JP5342114B2 - Method for producing conductive particles and conductive particles - Google Patents

Method for producing conductive particles and conductive particles Download PDF

Info

Publication number
JP5342114B2
JP5342114B2 JP2007159136A JP2007159136A JP5342114B2 JP 5342114 B2 JP5342114 B2 JP 5342114B2 JP 2007159136 A JP2007159136 A JP 2007159136A JP 2007159136 A JP2007159136 A JP 2007159136A JP 5342114 B2 JP5342114 B2 JP 5342114B2
Authority
JP
Japan
Prior art keywords
particles
metal
conductive composite
metal oxide
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007159136A
Other languages
Japanese (ja)
Other versions
JP2008311141A (en
Inventor
文章 大谷
明 大沼
竜 阿部
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Hokkaido University NUC filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007159136A priority Critical patent/JP5342114B2/en
Publication of JP2008311141A publication Critical patent/JP2008311141A/en
Application granted granted Critical
Publication of JP5342114B2 publication Critical patent/JP5342114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive compound particles in which the surface of a metal oxide particle is decorated by metal colloid particles, and its manufacturing method. <P>SOLUTION: This is a manufacturing method of a conductive compound particle in which a metal oxide particle (A-1) dispersion liquid surface-treated by an amino group-contained silane compound and a metal colloid particle (M-1) dispersion liquid surface-treated by a carboxyl group and/or a carboxylate group-contained organic compound are mixed. This is a manufacturing method of a conductive compound particle in which a metal oxide particle (A-2) dispersion liquid surface-treated by a sulfhydryl group-contained silane compound and a metal colloid particle (M-2) dispersion liquid are mixed. The conductive compound particle has the surface of the metal oxide particles (A) covered with the metal colloid particles (M), and the average particle size (D<SB>A</SB>) of the metal oxide particles (A) is 0.1-3 &mu;m and the average particle size (D<SB>M</SB>) of the metal colloid particles (M) is 1-100 nm. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、金属酸化物粒子の表面が金属コロイド粒子で修飾されてなる導電性複合粒子、およびその製造方法に関する。   The present invention relates to conductive composite particles obtained by modifying the surface of metal oxide particles with metal colloid particles, and a method for producing the same.

本発明は、金属酸化物粒子表面が金属コロイド粒子で修飾されてなる導電性複合粒子、およびその製造方法に関する。   The present invention relates to conductive composite particles in which metal oxide particle surfaces are modified with metal colloid particles, and a method for producing the same.

従来、金属コロイド粒子等の導電性微粒子の他に、金属酸化物粒子あるいは有機高分子化合物粒子の表面に金属を被覆した平均粒子径が1〜10μmの導電性粒子、金属の表面をさらに樹脂で被覆した異方導電性粒子が知られている(特開平3−46774号公報、特許文献1)。   Conventionally, in addition to conductive fine particles such as metal colloidal particles, the surface of metal oxide particles or organic polymer compound particles is coated with metal, the average particle diameter is 1 to 10 μm, and the metal surface is further made of resin. Coated anisotropically conductive particles are known (Japanese Patent Laid-Open No. 3-46774, Patent Document 1).

このような導電性微粒子、異方導電性微粒子は、例えば、IC等の微細な電極と、それらが搭載される基板上の電極とを電気的に接続するために用いられるが、近年、電極間距離をより小さくファインピッチにすることが求められている。具体的には電極間距離の0.3倍以下の平均粒子径を有する小さな導電性粒子が求められている。
特開平3−46774号公報
Such conductive fine particles and anisotropic conductive fine particles are used, for example, to electrically connect fine electrodes such as IC and electrodes on a substrate on which they are mounted. There is a demand for a smaller distance and a fine pitch. Specifically, there is a demand for small conductive particles having an average particle size of 0.3 times or less the distance between electrodes.
JP-A-3-46774

しかしながら、金属酸化物粒子等の表面を金属で被覆する方法は、金属酸化物粒子の表面に金属を無電解メッキ法、CVD方法あるいはイオンスパッタリング法等によって被覆する方法などが知られているものの、金属酸化物粒子の平均粒子径が概ね3μm以下の場合は均一に金属層を被覆することが困難であった。   However, as a method of coating the surface of the metal oxide particles or the like with a metal, a method of coating the metal on the surface of the metal oxide particles by an electroless plating method, a CVD method, an ion sputtering method, or the like is known. When the average particle diameter of the metal oxide particles is approximately 3 μm or less, it is difficult to uniformly coat the metal layer.

本発明者等は、このような課題を解決するために鋭意検討した結果、金属酸化物粒子を特定の金属コロイド粒子で表面修飾することによって、シリカ粒子の表面に金属コロイド粒子が層をなして結合した粒子が得られることを見出して本発明を完成するに至った。   As a result of intensive studies to solve such problems, the present inventors have modified the surface of the metal oxide particles with specific metal colloid particles so that the metal colloid particles form a layer on the surface of the silica particles. It has been found that bound particles can be obtained and the present invention has been completed.

本発明の構成は以下の通りである。
[1]アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)分散液と、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M-1)分散液とを混合することを特徴とする導電性複合粒子の製造方法。
[2]メルカプト基含有シラン化合物で表面処理された金属酸化物粒子(A-2)分散液と、金属コロイド粒子(M-2)分散液とを混合することを特徴とする導電性複合粒子の製造方法。
[3]前記金属酸化物粒子の平均粒子径(DA)が0.1〜3μmの範囲にあり、前記金属コロイド粒子の平均粒子径(DM)が1〜100nmの範囲にある[1]または[2]の導電性複
合粒子の製造方法。
[4]前記金属酸化物粒子がシリカ系粒子である[1]〜[3]の導電性複合粒子の製造方法。
[5]前記金属コロイド粒子がIB族、VIII族元素から選ばれる金属の1種以上からなる[1]〜[4]の導電性複合粒子の製造方法。
[6]前記金属コロイド粒子がAu、Ag、Cu、Pt、Pdから選ばれる1種以上からなることを特
徴とする請求項5に記載の導電性複合粒子の製造方法。
[7]分散液を混合した後、さらにIB族、VIII族元素から選ばれる金属の1種以上の金属塩
を添加し、還元剤の存在下、導電性複合粒子表面に金属を析出させる[1]〜[6]の導電性複
合粒子の製造方法。
[8]得られた導電性複合粒子を不活性ガス雰囲気下または還元ガス雰囲気下、200〜6
00℃で加熱処理する[1]〜[7]の導電性複合粒子の製造方法。
[9]金属酸化物粒子(A)の表面を金属コロイド粒子(M)で被覆した導電性複合粒子で
あって、金属酸化物粒子(A)の平均粒子径(DA)0.1〜3μmの範囲にあり、金属
コロイド粒子(M)の平均粒子径(DM)が1〜100nmの範囲にある導電性複合粒子

[10]前記金属酸化物粒子(A)がアミノ基含有シラン化合物で表面処理されたものであり、前記金属コロイド粒子(M)はカルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理されたものである[9]の導電性複合粒子。
[11]前記金属酸化物粒子(A)がメルカプト基含有シラン化合物で表面処理されたものである[9]の導電性複合粒子。
[12]前記金属酸化物粒子(A)がシリカ系粒子である[9]〜[11]の導電性複合粒子。
[13]前記金属コロイド粒子がIB族、VIII族元素から選ばれる金属の1種以上からなる[9]
〜[12]の導電性複合粒子。
[14]前記金属コロイド粒子がAu、Ag、Cu、Pt、Pdから選ばれる1種以上からなる[13]の導電性複合粒子。
The configuration of the present invention is as follows.
[1] Metal oxide particle (A-1) dispersion surface-treated with an amino group-containing silane compound and metal colloid particles (M-1) surface-treated with a carboxyl group and / or carboxylate group-containing organic compound A method for producing conductive composite particles, comprising mixing with a dispersion.
[2] A conductive composite particle characterized by mixing a metal oxide particle (A-2) dispersion surface-treated with a mercapto group-containing silane compound and a metal colloid particle (M-2) dispersion liquid Production method.
[3] The average particle diameter (D A ) of the metal oxide particles is in the range of 0.1 to 3 μm, and the average particle diameter (D M ) of the metal colloid particles is in the range of 1 to 100 nm. Or the manufacturing method of the electroconductive composite particle of [2].
[4] The method for producing conductive composite particles according to [1] to [3], wherein the metal oxide particles are silica-based particles.
[5] The method for producing conductive composite particles according to [1] to [4], wherein the metal colloid particles are made of one or more metals selected from Group IB and Group VIII elements.
[6] The method for producing conductive composite particles according to [5], wherein the metal colloidal particles comprise one or more selected from Au, Ag, Cu, Pt, and Pd.
[7] After the dispersion is mixed, one or more metal salts of metals selected from Group IB and Group VIII are further added to deposit the metal on the surface of the conductive composite particles in the presence of a reducing agent. ]-[6] The manufacturing method of the electroconductive composite particle.
[8] The obtained conductive composite particles are placed in an inert gas atmosphere or a reducing gas atmosphere at 200 to 6
The method for producing conductive composite particles according to [1] to [7], wherein the heat treatment is performed at 00 ° C.
[9] Conductive composite particles in which the surface of the metal oxide particles (A) is coated with the metal colloid particles (M), and the average particle diameter (D A ) of the metal oxide particles (A) is 0.1 to 3 μm. Conductive composite particles in which the average particle diameter (D M ) of the metal colloidal particles ( M ) is in the range of 1 to 100 nm.
[10] The metal oxide particles (A) are surface-treated with an amino group-containing silane compound, and the metal colloid particles (M) are surface-treated with a carboxyl group and / or carboxylate group-containing organic compound. [9] conductive composite particles.
[11] The conductive composite particles according to [9], wherein the metal oxide particles (A) are surface-treated with a mercapto group-containing silane compound.
[12] The conductive composite particles according to [9] to [11], wherein the metal oxide particles (A) are silica-based particles.
[13] The metal colloidal particles are composed of one or more metals selected from Group IB and Group VIII elements [9]
Conductive composite particles of [12].
[14] The conductive composite particle according to [13], wherein the metal colloidal particle is composed of one or more selected from Au, Ag, Cu, Pt, and Pd.

