JP2005314806A - Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof - Google Patents

Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof Download PDF

Info

Publication number
JP2005314806A
JP2005314806A JP2005090521A JP2005090521A JP2005314806A JP 2005314806 A JP2005314806 A JP 2005314806A JP 2005090521 A JP2005090521 A JP 2005090521A JP 2005090521 A JP2005090521 A JP 2005090521A JP 2005314806 A JP2005314806 A JP 2005314806A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
nanocrystalline
powder
high hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090521A
Other languages
Japanese (ja)
Inventor
Harumatsu Miura
春松 三浦
Nobuaki Miyao
信昭 宮尾
Kazuo Oda
和生 小田
Masaru Mizutani
勝 水谷
Hidenori Ogawa
英典 小川
Munehide Katsumura
宗英 勝村
Takao Araki
孝雄 荒木
Masayuki Hirota
正行 廣田
Keiichi Murakami
景一 村上
Akihiro Murakami
明弘 村上
Tsukasa Hirahara
司 平原
Tadayuki Yano
忠幸 矢野
Toshio Ito
俊夫 伊藤
Toru Kuzumi
徹 来住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO GIJUTSU KENKYUSHO KK
Original Assignee
NANO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO GIJUTSU KENKYUSHO KK filed Critical NANO GIJUTSU KENKYUSHO KK
Priority to JP2005090521A priority Critical patent/JP2005314806A/en
Publication of JP2005314806A publication Critical patent/JP2005314806A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material of nano crystalline copper or a copper alloy having high hardness, high strength, high electric conductivity and high toughness. <P>SOLUTION: Copper metal powder is composed of aggregates of copper metal nano crystal grains or copper alloy nano crystal grains, wherein nano crystal grain has a size of 2-1,000 nm. This bulk material of a nano crystal copper or a copper alloy having high hardness, high strength and high electric conductivity, is composed of a great number of nano crystal copper or copper alloy grains being firmly bound with one another. Then, this bulk material of the nano crystal copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness is produced by subjecting the copper powder or copper alloy powder to solidification forming such as vacuum hot solidification forming or explosive forming, etc., for example, spark-plasma sintering at a temperature of 250-700°C, hot pressing, sheath rolling, hot forging, extruding, hot isotropic pressure forming (HIP). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高硬度で高導電性を有するナノ結晶銅金属及びナノ結晶銅合金の粉末、高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材並びにそれらの製造方法に関し、高力導電性銅又は銅合金組成のナノサイズの金属間化合物の析出・分散強化型ナノ結晶銅合金等の粉末とバルク材及びそれらの製造方法に関する。   The present invention relates to powder of nanocrystalline copper metal and nanocrystalline copper alloy having high hardness and high conductivity, tough nanocrystalline copper or copper alloy having high hardness, high strength and high conductivity, and production thereof. The present invention relates to a powder and a bulk material such as a precipitation / dispersion strengthened nanocrystalline copper alloy of nano-sized intermetallic compound having a high-strength conductive copper or copper alloy composition, and a method for producing the same.

金属材料の強さや硬さは、ホールペッチの関係式が示すように、結晶粒径dが小さくなるほど増加し、このような関係はdが数十nm付近までは同じように成立するので、結晶粒径をナノサイズレベルまで超微細化することは、金属材料の強化する最も重要な手段の1つになっている。このことは、銅系合金の材料の強化方法として極めて重要である。銅合金においては、こうして得られた微細結晶組織の中に金属間化合物などの硬い物質を析出ないし分散させると、その強度特性はさらに大きく向上させることができる。
しかし、実用材料として極めて重要な高力導電性銅合金系の材料については、ナノ結晶化のための研究は未だなされていない。とくに、電気通信機器類に導電性高力ばね材料として多く用いられているベリリウム銅などでは、ナノサイズレベルまでの結晶粒微細化によって、その強度が格段に高められると、電気電子機器類の軽量化、小型化を可能にし、その実用上の意義は極めて大きい。
The strength and hardness of the metal material increase as the crystal grain size d becomes smaller, as shown by the Hall Petch relational expression, and such a relation is similarly established until d is in the vicinity of several tens of nm. Making the diameter ultrafine to the nano-size level has become one of the most important means for strengthening metal materials. This is extremely important as a method for strengthening a copper alloy material. In a copper alloy, when a hard substance such as an intermetallic compound is precipitated or dispersed in the fine crystal structure thus obtained, its strength characteristics can be further improved.
However, research on nanocrystallization has not been made for high strength conductive copper alloy-based materials that are extremely important as practical materials. In particular, beryllium copper, which is often used as a conductive high-strength spring material in telecommunications equipment, is lighter in electrical and electronic equipment when its strength is significantly increased by crystal grain refinement to the nano-size level. Can be made smaller and smaller, and its practical significance is extremely great.

しかし、溶解法で製造されている銅合金をはじめとする多くの金属材料の結晶粒径dは、通常数ミクロン〜数百ミクロンであり、後処理によってもdをナノオーダにすることは難しく、例えば、鋼の結晶粒径微細化プロセスとして重要な制御圧延の場合でも、その到達できる粒径の下限は4〜5μm程度である。従って、このような通常の方法では、ナノサイズまでに粒径を微細化した材料は得られない。   However, the crystal grain size d of many metal materials including a copper alloy manufactured by a melting method is usually several microns to several hundred microns, and it is difficult to make d nano-order by post-processing, for example, Even in the case of controlled rolling, which is important as a process for refining the grain size of steel, the lower limit of the grain size that can be reached is about 4 to 5 μm. Therefore, such a normal method cannot obtain a material having a particle size reduced to the nano size.

本発明は上記課題を解決するものであって、下記の発明である。
本発明は、基本的には、(1)銅合金構成成分の各物質の混合材料、(2)溶製した銅合金材料、又は(3)(1)及び(2)の物質に他の元素又はその合金などの物質を加えた混合材料、をボールミルなどを用いたメカニカルアロイング(MA)又はメカニカルミリング(MM)処理して、その結晶粒径のナノサイズレベルまでの超微細化と超高硬度のナノサイズの金属間化合物などの析出・分散によって達成できるその限界に近い強さ(高強度)ないし、硬さ(超硬質)及び靱性を有する銅合金のナノ結晶粉末となし、次いでこのナノ結晶銅合金の粉末の熱間での固化成形によって、同粉末の有する特性を保持したナノ結晶銅合金バルク材を提供することである。
The present invention solves the above-mentioned problems, and is the following invention.
The present invention basically includes (1) a mixed material of each substance of copper alloy constituents, (2) a molten copper alloy material, or (3) other elements in the substances of (1) and (2) Or mixed materials with added materials such as alloys are processed by mechanical alloying (MA) or mechanical milling (MM) using a ball mill, etc. A nano-crystalline powder of copper alloy with strength (high strength), hardness (ultra-hard) and toughness that is close to the limit that can be achieved by precipitation and dispersion of nano-sized intermetallic compounds of hardness, etc. The object of the present invention is to provide a nanocrystalline copper alloy bulk material that retains the characteristics of the powder by solidification molding of the powder of the crystalline copper alloy in the heat.

