JP2009521598A5 - - Google Patents

Download PDF

Info

Publication number
JP2009521598A5
JP2009521598A5 JP2008547524A JP2008547524A JP2009521598A5 JP 2009521598 A5 JP2009521598 A5 JP 2009521598A5 JP 2008547524 A JP2008547524 A JP 2008547524A JP 2008547524 A JP2008547524 A JP 2008547524A JP 2009521598 A5 JP2009521598 A5 JP 2009521598A5
Authority
JP
Japan
Prior art keywords
oxide
composition
metal
nanoparticle
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008547524A
Other languages
Japanese (ja)
Other versions
JP2009521598A (en
JP5394749B2 (en
Filing date
Publication date
Priority claimed from US11/613,136 external-priority patent/US20070144305A1/en
Application filed filed Critical
Publication of JP2009521598A publication Critical patent/JP2009521598A/en
Publication of JP2009521598A5 publication Critical patent/JP2009521598A5/ja
Application granted granted Critical
Publication of JP5394749B2 publication Critical patent/JP5394749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

さらに、穏やかな加工条件下、大きな金属粒子を導入して導電性構造を形成することは
難しいため、低温のみに耐えられる基質上へ厚い導電性構造を形成する方法に対する必要
性もある。そのような方法に適したあらゆる組成物に対する関連した必要性も存在する。
この出願の発明に関連する先行技術文献情報としては、以下のものがある(国際出願日以降国際段階で引用された文献及び他国に国内移行した際に引用された文献を含む)。
米国特許出願第2004/0013907号 米国特許出願第2005/0142030号 米国特許出願第2005/0016851号 米国特許第6,645,444号明細書 米国特許第6,765,049号明細書 米国特許第6,878,184号明細書
Furthermore, there is a need for a method of forming a thick conductive structure on a substrate that can withstand only low temperatures, since it is difficult to introduce large metal particles to form a conductive structure under mild processing conditions. There is also a related need for any composition suitable for such a method.
Prior art document information related to the invention of this application includes the following (including documents cited in the international phase after the international filing date and documents cited when entering the country in other countries).
US Patent Application No. 2004/0013907 US Patent Application No. 2005/0142030 US Patent Application No. 2005/0016851 US Pat. No. 6,645,444 US Pat. No. 6,765,049 US Pat. No. 6,878,184

Claims (25)