本発明によれば、従来、無電解メッキ法等では困難であった粒子径の小さな金属酸化物粒子の表面を金属コロイド粒子で修飾した導電性複合粒子の製造方法および平均粒子径の均一な導電性複合粒子を提供することができる。   According to the present invention, a method for producing conductive composite particles obtained by modifying the surface of metal oxide particles having a small particle size with metal colloidal particles, which has been difficult by conventional electroless plating methods, etc., and conductive having a uniform average particle size are provided. Composite particles can be provided.

本発明の導電性複合粒子は導電性が高く、また、表面の金属コロイド粒子が容易に脱離することがなく、ファインピッチの電極の接続等に好適に用いることができる。
このとき、導電性複合粒子の表面を樹脂被覆して異方導電性粒子として用いることもできる。さらに、触媒としても有用であり、特に本願導電性複合粒子は、微細な金属コロイド粒子が金属酸化物粒子表面に結合しているので、活性金属表面積が大きく活性に優れている。
The conductive composite particles of the present invention are highly conductive, and the metal colloid particles on the surface are not easily detached, and can be suitably used for connecting fine pitch electrodes.
At this time, the surface of the conductive composite particles can be coated with a resin and used as anisotropic conductive particles. Further, it is also useful as a catalyst. Particularly, the conductive composite particles of the present application have a large active metal surface area and excellent activity because fine metal colloidal particles are bonded to the surface of the metal oxide particles.

以下、本発明について具体的に説明する。
本発明に係る導電性複合粒子の第1の製造方法は、アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)分散液と、カルボキシル基および/またはカルボキシレー
ト基含有有機化合物で表面処理された金属コロイド粒子(M-1)分散液とを混合することを
特徴としている。また、本発明に係る導電性複合粒子の第2の製造方法は、メルカプト基含有シラン化合物で表面処理された金属酸化物粒子(A-2)分散液と、金属コロイド粒子(M-2)分散液とを混合することを特徴としている。
Hereinafter, the present invention will be specifically described.
A first method for producing conductive composite particles according to the present invention includes a metal oxide particle (A-1) dispersion surface-treated with an amino group-containing silane compound, and a carboxyl group and / or carboxylate group-containing organic compound. It is characterized in that it is mixed with a metal colloidal particle (M-1) dispersion that has been surface-treated with. The second method for producing conductive composite particles according to the present invention includes a dispersion of metal oxide particles (A-2) surface-treated with a mercapto group-containing silane compound, and dispersion of metal colloid particles (M-2). It is characterized by mixing with liquid.

金属酸化物粒子(A)
本発明に用いる金属酸化物粒子としては、SiO、Al、ZrO、TiO
SiO・Al、SiO・ZrO等の酸化物粒子、複合酸化物粒子を用いること
ができる。また、有機ケイ素化合物を加水分解して得られる従来公知のケイ素に直接結合した炭素を含むシリカ粒子も用いることができる。
Metal oxide particles (A)
Examples of the metal oxide particles used in the present invention include SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ,
Oxide particles such as SiO 2 · Al 2 O 3 and SiO 2 · ZrO 2 and composite oxide particles can be used. Moreover, the silica particle containing the carbon directly couple | bonded with the conventionally well-known silicon obtained by hydrolyzing an organosilicon compound can also be used.

金属酸化物粒子の平均粒子径(DA)が0.1〜3μm、さらには0.2〜2.5μmの範囲にあることが好ましい。
金属酸化物粒子(A)の平均粒子径(DA)が小さいと、表面に結合する金属コロイド粒子の平均粒子径(DM)によっても異なるが、得られる導電性複合粒子の導電性が不充分となることがある。また、平均粒子径の小さい導電性粒子であれば、本発明の導電性複合粒子を必ずしも用いる必要はなく従来公知の金属コロイド粒子を用いればよい。なお、金属微粒子で、本発明の範囲のものは、形状制御が困難であり、特に真球状で均一な粒子を得ることが困難である。また比重が大きいことから、導電性ペーストにして用いる場合、容易に沈降することがあり、電極の接続等に用いる場合、用法が制限されることがある。また導電性材料は通常高価であることから、経済性が不利である。
The average particle diameter (D A ) of the metal oxide particles is preferably in the range of 0.1 to 3 μm, more preferably 0.2 to 2.5 μm.
When the average particle size (D A ) of the metal oxide particles (A) is small, the conductivity of the resulting conductive composite particles is poor, although it varies depending on the average particle size (D M ) of the metal colloid particles bonded to the surface. May be sufficient. Moreover, as long as it is an electroconductive particle with a small average particle diameter, it is not necessary to use the electroconductive composite particle of this invention, and what is necessary is just to use a conventionally well-known metal colloid particle. In addition, it is difficult to control the shape of the metal fine particles within the scope of the present invention, and it is particularly difficult to obtain true spherical and uniform particles. Moreover, since specific gravity is large, when using it as an electrically conductive paste, it may settle easily, and when using it for the connection of an electrode, etc., a usage may be restrict | limited. In addition, the conductive material is usually expensive , which is disadvantageous in economic efficiency.

金属酸化物粒子(A)の平均粒子径(D)が前記範囲を越えるものは、本発明の方法によらずとも、従来公知の無電解メッキ法により表面を金属で被覆した粒子が容易に製造できる。 When the average particle diameter (D A ) of the metal oxide particles (A) exceeds the above range, particles whose surfaces are coated with metal by a conventionally known electroless plating method can be easily obtained without using the method of the present invention. Can be manufactured.

なお、メッキ法では、前記したように、本発明の範囲の粒子径のものを、金属層で被覆することは困難であり、仮に作製できたとしても、被覆層が均一でないため、導電性が均一でなくなり、目的とする効果が発現しないことがある。   In addition, in the plating method, as described above, it is difficult to coat a particle size within the range of the present invention with a metal layer, and even if it can be produced, since the coating layer is not uniform, the conductivity is low. It may not be uniform and the intended effect may not be manifested.

本発明で使用される金属酸化物粒子(A)としては、前記シリカ粒子あるいは加水分解性有機ケイ素化合物を加水分解して得られるケイ素に直接結合した炭素を含むシリカ粒子(以下、これらをシリカ系粒子ということがある。)は真球状の微粒子が得られるので好適に用いることができる。   Examples of the metal oxide particles (A) used in the present invention include silica particles containing carbon directly bonded to silicon obtained by hydrolyzing the silica particles or hydrolyzable organosilicon compounds (hereinafter referred to as silica-based particles). May be preferably used since true spherical fine particles are obtained.

例えば、本願出願人の出願による特開昭63−64911号公報、特開平11−228699号公報、特開平11−228698号公報等に開示したシリカ系微粒子は好適に用いることができる。   For example, silica-based fine particles disclosed in JP-A-63-64911, JP-A-11-228699, JP-A-11-228698 and the like filed by the applicant of the present application can be suitably used.

本発明に係る導電性複合粒子の第1の製造方法に用いる金属酸化物粒子(A-1)は表面
をアミノ基含有シラン化合物で処理されている。
アミノ基含有シラン化合物としては、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−(フェニル)γ−アミノプロピルトリメトキシシラン等が挙げられる。
The surface of the metal oxide particles (A-1) used in the first method for producing conductive composite particles according to the present invention is treated with an amino group-containing silane compound.
Examples of the amino group-containing silane compound include γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N- (phenyl). ) -Aminopropyltrimethoxysilane and the like.

金属酸化物粒子(A-1)の処理方法は、従来公知のシランカップリング剤処理と同様に
行うことができ、具体的には金属酸化物粒子水分散液に前記アミノ基含有シラン化合物が必要量溶解したアルコール溶液を添加する。ここで、必要量とは金属酸化物粒子の粒子径(粒子表面積)によっても異なるが少なくとも金属酸化物粒子の表面を充分に覆うに足る量であることが好ましい。
The metal oxide particles (A-1) can be treated in the same manner as the conventionally known silane coupling agent treatment. Specifically, the amino group-containing silane compound is required in the metal oxide particle aqueous dispersion. Add a volume of dissolved alcohol solution. Here, the required amount varies depending on the particle diameter (particle surface area) of the metal oxide particles, but is preferably an amount sufficient to cover at least the surface of the metal oxide particles.

本発明に係る導電性複合粒子の第2の製造方法に用いる金属酸化物粒子(A-2)は表面
をメルカプト基含有シラン化合物で処理されている。
メルカプト基含有シラン化合物としては、γ-メルカプトプロピルトリメトキシシラン
、γ−メルカプトエチルメチルジメトキシシラン、γ−メルカプトジメチルジメトキシシラン、γ−メルカプトプロピルエチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等が挙げられる。なかでもγ−メルカプトプロピルトリメトキシシランは好ましい。
The surface of the metal oxide particles (A-2) used in the second method for producing conductive composite particles according to the present invention is treated with a mercapto group-containing silane compound.
Examples of mercapto group-containing silane compounds include γ-mercaptopropyltrimethoxysilane, γ-mercaptoethylmethyldimethoxysilane, γ-mercaptodimethyldimethoxysilane, γ-mercaptopropylethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ- And mercaptopropyltriethoxysilane. Of these, γ-mercaptopropyltrimethoxysilane is preferred.