すなわち、本発明は、下記構成の高硬度・高強度で強靱なナノ結晶銅合金の粉末材料とバルク材料及び両材料の製造方法である。
〔1〕銅金属ナノ結晶粒子の集合体よりなる銅金属粉末が、2〜1000nmサイズのナノ結晶から構成されることを特徴とする高硬度で高導電性を有するナノ結晶銅金属粉末。
〔2〕銅合金ナノ結晶粒子の集合体よりなる銅合金粉末であって、その合金元素がベリリウム、クロム、ジルコニウム、チタン、銀、コバルト、ニッケル、亜鉛、鉄、カドミウム、マンガン、アルミニウム、モリブデン、バナジウム、タングステン、ニオブ、タンタル、リン、ケイ素又はホウ素から選ばれるいずれか1つ以上からなり、これらの合金元素が1つの場合には、その濃度が銅合金粉末の0.05〜40質量%を含有し、また合金元素が2つ以上の場合には、その合計濃度が0.05〜45質量%含有して、前記ナノ結晶銅合金粉末がこれらの合金元素による固溶強化と2〜1000nmサイズレベルまでの結晶粒微細化強化されてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。
〔3〕銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、析出・分散強化物質及び/又は結晶粒成長抑制物質として、(1)前記請求項2に記載の合金元素から選ばれるいずれか1種以上、又は(2)前記各元素と銅からから構成される金属管化合物のいずれか1種以上を存在させてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。
That is, the present invention is a powder material and bulk material of a nanocrystalline copper alloy having high hardness, high strength and toughness having the following constitution, and a method for producing both materials.
[1] A high-hardness and high-conductivity nanocrystalline copper metal powder, wherein the copper metal powder comprising an aggregate of copper metal nanocrystal particles is composed of nanocrystals having a size of 2 to 1000 nm.
[2] A copper alloy powder comprising an aggregate of copper alloy nanocrystal particles, the alloy elements of which are beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron, cadmium, manganese, aluminum, molybdenum, It consists of any one or more selected from vanadium, tungsten, niobium, tantalum, phosphorus, silicon or boron. When these alloy elements are one, the concentration is 0.05 to 40% by mass of the copper alloy powder. When the alloy element contains two or more alloy elements, the total concentration is 0.05 to 45% by mass, and the nanocrystalline copper alloy powder is solid solution strengthened by these alloy elements and has a size of 2 to 1000 nm. A nanocrystalline copper alloy powder having high hardness and high conductivity, characterized by being refined and strengthened to a crystal grain level.
[3] A copper alloy powder composed of an aggregate of copper alloy nanocrystal particles is selected from the alloy elements according to (2) above as a precipitation / dispersion strengthening substance and / or a crystal grain growth inhibiting substance. One or more kinds, or (2) one or more kinds of metal tube compounds composed of each of the above elements and copper are present, and the nanocrystalline copper alloy powder having high hardness and high conductivity .

〔4〕銅又は銅合金ナノ結晶の集合体よりなる銅又は銅合金粉末が、銅又は銅合金中の固溶不純物による導電率低下を抑制する物質として、亜鉛、カドミウム、ケイ素、リン又は酸素のいずれか1種以上を存在させてなることを特徴とする前項〔1〕〜〔3〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。
〔5〕銅又は銅合金ナノ結晶の集合体よりなる銅又は銅合金粉末が、金属又は半金属の酸化物の形態で酸素を0.005〜1.0質量%含有するものであることを特徴とする前項〔1〕〜〔4〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。
〔6〕銅金属ナノ結晶粒子が、塊状、片状、粒状、粉状の銅金属材料を、ボールミル等を用いてメカニカルミリング(MM)することによって得られたものであることを特徴とする前項〔1〕、〔4〕、〔5〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅金属粉末。
[4] Copper or copper alloy powder comprising an aggregate of copper or copper alloy nanocrystals is a substance that suppresses a decrease in conductivity due to solid solution impurities in copper or copper alloy, and includes zinc, cadmium, silicon, phosphorus, or oxygen. The nanocrystalline copper or copper alloy powder having high hardness and high conductivity according to any one of [1] to [3] above, wherein one or more of them are present.
[5] A copper or copper alloy powder comprising an aggregate of copper or copper alloy nanocrystals contains 0.005 to 1.0 mass% of oxygen in the form of a metal or metalloid oxide. The nanocrystalline copper or copper alloy powder having high hardness and high conductivity according to any one of [1] to [4] above.
[6] The preceding item, wherein the copper metal nanocrystal particles are obtained by mechanically milling (MM) a lump-like, piece-like, granular or powdery copper metal material using a ball mill or the like. [1] A nanocrystalline copper metal powder having high hardness and high conductivity according to any one of [4] and [5].

〔7〕銅合金ナノ結晶粒子が、塊状、片状、粒状、粉状の銅合金の形成成分の各物質の混合材料を、ボールミル等を用いてメカニカルアロイング(MA)又はメカニカルミリング(MM)することによって得られたものであることを特徴とする前項〔2〕〜〔5〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。
〔8〕銅合金ナノ結晶粒子が、塊状、片状、粒状、粉状の銅、ベリリウム銅、クロム銅、ジルコニウム銅、銀銅、チタン銅、ケイ素青銅、ケルメット合金、黄銅、アルミニウム青銅、ニッケル銅、ニッケル青銅、コルソン合金、銅マンガン合金、リン青銅、洋白、キュプロニッケル、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれた銅合金の構成物質を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする前項〔2〕〜〔5〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。
[7] Copper alloy nanocrystal particles are formed by mixing a material of each component of a copper alloy in the form of lumps, flakes, granules, and powders using a ball mill etc. The nanocrystalline copper alloy powder having high hardness and high conductivity according to any one of [2] to [5] above, wherein the nanocrystalline copper alloy powder is obtained by
[8] Copper alloy nanocrystal particles are lump, flake, granule, powder copper, beryllium copper, chromium copper, zirconium copper, silver copper, titanium copper, silicon bronze, kelmet alloy, brass, aluminum bronze, nickel copper , Nickel bronze, corson alloy, copper manganese alloy, phosphor bronze, white, cupronickel, other alloying elements or alloys of copper alloy selected from two or more substances, ball mill etc. The high hardness and high conductivity according to any one of [2] to [5] above, which is obtained by mechanical milling (MM) or mechanical alloying (MA) using Nanocrystalline copper alloy powder with properties.