組成物であって、
水性に分散した金属ナノ粒子の集団を有し、
前記集団の少なくとも一部は、約1nmから約100nmの範囲の平均断面直径を有するものとして特徴付けされた個々の金属ナノ粒子を有するものであり、
前記ナノ粒子は、その表面に結合した少なくとも一つのリガンドを有し、前記リガンドは前記ナノ粒子表面に結合したヘテロ原子頭部基及び前記ヘテロ原子頭部基に結合した尾部を有するものである、組成物。
A composition comprising:
It has a population of dispersed metal nanoparticles in an aqueous solvent medium,
At least a portion of the population has individual metal nanoparticles characterized as having an average cross-sectional diameter in the range of about 1 nm to about 100 nm;
Each of the nanoparticles has at least one ligand bonded to the surface thereof, and the ligand has a heteroatom head group bonded to the nanoparticle surface and a tail bonded to the heteroatom head group. ,Composition.
請求項1記載の組成物において、前記ナノ粒子集団はさらに、
2若しくはそれ以上の個々のナノ粒子、2若しくはそれ以上の個々のナノ粒子を含むナノ粒子フロック、或いはそれらのあらゆる組み合わせを含む粒子凝集体を有するものである。
The composition of claim 1, wherein the population of nanoparticles further comprises:
It has a particle aggregate comprising two or more individual nanoparticles, a nanoparticle flock comprising two or more individual nanoparticles, or any combination thereof.
請求項2記載の組成物において、前記個々の金属ナノ粒子の集団の粒子凝集体に対する重量比は、約1:99から99:1の範囲である。   The composition of claim 2, wherein the weight ratio of the population of individual metal nanoparticles to particle aggregates ranges from about 1:99 to 99: 1. 請求項2記載の組成物において、前記個々の金属ナノ粒子の集団の粒子フロックに対する重量比は、約1:99から99:1の範囲である。   3. The composition of claim 2, wherein the weight ratio of said individual metal nanoparticle population to particle floc ranges from about 1:99 to 99: 1. 請求項2記載の組成物において、ナノ粒子凝集体は、約100nmから約10000nmの範囲の平均断面直径を有するものである。   3. The composition of claim 2, wherein the nanoparticle aggregate has an average cross-sectional diameter in the range of about 100 nm to about 10,000 nm. 請求項2記載の組成物において、ナノ粒子フロックは、約100nmから約10000nmの範囲の平均断面直径を有するものである。   3. The composition of claim 2, wherein the nanoparticle floc has an average cross-sectional diameter in the range of about 100 nm to about 10,000 nm. 請求項1記載の組成物において、個々の金属ナノ粒子は、銀、銅、金、亜鉛、カドミウム、パラジウム、イリジウム、ルテニウム、オスミウム、ロジウム、白金、鉄、ニッケル、コバルト、インジウム、酸化銀、酸化銅、酸化金、酸化亜鉛、酸化カドミウム、酸化パラジウム、酸化イリジウム、酸化ルテニウム、酸化オスミウム、酸化ロジウム、酸化白金、酸化鉄、酸化ニッケル、酸化コバルト、酸化インジウム、或いはそれらのあらゆる組み合わせを有するものである。   The composition of claim 1, wherein the individual metal nanoparticles are silver, copper, gold, zinc, cadmium, palladium, iridium, ruthenium, osmium, rhodium, platinum, iron, nickel, cobalt, indium, silver oxide, oxide. It has copper, gold oxide, zinc oxide, cadmium oxide, palladium oxide, iridium oxide, ruthenium oxide, osmium oxide, rhodium oxide, platinum oxide, iron oxide, nickel oxide, cobalt oxide, indium oxide, or any combination thereof. is there. 請求項1記載の組成物において、前記組成物は、約140℃を下回る温度で約60秒未満硬化させた後、厚さ約10μm未満の凝集構造を形成するものである。 2. The composition of claim 1 wherein the composition forms an aggregate structure having a thickness of less than about 10 [mu] m after curing for less than about 60 seconds at a temperature below about 140 [deg.] C. 組成物であって、
約140℃を下回る温度で約90秒未満硬化させた後、厚さ約10μm以下の凝集構造を形成する、少なくとも一つの金属ナノ粒子を有する金属ナノ粒子混合物を有し、前記凝集構造は、前記対応する金属のバルク抵抗率の約2倍から約15倍の範囲の抵抗率を有するものである、組成物。
A composition comprising:
Having a metal nanoparticle mixture having at least one metal nanoparticle that forms an aggregated structure having a thickness of about 10 μm or less after curing at a temperature below about 140 ° C. for less than about 90 seconds, the aggregated structure comprising: A composition having a resistivity in the range of about 2 to about 15 times the bulk resistivity of the corresponding metal.