金属酸化物粒子(A-2)の処理方法は、従来公知のシランカップリング剤処理と同様に行
うことができ、具体的には金属酸化物粒子(A)水分散液にメルカプト基含有シラン化合物が必要量溶解したアルコール溶液を添加する。ここで、必要量は金属酸化物粒子(A)の粒子径(粒子表面積)によっても異なるが少なくとも金属酸化物粒子(A)の表面を充分に覆うに足る量であることが好ましい。このように、メルカプト基含有シラン化合物で処理した金属酸化物粒子(A)は表面をチオール基(−SH)により修飾されている。
The metal oxide particles (A-2) can be treated in the same manner as the conventionally known silane coupling agent treatment. Specifically, the mercapto group-containing silane compound is added to the metal oxide particle (A) aqueous dispersion. Add the alcohol solution in which the required amount is dissolved. Here, the necessary amount varies depending on the particle diameter (particle surface area) of the metal oxide particles (A), but is preferably an amount sufficient to cover at least the surface of the metal oxide particles (A). As described above, the surface of the metal oxide particles (A) treated with the mercapto group-containing silane compound is modified with a thiol group (—SH).

金属コロイド粒子(M)
金属コロイド粒子としては、IB族、VIII族元素から選ばれる1種以上の金属からなる金属コロイド粒子が用いられる。具体的には、Au、Ag、Cu、Pt、Pd、Ni、Co、Rh、Ir、Ru、Fe等の金属コロイド粒子が挙げられる。なかでも、Au、Ag、Cu、Pt、Pdの金属コロイド粒子は安定で、導電性の高い粒子が得られるので好適に用いることができる。
Metal colloidal particles (M)
As the metal colloid particles, metal colloid particles made of one or more metals selected from Group IB and Group VIII elements are used. Specifically, metal colloidal particles such as Au, Ag, Cu, Pt, Pd, Ni, Co, Rh, Ir, Ru, and Fe are listed. Among these, Au, Ag, Cu, Pt, and Pd metal colloidal particles can be suitably used because stable and highly conductive particles can be obtained.

金属コロイド粒子(M)の平均粒子径(DM)は2〜100nm、さらには5〜50n
mの範囲にあることが好ましい。Dが小さいものは、金属コロイド粒子(M)の分散安定性が不充分で凝集することがあり、凝集した金属コロイド粒子(M)が金属酸化物粒子(A)の表面に結合しても導電性が不充分となったり、導電性複合粒子の粒子径変動係数が大きくなるために電極間距離が小さい場合の電極の接続に不向きとなることがある。
The average particle diameter (D M ) of the metal colloidal particles (M) is 2 to 100 nm, more preferably 5 to 50 n.
It is preferably in the range of m. When the DM is small, the dispersion stability of the metal colloid particles (M) may be insufficient and may aggregate, and even if the aggregated metal colloid particles (M) are bonded to the surface of the metal oxide particles (A). The conductivity may be insufficient, or the particle size variation coefficient of the conductive composite particles may be large, making it unsuitable for electrode connection when the distance between the electrodes is small.

金属コロイド粒子(M)の平均粒子径(DM)が100nmを越えると金属コロイド粒
子が大きすぎて金属酸化物粒子(B)と金属酸化物粒子(C)とを結合することができない場合があり、結合できたとしても金属酸化物粒子(C)表面上の金属コロイド粒子(M)同士の接合点が少ないために充分な導電性が得られない場合がある。
If the average particle diameter (D M ) of the metal colloid particles (M) exceeds 100 nm, the metal colloid particles may be too large to bond the metal oxide particles (B) and the metal oxide particles (C). Even if they can be bonded, there are cases where sufficient electrical conductivity cannot be obtained because there are few junctions between the metal colloidal particles (M) on the surface of the metal oxide particles (C).

このような金属コロイド粒子(M)は、従来公知の方法によって製造することができる。例えば、還元剤の存在下、金属塩水溶液あるいは2種以上の混合金属塩水溶液を還元する周知の方法によって製造することができる。あるいは、本願出願人の出願による特開平10−188681号公報、特開平11−12608号公報等に開示した合金金属コロイド粒子も好適に用いることができる。   Such metal colloidal particles (M) can be produced by a conventionally known method. For example, it can be produced by a known method of reducing an aqueous metal salt solution or an aqueous solution of two or more mixed metal salts in the presence of a reducing agent. Alternatively, alloy metal colloidal particles disclosed in Japanese Patent Application Laid-Open Nos. 10-188681, 11-12608 and the like filed by the applicant of the present application can also be suitably used.

本発明に係る導電性複合粒子の第1の製造方法で用いる金属コロイド粒子(M-1)は、
カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理されている。
The metal colloid particles (M-1) used in the first method for producing conductive composite particles according to the present invention are:
It is surface-treated with a carboxyl group and / or carboxylate group-containing organic compound.

カルボキシル基および/またはカルボキシレート基を有する有機化合物としては、例えば、酢酸、蓚酸、蟻酸、酒石酸、リンゴ酸、コハク酸、グルコン酸、マレイン酸、フタル酸、アルギン酸、クエン酸等の他、これらの塩、エステルなどが挙げられる。金属コロイド粒子(M-1)の処理方法は前記有機化合物が金属コロイド粒子(M-1)の表面に吸着あるいは結合すれば特に制限はなく従来公知の方法を採用することができる。例えば、金属コロイド粒子(M)の分散液に前記有機化合物を金属コロイド粒子の表面に充分量吸着する
に足る量を加えることによって処理することができる。
Examples of the organic compound having a carboxyl group and / or carboxylate group include acetic acid, succinic acid, formic acid, tartaric acid, malic acid, succinic acid, gluconic acid, maleic acid, phthalic acid, alginic acid, citric acid, and the like. Examples thereof include salts and esters. The method for treating the metal colloidal particles (M-1) is not particularly limited as long as the organic compound is adsorbed or bonded to the surface of the metal colloidal particles (M-1), and a conventionally known method can be adopted. For example, the treatment can be performed by adding a sufficient amount of the organic compound to the surface of the metal colloid particles to the dispersion of the metal colloid particles (M).

あるいは、Frensの方法によっても調製することができ、具体的には前記カルボキシル基および/またはカルボキシレート基含有有機化合物溶液に塩化金酸を添加し、加熱、還流することによって表面にカルボキシル基および/またはカルボキシレート基含有有機化合物を吸着した金コロイド粒子を調製することができる。   Alternatively, it can also be prepared by the method of Frens. Specifically, chloroauric acid is added to the organic compound solution containing the carboxyl group and / or carboxylate group, and the mixture is heated and refluxed. Alternatively, colloidal gold particles adsorbing a carboxylate group-containing organic compound can be prepared.

この時、有機化合物の使用量は、有機化合物のCMC(臨界ミセル生成濃度)の5〜50%、好ましくは5〜30%の範囲にすることが望ましい。本発明に係る導電性複合粒子の第2の製造方法で用いる金属コロイド粒子(M-2)は、表面処理することなくそのまま金属コロイド粒子(M)を用いる。   At this time, the amount of the organic compound used is 5 to 50%, preferably 5 to 30% of the CMC (critical micelle formation concentration) of the organic compound. The metal colloid particles (M-2) used in the second method for producing conductive composite particles according to the present invention are used as they are without being surface-treated.

製造方法
(i)混合工程
本発明に係る導電性複合粒子の製造方法では、前記導電性微粒子(A)分散液と金属コ
ロイド粒子(M)分散液とを混合する。
Production method
(i) Mixing Step In the method for producing conductive composite particles according to the present invention, the conductive fine particle (A) dispersion and the metal colloid particle (M) dispersion are mixed.

第1の方法では、アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)と
、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M-1)分散液とを混合する。金属酸化物粒子(A-1)分散液の濃度は、
特に制限はないが、通常、固形分として1〜20重量%の範囲にあることが好ましい。金属コロイド粒子(M-1)分散液の濃度も特に制限はないが、通常、固形分として1〜20重量%の範囲にあることが好ましい。
In the first method, metal oxide particles (A-1) surface-treated with an amino group-containing silane compound and metal colloid particles (M-1) surface-treated with a carboxyl group and / or carboxylate group-containing organic compound. ) Mix with the dispersion. The concentration of the metal oxide particle (A-1) dispersion is
Although there is no restriction | limiting in particular, Usually, it is preferable to exist in the range of 1-20 weight% as solid content. The concentration of the metal colloidal particle (M-1) dispersion is not particularly limited, but it is usually preferably in the range of 1 to 20% by weight as the solid content.

金属酸化物粒子(A-1)分散液と、金属コロイド粒子(M-1)分散液とを混合すると金
属酸化物粒子(A-1)の表面に金属コロイド粒子(M-1)が集合し、アミノ基とカルボキシル基とが結合して自己組織化する。
When the metal oxide particle (A-1) dispersion and the metal colloid particle (M-1) dispersion are mixed, the metal colloid particles (M-1) gather on the surface of the metal oxide particles (A-1). The amino group and the carboxyl group are bonded and self-assembled.