〔9〕メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比及び/又はボールミル等の運転エネルギーの選定などにより投入する機械エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)ナノ結晶銅又は銅合金や銅と他元素とから構成される第2相などの他の物質の結晶粒径、(2)これらの第2相などの他の物質の生成、又は(3)その生成量の(1)〜(3)から選ばれる1つ以上を制御してなることを特徴とする前項〔1〕〜〔8〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。
〔10〕銅又は銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、メカニカルアロイング(MA)又はメカニカルミリング(MM)によって得られるナノ結晶粒子集合体(粉体)間の固化成形過程での原子的結合促進物質として、チタン、ジルコニウム又はバナジウムを0.01〜5.0質量%含有させてなることを特徴とする前項〔1〕〜〔9〕のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。
〔11〕前項〔1〕〜〔10〕のいずれか1項に記載のナノ結晶銅又は銅合金粉末の多数個が固結されてなることを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材。
[9] In the mechanical alloying (MA) or mechanical milling (MM) process, the mechanical energy to be input is adjusted by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or selecting the operation energy of the ball mill, etc. (1) the crystal grain size of other substances such as the second phase composed of nanocrystalline copper or copper alloy or copper and other elements in the aggregate of nanocrystalline particles, (2) these second phases Any one of the above-mentioned items [1] to [8], characterized by controlling the production of other substances such as (3) one or more selected from (1) to (3) of the production amount 2. Nanocrystalline copper alloy powder having high hardness and high conductivity according to item 1.
[10] In a solidification process between nanocrystal particle aggregates (powder) obtained by mechanical alloying (MA) or mechanical milling (MM), a copper alloy powder comprising an aggregate of copper or copper alloy nanocrystal particles The high hardness according to any one of [1] to [9] above, wherein 0.01 to 5.0% by mass of titanium, zirconium or vanadium is contained as the atomic bond promoting substance. Nanocrystalline copper or copper alloy powder having high electrical conductivity.
[11] High hardness, high strength and high conductivity, characterized in that a large number of nanocrystalline copper or copper alloy powders according to any one of [1] to [10] are consolidated. A tough nanocrystalline copper or copper alloy bulk material.

〔12〕前項〔1〕〜〔10〕のいずれか1項に記載の銅又は銅合金ナノ結晶粒子の粉末を250〜700℃の温度での放電プラズマ焼結(Spark Plasma Sintering)、ホットプレス、シース圧延(Sheath Rolling)、熱間鍛造、押出し成形、熱間等方圧加圧成形(HIP)等の真空熱間固化成形又は爆発成形等の固化成形することにより、ナノ結晶銅又は銅合金バルク材となすことを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。
〔13〕前項〔2〕〜〔10〕のいずれか1項に記載の銅合金ナノ結晶粒子の粉末を250〜700℃の温度での放電プラズマ焼結、ホットプレス、押出し成形、熱間鍛造、熱間等方圧加圧成形、圧延等の真空熱間固化成形又は爆発成形などで固化成形して、ナノ結晶銅合金バルク材となした後、同バルク材を100〜600℃の温度にて焼なましすること(熱エネルギーの投入)により、銅と前項〔2〕に記載の元素からなる金属間化合物などの物質を析出・分散させてなることを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅合金バルク材の製造方法。
[12] Spark plasma sintering of the powder of the copper or copper alloy nanocrystal particles according to any one of [1] to [10] above at a temperature of 250 to 700 ° C., hot pressing, Nanocrystalline copper or copper alloy bulk by solidification molding such as vacuum hot solidification molding such as sheath rolling, hot forging, extrusion molding, hot isostatic pressing (HIP) or explosion molding A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, characterized in that it is made into a material.
[13] Discharge plasma sintering, hot pressing, extrusion molding, hot forging of the powder of the copper alloy nanocrystal particles according to any one of [2] to [10] above at a temperature of 250 to 700 ° C., After forming into a nanocrystalline copper alloy bulk material by hot isostatic pressing, rolling or other vacuum hot solidification molding such as rolling or explosion molding, etc., the bulk material is heated at a temperature of 100 to 600 ° C. High hardness, high strength and high strength by precipitation and dispersion of copper and intermetallic compounds consisting of the elements described in [2] above by annealing (inputting thermal energy) A method for producing a tough nanocrystalline copper alloy bulk material having electrical conductivity.

〔14〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、(1)アルゴンガスなどの不活性ガス、(2)N2ガス、又は(3)NH3ガスから選ばれるいずれか1種、又は(4)(1)〜(3)から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする前項〔12〕又は〔13〕に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。
〔15〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする前項〔12〕又は〔13〕に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。〔16〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする
前項〔12〕又は〔13〕に記載の高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。
[14] The atmosphere in which mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as argon gas, (2) N 2 gas, or (3) NH 3 gas, or (4 The tough nanocrystalline copper having high hardness and high conductivity according to [12] or [13] above, which is an atmosphere of two or more mixed gases selected from (1) to (3) Or the manufacturing method of a copper alloy bulk material.
[15] The high hardness according to [12] or [13], wherein the atmosphere for mechanical milling or mechanical alloying is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high electrical conductivity. [16] The above [12] or [13], wherein the atmosphere for performing mechanical milling or mechanical alloying is a vacuum or a reducing atmosphere in which a reducing substance such as a small amount of H 2 gas is added to the vacuum. ] The manufacturing method of the tough nanocrystalline copper or copper alloy bulk material which has high hardness, high strength, and high conductivity.

〔17〕ナノ結晶銅又は銅合金粉末の熱間固化成形温度への急速加熱及び/又は同熱間固化成形温度保持のため、マイクロ波による加熱方式又は低周波誘導加熱方式を用いることを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。
〔18〕ナノ結晶銅又は銅合金粉末の迅速な熱間固化成形処理を行うため、同粉末をマイクロ波加熱加圧焼結又は低周波誘導加熱加圧焼結することによって、ナノ結晶銅又は銅合金バルク材となすことを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。
[17] Use of a microwave heating method or a low-frequency induction heating method for rapid heating of the nanocrystalline copper or copper alloy powder to the hot solidification molding temperature and / or maintaining the hot solidification molding temperature. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity.
[18] In order to perform rapid hot solidification molding processing of nanocrystalline copper or copper alloy powder, the same powder is subjected to microwave heating pressure sintering or low frequency induction heating pressure sintering to form nanocrystalline copper or copper A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, characterized in that it is made of an alloy bulk material.

本発明によれば、銅合金材料の形成成分の元素状混合物質又は溶製した銅合金などの物質をメカニカルアロイング(MA)又はメカニカルミリング(MM)処理することにより、母相の銅の結晶粒がナノサイズまで超微細化される上、同結晶相内にさらに微細なナノサイズの金属間化合物などが粒状ないし球状に近い粒子として析出・分散するため、通常の溶解法では達成できないナノサイズレベルでの結晶粒微細化強化と金属間化合物などの析出・分散強化による、より優れたナノ結晶銅合金材料の製造が実現できる。
また、本発明によれば、ナノ結晶銅合金粉末の熱間固化成形において、同粉末の固化成形温度への加熱にマイクロ波による急速加熱方式(誘電体物質でなくても、金属の場合でも粉末であれば、マイクロ波加熱(microwave heating)が適用できる)、及び/又は低周波誘導加熱方式を適用すれば、その加熱過程での結晶粒の成長を抑制してナノ結晶銅合金バルク材料の製造をより効果的に行うことができる。
According to the present invention, a parent phase copper crystal is obtained by mechanically alloying (MA) or mechanically milling (MM) a substance such as an elemental mixed substance or a molten copper alloy as a component of a copper alloy material. Nano-size that cannot be achieved by the usual dissolution method because the grains are ultra-fine to nano-size, and finer nano-sized intermetallic compounds, etc. are precipitated and dispersed in the same crystal phase as granular or spherical particles. Production of better nanocrystalline copper alloy materials can be realized by strengthening grain refinement at the level and precipitation / dispersion strengthening of intermetallic compounds.
In addition, according to the present invention, in the hot solidification molding of the nanocrystalline copper alloy powder, the microwave rapid heating method is used to heat the powder to the solidification molding temperature (whether it is not a dielectric substance or a metal powder) If microwave heating (microwave heating) can be applied) and / or low-frequency induction heating method is applied, the growth of crystal grains during the heating process is suppressed and the nanocrystalline copper alloy bulk material is manufactured. Can be performed more effectively.