請求項記載の組成物において、前記混合物は、金属ナノ粒子の集団、リガンド、水性媒、或いはそれらのあらゆる組み合わせを有するものである。 In composition according to claim 9, wherein the mixture is one having a population of metal nanoparticles, ligands, aqueous Solvent, or any combination thereof. 請求項10記載の組成物において、個々の金属ナノ粒子は、約1nmから約100nmの範囲の平均断面直径を有するものである。 12. The composition of claim 10 , wherein the individual metal nanoparticles have an average cross-sectional diameter in the range of about 1 nm to about 100 nm. 請求項10記載の組成物において、個々の金属ナノ粒子は、銀、銅、金、亜鉛、カドミウム、パラジウム、イリジウム、ルテニウム、オスミウム、ロジウム、白金、鉄、ニッケル、コバルト、インジウム、酸化銀、酸化銅、酸化金、酸化亜鉛、酸化カドミウム、酸化パラジウム、酸化イリジウム、酸化ルテニウム、酸化オスミウム、酸化ロジウム、酸化白金、酸化鉄、酸化ニッケル、酸化コバルト、酸化インジウム、或いはそれらのあらゆる組み合わせを有するものである。 11. The composition of claim 10 , wherein the individual metal nanoparticles are silver, copper, gold, zinc, cadmium, palladium, iridium, ruthenium, osmium, rhodium, platinum, iron, nickel, cobalt, indium, silver oxide, oxide It has copper, gold oxide, zinc oxide, cadmium oxide, palladium oxide, iridium oxide, ruthenium oxide, osmium oxide, rhodium oxide, platinum oxide, iron oxide, nickel oxide, cobalt oxide, indium oxide, or any combination thereof. is there. 金属ナノ粒子分散物を合成する方法であって、
少なくとも1つのリガンドであって、このリガンドは1から約20炭素原子を有する尾部に結合したヘテロ原子頭部基を有するものである、リガンドと、
少なくとも1つの還元剤と、
水性分散溶液中における少なくとも1つの金属塩であって、この金属塩は、前記分散溶液の容積に基づいて約10グラム/リットルから約600グラム/リットルの範囲の濃度で分散して存在するものであり、前記金属塩は、銀、銅、金、亜鉛、カドミウム、パラジウム、イリジウム、ルテニウム、オスミウム、ロジウム、白金、鉄、ニッケル、コバルト、インジウム、或いはそれらのあらゆる組み合わせを含む少なくとも1つのカチオンを有するものである、金属塩と
を水性媒において反応させる工程を有する、方法。
A method of synthesizing a metal nanoparticle dispersion comprising:
At least one ligand, the ligand having a heteroatom head group attached to the tail having from 1 to about 20 carbon atoms;
At least one reducing agent;
At least one metal salt in an aqueous dispersion, the metal salt being present at a concentration ranging from about 10 grams / liter to about 600 grams / liter based on the volume of the dispersion. And the metal salt has at least one cation comprising silver, copper, gold, zinc, cadmium, palladium, iridium, ruthenium, osmium, rhodium, platinum, iron, nickel, cobalt, indium, or any combination thereof. those having the step of reacting in an aqueous solvent medium and the metal salts, methods.
請求項13記載の方法において、前記リガンドは、そのヘテロ原子頭部基によって金属ナノ粒子の表面に結合し、凝集に対して少なくとも一部は安定化されている金属ナノ粒子をもたらすものとして特徴付けされるものである。 14. The method of claim 13 , wherein the ligand is bound to the surface of the metal nanoparticle by its heteroatom head group , resulting in a metal nanoparticle that is at least partially stabilized against aggregation. It is what is done. 請求項14記載の方法において、この方法は、さらに、
約0.1:1から約1:1の範囲の各モル比で前記リガンド及び金属塩を組み合わせる工程を有するものである。
15. The method of claim 14 , further comprising:
Combining the ligand and metal salt in respective molar ratios ranging from about 0.1: 1 to about 1: 1.
請求項15記載の方法において、この方法は、さらに、
約1:10から約4:1の範囲の各モル比で前記金属塩及び還元剤を組み合わせる工程を有するものである。
The method of claim 15 , further comprising:
Combining the metal salt and the reducing agent in respective molar ratios ranging from about 1:10 to about 4: 1.
基質上に導電性構造を形成る方法であって、
前記基質に組成物を堆積させる工程であって、前記組成物は、金属ナノ粒子の少なくとも1つの集団を有し、前記集団の少なくとも一部は、約1nmから約30nmの範囲の平均断面直径を有するものとして特徴付けされた個々の金属ナノ粒子を有するものであり、
前記ナノ粒子は、その表面に結合した少なくとも一つのリガンドを有し、このリガンドは、前記ナノ粒子表面に結合したヘテロ原子頭部基及び前記ヘテロ原子頭部基に結合した尾部を有するものである、堆積させる工程と、
前記堆積させた組成物を硬化させる工程と
を有する、方法。
A way to form a conductive structure on a substrate,