本発明の第2の製造方法では、表面をメルカプト基含有シラン化合物で処理された金属酸化物粒子(A-2)と金属コロイド粒子(M-2)をそのまま用いて、前記と同様に混合する。この場合、金属酸化物粒子(A-2)の表面にメルカプト基を介して金属コロイド粒子(M-2)が集合し結合する。 In the second production method of the present invention, the metal oxide particles (A-2) and metal colloidal particles (M-2) whose surfaces are treated with a mercapto group-containing silane compound are used as they are and mixed in the same manner as described above. . In this case, the metal colloid particles (M-2) are assembled and bonded to the surface of the metal oxide particles (A-2) via mercapto groups.

この時の混合比は各粒子の平均粒子径によっても異なるが金属酸化物粒子(A)の表面全面に金属コロイド粒子(M)の全量が1層に層をなして結合する量に充分な量であることが好ましい。このモデル図は図1に示される。   The mixing ratio at this time varies depending on the average particle diameter of each particle, but the amount is sufficient for the total amount of the metal colloid particles (M) to form a layer and bond to the entire surface of the metal oxide particles (A). It is preferable that This model diagram is shown in FIG.

例えば、金属酸化物粒子(A)の平均粒子径が1μmで金属コロイド粒子(M-1)の平均粒子径が10nmの場合、4π*(1000nm)÷4π・(10nm)=104、すなわち、金属酸化物粒子(A)1個当たり、金属コロイド粒子(M)を1万個以上使用することが好ましい。 For example, when the average particle diameter of the metal oxide particles (A) is 1 μm and the average particle diameter of the metal colloid particles (M-1) is 10 nm, 4π * (1000 nm) 2 ÷ 4π · (10 nm) 2 = 10 4 , That is, it is preferable to use 10,000 or more metal colloidal particles (M) per one metal oxide particle (A).

得られた導電性複合粒子分散液はそのまま使用することができるが、イオン性不純分等をイオン交換樹脂で除去したり、限外濾過膜法で洗浄したり、さらに分散媒を有機溶媒に置換したり、必要に応じて乾燥して用いることができる。   The obtained conductive composite particle dispersion can be used as it is, but ionic impurities, etc. are removed with an ion exchange resin, washed with an ultrafiltration membrane method, and the dispersion medium is replaced with an organic solvent. Or can be used after drying if necessary.

(ii)金属の析出
ついで、得られた分散液に、さらにIB族、VIII族元素から選ばれる金属の1種以上の金属塩水溶液を添加し、還元剤の存在下、金属を析出させる。この析出金属により、金属コロイド粒子同士の接合を増大し、より導電性を高めることができる。
(ii) Precipitation of metal Next, one or more metal salt aqueous solutions of metals selected from Group IB and Group VIII elements are further added to the obtained dispersion to precipitate the metal in the presence of a reducing agent. The deposited metal can increase the bonding between the metal colloidal particles and increase the conductivity.

金属塩としては、硝酸銅、塩化銅、硫酸銅、硝酸銀、硫酸銀、塩化金酸、塩化白金酸、塩化パラジウムなどが挙げられる。添加する金属塩は、前記金属コロイド粒子(M)の金属よりもイオン化傾向の低い金属の塩であることが好ましい。   Examples of the metal salt include copper nitrate, copper chloride, copper sulfate, silver nitrate, silver sulfate, chloroauric acid, chloroplatinic acid, and palladium chloride. The metal salt to be added is preferably a metal salt having a lower ionization tendency than the metal of the metal colloid particles (M).

また、金属塩の添加量は金属として金属コロイド粒子(M)の0.1〜50重量%、さらには1〜30重量%の範囲にあることが好ましい。添加量が少なくすぎると、物粒子(A)の表面上の金属コロイド粒子(M)同士の接合を増大させるに不充分で、導電性の向上効果が充分得られないことがある。金属塩の添加量が多くしすぎても、さらに金属コロイド粒子(M)同士の接合を増大させて導電性が向上することもなく、経済的に不利である。   Moreover, it is preferable that the addition amount of a metal salt exists in the range of 0.1-50 weight% of metal colloid particle (M) as a metal, Furthermore, it is the range of 1-30 weight%. If the amount added is too small, it is insufficient to increase the bonding between the metal colloidal particles (M) on the surface of the product particles (A), and the effect of improving conductivity may not be sufficiently obtained. Even if the addition amount of the metal salt is too large, the bonding between the metal colloidal particles (M) is further increased and the conductivity is not improved, which is economically disadvantageous.

還元剤としては硫酸第1鉄、クエン酸3ナトリウム、酒石酸、水素化ホウ素ナトリウム、ヒドラジン、次亜リン酸ナトリウム等が挙げられる。
得られた導電性複合粒子分散液はそのまま使用することができるが、前記したように、
イオン性不純分等をイオン交換樹脂で除去したり、限外濾過膜法で洗浄したり、さらに分散媒を有機溶媒に置換したり、必要に応じて乾燥して用いることができる。
Examples of the reducing agent include ferrous sulfate, trisodium citrate, tartaric acid, sodium borohydride, hydrazine, sodium hypophosphite, and the like.
The obtained conductive composite particle dispersion can be used as it is, but as described above,
The ionic impurities and the like can be removed with an ion exchange resin, washed with an ultrafiltration membrane method, the dispersion medium can be replaced with an organic solvent, or dried as necessary.

(iii)加熱処理
得られた導電性複合粒子分散液は導電性複合粒子を分離し、乾燥し、ついで、不活性ガス雰囲気下または還元ガス雰囲気下、200〜600℃、好ましくは250〜500℃で加熱処理する。
(iii) Heat treatment The conductive composite particle dispersion obtained is separated from the conductive composite particles, dried, and then 200 to 600 ° C, preferably 250 to 500 ° C in an inert gas atmosphere or a reducing gas atmosphere. Heat treatment with.

不活性ガスとしてはN、He、Ne、Ar等が挙げられ、還元ガスとしては通常Hが用いられる。
上記温度範囲で加熱処理すると金属酸化物粒子(A)と金属コロイド粒子(M)との結合(接合)が促進されるとともに金属コロイド粒子(M)同士の融着が促進され、同時にイオン性不純分、揮発性不純分等が除去され、導電性の向上した導電性複合粒子を得ることができる。
Examples of the inert gas include N 2 , He, Ne, Ar, and the like, and H 2 is usually used as the reducing gas.
When heat treatment is performed within the above temperature range, the bonding (bonding) between the metal oxide particles (A) and the metal colloid particles (M) is promoted and the fusion between the metal colloid particles (M) is promoted. Thus, conductive composite particles with improved conductivity can be obtained.

つぎに、本発明に係る導電性複合粒子について説明する。
導電性複合粒子
本発明に係る導電性複合粒子は、金属酸化物粒子(A)の表面を金属コロイド粒子(M)で被覆した導電性複合粒子であって、金属酸化物粒子(A)の平均粒子径(DA)0.1〜3μmの範囲にあり、金属コロイド粒子(M)の平均粒子径(DM)が1〜100nmの範囲にあることを特徴としている。
Next, the conductive composite particles according to the present invention will be described.
Conductive composite particles The conductive composite particles according to the present invention are conductive composite particles obtained by coating the surface of metal oxide particles (A) with metal colloid particles (M), and the average of metal oxide particles (A). The particle diameter (D A ) is in the range of 0.1 to 3 μm, and the average particle diameter (D M ) of the metal colloidal particles ( M ) is in the range of 1 to 100 nm.

本発明に係る導電性複合粒子の一態様を模式的に図1に示した。
金属酸化物粒子(A)
金属酸化物粒子(A)としては前記したものと同様の金属酸化物粒子(A)を用いることができる。また、金属酸化物粒子(A)は表面をアミノ基含有シラン化合物で処理されていてもよく、メルカプト基含有シラン化合物で処理され表面をチオール基(−SH)により修飾されていてもよい。
One embodiment of the conductive composite particles according to the present invention is schematically shown in FIG.
Metal oxide particles (A)
As the metal oxide particles (A), the same metal oxide particles (A) as described above can be used. Further, the metal oxide particles (A) may have a surface treated with an amino group-containing silane compound, or may be treated with a mercapto group-containing silane compound and the surface may be modified with a thiol group (—SH).

金属コロイド粒子(M)
金属コロイド粒子(M)としては前記したものと同様の金属コロイド粒子(M)を用いることができる。また、金属コロイド粒子(M)は表面をカルボキシル基および/またはカルボキシレート基含有有機化合物で処理されていてもよい。なお、金属酸化物粒子(A)としてアミノ基含有シラン化合物で表面処理されたものを使用する場合、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M)を用いる。また、メルカプト基含有シラン化合物で表面処理された金属酸化物微粒子は、表面をチオール基(−SH)により修飾されるものが使用され、金属コロイド粒子(M)がそのまま使用される。この組合わせであれば、金属酸化物粒子と金属コロイド粒子とが強固に結合する。
Metal colloidal particles (M)
As the metal colloid particles (M), the same metal colloid particles (M) as described above can be used. Further, the surface of the metal colloidal particles (M) may be treated with a carboxyl group and / or carboxylate group-containing organic compound. In addition, when using what was surface-treated with the amino group containing silane compound as a metal oxide particle (A), the metal colloid particle (M) surface-treated with the carboxyl group and / or carboxylate group containing organic compound is used. . Further, as the metal oxide fine particles surface-treated with the mercapto group-containing silane compound, those whose surface is modified with a thiol group (-SH) are used, and the metal colloid particles (M) are used as they are. With this combination, the metal oxide particles and the metal colloid particles are firmly bonded.