通常、銅合金系材料では、同材料の構成成分である合金元素がミクロンサイズの金属間化合物として存在しているが、このような高力導電性銅合金材料にメカニカルアロイング法を用いると、ナノサイズの粒状ないし球状に近い金属間化合物のような物質が銅の母相(ナノ結晶相)に析出・分散した極めて強靱な粉末が得られるため、これを固化成形すると、銅の母相のナノサイズまでの超微細化と球状に近いナノサイズの金属間化合物のような物質の同母相への析出・分散による相乗効果によって、従来の溶解法では製造し得ない極めて優れた強度特性をもつ材料を作ることができる。   Usually, in a copper alloy-based material, an alloying element that is a constituent component of the material is present as a micron-sized intermetallic compound, but when using a mechanical alloying method for such a high-strength conductive copper alloy material, Since a very tough powder in which substances such as nano-sized granular or spherical intermetallic compounds are precipitated and dispersed in the copper parent phase (nanocrystalline phase) is obtained, solidifying and molding this results in the formation of a copper parent phase. Due to the synergistic effect of precipitation and dispersion of substances such as nano-sized intermetallic compounds close to a spherical shape in the same phase with ultra-miniaturization down to nano size, extremely excellent strength characteristics that cannot be produced by conventional dissolution methods You can make materials with.

本発明は、基本的には、ナノ結晶の銅合金形成成分の混合物質又は溶製した銅合金粉末材料などの物質をボールミル等を用いてメカニカルアロイング(MA)又はメカニカルミリング(MM)の方法により、超硬質で高導電性を有するナノ結晶銅合金粉末材料を提供するとともに同粉末を固化成形処理により、結晶粒径をナノサイズのレベルまで微細化した場合に達成できるその限界に近い強さ(高強度)ないし硬さ(超硬質)及び耐食性をもつナノサイズの金属間化合物のような物質の析出・分散強化型高導電性銅合金バルク材を提供することである。   The present invention is basically a method of mechanical alloying (MA) or mechanical milling (MM) using a ball mill or the like to mix a material such as a mixed material of nanocrystalline copper alloy-forming components or a molten copper alloy powder material. Provides an ultra-hard and highly conductive nanocrystalline copper alloy powder material, and the strength close to its limit that can be achieved when the crystal grain size is refined to a nano-size level by solidification processing. The object is to provide a high conductivity copper alloy bulk material of precipitation / dispersion strengthening type such as nano-sized intermetallic compound having (high strength) to hardness (ultra-hard) and corrosion resistance.

本発明では、銅に他元素を添加した銅合金形成成分の混合物質又は溶製した銅合金材料などにボールミル等を用いて、アルゴンガスなどの雰囲気中にて室温でのメカニカルアロイング(MA)又はメカニカルミリング(MM)処理を施すと、MM又はMA処理された粉末は、ボールミルによって付加された機械的エネルギーにより、5〜50nm前後の結晶粒径まで容易に微細化し、例えば粒径約15nmまで微細化したベリリウム銅のビッカース硬さは500〜600程度となる。
次いで、そのようなMM、MA処理粉末を約10mm内径のステンレス鋼チューブ(シース)に真空封入し、これを700〜750℃付近の温度で圧延機を用いたシース圧延により固化成形すると、例えばベリリウムを約2質量%含有するベリリウム銅の場合は約1.9GPa以上の引張り強さを示す厚さ1.5mm程度のシートを容易に製造することができる。
In the present invention, a mechanical alloying (MA) at room temperature in an atmosphere of argon gas or the like using a ball mill or the like for a mixed material of a copper alloy forming component obtained by adding other elements to copper or a molten copper alloy material. Alternatively, when mechanical milling (MM) treatment is performed, the powder treated with MM or MA is easily refined to a crystal grain size of around 5 to 50 nm by mechanical energy applied by a ball mill, for example, to a grain size of about 15 nm. The Vickers hardness of the refined beryllium copper is about 500 to 600.
Subsequently, such MM and MA-treated powder is vacuum sealed in a stainless steel tube (sheath) having an inner diameter of about 10 mm, and solidified by sheath rolling using a rolling mill at a temperature of around 700 to 750 ° C. In the case of beryllium copper containing about 2% by mass, a sheet having a thickness of about 1.5 mm and having a tensile strength of about 1.9 GPa or more can be easily produced.

また、前項に記載のメカニカルアロイング(MA)又はメカニカルミリング(MM)処理粉末に通常、MA又はMM処理過程で必然的に混入する0.5質量%程度までの酸素が金属又は半金属の酸化物の形態で存在して、同酸化物による結晶粒界のピン止め効果(pinning effect)により、固化成形過程での結晶粒粗大化を抑制する。   In addition, oxygen up to about 0.5% by mass, which is inevitably mixed in the mechanical alloying (MA) or mechanical milling (MM) -treated powder described in the preceding paragraph, is inevitably mixed in the course of MA or MM treatment. It exists in the form of a product and suppresses grain coarsening during the solidification molding process due to the pinning effect of the crystal grain boundaries caused by the oxide.

本発明では、銅合金形成成分の元素状粉末材料又は溶製した銅合金などの材料をボールミル等を用いてメカニカルアロイング(MA)又はメカニカルミリング(MM)処理すると、ナノ結晶銅合金相にナノサイズの金属間化合物が析出・分散した極めて硬くて強靱な粉末材料を容易に製造でき、これにシース圧延、押出し加工などの固化成形を施すと、高硬度・高強度で高導電性を有する強靱かつ優れた耐食性などの特性を具備したナノ結晶銅合金バルク材料を容易に製造することができる。
その結果、Cu97.7Be2Co0.3(質量%)、Cu99.85Zr0.15(質量%)及びCu99.35Cr0.65(質量%)などのナノ結晶銅合金の粉末材料及びそのバルク材が得られる。
In the present invention, when a material such as an elemental powder material of a copper alloy forming component or a melted copper alloy is subjected to mechanical alloying (MA) or mechanical milling (MM) treatment using a ball mill or the like, the nanocrystalline copper alloy phase is nanocrystallized. An extremely hard and tough powder material in which intermetallic compounds of size are deposited and dispersed can be easily manufactured. When this is solidified by sheath rolling, extrusion, etc., it has high hardness, high strength and high conductivity. In addition, a nanocrystalline copper alloy bulk material having characteristics such as excellent corrosion resistance can be easily manufactured.
As a result, a powder material of a nanocrystalline copper alloy such as Cu 97.7 Be 2 Co 0.3 (mass%), Cu 99.85 Zr 0.15 (mass%) and Cu 99.35 Cr 0.65 (mass%) and a bulk material thereof are obtained.