Depositing a composition on the substrate, the composition having at least one population of metal nanoparticles, wherein at least a portion of the population has an average cross-sectional diameter ranging from about 1 nm to about 30 nm. Having individual metal nanoparticles characterized as having
Each nanoparticle has at least one ligand bound to its surface, the ligand having a heteroatom head group bound to the nanoparticle surface and a tail bound to the heteroatom head group. A deposition step;
Curing the deposited composition.
請求項17記載の方法において、前記堆積させる工程は、印刷方法を有するものである。 18. The method of claim 17 , wherein the depositing step comprises a printing method. 請求項17記載の方法において、前記ナノ粒子は、約0.5から約70重量%の範囲で存在するものである。 18. The method of claim 17 , wherein the nanoparticles are present in the range of about 0.5 to about 70% by weight . 請求項17記載の方法において、前記組成物は、さらに、
流動学的重合調整剤(rheology modifier)を有するものである。
18. The method of claim 17 , wherein the composition further comprises
It has a rheology modifier .
導電性構造を形成る方法であって、
基質少なくとも1つの金属ナノ粒子を有する金属ナノ粒子組成物を堆積させる工程であって、前記組成物は、約140℃を下回る温度で約90秒未満硬化させた後、対応する金属のバルク抵抗率の約2倍から約15倍の範囲の抵抗率を有し、さらに約20μm以下の厚さを有する凝集性導電性構造を形成させるものである、前記堆積させる工程と、
前記堆積させた組成物を硬化させる工程と
を有する、方法。
A way to form a conductive structure,
A step of depositing a metal nanoparticle composition having at least one metal nanoparticle to a substrate, the composition, after the temperature in the cure of less than about 90 seconds below about 140 ° C., of the corresponding metal bulk resistance The depositing step, forming a coherent conductive structure having a resistivity in the range of about 2 to about 15 times the rate, and further having a thickness of about 20 μm or less;
Curing the deposited composition.
請求項21記載の方法において、前記堆積させる工程は、印刷方法を有するものである。 The method of claim 21 , wherein the depositing step comprises a printing method. 請求項21記載の方法において、個々の金属ナノ粒子は、約1nmから約100nmの範囲の平均断面直径を有するものである。 24. The method of claim 21 , wherein the individual metal nanoparticles have an average cross-sectional diameter in the range of about 1 nm to about 100 nm. 請求項21記載の方法において、個々の金属ナノ粒子は、銀、銅、金、亜鉛、カドミウム、パラジウム、イリジウム、ルテニウム、オスミウム、ロジウム、白金、鉄、ニッケル、コバルト、インジウム、酸化銀、酸化銅、酸化金、酸化亜鉛、酸化カドミウム、酸化パラジウム、酸化イリジウム、酸化ルテニウム、酸化オスミウム、酸化ロジウム、酸化白金、酸化鉄、酸化ニッケル、酸化コバルト、酸化インジウム、或いはそれらのあらゆる組み合わせを有するものである。 22. The method of claim 21 , wherein the individual metal nanoparticles are silver, copper, gold, zinc, cadmium, palladium, iridium, ruthenium, osmium, rhodium, platinum, iron, nickel, cobalt, indium, silver oxide, copper oxide. , Gold oxide, zinc oxide, cadmium oxide, palladium oxide, iridium oxide, ruthenium oxide, osmium oxide, rhodium oxide, platinum oxide, iron oxide, nickel oxide, cobalt oxide, indium oxide, or any combination thereof . 請求項21の方法によって製造される伝導性構造。A conductive structure produced by the method of claim 21.
JP2008547524A 2005-12-20 2006-12-20 Synthesis of metal nanoparticle dispersions Expired - Fee Related JP5394749B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US75214405P 2005-12-20 2005-12-20
US75214305P 2005-12-20 2005-12-20
US60/752,143 2005-12-20
US60/752,144 2005-12-20
US75262805P 2005-12-21 2005-12-21
US60/752,628 2005-12-21
US11/613,136 2006-12-19
US11/613,136 US20070144305A1 (en) 2005-12-20 2006-12-19 Synthesis of Metallic Nanoparticle Dispersions
PCT/US2006/048699 WO2008048316A2 (en) 2005-12-20 2006-12-20 Synthesis of metallic nanoparticle dispersions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013140238A Division JP2013254737A (en) 2005-12-20 2013-07-04 Synthesis of metallic nanoparticle dispersions