本発明に係る導電性複合粒子は、金属酸化物粒子(A)の表面を金属コロイド粒子(M)で被覆しているが、被覆率は、充分な導電性が得られれば特に制限はないが、実質的に金属酸化物粒子(A)の全表面を金属コロイド粒子(M)で被覆していることが好ましい。   The conductive composite particles according to the present invention cover the surface of the metal oxide particles (A) with the metal colloid particles (M), but the coverage is not particularly limited as long as sufficient conductivity is obtained. It is preferable that substantially the entire surface of the metal oxide particles (A) is covered with the metal colloid particles (M).

ここで、全面を被覆しているとは、金属酸化物粒子(A)の外表面積を金属コロイド粒子(M)の断面積(粒子の専有面積)で除した個数に近い数の金属コロイド粒子(M)が配列している状態を意味している。金属コロイド粒子(M)の被覆率が低い場合は導電性が不充分となることがあり、導電性複合粒子の真球状が損なわれることから導電性複合粒子としての用途に制限が生じる。   Here, covering the entire surface means that the number of metal colloid particles (A) that is close to the number obtained by dividing the outer surface area of the metal oxide particles (A) by the cross-sectional area of the metal colloid particles (M) (the exclusive area of the particles) M) means an arrayed state. When the coverage of the metal colloidal particles (M) is low, the conductivity may be insufficient, and the true spherical shape of the conductive composite particles is impaired, so that the use as the conductive composite particles is limited.

導電性複合粒子は、平均粒子径(D)が0.1〜3μmの範囲にある金属酸化物粒子(A)の表面を平均粒子径(D)が1〜100nmの範囲にある金属コロイド粒子(M)が被覆しており、導電性複合粒子の平均粒子径は約0.1〜3.2μmの範囲にある。 Conductive composite particles, the metal surface an average particle diameter of the average particle diameter (D A) metal oxide particles is in the range of 0.1~3μm (A) (D M) is in the range of 1~100nm colloid The particles (M) are coated, and the average particle size of the conductive composite particles is in the range of about 0.1 to 3.2 μm.

さらに、本発明の導電性複合粒子は前記金属コロイド粒子に加えて金属コロイド粒子間にIB族、VIII族元素から選ばれる金属の1種以上が析出していてもよい。なかでもAu、Ag、Cu、Pt、Pdから選ばれる1種以上の金属が析出していることが好ましい。   Furthermore, in the conductive composite particles of the present invention, in addition to the metal colloid particles, one or more metals selected from Group IB and Group VIII elements may be deposited between the metal colloid particles. In particular, it is preferable that at least one metal selected from Au, Ag, Cu, Pt, and Pd is deposited.

このような金属が金属コロイド粒子間に析出していると導電性複合粒子の導電性が向上するほか、金属コロイド粒子が容易に脱離することがなく、ファインピッチの電極の接続等に好適に用いることができる。   When such a metal is deposited between the metal colloid particles, the conductivity of the conductive composite particles is improved, and the metal colloid particles are not easily detached, which is suitable for connecting fine pitch electrodes. Can be used.

[実施例]
以下に実施例を示して本発明を具体的に説明するが、本発明はこれら実施例に限定するものではない。
[Example]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
表面処理金属酸化物粒子(A-1)分散液の調製
シリカ粒子(触媒化成工業(株)製:真絲球、均粒子径300nm、CV値1.0%)10gを水/エタノール(50/50)混合溶媒90gに分散させた。この分散液にγ−アミノプロピルトリエトキシシラン2gを添加し、1時間攪拌した後、オートクレーブにて80℃で2時間撹拌処理してアミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)分散液を調製した。
[Example 1]
Preparation of Surface-treated Metal Oxide Particle (A-1) Dispersion Silica Particles (manufactured by Catalyst Chemical Industry Co., Ltd .: true sphere, average particle size 300 nm, CV value 1.0%) 10 g of water / ethanol (50/50 ) It was dispersed in 90 g of a mixed solvent. 2 g of γ-aminopropyltriethoxysilane was added to this dispersion, and the mixture was stirred for 1 hour, and then stirred for 2 hours at 80 ° C. in an autoclave and surface-treated with an amino group-containing silane compound (A -1) A dispersion was prepared.

表面処理金属コロイド粒子(M-1)分散液の調製
純水10Lを90℃に加熱し、これに濃度5重量%の塩化金酸水溶液10gを添加し、ついで、濃度5重量%のクエン酸ナトリウム水溶液12gを添加し、ついで、98℃で2時間還流を行った。ついで、冷却し、両イオン交換樹脂にて、フリーのイオンを除去した後、限外濾過膜にて濃縮して濃度1重量%の表面処理金属コロイド粒子(M-1)分散液を調
製した。表面処理金属コロイド粒子(M-1)の平均粒子径を測定した。結果を表1に示した
Preparation of surface-treated metal colloidal particle (M-1) dispersion 10 L of pure water was heated to 90 ° C., 10 g of a 5 wt% chloroauric acid aqueous solution was added thereto, and then 5 wt% sodium citrate was added. 12 g of an aqueous solution was added and then refluxed at 98 ° C. for 2 hours. Next, the mixture was cooled, free ions were removed with both ion exchange resins, and then concentrated with an ultrafiltration membrane to prepare a dispersion of surface-treated metal colloidal particles (M-1) having a concentration of 1% by weight. The average particle diameter of the surface-treated metal colloid particles (M-1) was measured. The results are shown in Table 1.

導電性複合粒子(1)の調製
上記で調製した金属酸化物粒子(A-1)分散液と金属コロイド粒子(M-1)分散液とを混合し、1時間撹拌して導電性複合粒子(1)分散液を調製した。
Preparation of conductive composite particles (1) The metal oxide particle (A-1) dispersion prepared above and the metal colloidal particle (M-1) dispersion were mixed and stirred for 1 hour to prepare conductive composite particles ( 1) A dispersion was prepared.

導電性複合粒子(1)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(1)粉体を得た。
導電性複合粒子(1)の平均粒子径、粒子径変動係数(CV値)を測定し、結果を表1に
示した。また導電性(体積抵抗値)を以下の方法で測定し、結果を表に示した。なお、平均粒子径は走査型電子顕微鏡写真を測定し、100個の粒子について粒子径を測定し、その平均値で示した。また、CV値は下記式によって計算した。
Conductive composite particles (1) The dispersion is evaporated to dryness at 120 ° C and 2% at 400 ° C in a hydrogen gas atmosphere.
Conductive composite particles (1) were obtained by heat treatment for a period of time.
The average particle size and particle size variation coefficient (CV value) of the conductive composite particles (1) were measured, and the results are shown in Table 1. Moreover, electroconductivity (volume resistance value) was measured with the following method and the result was shown in the table | surface. In addition, the average particle diameter measured the scanning electron micrograph, measured the particle diameter about 100 particle | grains, and showed it with the average value. The CV value was calculated by the following formula.

CV=(粒子径標準偏差(σ)/平均粒子径(D))×100   CV = (particle diameter standard deviation (σ) / average particle diameter (D)) × 100

Figure 0005342114
Figure 0005342114

Di=個々の粒子の粒子径
導電性評価(1)
上下が貫通したアルミナ製のシリンダー(内部断面積が1cm)に、先ず下部に導電性のピストン状電極柱を挿入し、これに導電性複合粒子(1)粉体1gを充填し、ついで上
部からもピストン状電極柱を挿入し、油圧機にて充填粉体の空隙率が60vol%以下となるように加圧していき、上下電極間の抵抗をテスターで測定しながら、一定となる抵抗値(Ω)を測定し、これを粉体の充填高さ(cm)で除し、結果を表1に示した。
Di = particle size of individual particles
Conductivity evaluation (1)
First, a conductive piston-like electrode column is inserted into the lower part of an alumina cylinder (with an internal cross-sectional area of 1 cm 2 ) that penetrates the top and bottom, and 1 g of conductive composite particle (1) powder is filled into this, followed by the upper part. Also, insert a piston-like electrode column, pressurize with a hydraulic machine so that the porosity of the filled powder is 60 vol% or less, and measure the resistance between the upper and lower electrodes with a tester while maintaining a constant resistance value (Ω) was measured and divided by the powder filling height (cm). The results are shown in Table 1.

[実施例2]
表面処理金属コロイド粒子(M-2)分散液の調製
純水10Lを90℃に加熱し、これに濃度5重量%の塩化金酸水溶液40gを添加し、ついで、濃度5重量%のクエン酸ナトリウム水溶液4gを添加し、ついで、98℃で4時間還流を行った。ついで、冷却し、両イオン交換樹脂にて、フリーのイオンを除去した後、限外濾過膜にて濃縮して濃度1重量%の表面処理金属コロイド粒子(M-2)分散液を調製した。表面処理金属コロイド粒子(M-2)の平均粒子径を測定し、結果を表1に示した。
[Example 2]
Preparation of surface-treated metal colloidal particle (M-2) dispersion 10 L of pure water was heated to 90 ° C., 40 g of a 5 wt% chloroauric acid aqueous solution was added thereto, and then 5 wt% sodium citrate was added. 4 g of an aqueous solution was added and then refluxed at 98 ° C. for 4 hours. Next, the mixture was cooled, free ions were removed with both ion exchange resins, and concentrated with an ultrafiltration membrane to prepare a dispersion of surface-treated metal colloidal particles (M-2) having a concentration of 1% by weight. The average particle diameter of the surface-treated metal colloid particles (M-2) was measured, and the results are shown in Table 1.