実施例1:
銅(Cu)、ベリリウム(Be)、クロム(Cr)、ジルコニウム(Zr)、チタン(Ti)、銀(Ag)又はリン(P)の元素状粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA時間:200h)処理により、Cu973(質量%)(A=Be、Cr、Zr、Ti、Ag、又はP)組成の銅合金及び銅の粉末
をつくった。シェラーの式を用いて求めたこれらのMA処理粉末の平均結晶粒径dは表1のとおりである。
表1からみて、本発明によれば、どの元素の場合でも3質量%ほどの添加により銅の結晶粒微細化は大きく促進され、特に銅への固溶度が極めて小さく、融点の高い元素(ジルコニウム、クロムなど)ほどその効果は大きいことが解る。

Figure 2005314806
*[メカニカルアロイング(MA)したCu973(質量%)(A=Be、Cr、Zr、Ti、Ag、又はP)合金粉末の平均結晶粒径d]
Example 1:
Mechanical alloying (MA) using ball mill from elemental powder of copper (Cu), beryllium (Be), chromium (Cr), zirconium (Zr), titanium (Ti), silver (Ag) or phosphorus (P) (Atmosphere: Argon gas / MA time: 200 h) A copper alloy and copper powder having a composition of Cu 97 A 3 (mass%) (A = Be, Cr, Zr, Ti, Ag, or P) were prepared by the treatment. Table 1 shows the average crystal grain size d of these MA-treated powders determined using Scherrer's equation.
As can be seen from Table 1, according to the present invention, refinement of copper crystal grains is greatly promoted by addition of about 3% by mass in any element, in particular, an element having a very low solid solubility in copper and a high melting point ( Zirconium, chromium, etc.) show that the effect is greater.
Figure 2005314806
* [Mechanical alloying (MA) Cu 97 A 3 (mass%) (A = Be, Cr, Zr, Ti, Ag, or P) average crystal grain size d of alloy powder]

実施例2:
銅(Cu)、ベリリウム(Be)、コバルト(Co)、ジルコニウム(Zr)、又はクロム(Cr)の元素状混合粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA時間:200h)処理により、Cu97.7Be2Co0.3(質量%)、Cu99.85Zr0.15(質量%)及びCu99.35Cr0.65(質量%)組成の銅合金粉末をつくった。
次いで、これらの合金粉末を内径約10mmのステンレス鋼チューブ(シース)に真空封入し、こらに600℃にて熱間圧延加工を施した後、水冷して固化成形試料を得た。これらの銅合金固化成形体と前記銅合金MA粉末試料の平均結晶粒径d及びビッカース硬さHvは表2のとおりである。本表において、dの値はシェラーの式を用いて求めた。また、MA処理粉末のビッカース硬さは荷重100gにて測定したマイクロビッカース硬さである。
表2からみて、本発明によれば、固化成形過程でかなり大きな結晶粒の成長はみられるが、成形後もナノ結晶組織は保持された。また、MA処理粉末のビッカース硬さHvは溶解法によって作られた各焼なまし材の硬さの約3〜5倍ほど大きく、これらの値は固化成形処理によって、更に増大した。このようなHv値増大の効果は、ベリリウム銅の場合、より顕著であることが解る。

Figure 2005314806
*[メカニカルアロイング(MA)処理した、(a)Cu97.7Be2Co0.3(質量%)、
(b)Cu99.85Zr0.15(質量%)及び(C)Cu99.35Cr0.65(質量%)合金粉末とそれらの熱間固化成形体の平均結晶粒径d及びビッカース硬さHv]
Example 2:
Mechanical alloying (MA) using ball mill from elemental mixed powder of copper (Cu), beryllium (Be), cobalt (Co), zirconium (Zr), or chromium (Cr) (atmosphere: argon gas / MA time) : 200h) The copper alloy powders of Cu 97.7 Be 2 Co 0.3 (mass%), Cu 99.85 Zr 0.15 (mass%) and Cu 99.35 Cr 0.65 (mass%) were prepared by the treatment.
Next, these alloy powders were sealed in a stainless steel tube (sheath) having an inner diameter of about 10 mm, subjected to hot rolling at 600 ° C., and then cooled with water to obtain a solidified sample. Table 2 shows the average crystal grain size d and Vickers hardness Hv of these copper alloy solidified compacts and the copper alloy MA powder sample. In this table, the value of d was determined using Scherrer's equation. The Vickers hardness of the MA-treated powder is micro Vickers hardness measured at a load of 100 g.
As can be seen from Table 2, according to the present invention, a considerably large crystal grain growth was observed in the solidification molding process, but the nanocrystal structure was retained after the molding. Further, the Vickers hardness Hv of the MA-treated powder is about 3 to 5 times greater than the hardness of each annealed material made by the melting method, and these values were further increased by the solidification molding treatment. It can be seen that such an effect of increasing the Hv value is more remarkable in the case of beryllium copper.
Figure 2005314806
* [Mechanical alloying (MA) treatment, (a) Cu 97.7 Be 2 Co 0.3 (mass%),
(B) Cu 99.85 Zr 0.15 (mass%) and (C) Cu 99.35 Cr 0.65 (mass%) alloy powders and their hot-solidified average grain size d and Vickers hardness Hv]

実施例3:
銅(Cu)、ベリリウム(Be)、コバルト(Co)、ジルコニウム(Zr)、又はクロム(Cr)の元素状混合粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA時間:200h)処理により、Cu97.7Be2Co0.3(質量%)、Cu99.85Zr0.15(質量%)及びCu99.35Cr0.65(質量%)組成の銅合金粉末をつくった。
次いで、この3種類の合金粉末を前期実施例2と同様にして600℃にて熱間圧延加工を施し、これを水冷して得られた固化成形体試料の平均結晶粒径d、ビッカース硬さHv、引張り強さσB及び伸びδは表3のとおりである。
表3からみて、本発明によれば、前記の固化成形体は、いずれも銅の高導電性を大きく損なうことなく、強さと伸びを兼ね備えた超高張力鋼をしのぐ極めて優れた強度特性を有するものとなることが解る。