Publications (3)

Publication Number Publication Date
JP2009521598A JP2009521598A (en) 2009-06-04
JP2009521598A5 true JP2009521598A5 (en) 2009-12-17
JP5394749B2 JP5394749B2 (en) 2014-01-22

Family

ID=38192074

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008547524A Expired - Fee Related JP5394749B2 (en) 2005-12-20 2006-12-20 Synthesis of metal nanoparticle dispersions
JP2013140238A Pending JP2013254737A (en) 2005-12-20 2013-07-04 Synthesis of metallic nanoparticle dispersions

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013140238A Pending JP2013254737A (en) 2005-12-20 2013-07-04 Synthesis of metallic nanoparticle dispersions

Country Status (6)

Country Link
US (1) US20070144305A1 (en)
EP (1) EP1973682A4 (en)
JP (2) JP5394749B2 (en)
AU (1) AU2006350054B2 (en)
CA (1) CA2634457A1 (en)
WO (1) WO2008048316A2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560052B2 (en) * 2007-03-30 2009-07-14 Lexmark International, Inc. Silver ink compositions containing a cationic styrene/acrylate copolymer additive for inkjet printing
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
US8404160B2 (en) * 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
WO2009045997A1 (en) * 2007-10-02 2009-04-09 Parker Hannifin Corporation Nano coating for emi gaskets
KR20100068274A (en) * 2007-10-09 2010-06-22 나노마스 테크놀러지스, 인코포레이티드 Conductive nanoparticle inks and pastes and applications using the same
KR101004553B1 (en) 2007-10-24 2011-01-03 도와 일렉트로닉스 가부시키가이샤 Micro Silver Particle-Containing Composition, Method for Producing It, Method for Producing Micro Silver Particle
US20090181183A1 (en) * 2008-01-14 2009-07-16 Xerox Corporation Stabilized Metal Nanoparticles and Methods for Depositing Conductive Features Using Stabilized Metal Nanoparticles
US8506849B2 (en) * 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US9730333B2 (en) * 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
US20090286383A1 (en) * 2008-05-15 2009-11-19 Applied Nanotech Holdings, Inc. Treatment of whiskers
US20100000762A1 (en) * 2008-07-02 2010-01-07 Applied Nanotech Holdings, Inc. Metallic pastes and inks
EP2204250A1 (en) * 2008-12-16 2010-07-07 Akzo Nobel Coatings International B.V. Aqueous dispersions of silver particles
TWI383849B (en) * 2008-12-31 2013-02-01 Ind Tech Res Inst Nano-metal solution, nano-metal complex grains and manufacturing method of conductive wire
WO2010090480A2 (en) * 2009-02-05 2010-08-12 주식회사 엘지화학 Method for preparing carbon particles / copper composite materials
TWI492303B (en) 2009-03-27 2015-07-11 Applied Nanotech Holdings Inc Buffer layer to enhance photo and/or laser sintering
FR2946267B1 (en) * 2009-06-05 2012-06-29 Centre Nat Rech Scient PROCESS FOR PREPARING AN ORGANOCOMPATIBLE AND HYDROCOMPATIBLE COMPOSITION OF METAL NANOCRYSTALS AND COMPOSITION OBTAINED
US8422197B2 (en) * 2009-07-15 2013-04-16 Applied Nanotech Holdings, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
US20110059233A1 (en) * 2009-09-04 2011-03-10 Xerox Corporation Method For Preparing Stabilized Metal Nanoparticles
KR101651915B1 (en) * 2009-09-14 2016-08-29 한화케미칼 주식회사 A method for preparing water-soluble nanoparticles and their dispersions
KR101665464B1 (en) * 2009-10-20 2016-10-12 디아이씨 가부시끼가이샤 Metal nanoparticle containing complex, fluid dispersion thereof and production methods for metal nanoparticle containing complex and fluid dispersion thereof