導電性複合粒子(2)の調製
実施例1において、金属酸化物粒子(A-1)分散液と金属コロイド粒子(M-2)分散液とを混合した以外は同様にして導電性複合粒子(2)粉体を得た。
Preparation of conductive composite particles (2) In Example 1, except that the metal oxide particle (A-1) dispersion and the metal colloid particle (M-2) dispersion were mixed, the conductive composite particles ( 2) A powder was obtained.

導電性複合粒子(2)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
[実施例3]
表面処理金属コロイド粒子(M-3)分散液の調製
純水10Lを90℃に加熱し、これに濃度5重量%の塩化金酸水溶液40gを添加し、ついで、濃度5重量%のクエン酸ナトリウム水溶液2gを添加し、ついで、98℃で12時間還流を行った。ついで、冷却し、両イオン交換樹脂にて、フリーのイオンを除去した後、限外濾過膜にて濃縮して濃度1重量%の表面処理金属コロイド粒子(M-3)分散液を調
製した。表面処理金属コロイド粒子(M-3)の平均粒子径を測定し、結果を表1に示した。
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (2) were measured, and the results are shown in Table 1.
[Example 3]
Preparation of surface-treated metal colloidal particle (M-3) dispersion 10 L of pure water was heated to 90 ° C., 40 g of a 5% by weight aqueous chloroauric acid solution was added thereto, and then 5% by weight of sodium citrate 2 g of an aqueous solution was added and then refluxed at 98 ° C. for 12 hours. Next, the mixture was cooled, free ions were removed with both ion exchange resins, and then concentrated with an ultrafiltration membrane to prepare a dispersion of surface-treated metal colloidal particles (M-3) having a concentration of 1% by weight. The average particle diameter of the surface-treated metal colloid particles (M-3) was measured, and the results are shown in Table 1.

導電性複合粒子(3)の調製
実施例1において、金属酸化物粒子(A-1)分散液と金属コロイド粒子(M-3)分散液とを混合した以外は同様にして導電性複合粒子(3)粉体を得た。
Preparation of conductive composite particles (3) In Example 1, conductive composite particles ( A-1) and metal colloid particles (M-3) were mixed in the same manner except that they were mixed. 3) A powder was obtained.

導電性複合粒子(3)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
[実施例4]
導電性複合粒子(4)の調製
実施例2と同様にして導電性複合粒子(2)分散液を調製した後、還元剤として濃度0.
0001重量%のホルマリン水溶液を10,000g混合し、これに濃度5重量%の塩化白金酸水溶液10gを添加し、1時間撹拌して導電性複合粒子(4)分散液を調製した。
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (3) were measured, and the results are shown in Table 1.
[Example 4]
Preparation of conductive composite particles (4) A conductive composite particle (2) dispersion was prepared in the same manner as in Example 2.
10,000 g of a 0001 wt% formalin aqueous solution was mixed, 10 g of a 5 wt% chloroplatinic acid aqueous solution was added thereto, and stirred for 1 hour to prepare a conductive composite particle (4) dispersion.

導電性複合粒子(4)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(4)粉体を得た。
導電性複合粒子(4)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
Conductive composite particle (4) dispersion was evaporated to dryness at 120 ° C and 2% at 400 ° C under hydrogen gas atmosphere.
Conductive heat treatment was carried out for a time to obtain conductive composite particles (4) powder.
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (4) were measured, and the results are shown in Table 1.

[実施例5]
表面処理金属酸化物粒子(A-5)分散液の調製
シリカ粒子(触媒化成工業(株)製:真絲球、均粒子径100nm、CV値1.0%)1
0gを水/エタノール(50/50)混合溶媒90gに分散させた。この分散液にγ−アミノプロピルトリエトキシシラン2gを添加し、1時間攪拌した後、オートクレーブにて80℃で2時間撹拌処理してアミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-5)分散液を調製した。
[Example 5]
Preparation of surface-treated metal oxide particles (A-5) dispersion Silica particles (manufactured by Catalyst Kasei Kogyo Co., Ltd .: true sphere, average particle size 100 nm, CV value 1.0%) 1
0 g was dispersed in 90 g of a water / ethanol (50/50) mixed solvent. 2 g of γ-aminopropyltriethoxysilane was added to this dispersion, and the mixture was stirred for 1 hour, and then stirred for 2 hours at 80 ° C. in an autoclave and surface-treated with an amino group-containing silane compound (A -5) A dispersion was prepared.

導電性複合粒子(5)の調製
実施例1において、金属酸化物粒子(A-5)分散液と金属コロイド粒子(M-1)分散液とを混合した以外は同様にして導電性複合粒子(5)分散液を調製した。
Preparation of conductive composite particles (5) In Example 1, except that the metal oxide particle (A-5) dispersion and the metal colloid particle (M-1) dispersion were mixed, the conductive composite particles ( 5) A dispersion was prepared.

ついで、還元剤として濃度0.0001重量%のホルマリン水溶液を10,000g混合し、これに濃度5重量%の塩化白金酸水溶液20を添加し、1時間撹拌して導電性複合粒子(5)分散液を調製した。 Next, 10,000 g of a 0.0001% by weight formalin aqueous solution as a reducing agent was mixed, 20 g of a 5% by weight aqueous chloroplatinic acid solution was added thereto, and the mixture was stirred for 1 hour to make conductive composite particles (5). A dispersion was prepared.

導電性複合粒子(5)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(5)粉体を得た。
導電性複合粒子(5)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
Conductive composite particle (5) dispersion is evaporated to dryness at 120 ° C, and 2% at 400 ° C under hydrogen gas atmosphere.
Conductive composite particles (5) were obtained by heat treatment for a period of time.
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (5) were measured and the results are shown in Table 1.

[実施例6]
表面処理金属酸化物粒子(A-6)分散液の調製
シリカ粒子(触媒化成工業(株)製:真絲球、均粒子径1200nm、CV値1.2%)10gを水/エタノール(50/50)混合溶媒90gに分散させた。この分散液にγ−アミノプロピルトリエトキシシラン1gを添加し、1時間攪拌した後、オートクレーブにて80℃で2時間撹拌処理してアミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-6)分散液を調製した。
[Example 6]
Preparation of dispersion of surface-treated metal oxide particles (A-6) Silica particles (manufactured by Catalyst Kasei Kogyo Co., Ltd .: true sphere, average particle size 1200 nm, CV value 1.2%) 10 g of water / ethanol (50/50 ) It was dispersed in 90 g of a mixed solvent. 1 g of γ-aminopropyltriethoxysilane was added to this dispersion, and the mixture was stirred for 1 hour, and then stirred for 2 hours at 80 ° C. in an autoclave and surface-treated with an amino group-containing silane compound (A -6) A dispersion was prepared.

導電性複合粒子(6)の調製
実施例1において、金属酸化物粒子(A-6)分散液と金属コロイド粒子(M-2)分散液とを混合した以外は同様にして導電性複合粒子(6)分散液を調製した。
Preparation of conductive composite particles (6) In Example 1, except that the metal oxide particle (A-6) dispersion and the metal colloid particle (M-2) dispersion were mixed, the conductive composite particles ( 6) A dispersion was prepared.

ついで、還元剤として濃度0.0001重量%のホルマリン水溶液を10,000g混合し、これに濃度5重量%の塩化白金酸水溶液10gを添加し、1時間撹拌して導電性複合粒子(6)分散液を調製した。   Next, 10,000 g of a 0.0001 wt% formalin aqueous solution is mixed as a reducing agent, 10 g of a 5 wt% chloroplatinic acid aqueous solution is added thereto, and stirred for 1 hour to disperse the conductive composite particles (6). A liquid was prepared.

導電性複合粒子(6)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(6)粉体を得た。
導電性複合粒子(6)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
Conductive composite particle (6) dispersion was evaporated to dryness at 120 ° C and 2% at 400 ° C under hydrogen gas atmosphere.
Conductive composite particles (6) were obtained by heat treatment for a period of time.
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (6) were measured, and the results are shown in Table 1.

[実施例7]
表面処理金属酸化物粒子(A-7)分散液の調製
撹拌下、ガラス製容器中で、メタノール307重量部、濃度25重量%のアンモニア水6重量部および水1225重量部を均一に混合した。この混合液を20℃で撹拌しながらメチルトリメトキシシラン60重量部を10時間で添加し、加水分解してシリカ系粒子分散液を調製した。この分散液にγ−アミノプロピルトリエトキシシラン1gを添加し、1時間攪拌してアミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-7)分散液を
調製した。金属酸化物粒子(A-7)の平均粒子径は1.8μmであった。
[Example 7]
Preparation of dispersion of surface-treated metal oxide particles (A-7) Under stirring, 307 parts by weight of methanol, 6 parts by weight of ammonia water having a concentration of 25% by weight and 1225 parts by weight of water were uniformly mixed. While stirring this mixed liquid at 20 ° C., 60 parts by weight of methyltrimethoxysilane was added in 10 hours and hydrolyzed to prepare a silica-based particle dispersion. 1 g of γ-aminopropyltriethoxysilane was added to this dispersion and stirred for 1 hour to prepare a dispersion of metal oxide particles (A-7) surface-treated with an amino group-containing silane compound. The average particle diameter of the metal oxide particles (A-7) was 1.8 μm.

導電性複合粒子(7)の調製
実施例1において、金属酸化物粒子(A-7)分散液と金属コロイド粒子(M-2)分散液とを混
合した以外は同様にして導電性複合粒子(7)分散液を調製した。
Preparation of conductive composite particles (7) In Example 1, except that the metal oxide particle (A-7) dispersion and the metal colloid particle (M-2) dispersion were mixed, the conductive composite particles ( 7) A dispersion was prepared.