Figure 2005314806
*[(a)Cu97.7Be2Co0.3(質量%)、(b)Cu99.85Zr0.15(質量%)及び(c)Cu99.35Cr0.65(質量%)メカニカルアロイング(MA)試料の熱間固化成形体
の平均結晶粒径d、導電率%IACS*、引張り強さσB及び伸びδ]
*International Annealed Copper Standard
Example 3:
Mechanical alloying (MA) using ball mill from elemental mixed powder of copper (Cu), beryllium (Be), cobalt (Co), zirconium (Zr), or chromium (Cr) (atmosphere: argon gas / MA time) : 200h) The copper alloy powders of Cu 97.7 Be 2 Co 0.3 (mass%), Cu 99.85 Zr 0.15 (mass%) and Cu 99.35 Cr 0.65 (mass%) were prepared by the treatment.
Next, the three types of alloy powders were hot-rolled at 600 ° C. in the same manner as in Example 2 and the water-cooled samples were obtained to obtain an average crystal grain size d and Vickers hardness. Table 3 shows Hv, tensile strength σ B, and elongation δ.
As can be seen from Table 3, according to the present invention, the above-mentioned solidified molded body has extremely excellent strength characteristics that surpass the high strength steel having both strength and elongation without greatly impairing the high conductivity of copper. It turns out that it becomes a thing.
Figure 2005314806
* [(A) Cu 97.7 Be 2 Co 0.3 (mass%), (b) Cu 99.85 Zr 0.15 (mass%) and (c) Cu 99.35 Cr 0.65 (mass%) mechanical alloying (MA) hot solidification of sample Average crystal grain diameter d, electrical conductivity% IACS *, tensile strength σ B and elongation δ]
* International Annealed Copper Standard

本発明の高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材は、電気通信機器類用の導電性高力ばね材料として使用でき、また電気電子機器類の軽量化、小型化を可能にする。
The tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity of the present invention can be used as a conductive high-strength spring material for telecommunications equipment, and light weight of electrical and electronic equipment. And downsizing.

Claims (18)