ES2360649B2 (en) * 2009-11-25 2011-10-17 Universidade De Santiago De Compostela DRIVING INKS OBTAINED BY COMBINATION OF AQCS AND METALLIC NANOPARTICLES.
JP5727766B2 (en) * 2009-12-10 2015-06-03 理想科学工業株式会社 Conductive emulsion ink and method for forming conductive thin film using the same
WO2011108342A1 (en) * 2010-03-01 2011-09-09 新日鐵化学株式会社 Metal nanoparticle composite and process for production thereof
JP2011202265A (en) * 2010-03-26 2011-10-13 Dowa Electronics Materials Co Ltd Low temperature sinterable metal nanoparticle composition and electronic article formed using the composition
DE102010015659A1 (en) * 2010-04-20 2011-10-20 Giesecke & Devrient Gmbh Transfer method for the production of conductor structures by means of nanoinks
JP5632852B2 (en) * 2010-08-27 2014-11-26 Dowaエレクトロニクス株式会社 Low temperature sinterable silver nanoparticle composition and electronic article formed using the composition
TWI504693B (en) * 2010-08-30 2015-10-21 Dowa Electronics Materials Co Low-temperature sinterable silver nanoparticle composition and electronic article formed using the composition
EP2444148A1 (en) * 2010-10-25 2012-04-25 Bayer Material Science AG Metal particle sol with endowed silver nano particles
US20120244050A1 (en) 2011-03-25 2012-09-27 Dowa Electronics Materials Co., Ltd. Cleaning agent for silver-containing composition, method for removing silver-containing composition, and method for recovering silver
TW201419315A (en) 2012-07-09 2014-05-16 Applied Nanotech Holdings Inc Photosintering of micron-sized copper particles
KR101467470B1 (en) * 2013-03-05 2014-12-04 (주) 파루 Copper nano ink using copper complex compound and prepration method of the same
FR3008103B1 (en) * 2013-07-03 2015-09-11 Genes Ink Sas INK COMPOSITION BASED ON NANOPARTICLES
WO2015058785A1 (en) * 2013-10-21 2015-04-30 Hewlett-Packard Indigo B.V. Electrostatic ink compositions
US20150189761A1 (en) * 2013-12-20 2015-07-02 Intrinsiq Materials, Inc. Method for depositing and curing nanoparticle-based ink
JP6071913B2 (en) * 2014-01-30 2017-02-01 富士フイルム株式会社 Conductive ink composition for inkjet
JP6845015B2 (en) * 2014-05-30 2021-03-17 エレクトロニンクス ライタブルズ, インコーポレイテッド Rollerball pens formed on the substrate and conductive ink for conductive tracing
KR101567824B1 (en) 2014-09-30 2015-11-11 전남대학교산학협력단 capped indium oxide nanocrystals, preparation method thereof and thin film transistor using the same
US20200399494A1 (en) * 2015-02-26 2020-12-24 Dynamic Solar Systems Ag Room temperature method for the production of inorganic electrotechnical thin layers and a thin layer heating system obtained in this manner
CL2015003794A1 (en) * 2015-12-30 2016-07-29 Univ Chile Method of obtaining copper nanoparticles and use of said particles
DE102016002890A1 (en) 2016-03-09 2017-09-14 Forschungszentrum Jülich GmbH Process for the preparation of an ink, ink and their use
EP3385342B1 (en) * 2017-04-03 2020-03-25 Nano and Advanced Materials Institute Limited Water-based conductive ink for rapid prototype in writable electronics
WO2020218873A1 (en) * 2019-04-26 2020-10-29 연세대학교 산학협력단 Gold nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor
US11492547B2 (en) 2020-06-04 2022-11-08 UbiQD, Inc. Low-PH nanoparticles and ligands
CN112808998B (en) * 2020-12-30 2022-09-06 辽宁科技大学 Titanium alloy material binder, preparation method thereof, composite material and application