導電性複合粒子(7)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(7)粉体を得た。
導電性複合粒子(7)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
Conductive composite particle (7) dispersion was evaporated to dryness at 120 ° C and 2% at 400 ° C under hydrogen gas atmosphere.
Conductive composite particles (7) were obtained by heat treatment for a period of time.
The average particle diameter, particle diameter variation coefficient (CV value) and conductivity of the conductive composite particles (7) were measured, and the results are shown in Table 1.

[実施例8]
導電性複合粒子(8)の調製
実施例7と同様にして導電性複合粒子(7)分散液を調製した。
[Example 8]
Preparation of conductive composite particles (8) A conductive composite particle (7) dispersion was prepared in the same manner as in Example 7.

ついで、還元剤として濃度0.0001重量%のホルマリン水溶液を10,000g混合し、これに濃度5重量%の塩化白金酸水溶液10gを添加し、1時間撹拌して導電性複合粒子(8)分散液を調製した。   Next, 10,000 g of a 0.0001 wt% formalin aqueous solution was mixed as a reducing agent, 10 g of a 5 wt% chloroplatinic acid aqueous solution was added thereto, and the mixture was stirred for 1 hour to disperse the conductive composite particles (8). A liquid was prepared.

導電性複合粒子(8)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、400℃で2
時間加熱処理して導電性複合粒子(8)粉体を得た。
導電性複合粒子(8)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
The conductive composite particle (8) dispersion was evaporated to dryness at 120 ° C and 2% at 400 ° C in a hydrogen gas atmosphere.
Conductive heat treatment was carried out for a time to obtain conductive composite particles (8) powder.
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (8) were measured, and the results are shown in Table 1.

[実施例9]
表面処理金属酸化物粒子(A-9)分散液の調製
シリカ粒子(触媒化成工業(株)製:真絲球、均粒子径300nm、CV値1.0%)10gを水/エタノール(50/50)混合溶媒90gに分散させた。この分散液にγ-メルカプトプロピルトリメトキシシラン2gを添加し、1時間攪拌した後、オートクレーブにて80℃で2時間撹拌処理して表面をメルカプト基含有シラン化合物で処理して表面にチオール基を有する金属酸化物粒子(A-9)分散液を調製した。
[Example 9]
Preparation of dispersion of surface-treated metal oxide particles (A-9) Silica particles (manufactured by Catalyst Chemical Industry Co., Ltd .: true sphere, average particle size 300 nm, CV value 1.0%) 10 g of water / ethanol (50/50 ) It was dispersed in 90 g of a mixed solvent. To this dispersion, 2 g of γ-mercaptopropyltrimethoxysilane was added and stirred for 1 hour, and then stirred at 80 ° C. for 2 hours in an autoclave to treat the surface with a mercapto group-containing silane compound to form thiol groups on the surface. A metal oxide particle (A-9) dispersion was prepared.

金属コロイド粒子(M-9)分散液の調製
純水10Lを90℃に加熱し、これに濃度5重量%の塩化金酸水溶液10gを添加し、ついで、濃度5重量%のクエン酸ナトリウム水溶液12gを添加し、ついで、98℃で2時間還流を行った。ついで、陰イオン交換樹脂にて処理し、冷却し、両イオン交換樹脂にて、フリーのイオンを除去した後、限外濾過膜にて濃縮して濃度1重量%の金属コロイド粒子(M-9)分散液を調製した。金属コロイド粒子(M-9)の平均粒子径を測定し、結果を表に示した。
Preparation of metal colloidal particle (M-9) dispersion 10 L of pure water is heated to 90 ° C., 10 g of a 5% strength by weight aqueous solution of chloroauric acid is added thereto, and then 12 g of a 5% strength by weight aqueous sodium citrate solution is added. And then refluxed at 98 ° C. for 2 hours. Next, it is treated with an anion exchange resin, cooled, free ions are removed with both ion exchange resins, and then concentrated with an ultrafiltration membrane to concentrate metal colloidal particles having a concentration of 1% by weight (M-9). ) A dispersion was prepared. The average particle diameter of the metal colloid particles (M-9) was measured, and the results are shown in the table.

導電性複合粒子(9)の調製
上記で調製した金属酸化物粒子(A-9)分散液と金属コロイド粒子(M-9)分散液とを混合し、1時間撹拌して導電性複合粒子(9)分散液を調製した。
Preparation of conductive composite particles (9) The metal oxide particle (A-9) dispersion prepared above and the metal colloidal particle (M-9) dispersion were mixed and stirred for 1 hour to prepare conductive composite particles ( 9) A dispersion was prepared.

導電性複合粒子(9)分散液を120℃で蒸発乾燥し、水素ガス雰囲気下、250℃で2
時間加熱処理して導電性複合粒子(9)粉体を得た。
導電性複合粒子(9)の平均粒子径、粒子径変動係数(CV値)および導電性を測定し結
果を表1に示した。
Conductive composite particle (9) dispersion is evaporated to dryness at 120 ° C, and 2% at 250 ° C under hydrogen gas atmosphere.
Conductive heat treatment was carried out for a time to obtain conductive composite particles (9) powder.
The average particle size, particle size variation coefficient (CV value) and conductivity of the conductive composite particles (9) were measured and the results are shown in Table 1.

[比較例1]
シリカ粒子(R1)の調製
エチルアルコール487gと水389gとの混合液を撹拌しながら35℃に保ち、この混合液にアンモニアガス71.7gを溶解させた。混混合液に濃度28重量%のエチルシリケート17.4gを加え、2時間撹拌して、SiOとして濃度0.5重量%のシード
粒子が分散したヒールゾルを得た。このヒールゾルのうち、97gを撹拌下、35℃に保ち、アンモニアガスを供給しながら分散液のpHを11.5にコントロールしながら、エチルアルコール455gと水886gとの混合液および濃度28重量%のエチルシリケート570gを同時に20時間かけて徐々に添加した。ついで、1gのNaOHが溶解した水溶液103gを加え、70℃に加熱して2時間保持した。この分散液を再び35℃にたもちながら、前記と同様にアンモニアガスでpHを11.5にコントロールしながらエチルアルコール455gと水886gとの混合液および濃度28重量%のエチルシリケート570gを同時に20時間かけて徐々に添加した。ついで、1gのNaOHが溶解した水溶液103gを加え、70℃に加熱して2時間保持した。分散液は濾過、洗浄し乾燥してシリカ粒子(R1)を調製した。シリカ粒子(R1)の平均粒子径は7μmであった。
[Comparative Example 1]
Preparation of silica particles (R1) A mixture of 487 g of ethyl alcohol and 389 g of water was kept at 35 ° C. with stirring, and 71.7 g of ammonia gas was dissolved in this mixture. To the mixed liquid, 17.4 g of ethyl silicate having a concentration of 28% by weight was added and stirred for 2 hours to obtain a heel sol in which seed particles having a concentration of 0.5% by weight as SiO 2 were dispersed. Of this heel sol, 97 g was kept at 35 ° C. with stirring, and the pH of the dispersion was controlled to 11.5 while supplying ammonia gas, and a mixture of 455 g of ethyl alcohol and 886 g of water and a concentration of 28 wt% 570 g of ethyl silicate was gradually added simultaneously over 20 hours. Next, 103 g of an aqueous solution in which 1 g of NaOH was dissolved was added, heated to 70 ° C. and held for 2 hours. While maintaining this dispersion at 35 ° C. again, a mixture of 455 g of ethyl alcohol and 886 g of water and 570 g of ethyl silicate having a concentration of 28% by weight were simultaneously controlled for 20 hours while controlling the pH to 11.5 with ammonia gas as described above. Over time. Next, 103 g of an aqueous solution in which 1 g of NaOH was dissolved was added, heated to 70 ° C. and held for 2 hours. The dispersion was filtered, washed and dried to prepare silica particles (R1). The average particle diameter of the silica particles (R1) was 7 μm.

導電性複合粒子(R1)の調製
濃度24重量%のアンモニア水28mlを水800gで希釈し、これに硝酸銀29.2gを溶解した。
Preparation of conductive composite particles (R1) 28 ml of aqueous ammonia having a concentration of 24% by weight was diluted with 800 g of water, and 29.2 g of silver nitrate was dissolved therein.

水600gにシリカ粒子(R1)20gを分散させ、撹拌しながら前記アンモニア性硝酸銀水溶液を混合し、これに濃度30重量%のホルマリン32.8mlを水180gで希釈した液を滴下し、シリカ粒子(R1)表面に銀メッキを施した。ついで、濾過、洗浄し、乾燥して導電性複合粒子(R1)を調製した。銀メッキ層の厚さは40nmで、導電性は3×10-3Ω・cmであった。 Disperse 20 g of silica particles (R1) in 600 g of water, mix the ammoniacal silver nitrate aqueous solution with stirring, add dropwise a solution obtained by diluting 32.8 ml of formalin with a concentration of 30% by weight with 180 g of water, and add silica particles ( R1) The surface was silver-plated. Subsequently, filtration, washing and drying were performed to prepare conductive composite particles (R1). The thickness of the silver plating layer was 40 nm, and the conductivity was 3 × 10 −3 Ω · cm.