銅金属ナノ結晶粒子の集合体よりなる銅金属粉末であって、同ナノ結晶粒子が2〜1000nmサイズのナノ結晶粒子であることを特徴とする高硬度で高導電性を有するナノ結晶銅金属粉末。   A copper metal powder comprising an aggregate of copper metal nanocrystal particles, wherein the nanocrystal particles are nanocrystal particles having a size of 2 to 1000 nm and having high hardness and high conductivity. . 銅合金ナノ結晶粒子の集合体よりなる銅合金粉末であって、その合金元素がベリリウム、クロム、ジルコニウム、チタン、銀、コバルト、ニッケル、亜鉛、鉄、カドミウム、マンガン、アルミニウム、モリブデン、バナジウム、タングステン、ニオブ、タンタル、リン、ケイ素又はホウ素から選ばれるいずれか1つ以上からなり、これらの合金元素が1つの場合には、その濃度が銅合金粉末の0.05〜40質量%を含有し、また合金元素が2つ以上の場合には、その合計濃度が0.05〜45質量%含有して、前記ナノ結晶銅合金粉末がこれらの合金元素による固溶強化と2〜1000nmサイズレベルまでの結晶粒微細化強化されてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。   Copper alloy powder composed of aggregates of copper alloy nanocrystal particles, whose alloy elements are beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron, cadmium, manganese, aluminum, molybdenum, vanadium, tungsten Any one or more selected from niobium, tantalum, phosphorus, silicon or boron, and in the case of one of these alloy elements, the concentration thereof is 0.05 to 40% by mass of the copper alloy powder, In addition, when there are two or more alloy elements, the total concentration is 0.05 to 45% by mass, and the nanocrystalline copper alloy powder is solid solution strengthened by these alloy elements and has a size level of 2 to 1000 nm. A nanocrystalline copper alloy powder having high hardness and high conductivity, characterized by being refined and refined. 銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、析出・分散強化物質及び/又は結晶粒成長抑制物質として、(1)ベリリウム、クロム、ジルコニウム、チタン、銀、コバルト、ニッケル、亜鉛、鉄、カドミウム、マンガン、アルミニウム、モリブデン、バナジウム、タングステン、ニオブ、タンタル、リン、ケイ素又はホウ素から選ばれるいずれか1つ以上の合金元素から選ばれるいずれか1種以上、又は(2)前記各元素と銅からから構成される金属間化合物のいずれか1種以上を存在させてなるものであることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。   A copper alloy powder comprising an aggregate of copper alloy nanocrystal particles is used as a precipitation / dispersion strengthening substance and / or a grain growth inhibiting substance. (1) Beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron , Cadmium, manganese, aluminum, molybdenum, vanadium, tungsten, niobium, tantalum, phosphorus, silicon or boron, any one or more selected from one or more alloy elements, or (2) each of the above elements A nanocrystalline copper alloy powder having high hardness and high conductivity, characterized in that any one or more of intermetallic compounds composed of copper are present. 銅又は銅合金ナノ結晶粒子の集合体よりなる銅又は銅合金粉末が、銅又は銅合金中の固溶不純物による導電率低下を抑制する物質として、亜鉛、カドミウム、ケイ素、リン又は酸素のいずれか1種以上を存在させてなるものであることを特徴とする請求項1〜3のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。   Copper or copper alloy powder consisting of an aggregate of copper or copper alloy nanocrystal particles is one of zinc, cadmium, silicon, phosphorus or oxygen as a substance that suppresses the decrease in conductivity due to solid solution impurities in copper or copper alloy. The nanocrystalline copper or copper alloy powder having high hardness and high conductivity according to any one of claims 1 to 3, wherein one or more kinds are present. 銅又は銅合金ナノ結晶粒子の集合体よりなる銅又は銅合金粉末が、金属又は半金属の酸化物の形態で酸素を0.005〜1.0質量%含有するものであることを特徴とする請求項1〜4のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。   A copper or copper alloy powder comprising an aggregate of copper or copper alloy nanocrystal particles is characterized by containing 0.005 to 1.0 mass% of oxygen in the form of a metal or metalloid oxide. The nanocrystalline copper or copper alloy powder having high hardness and high conductivity according to any one of claims 1 to 4. 銅金属ナノ結晶粒子が、塊状、片状、粒状、粉状の銅金属材料を、ボールミル等を用いてメカニカルミリング(MM)することによって得られたものであることを特徴とする請求項1、4、5のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅金属粉末。   The copper metal nanocrystal particles are obtained by mechanically milling (MM) a massive, piece-like, granular, or powdery copper metal material using a ball mill or the like. The nanocrystalline copper metal powder having high hardness and high conductivity according to any one of 4 and 5. 銅合金ナノ結晶粒子が、塊状、片状、粒状、粉状の銅合金の形成成分材料の混合物を、ボールミル等を用いてメカニカルアロイング(MA)又はメカニカルミリング(MM)することによって得られたものであることを特徴とする請求項2〜5のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。   The copper alloy nanocrystal particles were obtained by mechanically alloying (MA) or mechanically milling (MM) a mixture of the constituent materials of the massive, flake, granular, and powdery copper alloy using a ball mill or the like. The nanocrystalline copper alloy powder having high hardness and high conductivity according to any one of claims 2 to 5, wherein the nanocrystalline copper alloy powder has high conductivity. 銅合金ナノ結晶粒子が、塊状、片状、粒状、粉状の銅、ベリリウム銅、クロム銅、ジルコニウム銅、銀銅、チタン銅、ケイ素青銅、ケルメット合金、黄銅、アルミニウム青銅、ニッケル銅、ニッケル青銅、コルソン合金、銅、マンガン合金、リン青銅、洋白、キュプロニッケル、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれた銅合金の構成材料を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする請求項2〜5のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。   Copper alloy nanocrystal particles are lump, flake, granule, powder copper, beryllium copper, chromium copper, zirconium copper, silver copper, titanium copper, silicon bronze, cermet alloy, brass, aluminum bronze, nickel copper, nickel bronze , Corson alloy, copper, manganese alloy, phosphor bronze, white, cupronickel, other alloy elements or alloys of copper alloy selected from two or more substances, using ball mill etc. The nanocrystal having high hardness and high conductivity according to any one of claims 2 to 5, which is obtained by mechanical milling (MM) or mechanical alloying (MA). Copper alloy powder. メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比及び/又はボールミル等の運転エネルギーの選定などにより投入する機械エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)ナノ結晶銅又は銅合金や銅と他元素とから構成される第2相などの他の物質の結晶粒径、(2)これらの第2相などの他の物質の生成、又は(3)その生成量、の(1)〜(3)から選ばれる1つ以上を制御してなることを特徴とする請求項1〜8のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。 In the mechanical alloying (MA) or mechanical milling (MM) process, by adjusting the mechanical energy to be input by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or the operation energy of the ball mill, etc., (1) Crystal grain size of other substances such as second phase composed of nanocrystalline copper or copper alloy or copper and other elements in the aggregate of nanocrystalline particles, (2) Other such as second phase 9. The substance according to any one of claims 1 to 8, wherein one or more selected from (1) to (3) of (1) to (3) is controlled. Nanocrystalline copper alloy powder with high hardness and high conductivity. 銅又は銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、メカニカルアロイング(MA)又はメカニカルミリング(MM)によって得られるナノ結晶粒子集合体(粉体)間の固化成形過程での原子的結合促進物質として、チタン、ジルコニウム又はバナジウムを0.01〜5.0質量%含有させてなることを特徴とする請求項1〜9のいずれか1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。 A copper alloy powder composed of an aggregate of copper or copper alloy nanocrystal particles is atomically formed during a solidification process between nanocrystal particle aggregates (powder) obtained by mechanical alloying (MA) or mechanical milling (MM). It has a high hardness and high conductivity according to any one of claims 1 to 9, characterized in that it contains 0.01 to 5.0% by mass of titanium, zirconium or vanadium as a bonding promoter. Nanocrystalline copper or copper alloy powder. 請求項1〜10のいずれか1項に記載のナノ結晶銅又は銅合金粉末の多数個が固結されてなることを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材。   A tough nanocrystalline copper having high hardness, high strength and high conductivity, wherein a large number of the nanocrystalline copper or copper alloy powder according to any one of claims 1 to 10 is consolidated. Or bulk material of copper alloy. 請求項1〜10のいずれか1項に記載の銅粉末又は銅合金粉末を250〜700℃の温度での放電プラズマ焼結(Spark Plasma Sintering)、ホットプレス、シース圧延(Sheath Rolling)、熱間鍛造、押出し成形、熱間等方圧加圧成形(HIP)等の真空熱間固化成形又は爆発成形等の固化成形することにより、ナノ結晶銅又は銅合金のバルク材となすことを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。   The copper powder or copper alloy powder according to any one of claims 1 to 10 is subjected to spark plasma sintering at a temperature of 250 to 700 ° C, hot pressing, sheath rolling, hot It becomes a bulk material of nanocrystalline copper or copper alloy by solidification molding such as vacuum hot solidification molding such as forging, extrusion molding, hot isostatic pressing (HIP) or explosion molding. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity. 請求項2〜10のいずれか1項に記載の銅合金粉末を250〜700℃の温度での放電プラズマ焼結、ホットプレス、押出し成形、熱間鍛造、熱間等方圧加圧成形、圧延等の真空熱間固化成形又は爆発成形などで固化成形して、ナノ結晶銅合金バルク材となした後、同バルク材を100〜600℃の温度にて焼なましすること(熱エネルギーの投入)を特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅合金バルク材の製造方法。   The copper alloy powder according to any one of claims 2 to 10, discharge plasma sintering at a temperature of 250 to 700 ° C, hot pressing, extrusion molding, hot forging, hot isostatic pressing, rolling After solidifying and forming into a nanocrystalline copper alloy bulk material by vacuum hot solidification molding such as vacuum molding, etc., etc., the bulk material is annealed at a temperature of 100 to 600 ° C. (input of thermal energy) A method for producing a tough nanocrystalline copper alloy bulk material having a high hardness, high strength and high electrical conductivity. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、(1)アルゴンガスなどの不活性ガス、(2)N2ガス、又は(3)NH3ガスから選ばれるいずれか1種、又は(4)(1)〜(3)から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする請求項12又は13に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。 The atmosphere in which mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as argon gas, (2) N 2 gas, or (3) NH 3 gas, or (4) (1 The tough nanocrystalline copper or copper alloy bulk material having high hardness and high conductivity according to claim 12 or 13, wherein the bulk material is an atmosphere of two or more kinds of mixed gases selected from (3) to (3). Manufacturing method. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする請求項12又は13に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。 The atmosphere for performing mechanical milling or mechanical alloying is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added, and has high hardness and high conductivity according to claim 12 or 13 A method for producing a tough nanocrystalline copper or copper alloy bulk material. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする請求項12又は13に記載の高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。 Atmosphere performing mechanical milling or mechanical alloying is, high hardness of claim 12 or 13, characterized in that a vacuum or a reducing atmosphere was added a reducing substance, such as some of the H 2 gas in a vacuum or vacuum A method for producing a tough nanocrystalline copper or copper alloy bulk material having high strength and high conductivity. 請求項1〜10のいずれか1項に記載のナノ結晶銅又は銅合金の粉末の熱間固化成形温度への急速加熱及び/又は同熱間固化成形温度保持のため、マイクロ波による加熱方式又は低周波誘導加熱方式を用いることを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。   Heating method using microwaves for rapid heating of the nanocrystalline copper or copper alloy powder according to any one of claims 1 to 10 to a hot solidification molding temperature and / or maintaining the hot solidification molding temperature. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, characterized by using a low-frequency induction heating method. 請求項1〜10のいずれか1項に記載のナノ結晶銅又は銅合金粉末の迅速な熱間固化成形処理を行うため、同粉末をマイクロ波加熱加圧焼結又は低周波誘導加熱加圧焼結することによって、ナノ結晶銅又は銅合金のバルク材となすことを特徴とする高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。
In order to perform a rapid hot solidification processing of the nanocrystalline copper or copper alloy powder according to any one of claims 1 to 10, the powder is subjected to microwave heating and pressure sintering or low frequency induction heating and pressure firing. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high electrical conductivity, characterized in that the bulk material is made of nanocrystalline copper or a copper alloy by bonding.
JP2005090521A 2004-03-29 2005-03-28 Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof Pending JP2005314806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090521A JP2005314806A (en) 2004-03-29 2005-03-28 Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004097162 2004-03-29
JP2005090521A JP2005314806A (en) 2004-03-29 2005-03-28 Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof

Publications (1)

Publication Number Publication Date
JP2005314806A true JP2005314806A (en) 2005-11-10

Family

ID=35442524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090521A Pending JP2005314806A (en) 2004-03-29 2005-03-28 Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof

Country Status (1)

Country Link
JP (1) JP2005314806A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
JP2010524731A (en) * 2007-05-03 2010-07-22 ハスキー インジェクション モールディング システムズ リミテッド Nanocrystal hot runner nozzle
JP2011202245A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method
RU2455110C1 (en) * 2010-11-25 2012-07-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method of producing electric arc plasma generator electrodes
KR20150053822A (en) * 2012-11-01 2015-05-18 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
CN106086510A (en) * 2016-06-23 2016-11-09 袁春华 A kind of preparation method of nanoporous copper radiating rib
US10421122B2 (en) 2015-05-13 2019-09-24 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
CN110358945A (en) * 2019-08-27 2019-10-22 天长市华海电子科技有限公司 A kind of high hardness alloy forge piece and its preparation process
WO2019230018A1 (en) 2018-06-01 2019-12-05 山陽特殊製鋼株式会社 Cu-based alloy powder
JP2020084315A (en) * 2018-11-19 2020-06-04 財團法人工業技術研究院Industrial Technology Research Institute Copper zirconium alloy heat radiation component, manufacturing method of copper zirconium alloy casing
WO2021015119A1 (en) 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu-based alloy powder
CN112391551A (en) * 2020-12-07 2021-02-23 西安稀有金属材料研究院有限公司 Preparation method of biomedical titanium-copper alloy
US10981226B2 (en) 2016-10-25 2021-04-20 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
KR20210056548A (en) * 2019-11-11 2021-05-20 한국생산기술연구원 Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof
CN112981168A (en) * 2021-02-04 2021-06-18 合肥工业大学 Powder hot-forged copper-based pantograph slide plate material and preparation method thereof
KR20220000912A (en) * 2017-08-21 2022-01-04 제이엑스금속주식회사 Copper alloy powder for lamination shaping, lamination shaped product production method, and lamination shaped product
CN114184634A (en) * 2021-12-09 2022-03-15 贵州师范大学 Temperature deformation method and device under controllable medium
CN115537693A (en) * 2022-10-27 2022-12-30 昆明理工大学 Preparation method of copper-zinc alloy with surface double-peak and grain size double-heterostructure

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524731A (en) * 2007-05-03 2010-07-22 ハスキー インジェクション モールディング システムズ リミテッド Nanocrystal hot runner nozzle
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
JP2011202245A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method
RU2455110C1 (en) * 2010-11-25 2012-07-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method of producing electric arc plasma generator electrodes
KR20150053822A (en) * 2012-11-01 2015-05-18 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
KR101718257B1 (en) 2012-11-01 2017-03-20 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
US10421122B2 (en) 2015-05-13 2019-09-24 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US10843260B2 (en) 2015-05-13 2020-11-24 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US11077495B2 (en) 2015-05-13 2021-08-03 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
CN106086510A (en) * 2016-06-23 2016-11-09 袁春华 A kind of preparation method of nanoporous copper radiating rib
US10981226B2 (en) 2016-10-25 2021-04-20 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
KR102639553B1 (en) * 2017-08-21 2024-02-23 제이엑스금속주식회사 Copper alloy powder for lamination shaping, lamination shaped product production method, and lamination shaped product
KR20220000912A (en) * 2017-08-21 2022-01-04 제이엑스금속주식회사 Copper alloy powder for lamination shaping, lamination shaped product production method, and lamination shaped product
WO2019230018A1 (en) 2018-06-01 2019-12-05 山陽特殊製鋼株式会社 Cu-based alloy powder
JP2020084315A (en) * 2018-11-19 2020-06-04 財團法人工業技術研究院Industrial Technology Research Institute Copper zirconium alloy heat radiation component, manufacturing method of copper zirconium alloy casing
JP7016820B2 (en) 2018-11-19 2022-02-07 財團法人工業技術研究院 Manufacturing method of copper zirconium alloy heat dissipation parts and copper zirconium alloy casing
WO2021015119A1 (en) 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu-based alloy powder
CN110358945A (en) * 2019-08-27 2019-10-22 天长市华海电子科技有限公司 A kind of high hardness alloy forge piece and its preparation process
KR102297806B1 (en) 2019-11-11 2021-09-03 한국생산기술연구원 Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof
KR20210056548A (en) * 2019-11-11 2021-05-20 한국생산기술연구원 Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof
CN112391551A (en) * 2020-12-07 2021-02-23 西安稀有金属材料研究院有限公司 Preparation method of biomedical titanium-copper alloy
CN112981168A (en) * 2021-02-04 2021-06-18 合肥工业大学 Powder hot-forged copper-based pantograph slide plate material and preparation method thereof
CN112981168B (en) * 2021-02-04 2022-04-01 合肥工业大学 Powder hot-forged copper-based pantograph slide plate material and preparation method thereof
CN114184634A (en) * 2021-12-09 2022-03-15 贵州师范大学 Temperature deformation method and device under controllable medium
CN114184634B (en) * 2021-12-09 2024-02-02 贵州师范大学 Temperature deformation method and device under controllable medium
CN115537693A (en) * 2022-10-27 2022-12-30 昆明理工大学 Preparation method of copper-zinc alloy with surface double-peak and grain size double-heterostructure

Similar Documents

Publication Publication Date Title
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
CN110872658B (en) High-performance copper alloy and powder preparation method thereof
JP6199897B2 (en) Powder mixture for producing nickel-titanium-rare earth metal (Ni-Ti-RE) sintered alloys
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
WO2004029313A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
Sahani et al. Structural investigation of vacuum sintered Cu–Cr and Cu–Cr–4% SiC nanocomposites prepared by mechanical alloying
JP2009235556A (en) Copper powder for conductive pastes, and conductive paste
WO2005102568A2 (en) Binary rhenium alloys
Rajkovic et al. Properties of copper matrix reinforced with various size and amount of Al2O3 particles
Wu et al. Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering
Yusefi et al. WCu functionally graded material: Low temperature fabrication and mechanical characterization
Luo et al. Microstructures and mechanical properties of Mg-Gd-Zn-Zr alloys prepared by spark plasma sintering
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
CA3057056C (en) Copper alloy powder for lamination shaping, lamination shaped product production method, and lamination shaped product
US10058917B2 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
Wang et al. Microstructure and mechanical properties of ultrafine grained Cu-0.8 wt% C alloy with a bimodal microstructure produced by powder metallurgy techniques
Estrada-Ruiz et al. Mechanical properties of aluminum 7075–Silver nanoparticles powder composite and its relationship with the powder particle size
Zheng et al. Mechanical properties and electrical conductivity of nano-La2O3 reinforced copper matrix composites fabricated by spark plasma sintering
WO2010054619A2 (en) Composite member made of copper or a copper alloy with embedded carbon nanotubes, method for the production of such a member, and use of the composite member
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
WO2005092541A1 (en) Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof
CN112143929B (en) Graphene-loaded grain refining material of Al-Mg alloy wire and preparation method thereof
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
KR102010307B1 (en) Manufacturing method of aluminum-titanium composite and aluminum-titanium composite manufactured by the same
JP2013091816A (en) Copper alloy material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091111