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456474A (en) * 1983-05-05 1984-06-26 Chemet Corporation Method of making fine silver powder
US4599277A (en) * 1984-10-09 1986-07-08 International Business Machines Corp. Control of the sintering of powdered metals
US5338507A (en) * 1987-03-30 1994-08-16 Hewlett-Packard Company Silver additives for ceramic superconductors
US5071826A (en) * 1987-03-30 1991-12-10 Hewlett-Packard Company Organometallic silver additives for ceramic superconductors
US5332646A (en) * 1992-10-21 1994-07-26 Minnesota Mining And Manufacturing Company Method of making a colloidal palladium and/or platinum metal dispersion
US5455749A (en) * 1993-05-28 1995-10-03 Ferber; Andrew R. Light, audio and current related assemblies, attachments and devices with conductive compositions
US5292359A (en) * 1993-07-16 1994-03-08 Industrial Technology Research Institute Process for preparing silver-palladium powders
US5376038A (en) * 1994-01-18 1994-12-27 Toy Biz, Inc. Doll with programmable speech activated by pressure on particular parts of head and body
US5478240A (en) * 1994-03-04 1995-12-26 Cogliano; Mary Ann Educational toy
US5514202A (en) * 1994-12-20 1996-05-07 National Science Council Of R.O.C. Method for producing fine silver-palladium alloy powder
US20060034731A1 (en) * 1995-03-27 2006-02-16 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5882722A (en) * 1995-07-12 1999-03-16 Partnerships Limited, Inc. Electrical conductors formed from mixtures of metal powders and metallo-organic decompositions compounds
JPH09241709A (en) * 1996-03-11 1997-09-16 Murata Mfg Co Ltd Production of copper powder
US5973420A (en) * 1996-10-03 1999-10-26 Colortronics Technologies L.L.C. Electrical system having a clear conductive composition
US6103868A (en) * 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
US6379745B1 (en) * 1997-02-20 2002-04-30 Parelec, Inc. Low temperature method and compositions for producing electrical conductors
US6882824B2 (en) * 1998-06-10 2005-04-19 Leapfrog Enterprises, Inc. Interactive teaching toy
US5944533A (en) * 1998-06-10 1999-08-31 Knowledge Kids Enterprises, Inc. Interactive educational toy
EP1113885A4 (en) * 1998-08-21 2004-08-04 Stanford Res Inst Int Printing of electronic circuits and components
WO2000029829A1 (en) * 1998-11-16 2000-05-25 California Institute Of Technology Simultaneous determination of equilibrium and kinetic properties
US6311350B1 (en) * 1999-08-12 2001-11-06 Ferber Technologies, L.L.C. Interactive fabric article
AU2000225122A1 (en) * 2000-01-21 2001-07-31 Midwest Research Institute Method for forming thin-film conductors through the decomposition of metal-chelates in association with metal particles
US6353168B1 (en) * 2000-03-03 2002-03-05 Neurosmith, Llc Educational music instrument for children
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
KR100822674B1 (en) * 2000-09-21 2008-04-17 롬 앤드 하스 캄파니 Aqueous nanocomposite dispersions: processes, compositions, and uses thereof
US6773926B1 (en) * 2000-09-25 2004-08-10 California Institute Of Technology Nanoparticle-based sensors for detecting analytes in fluids
JP4871443B2 (en) * 2000-10-13 2012-02-08 株式会社アルバック Method for producing metal ultrafine particle dispersion
US7081214B2 (en) * 2000-10-25 2006-07-25 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
ATE502296T1 (en) * 2000-12-12 2011-04-15 Sony Deutschland Gmbh SELECTIVE CHEMICAL SENSORS BASED ON CHAINED NANOPARTICLE COLLECTIONS
EP1368813B1 (en) * 2000-12-15 2014-12-03 The Arizona Board of Regents on behalf of the University of Arizona Method for patterning metal using nanoparticle containing precursors
US7115218B2 (en) * 2001-06-28 2006-10-03 Parelec, Inc. Low temperature method and composition for producing electrical conductors
US6645444B2 (en) * 2001-06-29 2003-11-11 Nanospin Solutions Metal nanocrystals and synthesis thereof
US20060001726A1 (en) * 2001-10-05 2006-01-05 Cabot Corporation Printable conductive features and processes for making same
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
JP2005507452A (en) * 2001-11-01 2005-03-17 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム Inkjet ink containing metal nanoparticles
EP1338361B1 (en) * 2002-02-18 2005-12-14 Fuji Photo Film Co., Ltd. Method of producing nanoparticle
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7601406B2 (en) * 2002-06-13 2009-10-13 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US6878184B1 (en) * 2002-08-09 2005-04-12 Kovio, Inc. Nanoparticle synthesis and the formation of inks therefrom
US7005378B2 (en) * 2002-08-26 2006-02-28 Nanoink, Inc. Processes for fabricating conductive patterns using nanolithography as a patterning tool
US8071168B2 (en) * 2002-08-26 2011-12-06 Nanoink, Inc. Micrometric direct-write methods for patterning conductive material and applications to flat panel display repair
US20050126338A1 (en) * 2003-02-24 2005-06-16 Nanoproducts Corporation Zinc comprising nanoparticles and related nanotechnology
JP4414145B2 (en) * 2003-03-06 2010-02-10 ハリマ化成株式会社 Conductive nanoparticle paste
US20040185238A1 (en) * 2003-03-18 2004-09-23 Fuji Photo Film Co., Ltd. Thin film laminated with single particle layer and production method of the same
US6921626B2 (en) * 2003-03-27 2005-07-26 Kodak Polychrome Graphics Llc Nanopastes as patterning compositions for electronic parts
US20050016851A1 (en) * 2003-07-24 2005-01-27 Jensen Klavs F. Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles
JP4047304B2 (en) * 2003-10-22 2008-02-13 三井金属鉱業株式会社 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
KR100578747B1 (en) * 2003-12-26 2006-05-12 한국전자통신연구원 Chemical sensors based on metal nanoparticle encapsulated by ligand mixture and sensor array
US7645397B2 (en) * 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US20060044382A1 (en) * 2004-08-24 2006-03-02 Yimin Guan Metal colloid dispersions and their aqueous metal inks
US20060163744A1 (en) * 2005-01-14 2006-07-27 Cabot Corporation Printable electrical conductors
TW200642785A (en) * 2005-01-14 2006-12-16 Cabot Corp Metal nanoparticle compositions
JP4207161B2 (en) * 2005-04-20 2009-01-14 セイコーエプソン株式会社 Microencapsulated metal particles and method for producing the same, aqueous dispersion, and ink jet ink
US20070154634A1 (en) * 2005-12-15 2007-07-05 Optomec Design Company Method and Apparatus for Low-Temperature Plasma Sintering
EP2131979A4 (en) * 2007-03-01 2013-03-06 Pchem Associates Inc Shielding based on metallic nanoparticle compositions and devices and methods thereof

Similar Documents

Publication Publication Date Title
JP2009521598A5 (en)
JP5394749B2 (en) Synthesis of metal nanoparticle dispersions
JP6298884B2 (en) Metal nanoplate, method for producing the same, conductive ink composition containing the same, and conductive film
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
JP2016164312A (en) Silver fine particle dispersoid, silver fine particle, and production method thereof
Yong et al. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions
CN101835555A (en) Copper fine particle, method for producing the same, and copper fine particle dispersion
JP2010520626A5 (en)
JP6182531B2 (en) Composite copper particles and method for producing the same
KR20100110791A (en) Silver micropowder having excellent affinity for polar medium, and silver ink
KR101641031B1 (en) Method for treating substrate that supports catalyst particles for plating processing
CN102781817B (en) The preparation method of metal nanobelt
EP1542239A1 (en) Metal paste and film formation method using the same
Imamura et al. A mild aqueous synthesis of ligand-free copper nanoparticles for low temperature sintering nanopastes with nickel salt assistance
WO2017159537A1 (en) Nanowire, process for producing nanowires, nanowire dispersion, and transparent electroconductive film
JP2016141860A (en) Fine particle, fine particle dispersion and manufacturing method of fine particle
TWI460125B (en) Method for making carbon nanotube based composite
JP2016138296A (en) Method for producing copper nanoparticle
TWI575077B (en) Conductive particle, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP5342114B2 (en) Method for producing conductive particles and conductive particles
JP2005235533A (en) Metal particle dispersion liquid and circuit forming method using the same
JP4441849B2 (en) Powder for metallic luster paint, metallic luster paint using the same, and metallic luster coating film
JP2012147014A (en) Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
KR101911692B1 (en) Method for Preparing Metal Nano Particle Complex, Ink Composition Comprising Metal Nano Particle Complex and Printing Method using the Same
Kim et al. Fabrication of Electrically Conductive Nickel–Silver Bimetallic Particles via Polydopamine Coating