[比較例2]
導電性複合粒子(R2)の調製
比較例1において、シリカ粒子としてシリカ粒子(触媒化成工業(株)製:真絲球、均粒子径300nm、CV値1.0%)20gを用いた以外は同様にして導電性複合粒子(R2)を調製した。導電性複合粒子(R2)の一部に凝集粒子が認められた。導電性は10×10-1Ω・cmであった。
[Comparative Example 2]
Preparation of conductive composite particles (R2) Same as in Comparative Example 1, except that 20 g of silica particles (manufactured by Catalyst Kasei Kogyo Co., Ltd .: true sphere, average particle size 300 nm, CV value 1.0%) was used as silica particles. Thus, conductive composite particles (R2) were prepared. Agglomerated particles were observed in a part of the conductive composite particles (R2). The conductivity was 10 × 10 −1 Ω · cm.

Figure 0005342114
Figure 0005342114

本発明に係る導電性複合粒子の模式図を示す。The schematic diagram of the electroconductive composite particle which concerns on this invention is shown.

Claims (13)

アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)分散液と、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M-1)分散液とを混合することを特徴とする導電性複合粒子の製造方法。   Metal oxide particle (A-1) dispersion surface-treated with an amino group-containing silane compound, and metal colloid particle (M-1) dispersion liquid surface-treated with a carboxyl group and / or carboxylate group-containing organic compound, A process for producing conductive composite particles, characterized in that メルカプト基含有シラン化合物で表面処理された金属酸化物粒子(A-2)分散液と、金属コロイド粒子(M-2)分散液とを混合することを特徴とする導電性複合粒子の製造方法。   A method for producing conductive composite particles, comprising mixing a metal oxide particle (A-2) dispersion liquid surface-treated with a mercapto group-containing silane compound and a metal colloid particle (M-2) dispersion liquid. 前記金属酸化物粒子の平均粒子径(DA)が0.1〜3μmの範囲にあり、前記金属コロイド粒子の平均粒子径(DM)が1〜100nmの範囲にあることを特徴とする請求項1または2に記載の導電性複合粒子の製造方法。 The average particle diameter (D A ) of the metal oxide particles is in the range of 0.1 to 3 μm, and the average particle diameter (D M ) of the metal colloid particles is in the range of 1 to 100 nm. Item 3. A method for producing conductive composite particles according to Item 1 or 2. 前記金属酸化物粒子がシリカ系粒子であることを特徴とする請求項1〜3のいずれかに記載の導電性複合粒子の製造方法。   The method for producing conductive composite particles according to claim 1, wherein the metal oxide particles are silica-based particles. 前記金属コロイド粒子がIB族、VIII族元素から選ばれる金属の1種以上からなることを特徴とする請求項1〜4のいずれかに記載の導電性複合粒子の製造方法。   The method for producing conductive composite particles according to any one of claims 1 to 4, wherein the metal colloidal particles are made of one or more metals selected from Group IB and Group VIII elements. 前記金属コロイド粒子がAu、Ag、Cu、Pt、Pdから選ばれる1種以上からなることを特徴とする請求項5に記載の導電性複合粒子の製造方法。   The method for producing conductive composite particles according to claim 5, wherein the metal colloid particles are made of one or more selected from Au, Ag, Cu, Pt, and Pd. 分散液を混合した後、さらにIB族、VIII族元素から選ばれる金属の1種以上の金属塩を添加し、還元剤の存在下、導電性複合粒子表面に金属を析出させることを特徴とする請求項1〜6のいずれかに記載の導電性複合粒子の製造方法。   After mixing the dispersion, one or more metal salts of metals selected from Group IB and Group VIII elements are further added, and the metal is deposited on the surface of the conductive composite particles in the presence of a reducing agent. The manufacturing method of the electroconductive composite particle in any one of Claims 1-6. 得られた導電性複合粒子を不活性ガス雰囲気下または還元ガス雰囲気下、200〜600℃で加熱処理することを特徴とする請求項1〜7のいずれかに記載の導電性複合粒子の製造方法。   The method for producing conductive composite particles according to claim 1, wherein the obtained conductive composite particles are heat-treated at 200 to 600 ° C. in an inert gas atmosphere or a reducing gas atmosphere. . アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A)の表面を、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M)で被覆した導電性複合粒子であって、金属酸化物粒子(A)の平均粒子径(DA)0.1〜3μmの範囲にあり、金属コロイド粒子(M)の平均粒子径(DM)が1〜100nmの範囲にあることを特徴とする導電性複合粒子。 Conductive composite particles obtained by coating the surface of metal oxide particles (A) surface-treated with an amino group-containing silane compound with metal colloid particles (M) surface-treated with a carboxyl group and / or carboxylate group-containing organic compound The average particle diameter (D A ) of the metal oxide particles (A) is in the range of 0.1 to 3 μm, and the average particle diameter (D M ) of the metal colloid particles ( M ) is in the range of 1 to 100 nm. Conductive composite particles characterized by being. メルカプト基含有シラン化合物で表面処理された金属酸化物粒子(A)の表面を金属コロイド粒子(M)で被覆した導電性複合粒子であって、金属酸化物粒子(A)の平均粒子径(DA)0.1〜3μmの範囲にあり、金属コロイド粒子(M)の平均粒子径(DM)が1〜100nmの範囲にあることを特徴とする導電性複合粒子。 Conductive composite particles obtained by coating the surface of the metal oxide particles (A) surface-treated with the mercapto group-containing silane compound with the metal colloid particles (M), wherein the average particle diameter of the metal oxide particles (A) ( D A ) in the range of 0.1 to 3 μm, and the average particle diameter (D M ) of the metal colloidal particles ( M ) is in the range of 1 to 100 nm. 前記金属酸化物粒子(A)がシリカ系粒子であることを特徴とする請求項9または10に記載の導電性複合粒子。   The conductive composite particles according to claim 9 or 10, wherein the metal oxide particles (A) are silica-based particles. 前記金属コロイド粒子がIB族、VIII族元素から選ばれる金属の1種以上からなることを特徴とする請求項9〜11のいずれかに記載の導電性複合粒子。   The conductive composite particle according to any one of claims 9 to 11, wherein the metal colloidal particle is composed of one or more metals selected from Group IB and Group VIII elements. 前記金属コロイド粒子がAu、Ag、Cu、Pt、Pdから選ばれる1種以上からなることを特徴とする請求項12に記載の導電性複合粒子。   The conductive composite particle according to claim 12, wherein the metal colloidal particle is composed of one or more selected from Au, Ag, Cu, Pt, and Pd.
JP2007159136A 2007-06-15 2007-06-15 Method for producing conductive particles and conductive particles Expired - Fee Related JP5342114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159136A JP5342114B2 (en) 2007-06-15 2007-06-15 Method for producing conductive particles and conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159136A JP5342114B2 (en) 2007-06-15 2007-06-15 Method for producing conductive particles and conductive particles

Publications (2)

Publication Number Publication Date
JP2008311141A JP2008311141A (en) 2008-12-25
JP5342114B2 true JP5342114B2 (en) 2013-11-13

Family

ID=40238562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159136A Expired - Fee Related JP5342114B2 (en) 2007-06-15 2007-06-15 Method for producing conductive particles and conductive particles

Country Status (1)

Country Link
JP (1) JP5342114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296362B2 (en) * 2007-10-16 2013-09-25 日揮触媒化成株式会社 Conductive silica particles, method for producing the same, and use thereof
JP5709292B2 (en) * 2007-12-06 2015-04-30 国立大学法人徳島大学 Nano-functional silica particles and method for producing the same
JP6411194B2 (en) * 2013-12-05 2018-10-24 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6757969B2 (en) * 2016-07-07 2020-09-23 学校法人神奈川大学 Method for Producing Silica Nanoparticles, Silica Nanoparticles, and Fluorescent Agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456514B2 (en) * 1997-06-25 2003-10-14 触媒化成工業株式会社 Method for producing composite fine particles having a core-cell structure, and composite fine particles obtained by the method and uses thereof
JP2001011503A (en) * 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd New conductive fine particle and its use
JP4387653B2 (en) * 2002-10-09 2009-12-16 日揮触媒化成株式会社 Metal fine particles and adhesive, film and electric circuit board using the fine particles
JP4233834B2 (en) * 2002-10-09 2009-03-04 日揮触媒化成株式会社 NOVEL METAL PARTICLE AND METHOD FOR PRODUCING THE PARTICLE

Also Published As

Publication number Publication date
JP2008311141A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
CN107424665B (en) The manufacturing method of electroconductive particle, conductive material and electroconductive particle
JP5512306B2 (en) Method for producing conductive particles
KR20090073091A (en) Base material covered with metal layer and process for producing the same
JP5342114B2 (en) Method for producing conductive particles and conductive particles
KR102411476B1 (en) Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for producing conductive particle
JP5975054B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle
JP6737292B2 (en) Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, connection structure, and method for producing conductive particles
CN103366855A (en) Conductive particle and conductive material comprising the same
US20050227074A1 (en) Conductive electrolessly plated powder and method for making same
CN104837582A (en) Silver-coated nickel particles and method for producing same
JP5649932B2 (en) Method for producing metal-coated metal oxide fine particles and metal-coated metal oxide fine particles
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP2001152045A (en) Gold-plated silica and method for producing the same
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
CN115488348A (en) Metal nano powder with vine-shaped structure and preparation method and application thereof
JP3417699B2 (en) Conductive electroless plating powder
JP4261973B2 (en) Method for producing conductive electroless plating powder
JP4301646B2 (en) Nickel powder manufacturing method
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
KR100726694B1 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
JP2013001995A (en) Method for manufacturing conductive particles
JP4247039B2 (en) Method for producing conductive electroless plating powder
JP5221062B2 (en) Anisotropic shaped particles and method for producing the particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees