reduction reaction aqueous solution 1) containing at least copper sulfate, zinc sulfate, complexing agent (a), organic dispersant, and inorganic dispersant,
(ii) A reduction reaction aqueous solution (reduction reaction aqueous solution 2) containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant, and an inorganic dispersant,
(iii) Reduction reaction aqueous solution (reduction reaction aqueous solution 3) containing at least copper tartrate, zinc oxide, an organic dispersant, and an inorganic dispersant, or
(iv) a reduction reaction aqueous solution (reduction reaction aqueous solution 4) containing at least copper acetate, zinc acetate, an organic dispersant, and an inorganic dispersant;
A method for producing copper alloy fine particles, comprising depositing alloy fine particles composed of copper-zinc from an aqueous reduction reaction solution having a pH of 4.5 to 13 by electrolytic reduction reaction.
前記還元反応水溶液1における錯化剤(a)がグリセリン、トリエタノールアミン、エタノールアミン、シュウ酸ナトリウム、ピロリン酸カリウム、ピロリン酸ナトリウム、及びグルコヘプトン酸ナトリウムから選択される1種又は2種以上であることを特徴とする、請求項1に記載の銅合金微粒子の製造方法。   The complexing agent (a) in the reduction reaction aqueous solution 1 is one or more selected from glycerin, triethanolamine, ethanolamine, sodium oxalate, potassium pyrophosphate, sodium pyrophosphate, and sodium glucoheptonate. The method for producing copper alloy fine particles according to claim 1, wherein: 前記還元反応水溶液2における水溶性亜鉛化合物が塩化亜鉛又は硫酸亜鉛であり、錯化剤(b)がチオ硫酸ナトリウムであることを特徴とする、請求項1に記載の銅合金微粒子の製造方法。   The method for producing fine copper alloy particles according to claim 1, wherein the water-soluble zinc compound in the reduction reaction aqueous solution 2 is zinc chloride or zinc sulfate, and the complexing agent (b) is sodium thiosulfate. 前記有機分散剤が水溶性高分子からなる有機分散剤であって、ポリエチレンイミン、ポリビニルピロリドン、ポリアクリル酸、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、デンプン、及びゼラチンから選択される1種又は2種以上であることを特徴とする、請求項1ないし3のいずれか1項に記載の銅合金微粒子の製造方法。   The organic dispersant is an organic dispersant comprising a water-soluble polymer, and is selected from polyethyleneimine, polyvinylpyrrolidone, polyacrylic acid, carboxymethylcellulose, polyacrylamide, polyvinyl alcohol, polyethylene oxide, starch, and gelatin. The method for producing copper alloy fine particles according to any one of claims 1 to 3, wherein two or more kinds are used. 前記還元反応水溶液中における有機分散剤の濃度が、有機分散剤と、銅原子及び亜鉛原子の質量比(有機分散剤/(銅+亜鉛))で0.01〜30であることを特徴とする、請求項1ないし4のいずれか1項に記載の銅合金微粒子の製造方法。   The concentration of the organic dispersant in the reduction reaction aqueous solution is 0.01 to 30 in terms of a mass ratio of the organic dispersant to copper atoms and zinc atoms (organic dispersant / (copper + zinc)). The method for producing copper alloy fine particles according to any one of claims 1 to 4. 前記無機分散剤がハロゲンイオン、アルカリ金属イオン、及びアルカリ土類金属イオンから選択される1種又は2種以上であることを特徴とする、請求項1ないし5のいずれか1項に記載の銅合金微粒子の製造方法。   The copper according to any one of claims 1 to 5, wherein the inorganic dispersant is one or more selected from halogen ions, alkali metal ions, and alkaline earth metal ions. Manufacturing method of alloy fine particles. 前記ハロゲンイオンの供給源が塩化水素、塩化カリウム、塩化ナトリウム、塩化アンモニウム、臭化水素、臭化カリウム、臭化ナトリウム、臭化アンモニウム、沃化水素、沃化カリウム、沃化ナトリウム、沃化アンモニウム、フッ化水素、フッ化カリウム、フッ化ナトリウム、及び弗化アンモニウムから選択される1種又は2種以上であり、
前記アルカリ金属イオンの供給源が水酸化ナトリウム、水酸化カリウム、硫酸ナトリウム、硫酸カリウム、酒石酸ナトリウム、酒石酸カリウム、酢酸ナトリウム、及び酢酸カリウムから選択される1種又は2種以上であり、
前記アルカリ土類金属イオンの供給源が臭化カルシウム、臭化バリウム、塩化カルシウム、塩化バリウム、沃化カルシウム、及び沃化バリウムから選択される1種又は2種以上であることを特徴とする、請求項6に記載の銅合金微粒子の製造方法。
The source of halogen ions is hydrogen chloride, potassium chloride, sodium chloride, ammonium chloride, hydrogen bromide, potassium bromide, sodium bromide, ammonium bromide, hydrogen iodide, potassium iodide, sodium iodide, ammonium iodide , One or more selected from hydrogen fluoride, potassium fluoride, sodium fluoride, and ammonium fluoride,
The alkali metal ion source is one or more selected from sodium hydroxide, potassium hydroxide, sodium sulfate, potassium sulfate, sodium tartrate, potassium tartrate, sodium acetate, and potassium acetate;
The source of the alkaline earth metal ions is one or more selected from calcium bromide, barium bromide, calcium chloride, barium chloride, calcium iodide, and barium iodide, The method for producing copper alloy fine particles according to claim 6.
前記還元反応水溶液中における無機分散剤の濃度が無機分散剤と銅原子及び亜鉛原子のモル比(無機分散剤/(銅+亜鉛))で0.01〜20であることを特徴とする、請求項6に記載の銅合金微粒子の製造方法。   The concentration of the inorganic dispersant in the aqueous reduction reaction solution is 0.01 to 20 in terms of a molar ratio of the inorganic dispersant to copper atoms and zinc atoms (inorganic dispersant / (copper + zinc)). Item 7. A method for producing copper alloy fine particles according to Item 6. 前記還元反応水溶液中の銅原子濃度が0.01〜4モル/リットルであり、亜鉛原子濃度が前記銅原子濃度の0.01〜1モル倍であることを特徴とする、請求項1ないし8のいずれか1項に記載の銅合金微粒子の製造方法。   The copper atom concentration in the reduction reaction aqueous solution is 0.01 to 4 mol / liter, and the zinc atom concentration is 0.01 to 1 mol times the copper atom concentration. The manufacturing method of the copper alloy fine particle of any one of these. 前記還元反応水溶液中に設けられたアノード(陽極)とカソード(陰極)間に電圧を印加して還元反応を行うことによりカソード表面付近に銅−亜鉛からなる銅合金微粒子を析出させることを特徴とする、請求項1ないし9のいずれか1項に記載の銅合金微粒子の製造方法。   A copper alloy fine particle composed of copper-zinc is deposited near the cathode surface by applying a voltage between an anode (anode) and a cathode (cathode) provided in the reduction reaction aqueous solution to perform a reduction reaction. The method for producing copper alloy fine particles according to any one of claims 1 to 9. 請求項1ないし10のいずれか1項に記載の還元反応により製造された、銅−亜鉛からなる銅合金微粒子の平均一次粒子径が1〜80nmの範囲であり、かつ平均アスペクト比が10以下である銅合金微粒子。   The average primary particle diameter of the copper alloy fine particles made of copper-zinc produced by the reduction reaction according to any one of claims 1 to 10 is in the range of 1 to 80 nm, and the average aspect ratio is 10 or less. Some copper alloy fine particles.
JP2010071734A 2010-03-26 2010-03-26 Method for producing copper alloy fine particles Expired - Fee Related JP5566743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071734A JP5566743B2 (en) 2010-03-26 2010-03-26 Method for producing copper alloy fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071734A JP5566743B2 (en) 2010-03-26 2010-03-26 Method for producing copper alloy fine particles

Publications (2)

Publication Number Publication Date
JP2011202245A true JP2011202245A (en) 2011-10-13
JP5566743B2 JP5566743B2 (en) 2014-08-06

Family

ID=44879185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071734A Expired - Fee Related JP5566743B2 (en) 2010-03-26 2010-03-26 Method for producing copper alloy fine particles

Country Status (1)

Country Link
JP (1) JP5566743B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219862A (en) * 2010-03-26 2011-11-04 Furukawa Electric Co Ltd:The Dispersant of fine-particle of copper alloy, method of manufacturing sintering conductive material, sintering conductive material, and conductive connection member
CN103510106A (en) * 2013-09-22 2014-01-15 中南大学 Copper electrolysis additive and use method thereof
JP2014129583A (en) * 2012-12-28 2014-07-10 Jx Nippon Mining & Metals Corp Method for recovering metal or alloy from high-purity metal or alloy scrap
JP2015209575A (en) * 2014-04-28 2015-11-24 住友電気工業株式会社 Metal fine particle dispersion, production method of metal fine particle dispersion, production method of metal film and metal film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971513B (en) * 2018-10-12 2021-09-21 圣戈莱(北京)科技有限公司 Nano copper particle and low-cost green and environment-friendly preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613896A (en) * 1984-06-15 1986-01-09 Kosaku:Kk Electroplating bath for forming golden film
JPH06287791A (en) * 1993-02-19 1994-10-11 Learonal Inc Plating solution of monovalent metal wherein no cyanide is incorporated
JP2004076054A (en) * 2002-08-13 2004-03-11 National Institute For Materials Science Method for producing copper-zinc alloy powder
JP2005314806A (en) * 2004-03-29 2005-11-10 Nano Gijutsu Kenkyusho:Kk Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
JP2007270184A (en) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The Electrode, and apparatus and method for manufacturing metallic fine particle
JP2008050691A (en) * 2006-07-28 2008-03-06 Furukawa Electric Co Ltd:The Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP2008231564A (en) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The Method of manufacturing copper fine particle
JP2008248267A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle obtained by the same method
JP2009099443A (en) * 2007-10-18 2009-05-07 Fukuda Metal Foil & Powder Co Ltd Cooper alloy powder for conductive material paste
JP2009149978A (en) * 2007-11-26 2009-07-09 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same
JP2009185348A (en) * 2008-02-07 2009-08-20 Furukawa Electric Co Ltd:The Method for producing copper fine particle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613896A (en) * 1984-06-15 1986-01-09 Kosaku:Kk Electroplating bath for forming golden film
JPH06287791A (en) * 1993-02-19 1994-10-11 Learonal Inc Plating solution of monovalent metal wherein no cyanide is incorporated
JP2004076054A (en) * 2002-08-13 2004-03-11 National Institute For Materials Science Method for producing copper-zinc alloy powder
JP2005314806A (en) * 2004-03-29 2005-11-10 Nano Gijutsu Kenkyusho:Kk Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
JP2007270184A (en) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The Electrode, and apparatus and method for manufacturing metallic fine particle
JP2008050691A (en) * 2006-07-28 2008-03-06 Furukawa Electric Co Ltd:The Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP2008231564A (en) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The Method of manufacturing copper fine particle
JP2008248267A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle obtained by the same method
JP2009099443A (en) * 2007-10-18 2009-05-07 Fukuda Metal Foil & Powder Co Ltd Cooper alloy powder for conductive material paste
JP2009149978A (en) * 2007-11-26 2009-07-09 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same
JP2009185348A (en) * 2008-02-07 2009-08-20 Furukawa Electric Co Ltd:The Method for producing copper fine particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIA HAMBROCK 外4名: "Nano-Brass: Bimetallic Copper/Zinc Colloids by a Nonaqueous Organometallic Route Using [Cu(OCH(Me)CH", CHEMISTRY OF MATERIALS, vol. 15, JPN6014009952, 2003, US, pages 4217 - 4222, XP002436830, ISSN: 0002763586, DOI: 10.1021/cm0341383 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219862A (en) * 2010-03-26 2011-11-04 Furukawa Electric Co Ltd:The Dispersant of fine-particle of copper alloy, method of manufacturing sintering conductive material, sintering conductive material, and conductive connection member
JP2014129583A (en) * 2012-12-28 2014-07-10 Jx Nippon Mining & Metals Corp Method for recovering metal or alloy from high-purity metal or alloy scrap
CN103510106A (en) * 2013-09-22 2014-01-15 中南大学 Copper electrolysis additive and use method thereof
JP2015209575A (en) * 2014-04-28 2015-11-24 住友電気工業株式会社 Metal fine particle dispersion, production method of metal fine particle dispersion, production method of metal film and metal film

Also Published As

Publication number Publication date
JP5566743B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5202858B2 (en) Method for producing copper fine particles
JP5255223B2 (en) Method for producing copper alloy fine particles, and copper alloy fine particles obtained by the production method
JP6379228B2 (en) Silver-coated copper nanowire and method for producing the same
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
TWI664643B (en) Ferromagnetic metal nanowire dispersion and production method thereof
JP5566743B2 (en) Method for producing copper alloy fine particles
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
WO2016151859A1 (en) Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
JPWO2006082962A1 (en) Method for producing composite particles
JPWO2006018995A1 (en) Conductive fine particles, method for producing conductive fine particles, and electroless silver plating solution
WO2016185628A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
JP2013144829A (en) Dendritic metal powder, and conductive paste, electromagnetic wave shielding material and heat dissipating material containing dendritic metal powder, as well as method for manufacturing dendritic metal powder
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
JP2008050691A (en) Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP2014019877A (en) Method for producing copper fine particle
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2013234341A (en) Method for producing silver nanowire, and the silver nanowire
US20150144849A1 (en) Composite copper particles, and method for producing same
JP5065072B2 (en) Method for producing copper fine particles
JP5435611B2 (en) Method for producing copper alloy fine particles
JP5922810B1 (en) Fine particles, fine particle dispersion solution, and method for producing fine particles
JP5376109B2 (en) Method for producing silver fine particles
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP4248002B2 (en) Fine particle dispersion and method for producing fine particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

LAPS Cancellation because of no payment of annual fees